Ротор генератора это: что это, значение, принцип работы

Содержание

Устройство,принцип действия автомобильных генераторов

Электрооборудование любого автомобиля включает в себя генератор – основной источник электроэнергии. Вместе с регулятором напряжения он называется генераторной установкой. На современные автомобили устанавливаются генераторы переменного тока. Они в наибольшей степени отвечают предъявляемым требованиям.
Основные требования к автомобильным генераторам
1. Генератор должен обеспечивать бесперебойную подачу тока и обладать достаточной мощностью, чтобы:
– одновременно снабжать электроэнергией работающих потребителей и заряжать АКБ;
– при включении всех штатных потребителей электроэнергии на малых оборотах двигателя не происходил сильный разряд аккумуляторной батареи;
– напряжение в бортовой сети находилось в заданных пределах во всем диапазоне электрических нагрузок и частот вращения ротора.
2. Генератор должен иметь достаточную прочность, большой ресурс, небольшие массу и габариты, невысокий уровень шума и радиопомех.

Принцип действия генератора
В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И, наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток. Таким образом, для получения переменного электрического тока требуются катушка, по которой протекает постоянный электрический ток, образуя магнитный поток, называемая обмоткой возбуждения и стальная полюсная система, назначение которой – подвести магнитный поток к катушкам, называемым обмоткой статора, в которых наводится переменное напряжение. Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует, собственно, статор генератора, его важнейшую неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) – ротор, его важнейшую вращающуюся часть. Питание обмотки возбуждения может осуществляться от самого генератора. В этом случае генератор работает на самовозбуждении. При этом остаточный магнитный поток в генераторе, т. е. поток, который образуют стальные части магнитопровода при отсутствии тока в обмотке возбуждения, невелик и обеспечивает самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому в схему генераторной установки, там, где обмотки возбуждения не соединены с аккумуляторной батареей, вводят такое внешнее соединение, обычно через лампу контроля работоспособного состояния генераторной установки. Ток, поступающий через эту лампу в обмотку возбуждения, после включения выключателя зажигания и обеспечивает первоначальное возбуждение генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, т. к. в этом случае генератор возбуждается при слишком высоких частотах вращения, поэтому фирмы-изготовители оговаривают необходимую мощность контрольной лампы – обычно 2. ..3 Вт.

При вращении ротора напротив катушек обмотки статора появляются попеременно «северный», и «южный» полюсы ротора, т. е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения. Частота этого напряжения f зависит от частоты вращения ротора генератора N и числа его пар полюсов р:
f=p*N/60
За редким исключением генераторы зарубежных фирм, также как и отечественные, имеют шесть «южных» и шесть «северных» полюсов в магнитной системе ротора. В этом случае частота f в 10 раз меньше частоты вращения я ротора генератора. Поскольку свое вращение ротор генератора получает от коленчатого вала двигателя, то по частоте переменного напряжения генератора можно измерять частоту вращения коленчатого вала двигателя. Для этого у генератора делается вывод обмотки статора, к которому и подключается тахометр. При этом напряжение на входе тахометра имеет пульсирующий характер, т. к. он оказывается включенным параллельно диоду силового выпрямителя генератора. С учетом передаточного числа i ременной передачи от двигателя к генератору частота сигнала на входе тахометра fт связана с частотой вращения коленчатого вала двигателя Nдв соотношением:
f=p*Nдв(i)/60
Конечно, в случае проскальзывания приводного ремня это соотношение немного нарушается и поэтому следует следить, чтобы ремень всегда был достаточно натянут. При р=6 , (в большинстве случаев) приведенное выше соотношение упрощается fт = Nдв (i)/10. Бортовая сеть требует подведения к ней постоянного напряжения. Поэтому обмотка статора питает бортовую сеть автомобиля через выпрямитель, встроенный в генератор.

Обмотка статора генераторов зарубежных фирм, как и отечественных – трехфазная. Она состоит из трех частей, называемых обмотками фаз или просто фазами, напряжение и токи в которых смещены друг относительно друга на треть периода, т. е. на 120 электрических градусов, как это показано на рис. I. Фазы могут соединяться в «звезду» или «треугольник». При этом различают фазные и линейные напряжения и токи. Фазные напряжения Uф действуют между концами обмоток фаз. я токи Iф протекают в этих обмотках, линейные же напряжения Uл действуют между проводами, соединяющими обмотку статора с выпрямителем. В этих проводах протекают линейные токи Jл. Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т. е. линейные.

При соединении в «треугольник» фазные токи в корень из 3 раза меньше линейных, в то время как у «звезды» линейные и фазные токи равны. Это значит, что при том же отдаваемом генератором токе, ток в обмотках фаз, при соединении в «треугольник», значительно меньше, чем у «звезды». Поэтому в генераторах большой мощности довольно часто применяют соединение в «треугольник», т. к. при меньших токах обмотки можно наматывать более толстым проводом, что технологичнее. Однако линейные напряжения у «звезды» в корень из 3 больше фазного, в то время как у «треугольника» они равны и для получения такого же выходного напряжения, при тех же частотах вращения «треугольник» требует соответствующего увеличения числа витков его фаз по сравнению со «звездой».

Более тонкий провод можно применять и при соединении типа «звезда». В этом случае обмотку выполняют из двух параллельных обмоток, каждая из которых соединена в «звезду», т. е. получается «двойная звезда».

Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых: VD1, VD3 и VD5 соединены с выводом «+» генератора, а другие три: VD2, VD4 и VD6 с выводом «-» («массой»). При необходимости форсирования мощности генератора применяется дополнительное плечо выпрямителя на диодах VD7, VD8, показанное на рис.1, пунктиром. Такая схема выпрямителя может иметь место только при соединении обмоток статора в «звезду», т. к. дополнительное плечо запитывается от «нулевой» точки «звезды».

У значительного количества типов генераторов зарубежных фирм обмотка возбуждения подключается к собственному выпрямителю, собранному на диодах VD9-VD 11.Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении. По графику фазных напряжений (рис. 1) можно определить, какие диоды открыты, а какие закрыты в данный момент. Фазные напряжения Uф1 действует в обмотке первой фазы, Uф2 – второй, Uф3 – третьей. Эти напряжения изменяются по кривым, близким к синусоиде и в одни моменты времени они положительны, в другие отрицательны. Если положительное направление напряжения в фазе принять по стрелке, направленной к нулевой точке обмотки статора, а отрицательное от нее то, например, для момента времени t1, когда напряжение второй фазы отсутствует, первой фазы – положительно, а третьей – отрицательно. Направление напряжений фаз соответствует стрелкам, показанным на рис. 1. Ток через обмотки, диоды и нагрузку будет протекать в направлении этих стрелок. При этом открыты диоды VD1 и VD4. Рассмотрев любые другие моменты времени, легко убедиться, что в трехфазной системе напряжения, возникающего в обмотках фаз генератора, диоды силового выпрямителя переходят из открытого состояния в закрытое и обратно таким образом, что ток в нагрузке имеет только одно направление – от вывода «+» генераторной установки к ее выводу «-» («массе»), т. е. в нагрузке протекает постоянный (выпрямленный) ток. Диоды выпрямителя обмотки возбуждения работают аналогично, питая выпрямленным током эту обмотку. Причем в выпрямитель обмотки возбуждения тоже входят 6 диодов, но три из них VD2, VD4, VD6 общие с силовым выпрямителем. Так в момент времени t1 открыты диоды VD4 и VD9, через которые выпрямленный ток и поступает в обмотку возбуждения. Этот ток значительно меньше, чем ток, отдаваемый генератором в нагрузку. Поэтому в качестве диодов VD9-VD11 применяются малогабаритные слаботочные диоды на ток не более 2 А (для сравнения, диоды силового выпрямителя допускают протекание токов силой до 25…35 А).

Рис. 1. Принципиальная схема генераторной установки. Uф1 — Uф3 — напряжение в обмотках фаз: Ud — выпрямленное напряжение; 1, 2, 3 — обмотки трех фаз статора: 4 — диоды силового выпрямителя; 5 — аккумуляторная батарея; 6 — нагрузка; 7 — диоды выпрямителя обмотки возбуждения; 8 — обмотка возбуждения; 9 — регулятор напряжения.


Остается рассмотреть принцип работы плеча выпрямителя, содержащего диоды VD7 и VD8. Если бы фазные напряжения изменялись чисто по синусоиде, эти диоды вообще не участвовали бы в процессе преобразования переменного тока в постоянный. Однако в реальных генераторах форма фазных напряжений отличается от синусоиды. Она представляет собой сумму синусоид, которые называются гармоническими составляющими или гармониками – первой, частота которой совпадает с частотой фазного напряжения, и высшими, главным образом, третьей, частота которой в три раза выше, чем первой. Представление реальной формы фазного напряжения в виде суммы двух гармоник (первой и третьей) показано на рис. 2.

Рис. 2. Представление фазного напряжения Uф в виде суммы синусоид первой, U1, и третьей U3, гармоник


Из электротехники известно, что в линейном напряжении, т. е. в том напряжении, которое подводится к выпрямителю и выпрямляется, третья гармоника отсутствует. Это объясняется тем, что третьи гармоники всех фазных напряжений совпадают по фазе, т. е. одновременно достигают одинаковых значений и при этом взаимно уравновешивают и взаимоуничтожают друг друга в линейном напряжении. Таким образом, третья гармоника в фазном напряжении присутствует, а в линейном – нет. Следовательно, мощность, развиваемая третьей гармоникой фазного напряжения, не может быть использована потребителями. Чтобы использовать эту мощность добавлены диоды VD7 и VD8, подсоединенные к нулевой точке обмоток фаз, т. е. к точке где сказывается действие фазного напряжения. Таким образом, эти диоды выпрямляют только напряжение третьей гармоники фазного напряжения. Применение этих диодов увеличивает мощность генератора на 5. ..15% при частоте вращения более 3000 мин-1.

Выпрямленное напряжение, как это показано на рис. 1, носит пульсирующий характер. Эти пульсации можно использовать для диагностики выпрямителя. Если пульсации идентичны – выпрямитель работает нормально, если же картинка на экране осциллографа имеет нарушение симметрии – возможен отказ диода. Проверку эту следует производить при отключенной аккумуляторной батарее. Следует обратить внимание на то, что под термином «выпрямительный диод», не всегда скрывается привычная конструкция, имеющая корпус, выводы и т. д. иногда это просто полупроводниковый кремниевый переход, загерметизированный на теплоотводе.

Применение в регуляторе напряжения электроники и особенно, микроэлектроники, т. е. применение полевых транзисторов или выполнение всей схемы регулятора напряжения на монокристалле кремния, потребовало введения в генераторную установку элементов защиты ее от всплесков высокого напряжения, возникающих, например, при внезапном отключении аккумуляторной батареи, сбросе нагрузки. Такая защита обеспечивается тем, что диоды силового моста заменены стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении он не пропускает ток лишь до определенной величины этого напряжения, называемого напряжением стабилизации. Обычно в силовых стабилитронах напряжение стабилизации составляет 25… 30 В. При достижении этого напряжения стабилитроны «пробиваются «, т. е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе «+ « генератора остается неизменным, не достигающем опасных для электронных узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после «пробоя «используется и в регуляторах напряжения.

Устройство автомобильного генератора
По своему конструктивному исполнению генераторные установки можно разделить на две группы – генераторы традиционной конструкции с вентилятором у приводного шкива и генераторы так называемой компактной конструкции с двумя вентиляторами во внутренней полости генератора. Обычно «компактные» генераторы оснащаются приводом с повышенным передаточным отношением через поликлиновый ремень и поэтому по принятой у некоторых фирм терминологии, называются высокоскоростными генераторами. При этом внутри этих групп можно выделить генераторы, у которых щеточный узел расположен во внутренней полости генератора между полюсной системой ротора и задней крышкой и генераторы, где контактные кольца и щетки расположены вне внутренней полости. В этом случае генератор имеет кожух, под которым располагается щеточный узел, выпрямитель и, как правило, регулятор напряжения.

Любой генератор содержит статор с обмоткой, зажатый между двумя крышками – передней, со стороны привода, и задней, со стороны контактных колец. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором сквозь генератор.

Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, генераторы «компактной» конструкции еще и на цилиндрической части над лобовыми сторонами обмотки статора. «Компактную» конструкцию отличает также сильно развитое оребрение, особенно в цилиндрической части крышек. На крышке со стороны контактных колец крепятся щеточный узел, который часто объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор обычно оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности. Иногда статор полностью утоплен в передней крышке и не упирается в заднюю крышку, существуют конструкции, у которых средние листы пакета статора выступают над остальными и они являются посадочным местом для крышек. Крепежные лапы и натяжное ухо генератора отливаются заодно с крышками, причем, если крепление двухлапное, то лапы имеют обе крышки, если однолапное – только передняя. Впрочем, встречаются конструкции, у которых однолапное крепление осуществляется стыковкой приливов задней и передней крышек, а также двухлапные крепления, при котором одна из лап, выполненная штамповкой из стали, привертывается к задней крышке, как, например, у некоторых генераторов фирмы Paris-Rhone прежних выпусков. При двухлапном креплении в отверстии задней лапы обычно располагается дистанционная втулка, позволяющая при установке генератора выбирать зазор между кронштейном двигателя и посадочным местом лап. Отверстие в натяжном ухе может быть одно с резьбой или без, но встречается и несколько отверстий, чем достигается возможность установки этого генератора на разные марки двигателей. Для этой же цели применяют два натяжных уха на одном генераторе.

Статор генератора (рис. 3) набирается из стальных листов толщиной 0.8…1 мм, но чаще выполняется навивкой «на ребро». Такое исполнение обеспечивает меньше отходов при обработке и высокую технологичность. При выполнении пакета статора навивкой ярмо статора над пазами обычно имеет выступы, по которым при навивке фиксируется положение слоев друг относительно друга. Эти выступы улучшают охлаждение статора за счет более развитой его наружной поверхности. Необходимость экономии металла привела и к созданию конструкции пакета статора, набранного из отдельных подковообразных сегментов. Скрепление между собой отдельных листов пакета статора в монолитную конструкцию осуществляется сваркой или заклепками. Практически все генераторы автомобилей массовых выпусков имеют 36 пазов, в которых располагается обмотка статора. Пазы изолированы пленочной изоляцией или напылением эпоксидного компаунда.

Рис.3. Статор генератора: 1 — сердечник, 2 — обмотка, 3 — пазовый клин, 4 — паз, 5 — вывод для соединения с выпрямителем


В пазах располагается обмотка статора, выполняемая по схемам (рис. 4) в виде петлевой распределенной (рис.4-а) или волновой сосредоточенной (рис.4-б), волновой распределенной (рис.4-б) обмоток. Петлевая обмотка отличается тем, что ее секции (или полусекции) выполнены в виде катушек с лобовыми соединениями по обоим сторонам пакета статора напротив друг друга. Волновая обмотка действительно напоминает волну, т. к. ее лобовые соединения между сторонами секции (или полусекции) расположены поочередно то с одной, то с другой стороны пакета статора. У распределенной обмотки секция разбивается на две полусекции, исходящие из одного паза, причем одна полусекция исходит влево, другая направо. Расстояние между сторонами секции (или полусекции) каждой обмотки фазы составляет 3 пазовых деления, т.е. если одна сторона секции лежит в пазу, условно принятом за первый, то вторая сторона укладывается в четвертый паз. Обмотка закрепляется в пазу пазовым клином из изоляционного материала. Обязательной является пропитка статора лаком после укладки обмотки.

Рис.4 Схема обмотки статора генератора: А — петлевая распределенная, Б — волновая сосредоточенная, В — волновая распределенная
——- 1 фаза, — — — — — — 2 фаза, -..-..-..- 3 фаза


Особенностью автомобильных генераторов является вид полюсной системы ротора (рис.5). Она содержит две полюсные половины с выступами – полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы – полувтулки. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса.

Рис. 5. Ротор автомобильного генератора: а — в сборе; б — полюсная система в разобранном виде; 1,3- полюсные половины; 2 — обмотка возбуждения; 4 — контактные кольца; 5 — вал.


Если полюсные половины имеют полувтулки, то обмотка возбуждения предварительно наматывается на каркас и устанавливается при напрессовке полюсных половин так, что полувтулки входят внутрь каркаса. Торцевые щечки каркаса имеют выступы-фиксаторы, входящие в межполюсные промежутки на торцах полюсных половин и препятствующие провороту каркаса на втулке. Напрессовка полюсных половин на вал сопровождается их зачеканкой, что уменьшает воздушные зазоры между втулкой и полюсными половинами или полувтулками, и положительно сказывается на выходных характеристиках генератора. При зачеканке металл затекает в проточки вала, что затрудняет перемотку обмотки возбуждения при ее перегорании или обрыве, т. к. полюсная система ротора становится трудноразборной. Обмотка возбуждения в сборе с ротором пропитывается лаком. Клювы полюсов по краям обычно имеют скосы с одной или двух сторон для уменьшения магнитного шума генераторов. В некоторых конструкциях для той же цели под острыми конусами клювов размещается антишумовое немагнитное кольцо, расположенное над обмоткой возбуждения. Это кольцо предотвращает возможность колебания клювов при изменении магнитного потока и, следовательно, излучения ими магнитного шума.

После сборки производится динамическая балансировка ротора, которая осуществляется высверливанием излишка материала у полюсных половин. На валу ротора располагаются также контактные кольца, выполняемые чаще всего из меди, с опрессовкой их пластмассой. К кольцам припаиваются или привариваются выводы обмотки возбуждения. Иногда кольца выполняются из латуни или нержавеющей стали, что снижает их износ и окисление особенно при работе во влажной среде. Диаметр колец при расположении щеточно – контактного узла вне внутренней полости генератора не может превышать внутренний диаметр подшипника, устанавливаемого в крышку со стороны контактных колец, т. к. при сборке подшипник проходит над кольцами. Малый диаметр колец способствует кроме того уменьшению износа щеток. Именно по условиям монтажа некоторые фирмы применяют в качестве задней опоры ротора роликовые подшипники, т.к. шариковые того же диаметра имеют меньший ресурс.

Валы роторов выполняются, как правило, из мягкой автоматной стали, однако, при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала цементируется и закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива. Однако, во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от проворота при затяжке гайки крепления шкива, или при разборке, когда необходимо снять шкив и вентилятор.

Щеточный узел – это пластмассовая конструкция, в которой размещаются щетки т. е. скользящие контакты. В автомобильных генераторах применяются щетки двух типов – меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными, что неблагоприятно сказывается на выходных характеристиках генератора, однако они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин. Обычно щетки устанавливаются по радиусу контактных колец, но встречаются и так называемые реактивные щеткодержатели, где ось щеток образует угол с радиусом кольца в месте контакта щетки. Это уменьшает трение щетки в направляющих щеткодержателя и тем обеспечивается более надежный контакт щетки с кольцом. Часто щеткодержатель и регулятор напряжения образуют неразборный единый узел.

Выпрямительные узлы применяются двух типов – либо это пластины-теплоотводы, в которые запрессовываются (или припаиваются) диоды силового выпрямителя или на которых распаиваются и герметизируются кремниевые переходы этих диодов, либо это конструкции с сильно развитым оребрением, в которых диоды, обычно таблеточного типа, припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы или в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками. Включение выпрямительных блоков в схему генератора осуществляется распайкой или сваркой выводов фаз на специальных монтажных площадках выпрямителя или винтами. Наиболее опасным для генератора и особенно для проводки автомобильной бортовой сети является перемыкание пластинтеплоотводов, соединенных с «массой» и выводом «+» генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи и возможен пожар. Во избежание этого пластины и другие части выпрямителя генераторов некоторых фирм частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы генераторов это, как правило, радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами. Посадка шариковых подшипников на вал со стороны контактных колец – обычно плотная, со стороны привода – скользящая, в посадочное место крышки наоборот – со стороны контактных колец – скользящая, со стороны привода – плотная. Так как наружная обойма подшипника со стороны контактных колец имеет возможность проворачиваться в посадочном месте крышки, то подшипник и крышка могут вскоре выйти из строя, возникнет задевание ротора за статор. Для предотвращения проворачивания подшипника в посадочное место крышки помещают различные устройства – резиновые кольца, пластмассовые стаканчики, гофрированные стальные пружины и т. п.

Конструкцию регуляторов напряжения в значительной мере определяет технология их изготовления. При изготовлении схемы на дискретных элементах, регулятор обычно имеет печатную плату, на которой располагаются эти элементы. При этом некоторые элементы, например, настроечные резисторы могут выполняться по толстопленочной технологии. Гибридная технология предполагает, что резисторы выполняются на керамической пластине и соединяются с полупроводниковыми элементами – диодами, стабилитронами, транзисторами, которые в бескорпусном или корпусном исполнении распаиваются на металлической подложке. В регуляторе, выполненном на монокристалле кремния, вся схема регулятора размещена в этом кристалле. Гибридные регуляторы напряжения и регуляторы напряжения на монокристалле ни разборке, ни ремонту не подлежат.

Охлаждение генератора осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов (рис. 6-а) воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места – к выпрямителю и регулятору напряжения. На автомобилях с плотной компоновкой подкапотного пространства, в котором температура воздуха слишком велика, применяют генераторы со специальным кожухом (рис. 6-б), закрепленным на задней крышке и снабженным патрубком со шлангом, через который в генератор поступает холодный и чистый забортный воздух. Такие конструкции применяются, например, на автомобилях BMW. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Рис .6. Система охлаждения генераторов: а — генераторы обычной конструкции; б — генераторы для повышенной температуры в подкапотном пространстве; в — генераторы компактной конструкции. Стрелками показано направление воздушных потоков.


Генераторы большой мощности, устанавливаемые на спецавтомобили, грузовики и автобусы имеют некоторые отличия. В частности, в них встречаются две полюсные системы ротора, насаженные на один вал и, следовательно, две обмотки возбуждения, 72 паза на статоре и т. п. Однако принципиальных отличий в конструктивном исполнении этих генераторов от рассмотренных конструкций нет.

Ремонт ротора генератора своими руками

Самое подробное описание: ремонт ротора генератора своими руками от профессионального мастера для своих читателей с фотографиями и видео из всех уголков сети на одном ресурсе.

Автомобильный генератор – это электрическое устройство, которое снабжает бортовую сеть автомобиля электрическим током, за счёт преобразования механической энергии в электрическую. Они бывают различной мощности (для грузовых автомобилей нужны очень мощные генераторы, способные зарядить их аккумуляторы). Одна из главных функций генератора – это зарядка аккумулятора, который без генератора разряжается за полчаса. Если генератор выйдет из строя, электрооборудование автомобиля разрядит аккумулятор, и дальнейшая работа двигателя будет невозможна. Для того, чтобы не допустить такой ситуации, следует подробно рассмотреть конструкцию генератора, причины поломок и выхода из строя.

Генератор довольно сложное устройство.

Не зная принципов его работы, будет сложно разобраться в его поломках или нестабильной работе. Ремонт генератора автомобиля на специализированном автосервисе будет стоить достаточно дорого, тем более причина поломки может быть в одном отпаявшемся проводке, а многие недобросовестные сервисмены заставят заплатить как за капитальный ремонт генератора.

Нет видео.

Видео (кликните для воспроизведения).

Если вы хоть раз держали в руках паяльник, ремонт генератора своими руками вполне осуществим в гаражных условиях.

  • Не идёт зарядка на аккумулятор;
  • Генератор выдаёт минимальное напряжение;
  • Выдаётся слишком большая зарядка;
  • Когда происходит процесс зарядки, на панели мигает лампочка;
  • Когда генератор работает, слышны посторонние скрипы и писки.

Зная основные проблемы, из-за которых генератор может барахлить, можно приступать к их вычислению. Если генератор перестал заряжать аккумулятор, возможно что:

  • Какой либо из контактов отошёл;
  • Сгорел предохранитель;
  • Произошла выработка щёток генератора;
  • Сгорело реле генератора;
  • Короткое замыкание или разрыв цепи статора либо ротора.

Первые четыре случая решаются довольно просто, заменой сгоревших деталей, или поиском и пайкой оторванного контакта. Если же произошло замыкание или разрыв цепи, то данная проблема требует долгой и кропотливой работы.

Как вариант, можно отдать в ремонт ротор или статор, а можно купить новую обмотку и произвести ремонт генератора самостоятельно. Замена обмотки – это по сути ремонт статора либо ротора. Если обрыв происходит в контактных кольцах, можно обойтись локальным ремонтом, для этого нужно отмотать витки до повреждённого участка и заменить удалённый кусок новым, припаяв его к месту разрыва. Часто отпаивается лишь конец обмотки на роторе. Его нужно лишь припаять назад. Однако при ремонте ротора или статора инструкция по техническому обслуживанию настоятельно рекомендует производить полную перемотку статора и ротора. При перемотке деталей не следует забывать, что все контактные кольца должны быть тщательно обработаны напильником.

В основном шум генератора связан с выработкой подшипника генератора. Подшипник, который расположен на роторе проверяется на предмет наличия люфтов. Если они не обнаружены, а подшипник продолжает скрипеть, проблема в отсутствии смазки в подшипнике. Подшипник демонтируется, промывается в бензине, в него закладывается смазка (около 30 процентов от объёма подшипника), после чего устанавливается на место. Эта операция устранит все посторонние звуки, связанные с работой подшипника.

Главной причиной подобной неисправности является реле аккумулятора. При возникновении данной проблемы следует заменить его. Иногда встречается такая проблема, как пробой диода.

При горящей сигнальной лампочке, когда ток исправен, проблема, как правило, заключается в пробое нескольких диодов. Они находятся на диодном мосту. Для того чтобы добраться до них, нужно раскрутить генератор и извлечь крепление обмотки статора. На выводном крепеже производится отдача гайки и диодный мост извлекается. При выполнении данных работ можно сразу поменять обмотку на статоре, избавившись от проблем в будущем.

Ремонт автомобильных генераторов – процесс длительный, для которого понадобится специальное оборудование для ремонта.

  • Стенд для проверки;
  • Амперметр;
  • Реостат;
  • Вольтметр.

Если у вас нет доступа к стенду для проверки, его можно изготовить самостоятельно, или обойтись без его помощи.

  1. Извлеките генератор из подкапотного пространства;
  2. Открутив крепления, снимите щёткодержатель и регулятор напряжения;
  3. Достаньте натяжные болты;
  4. Отсоединив фазные обмотки от проводов на выпрямителе, нужно снять крышку статора;
  5. В последнюю очередь снимается шкив вала и передняя крышка генератора. Для этого нужно использовать специальный съёмник.

При демонтаже генератора следует избегать чрезмерных усилий при откручивании закисших болтов. Срыв резьбы влечёт за собой очень неприятную процедуру нарезки новой резьбы и вытачивания новых болтов. Лучше залить проблемные винты вэдэшкой и оставить на пару часов.

При отсоединении фазных обмоток важно не вырвать места пайки с корнем, иначе процедура пайки легко может вылиться в цикл полной перемотки статора.

Если вам приходится менять подшипники генератора, самое время заменить и щётки. Неизвестно, когда они менялись в последний раз и менялись ли вообще. Для успокоения совести можно достать щётки из генератора для визуального осмотра, но лучше сразу поменять их, ведь повторно лазить в генератор вряд ли захочется. При замене реле, главное при выборе, найти такое, как рекомендовано мануалом к вашему автомобилю. Лучше всего снять старое и подобрать такое же.

Как и все остальные узлы и агрегаты автомобиля, генератор требует ухода и периодического обслуживания. Нужно менять подшипники по мере износа, щётки генератора. Следить, чтобы на генератор не попадало большое количество грязи, пыли и особенно воды. Часто при неаккуратном обслуживании на генератор может попадать масло или антифриз. Следует избегать этого и при попадании технических жидкостей на генератор своевременно удалять их с помощью тряпки.

Для правильного функционирования генератора, клиновый ремень должен быть хорошо натянутым, но не перетянутым.

Производители рекомендуют проводить профилактический осмотр генератора раз в 15-20 тысяч километров. Если правильно обслуживать генератор и следить за его состоянием, он способен прослужить 1600-200 тысяч километров пробега. Однако профилактический осмотр – это не беглый взгляд на генератор, он предусматривает полную разборку и диагностику узлов генератора.

Сборка проходит в обратной последовательности разборке генератора. Единственным нюансом сборки является желательность использования специального калибра, с двумя диаметрами (на 12 и 22 миллиметра). При затяжке гайки шкива генератора, важно не превысить момента затяжки в 88 ньютонов на метр.

Нет видео.
Видео (кликните для воспроизведения).
  • Срыв резьбы винтов или резьбы в крышке генератора. Во избежание данной проблемы, следует контролировать силу затяжки винтов;
  • Замена подшипников ротора генератора. Даже если они не скрипели в процессе работы, подшипники могут просто рассыпаться при снятии;
  • Может понадобится замена реле лампы контроля зарядки аккумулятора. Обычно данное реле следует искать в районе правого переднего колеса (над ним).

При ремонте генератора важно точно выявить причину неисправности. Если дело в щётках, недостаточном натяжении ремня или неисправном реле, заменить их не составит большого труда. Если же предстоит замена или обмотка ротора или статора, данную процедуру проще доверить специалистам сервисных центров по ремонту генераторов. Зная причину поломки, вы будете уверены, что не заплатите лишние деньги. Однако если вы уверенны в своих силах, то можете сами сделать полный ремонт генератора. Генератор после ремонта, особенно капитального, является практически новым устройством.

Генератор автомобиля – это важный механизм, без которого далеко не уедешь при его поломке. Как правило, если он перестал подзаряжать аккумулятор машины или сбоями работает, то следует проверить сначала натяжение ремня привода генератора. Если ремень в порядке, то нужно приступить к снятию, разборке и ремонту генератора, ведь покупать новый будет намного дороже, чем заменить некоторые изношенные детали (они очень дешёвые). На самом деле процедура не сложная, но немного кропотливая, главное собрать всё правильно.

Мы ремонтировали генератор на автомобиле ВАЗ 2110 (на 2111, 2112 похожая процедура), если у вас модель 2106, то смотрите схему генератора ВАЗ 2106. Там есть некие отличия.

2. Сделайте маркером на корпусе генератора продольную метку, она потом пригодится при сборке.

3. Отожмите ручками три защёлке на верхней крышке.

5. Открутите 2 винта, что крепят регулятор напряжения.

6. Отсоедините провод от клеммы регулятора.

7. Теперь аккуратно вынимайте его со щёткодержателем.

8. Открутите винт, что крепит конденсатор и ещё 4, что крепят сам блок.

9. Далее, чтобы снять выпрямительный блок необходимо отвести 3 провода с клеммой.

10. Теперь вынимайте выпрямительный блок с конденсатором.

11. Теперь с выпрямительного блока открутите гайку с контактного болта, снимите шайбу с распорной вилкой и замените конденсатор. Снимите с контактного болта наконечник провода конденсатора.

13. Далее со стороны контактных колец при помощи отвёртки подденьте крышку генератора автомобиля.

14. Прижмите в тисках (чтобы не прокручивался) ротор генератора и открутите гайку, что держит шкив, и потом снимите пружинную шайбу и сам шкив.

16. Со стороны привода достаньте из крышки ротор.

17. Теперь выньте дистанционное кольцо из вала ротора.

18. Проверьте контактные кольца, если они имеют выраженные дефекты (царапины, задиры), то их требуется прошлифовать мелкой наждачной бумагой. Если при помощи шкурки их невозможно отшлифовать, то это можно проделать на токарном станке (только снять нужно как можно меньший слой металла), а после чего опять прошлифовать мелкой шкуркой.

19. Далее необходимо проверить при помощи омметра (тестера) сопротивление обмотки ротора. Для этого нужно подсоединить его к контактным кольцам. Если тестер выдаст «бесконечность», то это будет значить, что в какой-то из обмотки имеется обрыв, это исправляется только полной заменой ротора.

20. Потом проверяем контрольной лампой, нет ли замыкания обмотки на корпусе ротора. Делается это следующим образом: включите обычную лампу накаливания в сеть 220 В и один провод прислоните к корпусу генератора, а второй сначала на первое кольцо, а потом на второе. В любом из случаев загорание лампы не должно происходить. Если в каком-то из положений загорание всё-таки произошло, то следует также заменить весь ротор новым. Кстати можно в этом случае использовать маленькую лампу на 12 В и аккумулятор автомобиля, это проще и безопаснее.

21. Далее если всё хорошо с ротором, переходим к осмотру статора. На его внутренней стороне не должно быть каких-либо следов задевания якоря о статор. Если таковы симптомы наблюдаются, тогда следует произвести замену только подшипники или полностью крышки генератора в сборе с подшипниками.

22. Далее также как и с ротором проверяем, нет ли обрыва в обмотке статора. Подключаем тестовую лампу к переменному току и поочерёдно прислоняем контрольную лампу между всеми выводами обмотки. Только в этом случае лампа должна гореть, если хоть в одном из моментов она не загорелась, – заменить статор на новый или только обмотку.

23. Теперь производят проверку замыкания обмоток статора на корпус. Если подсоединить контрольную лампу к выводу обмотки статора, а провод от источника тока к корпусу статора, то загорание не должно происходить. Если лампа загорелась, то опять-таки выход только один, – заменить только обмотку или весь статор.

24. Осмотрите крышку генератора со стороны привода в сборе с подшипником. Если при вращении подшипника чувствуется люфт между кольцами, перекат или заклинивание тел качения, повреждены защитные кольца или есть следы подтекания смазки, а также обнаружены трещины в крышке, особенно в местах крепления генератора, необходимо заменить крышку в сборе с подшипником (подшипник в крышке завальцован).

25. Со стороны контактных колец необходимо проверить свободность вращения подшипника. Если при вращении подшипника чувствуется люфт между кольцами, перекат или заклинивание тел качения, повреждены защитные кольца или есть следы подтекания смазки, то подшипник необходимо заменить новым. Для этого с помощью съёмника спрессуйте подшипник с вала ротора и напрессуйте новый с помощью подходящей оправки, прикладывая усилие к внутреннему кольцу подшипника.

26. Проверьте крышку автомобильного генератора со стороны контактных колец. Если на ней имеются серьёзные дефекты, то замените её новой.

27. Теперь самый сложный и решающий момент всех ваших действий – собрать всё обратно в порядке разборки генератора. Только в конце закройте правильно крышку (по поставленной ранее метки). Пружинную шайбу шкива генератора поставьте выпуклой стороной к гайке, а последнюю затянуть моментом 39–62 Н•м (3,9– 6,2 кгс•м).

Вот и ремонт генератора автомобиля завершился, удачи Вам и больше не ломаться!

Здравствуйте, уважаемые автолюбители! Сегодня я расскажу, как отремонтировать генератор своими руками. Возможно, вы уже сталкивались с такой проблемой, когда на приборной панели вдруг загорелся индикатор разряда аккумулятора, это означает, что на вашем автомобиле пропала зарядка, и ехать вам осталось не долго, заряда аккумулятора хватит максимум на 1-2 часа.

Не спешите выбрасывать генератор. Попробуйте его сначала отремонтировать. Самой распространенной неисправностью генератора является износ щеток.

Чтобы проверить щеточный узел, надо снять заднюю пластиковую крышку, отогнув три пластиковых фиксатора, расположенных по кругу.

Снимите крышку, открутите два винта и снимите регулятор напряжения.

Проверьте износ щеток, если остаточная длина щеток менее пяти миллиметров, смело покупайте в магазине новый регулятор напряжения. Иногда бывает, что генератор не заряжает или перезаряжает аккумулятор, это тоже является не исправностью регулятора напряжения. Нормальное напряжение генератора от 13,5 до 14,5 вольт, зависит от оборотов двигателя и нагрузки на генератор.

Следующая неисправность генератора это пробой диодного моста. Для проверки диодов надо снять диодный мост. Откручиваем болты, на которых держится диодный мост.

Отогните провода в сторону.

Снимите диодный мост. О том как проверить диодный мост. Читайте здесь: Как проверить диодный мост?

После снятия диодного моста обязательно проверьте обмотки статора. Делаем так, включаем мультиметр в режим прозвонки и проверяем все три обмотки статора на обрыв. Все обмотки должны звониться между собой.

Далее проверяем замыкание на массу. Один щуп мультиметра соединяем на массу, а второй поочерёдно соединяем с выводами обмоток. Замыкания на массу быть не должно.

Аналогично проверяем обмотку якоря.

Проверяем якорь, замыкания на массу нет.

Теперь я покажу как разобрать генератор для замены подшипников. Откручиваем четыре винта соединяющие вместе две половинки генератора.

Открутите гайку и снимите шкив.

С помощью отвёртки аккуратно расколите генератор на две части так, чтобы не повредить алюминиевые крышки.

Неисправные подшипники замените новыми. Соберите генератор в обратной последовательности.

Друзья, желаю вам удачи! До встречи в новых статьях!

Автомобильный генератор представляет собой узел, который используется для обеспечения электричеством всех потребителей энергии в автомобиле. Выход из строя генераторного устройства приведет к тому, что все оборудование будет питаться от аккумулятора, а это впоследствии станет причиной его быстрого разряда. В каких случаях требуется ремонт генераторов, и какие неисправности характерны для этого устройства? Ответы вы найдете ниже.

Почем при нагрузке на генератор двигатель глохнет, с чем могут быть связаны проблемы утечки тока, какой должен быть вольтаж, почему не работает устройство и как отремонтировать поломку? Ремонт неисправностей автомобильных генераторов своими руками — дело достаточно сложное, поэтому для начала рекомендует ознакомиться с основными поломками устройства. К неисправностям механического характера относятся повреждение кронштейнов крепления, корпуса агрегата, износ шкива и подшипников, прижимных пружин и т.д. Причин повреждения может быть множество, но в любом случае, они никак не связаны с электрической составляющей.

Если двигатель автомобиля не заводится и вы считаете, что сломался именно генератор, то вам полезно будет узнать об основных признаках неполадок в функционировании агрегата:

  1. На приборной панели при работающем двигателе появился индикатор разряда аккумулятора. Лампочка может мигать или гореть без перерыва.
  2. При некорректной работе устройства, когда на агрегат возлагается более высокая нагрузка, чем та, на которую он рассчитан, в работу вступает аккумулятор для поддержки питания оборудования. Это может привести к выкипанию электролита в батарее.
  3. Следующий симптом — при включении фар вы можете увидеть, как оптика стала гореть более тускло. Если же вы нажмете на педаль газа, что приведет к увеличению оборотов силового агрегата, то яркость оптики восстановится до необходимого уровня.
  4. Устройство воет, гудит или свистит. Если при работе агрегата начали проявляться посторонние звуки, это говорит о неполадках в его работе, которые могут быть разными. Также генератор сильно греется.
  5. Двигатель авто время от времени глохнет без видимых причин. Неисправность такого рода может говорить о том, что в бортовой сети недостаток напряжения, необходимого для питания электрического оборудования. Если при этом аккумулятор полностью заряжен, то скорей всего, причина заключается именно в генераторе.

Теперь рассмотрим возможные причины неполадок, из-за которых может потребоваться снятие, разбор и ремонт генераторного устройства автомобиля:

  1. Повреждения шкива либо его износ. Если речь идет о серьезных неполадках и значительных повреждениях шкива, то его проще будет заменить. В некоторых случаях допускается ремонт и восстановление, но лучше всего поменять устройство.
  2. Повреждение либо естественный износ контактных токосъемных колец, которые могут быть повреждены.
  3. Неполадки в работе регуляторного устройства. Регулятор напряжения предназначен для выравнивания рабочей величины в электрической сети авто, его поломка приведет к скачкам напряжения в сети.
  4. Поломка диодного моста агрегата. При выходе из строя диодов первый симптом поломки — это отсутствие или слишком слабая искра на свечах, также емкость АКБ может быть снижена.
  5. Замыкание витков статорной обмотки. Иногда проблему позволяет решить перемотка обмотки, но зачастую ее легче просто заменить.
  6. Износ подшипников. При износе и поломке подшипниковых элементов в работе агрегата будет проявляться дополнительный шум.
  7. Повреждения силовой цепи питания.

Как разобрать и как произвести ремонт устройства? Ниже приведены основные рекомендации касательно устранения неисправностей.

Эти советы актуальны в том случае, если вы знаете основные причины и признаки поломок:

Иногда самостоятельный ремонт агрегата нецелесообразен, поэтому автовладельцам приходится менять устройство. Процедуру замены рассмотрим на примере автомобиля Лада Калина.

Чтобы успешно выполнить замену, подготовьте следующий инструмент:

  • гаечные ключи на 8, 13 и 19, для большего удобства используйте накидные и рожковые;
  • трещотки с головками аналогичных размеров;
  • удлинитель с воротком (автор видео — канал AndRamons).

Процедура замены должна осуществляться с учетом рекомендаций и требований производителя, которые указаны в сервисной книжке по эксплуатации. Перед тем, как приступить к замене, обязательно изучите мануал.

Итак, как снять и самостоятельно заменить агрегат:

Своевременный ремонт и обслуживание агрегата — это основные аспекты, которые позволят увеличить ресурс эксплуатации устройства.

Какие нюансы следует учитывать:

Наглядные урок с подробным описанием всех аспектов на тему принципа действия агрегата приведен в ролике ниже (видео опубликовал Михаил Нестеров).

Автомобильный генератор — это прибор, который принимает механическую энергию двигателя и преобразовывает ее в электрический ток, обеспечивая, таким образом, электроэнергией остальные агрегаты авто. Генератор обеспечивает зарядку аккумулятора, и электропитание двигателя автомобиля. Поэтому связь «двигатель-генератор» не должна прерваться, ведь неработающий генератор — это аккумулятор, не получающий заряда и соответственно неработающий главный орган автомобиля.
Замена генератора повлечет за собой значительные финансовые расходы. Поэтому, если у вас под рукой имеются все необходимые инструменты и знания устройств моторного отсека автомобиля, то можно устранить поломку самостоятельно (о том, что делать, если машина не заводится — стартер крутит, читайте в нашей другой статье).

Итак, генератор сломан. Какие же неисправности могут быть причиной сбоя в работе этого устройства? Рассмотрим их:

  1. Генератор производит ток с очень низким напряжением.
  2. Генератор совсем не вырабатывает электрический ток.
  3. Поломка устройства отображается на приборной панели в виде мигающей лампочки.
  4. Генератор производит зарядку сверх оптимальной нормы.
  5. Работа генератора сопровождается посторонним шумом.

Перед тем как начать делать ремонт генератора своими руками, необходимо проверить его техническое состояние и разобрать агрегат на части. Перед тем как разбирать генератор, проверьте состояние ремня и его натяжку и убедитесь, не ожидает ли вас замена ремня генератора в ближайшее время (почитайте еще, как делается замена ремня ГРМ на ВАЗ 2109). Проверка состоит в надавливании пальцем на средину этой детали генератора. Если ремень в хорошем состоянии, то он не должен при надавливании опускаться более чем на пол сантиметра. Стоит отметить, что новый ремень не должен прогибаться на более чем 2 мм. Если же ремень не изношен, но натяжка слабая, то недостаток можно исправить путем подтягивания генераторного ремня. Также прокрутите натяжной ролик генератора, если он прокручивается с трудом и скрипит, то его нужно будет смазать маслом, или поставить вместо него новый ролик.

Техническое состояние генератора можно проверить с помощью следующих измерительных приборов:

Частота вращения ротора измеряется с помощью тахометра (как правило, он находится рядом со спидометром на панели приборов). При нормальной работе генератора показатели данного прибора не должны быть меньше чем 2000 об/мин., нормой же являются 5000 об/мин.

Рассмотрим причины, которые могут вызвать поломку генератора. Итак, если генератор не вырабатывает заряд, то причинами этому могут быть следующие явления:

  1. Перегорел предохранитель или контакты.
  2. Сломались или износились щетки генератора.
  3. Вышло из строя реле регулятора.
  4. Вследствие замыкания обмотки случился обрыв в статорной или роторной цепи.

Для того чтобы исправить первые три неисправности из списка, нужно просто заменить изношенные детали генератора, предварительно, естественно, разобрав его.

  1. Первым делом снимите щеткодержатель вместе с регулятором напряжения, аккуратно открутив все крепления.
  2. Извлеките натяжные болты и затем крышку со статором.
  3. Снимите крышку со статора, отсоединив перед этим фазные обмотки от выводных проводов на блоке выпрямления.
  4. Далее снимите шкив с вала и переднюю крышку генератора, применяя специальный съемник.

Сборка генератора проводится в обратной последовательности.

В случае замыкания обмотки от вас потребуются более серьезные действия, чем простая замена детали. Итак, обрыв обмотки можно либо починить, либо заменить новыми проводами. Часто обмотка обрывается рядом с контактными кольцами. Кроме того, поломка может случиться из-за распайки какого-нибудь из концов обмотки. Подобную неисправность можно починить, отмотав виток в области разрыва назад с обмотки ротора. Далее отломанный конец обмотки надо снять (выпаять) с контактного кольца и припаять туда отмотанный ранее провод. Распайку очень легко починить путем обратного припаивания проводки.

О слабом или слишком сильном заряде генератора свидетельствует испорченное реле, которое необходимо заменить при ремонте генератора.

Если проверка напряжения генератора показал, что прибор исправен, но при этом на панели приборов мигает индикатор, то, скорее всего, вышел из строя один из диодов, которые отвечают за питание лампочки в индикаторе. Данные диоды находятся в самом генераторе, и замена проводится после разборки устройства.

О несвойственных генератору шумах может свидетельствовать износ подшипника ротора. Если при осмотре обнаружится, что подшипник генератора изношен, то его нужно будет заменить. Если же непонятные звуки генератора связаны с отсутствием люфта в подшипнике, то его можно будет просто залить маслом, предварительно промыв в бензине. Посторонние звуки после этого исчезнут.

Таким образом, ремонт генератора сделать своими силами можно даже у себя в гараже (как и капремонт двигателя, собственно). Выполняя проверку и замену деталей устройства, соблюдайте технику безопасности и будьте аккуратны, ведь система электрооборудования не должна при этом повредиться.

В статье мы будем говорить о том, каким образом можно отремонтировать генератор своими руками, а также попробуем разобраться в его конструкции.

Генератор представляет собой электрооборудование, которое имеет очень сложную конструкцию. Если он сломан или же окончательно вышел со строя, то в таком случае заряд аккумулятора полностью отсутствует, а также мотор перестает функционировать. Можно приобрести новый агрегат или же обратиться с целью проведения анализа поломки или выполнения ремонтных работ в автосервис, но данные варианты выхода из положения будут обходиться слишком больших финансовых затрат. Поэтому лучше всего попытаться отремонтировать генератор своими руками. Для этого необходимо всего минимум знаний в электротехнике, а также наличие паяльника и навыков работы с ним.

Изначально давайте обсудим проблемы, в результате которых могут возникнуть сбои в работе генератора.

  • Во-первых, это может быть отторжение любого зарядного устройства.
  • Во-вторых, генератор может выдавать слишком маленькое напряжение.
  • В- третьих, может возникать переизбыток зарядной энергии — (неисправен реле регулятор).
  • Также в процессе зарядки может возникнуть на панели мигание сигнальной лампочки.
  • И последнее, в процессе работы генератор издает какие-либо посторонние звуки — (неисправны подшипники).

Вот были перечислены наиболее распространенные проблемы, которые будут сигнализировать о сбое в работе генератора.

Далее некоторые из вышеперечисленных проблем мы обсудим более подробно.

Чаще всего возникает у владельцев автомобиля, что происходит отторжение зарядки, то есть генератор не дает зарядку.

Причинами данной поломки могут быть:

  • перегорел предохранитель, либо же он может просто отойти;
  • поломка или скоропостижный износ щеток;
  • поломка реле регулятора;
  • возникновение замыкания обмотки (может быть разорвана цепь ротора или же статора).

В нескольких вышеперечисленных неисправностях можно просто произвести замену запчастей, вышедших из строя. Но если заряд аккумулятора не идет из-за именно замыкания обмотки, то в данном случае можно прибегнуть к нескольким вариантам ремонта данной проблемы.

Вы можете смело приобрести новую обмотку, или произвести самостоятельный ремонт старой. Если все-таки случилось так, что возник разрыв обмотки, то в таком случае необходимо отремонтировать ротор, либо отдать в ремонт, либо сделать ремонт своими руками.

Довольно часто можно встретить, что обрыв произошел именно в районе контактных колец. Для ремонта и решения проблемы стоит отмотать виток на том участке, где и произошел сам разрыв. Сделайте провод с такой длиной, чтобы спокойно его хватило для припайки к самому контактному кольцу. Необходимо очень аккуратно выпаять конец обмотки, который был ранее сломан и приступить к произведению нормального, то есть исправного конца к этой же сломанной ранее обмотке.

Также может быть, что случилась случайная распайка кончика именно у той обмотки, которая имеет свое месторасположение на роторе. Здесь необходимо будет просто произвести припайку ее на прежнее место. Если есть необходимость, то лучше произвести ремонт и зачистку самих контактных колец на генераторе. Может присутствовать достаточно глубокий, тогда следует обратиться за помощью к напильнику, благодаря которому и можно устранить эту проблему в генераторе.

Параллельно с ремонтом вышеперечисленных неполадок можно устранить еще одну ,такую как возникновение посторонних шумов в процессе работы генератора. Для этого необходимо выполнить тщательнейшим образом осмотр подшипника, который расположен на роторе, и если Вами будут обнаружены какие-либо неисправности, то лучше всего заменить его своими руками, ремонту подшипники не подвержены. Распространенной проблемой является отсутствие люфта у подшипника генератора. Если случилось так, что это и произошло в Вашем случае, тогда стоит произвести демонтаж защитной накладки, после чего следует ее промыть в бензине и смазать.

Теперь немного поговорим о том, что делать в случае, если слабая зарядка от генератора или же вообще происходит совершенно противоположное — то есть перезарядка аккумулятора. Лучше всего в этом случае приступить к поискам проблемы в аккумуляторном реле, и в случае надобности следует его заменить. Еще одной причиной возникновения данного дефекта может послужить появление пробоины диода, который располагается в самом диодном мосту. Как показывает практика таких неисправностей, рекомендуется в место ремонта просто заменить реле регулятор, или как его называют «диодный мост.

В данном случае причиной может быть случайно возникший пробой одного диода(может быть несколько одновременно), который несет ответственность за всю цепь питания лампы. Они также располагаются на диодном мосту. Вам необходимо открутить гайки(ключ 7 ) на генераторе и выполнить демонтаж крепления обмотки, находящейся на статоре. После этого стоит создать отдачу гайки и демонтировать диодный мост. В процессе выполнения данной работы Вы можете также сделать замену или ремонт обмотки на статоре.

Вот на этом и все. Ремонт генератора своими руками выполнен. Но не забудьте о самом главном правиле — для успешного выполнения данного ремонта стоит иметь хотя бы минимальные знания в области электротехники.

Автор статьи: Антон Кислицын

Я Антон, имею большой стаж домашнего мастера и фрезеровщика. По специальности электрик. Являюсь профессионалом с многолетним стажем в области ремонта. Немного увлекаюсь сваркой. Данный блог был создан с целью структурирования информации по различным вопросам возникающим в процессе ремонта. Перед применением описанного, обязательно проконсультируйтесь с мастером. Сайт не несет ответственности за прямой или косвенный ущерб.

✔ Обо мне ✉ Обратная связь Оцените статью: Оценка 3.5 проголосовавших: 13

Ротор генератора — Энциклопедия по машиностроению XXL

На рис. 180 а изображена схема радиально-осевой турбины, помещенной внутри спиральной камеры. Рабочее колесо турбин рассматриваемого типа состоит из ряда лопастей изогнутой формы, равномерно распределенных по окружности. Лопасти укреплены в ободах. Число лопастей колеблется в пределах 12—20 наиболее часто применяется 14—15 лопастей. На рис. 180 а / — отсасывающая труба 2 —рабочее колесо спиральная камера 4 — лопатка направляющего аппарата 5 — крышка турбины 6 — уплотняющий сальник 7 — вал турбины, на котором обычно укреплен ротор генератора. Вода через спиральную турбинную камеру поступает на рабочее колесо 2, протекая между лопатками направляющего аппарата 4, и, пройдя через рабочее колесо турбины, вытекает в осевом направлении в отсасывающую трубу 1.  [c.282]
Единый тонкостенный сварно-кованый вал 13 агрегата соединен с рабочим колесом 20 и ротором генератора фланцами. Обычный подшипник 14 турбины на водяной смазке с обрезиненными сегментами установлен на основании опоры подпятника, что позволило поднять корпус подшипника выше уровня крышки турбины и совместить с ней корпус рабочего колеса. Центрируется подшипник отжимными болтами.  [c.45]

Валы горизонтальных гидроагрегатов могут быть либо едиными, либо состоять из вала генератора и вала турбины (см. рис. 11.20). Выполняются они гладкими, вращаются в подшипниках с масляной смазкой и соединяются с валом или ротором генератора и рабочим колесом фланцами так же, как валы вертикальных турбин.  [c.196]

Воздуходувка и топливный насос приводятся от верхнего коленчатого вала основная мощность (70%) снимается с нижнего коленчатого вала, который приводит в движение ротор генератора, масляный и водяной насосы и регулятор числа оборотов.  [c.441]

Показательный пример приводит П. Л. Капица [25]. Если в зазоре между ротором и статором электрогенератора происходит превращение механической энергии в электрическую, то м в (5.1) представляет собой окружную скорость ротора генератора, величина которой по конструктивным соображениям равна 100 м/с. Тангенциальные силы взаимодействия между статором и ротором в электромагнитном генераторе определяются энергией магнитного поля  [c.87]

Физические принципы процесса преобразования энергии падающей воды в электроэнергию в действительности просты, однако технические детали достаточно сложные. Вода под напором, создаваемым плотиной, направляется в водовод, который заканчивается турбиной. Турбина вращает вал, к которому присоединен ротор генератора, вращающийся в магнитном поле статора. Выработка электроэнергии зависит от потенциальной энергии воды, запасенной в водоеме, и КПД ее преобразования в электроэнергию.  [c.29]

Когда трудом поколений изобретателей были созданы удачные конструкции электрических генераторов, осталось только найти способ их вращения, чтобы механическая энергия преобразовывалась в электрическую. Понадобилось создать двигатель, способный сразу же, без промежуточных устройств, приводить во вращение с большим числом оборотов ротор генератора.  [c.139]

Сигнал на разгон и торможение ведомого двигателя снимается с динамического моста ведущего двигателя. Э.д.с., наводимая в роторе генератора для ненасыщенной части характеристики, изменяется пропорционально току (или напряжению) обмотки возбуждения генератора.  [c.112]


Применение изложенной выше методики рассмотрим на примере турбогенератора с трехопорным ротором, имеющим раму длиной порядка 5,5 м. Масса ротора генератора 2,5 т, турбины — 1,1 т, частота вращения ротора 3000 об/мин. Рама закрепляется на фундаменте с помощью резинометаллических амортизаторов, обеспечивающих минимальную собственную частоту системы примерно 20 Гц.  [c.116]

Определялись уровни колебаний ротора и рамы при возбуждении небалансом ротора генератора, приложенном в точках 4 ж 5, или ротора турбины, приложенном в точке 11.  [c.117]

При возбуждении колебаний небалансом ротора турбины, расположенном в точке 11, резонансные явления проявляются слабо (рис. 53). Уровни колебаний точки 4 ротора генератора  [c.118]

Распределение амплитуд перемещений существенно зависит от малых разностей реакций, что влияет на точность вычислений и нестабильность вибраций во времени вследствие небольших изменений толщины масляной пленки подшипников при различных пусках и колебаниях температуры. Кососимметричное расположение небалансов на роторе генератора или турбины вызывает значительно меньшие уровни вибраций.  [c.121]

Нечувствительные скорости существуют как для пары симметричных, так и для пары кососимметричных грузов при расположении плоскостей уравновешивания близко к опорам. Например, из фиг. 6. 21 видно, что при = 0,1/ величина необходимых для устранения второй гармоники неуравновешенности кососимметричных грузов резко возрастает вблизи скорости Yi 5,4 (Y2 1,35), так как здесь значение коэффициента (16 — Y ) X X (Kf + К2) проходит через нуль. В этом случае ротор нечувствителен к кососимметричным грузам. Приведенный выше пример с ротором генератора ТВ-100-2 подтверждает это положение, причем и область нечувствительных скоростей этого ротора (у , 1,4- -1,5) лежит близко к теоретическому значению Y 2 = >35. Некоторое различие в этих значениях объясняется тем, что ротор генератора имеет переменное сечение, а здесь рассматривались роторы постоянного сечения.  [c.236]

Л р-т — уклон шеек ротора турбины при его горизонтальном положении. Уклон задней шейки ротора генератора ба = 26 Ци-  [c.198]

Ротор турбины устанавливают с подъемом вперед (фиг. 18,в). Здесь 6] = 26 р-т + 6г. Задняя шейка ротора генератора будет иметь уклон 6а = бг — 26 р. с направлением в сторону возбуди-  [c.198]

После предварительного закрепления фундаментных болтов ставят корпусы подшипников генератора и возбудителя. Под корпусы заднего подшипника укладывают изоляционные листы (фибра, бакелит, текстолит и т. п.) толщиной 3—5 мм и прокладки из листовой стали толщиной 2—3 мм. Из-под стойки подшипника изоляцию выпускают во все стороны на 15—20 мм. После этого проверяют по струне и расточкам центровку корпусов подшипников с допуском + 0,2 мм. Затем устанавливают на место нижние вкладыши подшипников генератора и возбудителя, в них укладывают ротор генератора и якорь возбудителя и проверяют индикатором правильность установки валов. Вал ротора генератора проверяют на консолях и возле бочки в шейках газовых уплотнений крышек статора. Допуск на биение для роторов, делающих 3000 об/мин, не более 0,06—0,08 мм, а при 1500 об/мин не более 0,1—0,12 мм. Результаты проверки заносят в формуляр.  [c.237]

После окончания центровки ротор генератора и якорь возбудителя удаляют для чистки и обдувки сжатым воздухом и на фундаментную плиту ставят статор генератора со снятыми лобовыми  [c.237]

Заводка ротора генератора с удлинителем вала, поставляемым заводом, показана на фиг. 1.  [c.238]

Роторы генераторов мощностью 50 000 кет и выше заводят в статоры при помощи специальных тележек, поставляемых заво-дом-изготовителем. Тележки закрепляют на валу ротора таким образом, что их ролики могут кататься по стальным листам, уложенным внутри статора (см. фиг. 6 в гл. II).  [c.238]

При окончательной установке статора генератора необходимо учесть, что ротор удлиняется во время работы вследствие нагрева примерно на 1 жм на каждый метр его длины. Если муфта жесткая, то следует учесть осевое перемещение ротора генератора примерно 2 мм на каждый цилиндр вследствие удлинения ротора. В связи с этим зазор между торцами вкладышей подшипников и галтелями шеек у генератора со стороны турбины принимают равным 3—4 мм, а со стороны возбудителя — сумме удлинений роторов плюс 1—2 мм.  [c.238]


Заземление обмотки ротора генератора  [c.298]

Загрязнение вентиляционных каналов ротора генератора  [c.298]

Тепловая электроетавция. Более 90% используемой человечеством энергии получается за счет сжигания угля, нефти, газа. Наиболее удобной для распределения между потребителями является электрическая энергия переменного тока. Для преобразования энергии химического горючего в электроэнергию используются тепловые электростанции. На тепловой электростанции освобождаемая при сжигании топлива энергия расходуется на нагревание воды, превращение ее в пар и нагревание пара. Струя пара высокого давления направляется на лопатки ротора паровой турбины и заставляет его вращаться. Вращающийся ротор турбины приводит во вращение ротор генератора электрического тока. Генератор переменного тока осуществляет превращение механической энергии в энергию электрического тока.  [c.238]

Преобразование энер1вв переменного тока. При использовании переменного тока преобразования энергии не заканчиваются превращением механической энергии вращающегося ротора генератора в энергию электромагнитных колебаний переменного тока.  [c.238]

Литые нековкие — магнитные системы измерительных приборов и дистанционных компасов, успокоители, статоры исполнительных двигателей, роторы тахогенера-торов, поляризующие магниты реле, роторы генераторов.  [c.211]

В генераторе предусмотрено водяное охлаждение обмоток ротора (приоритет СССР), что позволило уменьшить размеры и массу генератора. Подвод воды к ротору генератора и масла к рабочему колесу осуществлен через водомасло-приемник 2, установленный на конце вала генератора. Между валом и капсулой у рабочего колеса установлены рабочие и ремонтные уплотнения 9.  [c.51]

Вал 2 турбины цельнокованый, из стали 40ГС, присоединен болтами непосредственно к фланцу ротора генератора, выполнен с воротником в месте расположения подшипника. Подшипник 3 турбины сегментного типа с жидкой масляной смазкой установлен на кожухе турбины. Охлаждение масла происходит в камерах кожуха. Подробности конструкции видны из рисунка.  [c.55]

Механизмы поворота лопастей с сервомоторами, вынесенными из корпуса рабочего колеса, применяют за рубежом. Сервомотор располагают либо между фланцами валов турбины и генератора, либо в роторе генератора (см. рис. П.5). При этом шток сервомотора получается длинным и суммарная масса деталей механизма поворотг. увеличивается, а конструкция в общем усложняется. Кроме того, длинный шток требует установки опор внутри вала. При размещении сервомотора между фланцами вала последние получаются сильно развитыми. Размещение сервомотора в роторе генератора еще более удлиняет шток. В СССР эта конструкция не применялась.  [c.153]

Вал гидроагрегата передает вращающий момент от рабочего колеса турбины ротору генератора и осевую силу на пяту агрегата. Основные размерные характеристики вала диамегр вала диаметр фланцев диаметр отверстия вала 4 , длина вала / — определяют условия и возможность его производства. Выбор способа изго овления заготовок (формообразования) вала имеет большое экономическое значание, так как стоимость вала существенно влияет на стоимость агрегата. Конструкция вала зависит от системы турбины, ее установки, конструкции рабочего колеса и подшипника.  [c.193]

Вал представляет собой упругую деталь, объединяющую рабочее колеса и ротор генератора, и должен обеспечивать статическую и динамическую прочность агрегата при всех режимах работы. Прочность вала может быть достаточной в рабочих, переходных и разгонном режимах, если собственная частота колебаний ротора в этих режимах не будет совпадать или не окажется близкой к частоте вынужденных ко/ебаний. Расчет на колебания позволяет определить собственные частоты и, соЕоставив их с вынужденными, оценить, как далеко от резонансных явлений находится система.  [c.201]

Крутильные колебания вала возникают из-за наличия неуравновешенных маховых масс и моментов на роторе генератора, гидродинамических сил и масс на рабочем колесе и нарастают вплоть до резонансных при совпадении собственной частоты колебаний системы с частотой вращения вала или других вынужденных частот. Baj[ является упругим звеном, связывающим ротор генератора с рабочим колесом, и, как при поперечных колебаниях, в значительной мере опредёляет собственную частоту этой системы.  [c.203]

Строят схему нагружения вала определяют его геометрические характеристики массы ротора генератора /Ирот, рабочего колеса /Яр. и вала  [c.205]

Дело в том, что повышение мопгности электрогенератора ограничивается сильным нагревом обмоток. Тепло, выделяющееся в медных проводах генератора, надо отводить, а это очень затрудняется их электрической изоляцией. Для лучшего отвода тепла и уменьшения так называемых вентиляционных потерь — потерь энергии па сопротивление воздуха быстро вращающемуся ротору — роторы генераторов крупных машин помещают в водородную атмосферу. Являясь хорошим проводником тепла, водород быстро охлаждает верхние поверхности обмоток ротора. Но и при этих предосторожностях нагрев проводов обмоток очень значителен.  [c.48]

При частоте 30 Гц ротор генератора и рама колеблются в противофазе. На рис. 49 действительная и мнимая части амплитуды колебаний ротора и рамы изображены соответственно сплошной и штриховой линиями и отложены с учетом знаков от их неде-формированного состояния, принятого за начало отсчета. Разность перемещений правой (кривые а, 6) и левой (в) балок указывает на закрутку концов рамы. Амплитуды перемещений ротора в вертикальном (кривые г, д) и горизонтальном (е, ж) направлениях примерно одинаковые.  [c.117]


При уравновешивании реальных роторов иногда бывают случаи, когда в каком-то определенном диапазоне скоростей ротор очень слабо реагирует на действие установленных на нем довольно значительных уравновешивающих грузов. Например, роторы генераторов ТВ-100-2 на рабочей скорости щ = 3000 об/мин) при Y2 = 1,4 -н 1,5 ( 2 = 1900 ч-2100 обЫин) мало чувствительны к кососимметричным грузам, установленным в торцовых сечениях бочки ротора (/ = 0,1/). Встречаются и другие роторы, нечувствительные на некоторых скоростях к установленным в торцовых сечениях грузам. Уравновесить их на этих скоростях невозможно поэтому обычно их уравновешивают на другой скорости, а при проектировании новых роторов стремятся обеспечить достаточную отстройку их рабочей скорости от нечувствительности .  [c.235]

Этот вывод подтверждается экспериментальной амплитудно-частотной характеристикой вибрации опор ротора генератора Т2-50-2 (фиг. 6. 32), приведенной в статье С. И. Микуниса [23].  [c.238]

Очень малая чувствительность к симметричным грузам и связанная с этим сложность балансировки на рабочей скорости роторов генератора ТВ-50-2 и однотипных с ними Т2-50-2 хорошо известны [1, 6, 7]. Очень близко к рабочей скорости располагается, по нашим расчетам, первая нечувствительная скорость роторов генераторов ТВВ-165-2, ТГВ-800-4 и ТГВ-1000-4. У последнего типа генератора дело еш,е больше осложняется тем, что и отстройка его от первой критической скорости составляет менее 12%. Для этого турбогенератора, по нашему мнению, необходимо выполнить уточненные расчеты первых критической и нечувствительной скоростей и, если результаты предварительных расчетов подтвердятся, следует внести в конструкцию ротора соответствующие изменения с тем, чтобы обеспечить достаточную отстройку от этих скоростей. В противном случае балансировка этих роторов симметричными грузами в торц ах бочки будет практически невозможна.  [c.95]

На фиг. 5, а и б показаны приспособления для выемки диафрагм, а на фиг. 6 — приспособление в виде специальной тележки для заводки ротора генератора в статор (для генераторов мощностью 50 мзвт и выше). Обычно такие тележки доставляются заводом-изготовителем генератора. Тележка закрепляется на валу ротора таким образом, что ролики могут кататься по стальным листам, уложенным внутри статора генератора.  [c.169]

В машинном зале все оборудование разгружают с помощью мостового крана и размещают с учетом технологии монтажа. На монтажной площадке в конденсационном помещении рекомендуется размещать цилиндры турбины, громоздкие детали конденеатора, сам конденсатор, а также статор и ротор генератора.  [c.179]

Установка двухцилиндровых турбин. За основу установки при-яимают р. н. д. и соответственно ц. н. д. Ротор высокого давления н ротор генератора прицентровывают к р.н.д. (фиг. 19). Ц. в. д. врицентровывают к ц. н. д. в соответствии с уклоном р. в. д.  [c.198]

При перемещениях ротор генератора можно стропить только за бочку между бандажными кольцами, подкладывая деревянные подкладки под трос. Строповка ротора за бандажные кольца и шейки вала воспрещается. При укладке ротора на деревянные брусья или козлы запрещается опирать его на бандажные кольца. Затем производится центровка по полумуфтам ротора турбины и генератора и прицентровка якоря возбудителя. Центровка достигается изменением положения корпусов подшипников.  [c.237]

Возбудитель монтируют в виде блока, для чего полностью собирают его на верхней раме и прицентровывают по полумуфте к ротору генератора путем изменения подкладок под фундаментной рамой возбудителя и сдвигом рамы в необходимом направлении.  [c.240]

Небаланс ротора генератора вследствие смещения обмоток или деформации бандажей в случае механической исправности обмоток и бандалей произвести динамическую балансировку ротора при номинальном числе оборотов  [c.299]


Системы охлаждения генераторов



Во время работы синхронного генератора его обмотки и активная сталь нагреваются.

Допустимые температуры нагрева обмоток статора и ротора зависят в первую очередь от применяемых изоляционных материалов и температуры охлаждающей среды. По ГОСТ 533-76 для изоляции класса В (на асфальтобитумных лаках) допустимая температура нагрева обмотки статора должна находиться в пределах 105°С, а ротора 130°С. При более теплостойкой изоляции обмоток статора и ротора, например, классов F и Н, пределы допустимой температуры нагрева увеличиваются.

В процессе эксплуатации генераторов изоляция обмоток постепенно стареет. Причиной этого являются загрязнение, увлажнение, окисление кислородом воздуха, воздействие электрического поля и электрических нагрузок и т.д. Однако главной причиной старения изоляции является ее нагрев. Чем выше температура нагрева изоляции, тем быстрее она изнашивается, тем меньше срок ее службы. Срок службы изоляции класса В при температуре нагрева ее до 120°С составляет около 15 лет, а при нагреве до 140°С — сокращается почти до 2 лет. Та же изоляция при температуре нагрева 105°С (т.е. в пределах ГОСТ) стареет значительно медленнее и срок службы ее увеличивается до 30 лет. Поэтому во время эксплуатации при любых режимах работы генератора нельзя допускать нагрева его обмоток свыше допустимых температур.

Для того чтобы температура нагрева не превышала допустимых значений, все генераторы выполняют с искусственным охлаждением.

По способу отвода тепла от нагретых обмоток статора и ротора различают косвенное и непосредственное охлаждение.

При косвенном охлаждении охлаждающий газ (воздух или водород) с помощью вентиляторов, встроенных в торцы ротора, подается внутрь генератора и прогоняется через немагнитный зазор и вентиляционные каналы. При этом охлаждающий газ не соприкасается с проводниками обмоток статора и ротора и тепло, выделяемое ими, передается газу через значительный тепловой барьер — изоляцию обмоток.

При непосредственном охлаждении охлаждающее вещество (газ или жидкость) соприкасается с проводниками обмоток генератора, минуя изоляцию и сталь зубцов, т.е. непосредственно.

Отечественные заводы изготовляют турбогенераторы с воздушным, водородным и жидкостным охлаждением, а также гидрогенераторы с воздушным и жидкостным охлаждением.

Воздушное охлаждение генератора

Существуют две системы воздушного охлаждения — проточная и замкнутая.

Проточную систему охлаждения применяют редко и лишь в турбогенераторах мощностью до 2 MBА, а также в гидрогенераторах до 4 MBА. При этом через генератор прогоняется воздух из машинного зала, который быстро загрязняет изоляцию обмоток статора и ротора, что в конечном счете сокращает срок службы генератора.

При замкнутой системе охлаждения один и тот же объем воздуха циркулирует по замкнутому контуру. Схематично циркуляция воздуха при таком охлаждении для турбогенератора представлена на рис.1. Для охлаждения воздуха служит воздухоохладитель 1, по трубкам которого непрерывно циркулирует вода. Нагретый в машине воздух выходит через патрубок 2 в камеру горячего воздуха 3, проходит через воздухоохладитель и через камеру холодного воздуха 4 снова возвращается в машину. Холодный воздух нагнетается в машину встроенными вентиляторами 5. В генераторах с большой длиной активной части холодный воздух подается с обоих торцов машины, как это показано на рис.1.

Рис.1. Замкнутая система воздушного охлаждения турбогенератора

В целях повышения эффективности охлаждения турбогенераторов, длина активной части которых особенно велика, а воздушный зазор мал, используют многоструйную радиальную систему вентиляции. Для этого вертикальными плоскостями 6 делят систему охлаждения турбогенераторов на ряд секций. В каждую секцию воздух поступает из воздушного зазора (I и III секции) или из специального осевого канала 7 (II секция).

Для увеличения поверхности соприкосновения нагретых частей с охлаждающим воздухом в активной стали машины выполняют систему вентиляционных каналов. Пройдя через радиальные вентиляционные каналы в стали, нагретый воздух уходит в отводящие камеры 8. Многоструйная вентиляция обеспечивает равномерное охлаждение турбогенератора по всей длине. Для восполнения потерь в результате утечек предусмотрен дополнительный забор воздуха через двойные масляные фильтры 9, установленные в камере холодного воздуха.

Отечественные заводы изготовляют турбогенераторы с замкнутой системой воздушного охлаждения мощностью до 12 МВт включительно.

Замкнутая система косвенного охлаждения воздухом у гидрогенераторов применяется значительно шире. Наиболее крупный генератор с косвенным воздушным охлаждением серии СВ мощностью 264,7 MBА выпущен ПО «Электросила» для Братской ГЭС. Схема вентиляции гидрогенератора показана на рис.2.

Рис.2. Замкнутая система вентиляции гидрогенератора
1 — ротор; 2 — статор;
3 — воздухоохладитель;
4 — лопатки вентилятора

В гидрогенераторах охлаждение явнополюсных роторов облегчается благодаря наличию межполюсных промежутков и большей поверхности охлаждения ротора.

Охлаждение гладкого ротора турбогенератора менее эффективно, так как в рассматриваемом случае он охлаждается только со стороны воздушного зазора. Последнее обстоятельство в значительной мере определяет ограниченные возможности воздушного охлаждения для турбогенераторов. У генераторов с воздушным охлаждением предусматривается устройство для тушения пожаров водой.

Косвенное водородное охлаждение турбогенераторов

Турбогенераторы с косвенным водородным охлаждением имеют в принципе такую же схему вентиляции, как и при воздушном охлаждении. Отличие состоит в том, что объем охлаждающего водорода ограничивается корпусом генератора, в связи с чем охладители встраиваются непосредственно в корпус. Размещение газоохладителей и газосхема циркуляции водорода внутри генератора представлены на рис.3.

Рис.3. Схема многоструйной радиальной вентиляции в турбогенераторах
1 — камеры холодного газа;
2 — камеры горячего газа;
3 — газоохладители

Водородное охлаждение эффективнее воздушного, так как водород как охлаждающий газ по сравнению с воздухом имеет ряд существенных преимуществ. Он имеет в 1,51 раза больший коэффициент теплопередачи, в 7 раз более высокую теплопроводность. Последнее обстоятельство предопределяет малое тепловое сопротивление прослоек водорода в изоляции и зазорах пазов.

Значительно меньшая плотность водорода по сравнению с воздухом позволяет уменьшить вентиляционные потери в 8-10 раз, в результате чего КПД генератора увеличивается на 0,8-1%.

Отсутствие окисления изоляции в среде водорода по сравнению с воздушной средой повышает надежность работы генератора и увеличивает срок службы изоляции обмоток. К достоинствам водорода относится и то, что он не поддерживает горения, поэтому в генераторах с водородным охлаждением можно отказаться от устройства пожаротушения.

Водород, заполняющий генератор в смеси с воздухом (от 4,1 до 74%, а в присутствии паров масла — от 3,3 до 81,5%), образует взрывоопасную смесь, поэтому у машин с водородным охлаждением должна быть обеспечена высокая газоплотность корпуса статора масляными уплотнениями вала, уплотнением токопроводов к обмоткам статора и ротора, уплотнением крышек газоохладителей, лючков и съемных торцевых щитов. Наиболее сложно выполнить надежные масляные уплотнения вала генератора, препятствующие утечке газа.

Чем выше избыточное давление водорода, тем эффективнее охлаждение генератора, следовательно, при одних и тех же размерах генератора можно увеличить его номинальную мощность. Однако при избыточном давлении более 0,4-0,6 МПа прирост мощности генератора не оправдывает затрат на преодоление возникающих при этом технических трудностей (усложнение работы уплотнений и изоляции обмоток). Поэтому давление водорода в современных генераторах более 0,6 МПа не применяется.

Генераторы с косвенным водородным охлаждением могут при необходимости работать и с воздушным охлаждением, но при этом их мощность соответственно уменьшается.

Источником водорода на современных ТЭС являются электролизные установки, в которых водород получают путем электролиза воды. В отдельных случаях водород доставляется в баллонах с электролизерных заводов.

Рис.4. Принципиальная схема газового хозяйства водородного охлаждения
1 — манометр, 2 — электроконтактный манометр; 3 — газоанализатор;
4 — блок регулирования и фильтрации; 5 — вентиль;
6 — углекислотный баллон; 7 — осушитель водорода;
8 — указатель жидкости; 9 — клапан давления водорода;
10 — водородный баллон; 11 — предохранительный клапан

На рис.4 показана принципиальная схема газового хозяйства системы водородного охлаждения.

При заполнении корпуса генератора водородом воздух сначала вытесняется инертным газом (обычно углекислотой) во избежание образования гремучей смеси. Углекислота под давлением из баллона 6 подается в нижний коллектор, при этом более легкий воздух вытесняется через верхний коллектор и открываемый на это время вентиль «Выпуск газа». В результате смешивания газов при вытеснении расход углекислоты на данную операцию составляет два-три объема корпуса генератора. После того как весь объем будет заполнен углекислотой при концентрации около 90%, в верхний коллектор подают под давлением водород, который вытесняет углекислоту через нижний коллектор и открываемый вентиль «Выпуск углекислоты». Как только чистота водорода в корпусе достигнет заданного уровня, вентиль «Выпуск углекислоты» закрывают и доводят давление водорода в корпусе до нормального. Вытеснение водорода производят углекислотой, которая затем вытесняется сжатым воздухом.

Автоматическое поддержание давления водорода в корпусе генератора осуществляется клапаном давления 9. Контроль максимального и минимального давления водорода производится взрывобезопасным электроконтактным манометром 2, установленным на панели газового управления. Автоматический контроль чистоты водорода осуществляется газоанализатором 3, и, кроме того, через определенные промежутки времени водород берут на химический анализ в лабораторию.

При снижении процентного содержания водорода ниже допустимого восстановление чистоты его осуществляется путем выпуска из генератора загрязненного водорода и добавления чистого водорода. Эта операция называется продувкой.

В целях осушки водорода, находящегося в генераторе, предусмотрен осушитель 7, заполняемый хлористым кальцием или силикагелем.

Для современных турбогенераторов с целью осаждения влаги из охлаждающего газа применяют специальные фреоновые холодильные машины. Указатель наличия жидкости 8 служит для подачи сигнала о появлении воды или масла в корпусе генератора.

Электромашиностроительные заводы в СССР выпускали серию генераторов ТВ (ТВ2) мощностью до 150 МВт включительно с использованием косвенного водородного охлаждения, которые эксплуатируются на многих ТЭС.

Непосредственное водородное охлаждение турбогенераторов

Еще больший эффект по сравнению с косвенным водородным охлаждением дает непосредственное (внутреннее) охлаждение, когда водород подается внутрь полых проводников обмотки.

В генераторах серии ТВФ применяется косвенное охлаждение обмоток статора водородом и непосредственное (форсированное) охлаждение обмотки ротора. Система вентиляции роторов генераторов серии ТВФ представлена на рис.5.

Рис.5. Конструкция вентиляционного канала в обмотке
ротора с непосредственным охлаждением

а — продольный разрез;
б и в — поперечные косые разрезы по пазу ротора

Охлаждающий газ забирается из зазора с последующим выбросом нагретого газа обратно в зазор. При этом проводники 1 обмотки ротора выполняются сплошными прямоугольного сечения, а на боковых поверхностях их фрезеруются косые вентиляционные каналы 2. При работе генератора (вращении ротора) водород поступает в заборное отверстие 3 и, проходя по косому вентиляционному каналу до дна паза 4, выходит уже с другой стороны паза (катушки) в другой канал и через выпускное отверстие 5 попадает снова в зазор.

Генераторы серии ТГВ мощностью 200 и 300 МВт имеют несколько иную систему охлаждения ротора. Водород циркулирует в аксиальных прямоугольных каналах, которые образуются корытообразными проводниками обмотки возбуждения.

В генераторах этого типа выполнено также непосредственное охлаждение обмоток статора. Водород подается в тонкостенные трубки из немагнитной стали, заложенные внутри стержней обмотки (рис.6) и открытые в лобовых частях.

Рис.6. Разрез паза статора (а) и ротора (б) генератора типа ТГВ
1 — пазовый клин, 2 — корпусная изоляция;
3 — массивный элементарный проводник;
4 — газовые трубки; 5 — бочка ротора;
6 — дюралюминиевый клин; 7 — подклиновая изоляция;
8 — полувитки обмотки; 9 — горизонтальный вентиляционный канал

В обоих типах генераторов (ТГВ и ТВФ) давление водорода в корпусе поддерживается 0,2-0,4 МПа.

Генераторы с непосредственным водородным охлаждением на воздушном охлаждении работать не могут, так как обмотка, рассчитанная на форсированное охлаждение водородом, при работе на воздушном охлаждении перегреется и выйдет из строя. Поэтому при появлении больших утечек водорода из генератора, сопровождающихся глубоким и быстрым снижением давления водорода, генератор с непосредственным охлаждением должен быть аварийно разгружен и отключен от сети. Включение в сеть отключенного генератора может быть произведено лишь после устранения утечек и перевода его на водород, если для отыскания утечек он был переведен на воздух.

Непосредственное жидкостное охлаждение генераторов

При выполнении непосредственного жидкостного охлаждения генераторов в качестве охлаждающей жидкости применяют дистиллированную воду или масло, которые обладают более высокой теплоотводящей способностью по сравнению с водородом и, следовательно, позволяют еще больше увеличить единичные мощности генераторов при сохранении их размеров.

Дистиллированная вода как охлаждающее вещество по сравнению с маслом имеет значительно больше достоинств: более высокие теплоотводящие свойства, пожаробезопасность. Поэтому в большинстве случаев мощные генераторы, которые выпускались в СССР, выполнялись с водяным охлаждением.

Рис.7. Устройство ввода и вывода воды для охлаждения обмотки статора

На рис.7 показана конструкция гидравлических соединений обмотки статора с водяным охлаждением и дан разрез обмотки по одной параллельной ветви. Как видно из разреза, обмотка статора выполнена из сплошных и полых медных элементарных проводников прямоугольного сечения, по которым циркулирует вода.

Питание обмотки водой осуществляется путем подвода ее к каждой параллельной ветви с помощью шлангов из пластмассы, обладающей высокой электрической прочностью и необходимой эластичностью (например, фторопласт-4).

Охлаждение обмотки статора водой в сочетании с непосредственным охлаждением обмотки ротора и активной стали водородом применяется в турбогенераторах типа ТВВ мощностью 160-800 МВт.

Опыт эксплуатации турбогенераторов серии ТВВ показал, что они имеют значительные резервы в системе охлаждения. В результате была предложена новая единая серия генераторов ТВВ и одновременно ТВФ, которые также используют систему форсированного охлаждения ротора. Новые машины за счет использования более высоких электромагнитных нагрузок (в основном линейной токовой нагрузки и плотностей тока), улучшения конструкции системы охлаждения получились легче и надежнее своих предшественников. Расход материалов на изготовление новой серии генераторов ТВВ-160-2ЕУЗ на 20% меньше, чем ранее выпускавшихся генераторов ТВВ-165-2УЗ. Новые генераторы имеют также лучшие температурные характеристики по сравнению с ранее выпускавшимся генератором ТВВ-165-2УЗ.

Водяное охлаждение статорной обмотки по аналогичной схеме применяется также в мощных вертикальных гидрогенераторах типа СВФ. Обмотка ротора и активная сталь таких генераторов имеют непосредственное воздушное охлаждение.

Выполнение непосредственного охлаждения ротора генератора связано с большими трудностями, особенно в отношении подвода воды к вращающемуся ротору.

Рис.8. Турбогенератор ТГВ-500 мощностью 500 МВт
а — общий вид турбогенератора;
б — принципиальная схема охлаждения обмоток статора и ротора и стали статора

На рис.8 изображен турбогенератор ТГВ-500 мощностью 500 МВт, в котором обмотки статора и ротора охлаждаются водой, а сталь магнитопровода — водородом.

Холодная дистиллированная вода поступает по патрубку А в напорный кольцевой коллектор 1 и из него с помощью изолирующих шлангов 2 подводится к головкам 3 и стержням 4 обмотки статора генератора. Стержень обмотки сплетен из групп транспонированных проводников, причем каждая группа состоит из одного полого и трех сплошных проводников. По трубчатым проводникам циркулирует дистиллированная вода, которая, нагреваясь, поступает в сливной кольцевой коллектор 5, откуда по патрубку Б выходит во внешнюю систему.

Для охлаждения обмотки ротора холодная вода по патрубку В подводится через скользящее уплотняющее соединение в торце вала ротора 6 и через центральное отверстие поступает внутрь ротора 7. Затем через отверстие 8 вода поступает в каналы 9 проводников обмотки, уложенных в пазы ротора, и, нагреваясь, поступает в сливные каналы 10 и 11, откуда через радиальные отверстия вала ротора 12 выводится во внешнюю систему через патрубок Г.

Во внешней системе нагретая дистиллированная вода проходит через трубки теплообменника и охлажденная при помощи насосов вновь подается к обмоткам статора и ротора (со стороны возбудителя).

Внутри генератора циркуляцию водорода обеспечивают осевые вентиляторы 13, установленные по концам вала ротора. Холодный водород при этом прогоняется вентиляторами в зазор 14 и оттуда поступает в систему радиальных каналов 16 сердечника статора 15. Нагревшись, водород поступает в газовые охладители 17 и из них вновь к вентиляторам 13.

В результате высокоэффективной системы охлаждения турбогенератор ТГВ-500 имеет размеры и массу даже несколько меньшие, чем ТГВ-300. Водяное охлаждение обмоток ротора и статора находит применение в капсульных гидрогенераторах типа СГКВ.

В СССР выпускалась серия турбогенераторов ТВМ, которые имели комбинированную систему охлаждения; ротор охлаждается водой, а статор (обмотка, активная сталь и конструктивные элементы) — кабельным маслом. В турбогенераторе ТВМ применена для изоляции обмоток статора сравнительно дешевая и надежная бумажно-масляная изоляция кабельного типа. Это позволило сократить расходы на изоляцию обмоток генератора, например, ТВМ-300 в 4 раза по сравнению с расходами на изоляцию обмоток генераторов ТВВ и ТГВ такой же мощности.

Бумажно-масляная изоляция позволяет применять более высокие номинальные напряжения для генераторов без значительного увеличения затрат. Так, например, генератор ТВМ-500 спроектирован на напряжение 36, 75 кВ, в то время как обычно для генераторов такой мощности применяется напряжение 20 кВ. Увеличение номинального напряжения позволило уменьшить ток статора почти в 2 раза и облегчить токоведущие части.

Применение масляного охлаждения статоров гидрогенераторов дало возможность увеличить напряжение обмотки до 110 кВ (генератор 15 MBА Сходненской ГЭС), что позволяет включать генератор в сеть без промежуточной трансформации.

Рис.9. Принципиальная схема циркуляции масла в турбогенераторе типа ТВМ
1 — корпус генератора, 2 — сердечник статора,
3 — нажимные плиты сердечника, 4 — обмотка статора,
5 — изоляционный цилиндр, 6 — ротор,
7 — масляный насос, 8 — маслоохладитель;
9 — магистрали охлаждающей воды

Рис.10. Разрез паза генератора типа ТВМ
1 — клин обмотки статора;
2 — изоляционная теплостойкая бумага;
3 — элементарные проводники обмотки статора;
4 — канал охлаждающего масла

Принципиальная схема циркуляции охлаждающего масла для генератора типа ТВМ представлена на рис.9, а на рис.10 показан разрез по пазу статора такого генератора.

Принудительная циркуляция масла внутри аксиальных каналов в обмотке и стали статора обеспечивает достаточно интенсивный отвод тепла.

Пространство, в котором вращается ротор генератора, отделяется от статора, заполненного маслом, изоляционным цилиндром.

Сравнительная эффективность различных способов охлаждения генераторов может быть показана путем сопоставления мощностей при одних и тех же габаритах генератора (табл.1).

Таблица 1

Эффективность различных систем охлаждения

В табл.1 показана эффективность использования воды для охлаждения активных элементов генератора. В полной мере эти преимущества реализованы в генераторах ТЗВ-800-2. В них водой охлаждаются не только обмотки, но и сталь статора и его конструкционные элементы. Здесь исчезает необходимость использования охлаждающего газа — водорода. Во избежание образования химически активного озона корпус генератора должен быть заполнен нейтральным азотом. Однако эксплуатация головных генераторов на воздухе показала достаточную надежность работы и в этом случае.

Дальнейшим шагом в направлении развития систем охлаждения является разработка криогенных генераторов с охлаждением жидким гелием. Естественно, что в первую очередь речь идет об охлаждении обмотки возбуждения (обмотки ротора), которая имеет наибольшие электромагнитные нагрузки. В настоящее время разрабатывается рабочий проект криогенератора мощностью 300 МВт. Характерно, что общая его масса не превышает 150 т, а серийного ТВВ-320-2 — 305 т.

В процессе эксплуатации ведется непрерывный контроль за нагревом активных частей генераторов. Температура обмотки и стали статора контролируется с помощью температурных датчиков, в качестве которых используются термосопротивления. Они закладываются заводом-изготовителем на дно паза (для измерения температуры стали) и между стержнями (для измерения температуры меди) в местах предполагаемого наибольшего нагрева машины. Температура измеряется с помощью указывающих и регистрирующих приборов.

Температуру обмотки ротора измеряют косвенно — по изменению омического сопротивления обмотки при нагреве (с помощью амперметра в цепи возбуждения и вольтметра, подключаемого непосредственно к кольцам ротора).



Намотка генератора под разное соотношение полюсов и катушек

Сейчас можно сказать 99% всех генераторов это классические генераторы с трёхфазной обмоткой и соотношением числа полюсов и числа катушек 2 к 3. То-есть если полюсов например 12 то катушек 18, если полюсов 24 то катушек 36, если полюсов 9 то катушек 12, если полюсов 6 то катушек 9. Так-же такая схема работает если наоборот соотношение 3 к 2, она обычно применяется на дисковых-аксиальных генераторах, где делают 9 катушек и 12 магнитных полюсов на дисках. Но с дисковыми всё и так понятно, там нет магнитного залипания так-как статор не содержит железа, а катушки просто залиты смолой.

Но в классических генераторах где статор железный есть магнитное залипание, которое мешает ветроколесу стартовать, и многие борются за снижение этого залипания, чтобы винт стартовал при более низкой скорости ветра. Само залипание это когда магниты на роторе притягиваются к зубцам статора и держат ротор, и чтобы его провернуть нужно приложить определённое усилие, которое измеряется в Ньютон*метр (Нм).

Ранее я уже описывал методы уменьшения залипания, где писал про скос магнитов — в этой статье Уменьшение залипания методом скоса магнитов, но сейчас я хочу более подробно разобрать один интересный метод повышения КПД генератора и уменьшения залипания. Вообще генератор можно намотать с любым количеством катушек и полюсов, и при этом он будет трёхфазный и будет так-же работать. Для расчёта такой намотки сделали сайт где можно рассчитать генератор, вот адрес сайта — http://www.bavaria-direct.co.za/scheme/calculator/

Как делать расчёт генератора

Перейдя по ссылке вы увидите вот такую картину, ниже скриншот

>

В этой форме нужно вводить количество полюсов на роторе, и количество катушек статора.

>

Например в автомобильном генераторе 18 катушек и 12 полюсов на роторе, если ввести эти данные мы получим 36 залипаний и КПД генератора 0.86.

>

Ниже на скриншоте я отметил где какие данные указываются

>

1. Указывает количество залипаний ротора за один оборот, в данном случае 0.86603. Чем больше общее количество залипаний тем меньше по силе каждое залипание в отдельности, Увеличением количества залипаний общая сила притяжения магнитов как-бы распределяется по всему диаметру, и чем больше залипаний тем они слабее, по-этому ротор генератора легче стронуть.

2. Указывает КПД обмотки генератора, в данном случае 36. Соответственно чем выше число в этом поле тем выше КПД генератора в целом. При классической схеме намотки генераторов КПД 0,86, но эффективность, а значит и мощность можно увеличить.

2. Указывает схему намотки катушек, в данном случае ABCABCADCABCABCABC. Это самый сложный для понимания этап и его разберём подробнее. При классической схеме намотки катушек все катушки наматываются в одном направлении, чтобы ток тёк в одну сторону и не-было такого чтобы он двигался навстречу, иначе это уже замыкание и неправильная работа генератора, перегрев и выход из строя генератора.

На схеме видно что буквами «АВС» обозначены фазы генератора, дополнительно они выделены цветами. Как видно все буквы заглавные, значит всё катушки мотаются в одном направлении. То-есть если вы начали мотать катушки по часовой стрелке значит они все должны так наматываться, а соединятся катушки одной фазы между сабой должны (конец катушки с началом следующей). Если взять первую фазу «А» то видно что она мотается начиная с первого зуба и потом через каждые два зуба. Фаза «В» точно так-же, но начиная со второго зуба, и третья фаза «С» наматывается на третий зуб и потом через каждые два зуба.

Например всего у нас 18 катушек, то-есть по 6 штук на фазу, значит первая фаза мотается с любого первого зуба, потом вторая катушка фазы наматывается уже на четвёртый зуб, третья катушка на седьмой зуб, четвертая на 10-й зуб, пятая на 13-й зуб, и шестая на 16-й зуб. А две другие соответственно точно так-же, но начиная со второго и третьего зуба. На скриншоте видно как они соединены, только здесь ротор снаружи, а статор внутри, а вам нужно представить это наоборот. Фазы отмечены разными цветами и видно что в фазе катушки соединены последовательно, то-есть конец катушки с началом следующей и так далее…

Изменение количества полюсов и направление обмоток генератора

Но если изменить количество полюсов, например поставить 22 полюса, как на скриншоте ниже, то изменится схема намотки генератора.

>

Если вместо 12 полюсов на роторе сделать 20 полюсов, то генератор так-же останется трёхфазным, но поменяется размещение катушек на зубах статора, и направление намотки. Из скриншота выше видно что отмеченная красным первая фаза «А» теперь идёт подряд три зуба, и далее через шесть зубов ещё три зуба. Заглавной буквой отмечено что катушка должна наматываться в одну сторону, а прописная буква указывает что катушка должна наматываться в противоположную сторону. Если вы начали мотать первую катушку по часовой стрелке, то вторую мотаете уже против часовой стрелки.

Такая схема намотки позволяет использовать 20 магнитных полюсов на роторе. При этом как видно количество магнитных залипаний увеличилось с 36 до 180, и тем самым в 4 раза снизилось отдельное залипание, и грубо говоря залипание снизилось в четыре раза. При этом КПД генератора вырос с 86 до 94%, что очень неплохо ведь прирост целых 10%. Можно указывать любое количество полюсов и смотреть за изменением КПД генератора и магнитного залипания.

Определение ширины магнитов

По толщине магниты могут быть любые, но конечно не нужно ставить слишком толстые и мощные магниты, так-как это будет дороже, увеличится залипание, и будет переизбыток магнитного поля, которое выйдет за пределы статора и просто не будет участвовать в выработке энергии. А вот по ширине магниты нужно подбирать под конкретный генератор. Если посмотреть на скриншот то видно что магниты чуть-чуть шире зубов статора, то-есть если зуб статора шириной 10мм, то магниты шириной получаются 11 мм. Чтобы точно вычислить можно распечатать страницу с расчётом и вычислить в процентах на сколько магнит шире или уже зуба, и уже далее перенести расчёт на свой генератор. Например если магнит шире зуба на 10%, а у вас зуб шириной 7.5 мм, то прибавляете 0.75 мм и получите 8.25 мм. Значит вам нужен магнит шириной 8 мм.

>

Если вам что-то не понятно, то оставляйте вопросы в комментарии ниже и я отвечу вам. Тут самое главное понять в какую сторону мотать катушки и на какие зубы, а так-же усвоить что ширина магнитов берётся относительно ширины зубов статора, а отношение в процентах вычисляется визуально по рисунку. Если скажем использовать магниты шире или уже чем требуется, то нарушается вся схема и от этого может появится неравномерность залипания, залипание может наоборот стать сильнее. А КПД генератора может заметно снизится.

Возбуждение ротора — обзор

10.3 АРН с помощью управления возбуждением ротора

Ток возбуждения, необходимый для генератора, обеспечивается системой возбуждения. АРН является жизненно важным компонентом этой системы вместе с возбудителем или источником питания, измерительными элементами, PSS и блоком защиты.

Источник питания возбуждения может быть от возбудителя, который представляет собой отдельный генератор постоянного или переменного тока. Возбудитель имеет обмотку возбуждения (постоянный ток) в статоре и обмотку якоря в роторе.В случае генератора возбудителя переменного тока трехфазный переменный ток индуцируется в обмотке ротора, который выпрямляется с помощью диода, тиристора или транзисторного моста, установленного в роторе. Однако для бесщеточной системы возбуждения и с пилотным возбудителем якорь в статоре и поле представляет собой постоянный магнит. Однако главным возбудителем является генератор переменного тока на роторе. Различные варианты и варианты систем возбуждения изображены на рис. 2.40.

Системы возбуждения ротора, как правило, делятся на три группы в зависимости от источника питания, используемого для возбуждения (IEEE, 2006):

1.

Системы возбуждения постоянного тока : Используйте генераторы постоянного тока для питания обмоток возбуждения синхронной машины.

2.

Системы возбуждения переменного тока : Используйте генераторы переменного тока с помощью вращающихся или статических выпрямителей для питания обмотки возбуждения генератора.

3.

Статические системы возбуждения : Используйте трансформаторы и выпрямители для преобразования переменного тока в постоянный для возбуждения обмотки возбуждения генератора.

Существует еще одна общая и широкая классификация систем возбуждения, которая классифицируется по источникам мощности возбуждения. Два основных класса:

1.

Отдельные системы возбуждения, которые являются статическими или бесщеточными : Эти системы не зависят от сбоев и неисправностей, которые происходят в электроэнергетических системах, и могут вызывать возбуждение. Бесщеточные системы используются для возбуждения более крупных генераторов (выработка электроэнергии ∼ 600 МВА) и в легковоспламеняющихся и взрывоопасных средах.Бесщеточные системы состоят из генератора переменного тока, вращающегося диодного моста на роторе и поля на статоре. Когда эта система оснащена пилотным возбудителем, она состоит из другого генератора переменного тока на статоре и реализуется с возбуждением постоянными магнитами на роторе. Попытки построить бесщеточную систему с тиристорным мостом не увенчались успехом из-за проблем с надежностью управления тиристором. Результатом этой проблемы является существенный недостаток этих систем, а также невозможность обеспечить снятие возбуждения генератора.Еще один недостаток — более медленный отклик системы, особенно при слабом возбуждении (рис. 9.16).

Рис. 9.16. Принципиальная схема бесщеточной системы возбуждения.

2.

S ELF-системы возбуждения : Преимущества этой системы — простота и низкая стоимость. Питание тиристорного или транзисторного моста осуществляется от выводов генератора через трансформатор. Основным недостатком является то, что напряжение питания возбуждения и, следовательно, ток возбуждения напрямую зависят от выходного напряжения генератора.Существуют и бесщеточные системы самовозбуждения, но они мало используются.

Первоначально выходное напряжение генератора контролировалось отдельным небольшим генератором или возбудителем, соединенным с валом генератора. Поле было установлено на статоре с АРН, регулирующим его входной ток. Ротор возбудителя действует как генератор постоянного тока, а выход возбудителя затем управляется АРН для подачи возбуждения постоянного поля основного генератора через контактные кольца.

Вышеупомянутая система привела к задержке нарастания магнитных полей как в возбудителе, так и в основном генераторе.Поэтому была разработана идея системы самовозбуждения / шунтирующего возбуждения. В этой системе был исключен отдельный возбудитель, и источник питания использовался непосредственно от выходной клеммы генератора с соответствующими управляемыми выходными выпрямителями для цепи возбуждения поля постоянного тока. Преимущество этой системы возбуждения заключается в том, что она может мгновенно изменять выходное напряжение для подачи необходимого тока, необходимого для управления основным генерируемым напряжением. Хотя запаздывание в обмотке возбуждения главного генератора все еще сохраняется, что диктуется его постоянной времени, наличие источника более высокого напряжения для подачи мгновенного требуемого тока возбуждения уменьшает запаздывание.

В системе самовозбуждения / шунтирующего возбуждения выходное напряжение генератора не доступно на начальной стадии запуска установки ТГ. Чтобы справиться с этой ситуацией, сначала система возбуждения была запрограммирована кратковременным подачей постоянного тока от аккумуляторной батареи станции. Эта процедура помогла развить адекватную напряженность поля для генерации достаточного напряжения на клеммах, которое, в свою очередь, могло быть возвращено в качестве источника питания для запуска нормальной системы возбуждения. Некоторые проблемы все еще существуют в этой системе; поскольку машина запускается на малых скоростях, система возбуждения должна быть включена с самого начала.Этот тип возбуждения импульсным возбуждением подходит для турбин с осевым потоком, где турбина уже работает на довольно высокой скорости.

Была необходима альтернативная схема, чтобы избежать всех этих проблем, что означало обеспечение другого источника питания во время запуска ТГ. Пусковое возбуждение будет продолжаться до тех пор, пока набор ТГ не будет готов производить необходимую мощность для питания системы самовозбуждения. В этот момент источник питания возбуждения переключается на систему, подключенную к выходной клемме генератора.Источником питания пускового возбуждения может быть трансформатор станции, дизельный генератор или газовая турбина, которая должна быть доступна все время.

Выпрямители, доступные сегодня, представляют собой мостовую схему на основе тиристоров с цифровой системой регулирования напряжения. Другие важные и необходимые аксессуары включают полевые автоматические выключатели, резистор полевого разряда, трансформаторы напряжения, автоматические выключатели на входе переменного тока, блок предохранителей и т. Д.

10.3.1 Бесщеточная система возбуждения для АРН

АРН имеет контактные кольца, щетки и коммутаторы. и является немного громоздким, поэтому была разработана бесщеточная система возбуждения, которая широко используется для обеспечения постоянного тока для создания магнитного поля ротора для основного генератора.Бесщеточная система возбуждения состоит из главного возбудителя и пилотного возбудителя. На рис. 9.16 показан вариант расположения и расположения различных принадлежностей системы возбуждения синхронного генератора.

Пилотный возбудитель включает в себя стационарную обмотку якоря в виде генератора переменного тока с выпрямителем и постоянного магнитного поля в виде постоянного магнита и установлен на том же валу ротора, что и основной генератор ТГ. Главный возбудитель, с другой стороны, включает в себя стационарное магнитное поле постоянного тока и обмотку якоря в виде генератора переменного тока с выпрямителем на том же валу ротора, что и основной генератор установки ТГ.

Каждый раз, когда вал ротора ТГ вращается, электродвижущая сила (ЭДС) возникает на выводах генератора или якоря пилотного возбудителя из-за эффекта вращения магнитного поля постоянного магнита. Создаваемое таким образом переменное напряжение преобразуется выпрямителями в постоянное из постоянного. Этот выпрямленный выход постоянного тока затем подается на стационарную обмотку возбуждения главного возбудителя. Как только этот ток протекает через поле, на вращающихся выводах генератора основного возбудителя возникает ЭДС из-за эффекта относительного движения магнитного поля и обмотки генератора возбудителя.Это переменное напряжение снова преобразуется выпрямителями в постоянное из постоянного. Этот выпрямленный выход постоянного тока затем подается на вращающуюся обмотку возбуждения на валу ротора основного генератора.

Поскольку основной генератор возбудителя, связанные с ним выпрямители и обмотка возбуждения основного генератора все установлены на роторе, соединение между ними не требует каких-либо скользящих контактов в виде контактных колец, щеток и т.д. бесщеточная система возбуждения. Использование бесщеточного устройства повышает надежность / доступность и эффективность за счет уменьшения потерь.Также уменьшается проблема обслуживания. Другой вид бесщеточной системы возбуждения показан на рис. 2.40.

10.3.2 Использование тиристоров / полупроводников в бесщеточной системе возбуждения

Обычно тиристоры используются в цепи вращающихся выпрямителей главного возбудителя вместо полупроводниковых диодов по следующим причинам:

1.

Более высокий ток грузоподъемность и их пригодность для применения в вращающихся машинах.

2.

Тиристоры менее чувствительны к вибрации, ускоряющей силе и экстремальным погодным условиям, а именно к температуре.

3.

Выходные токи можно плавно регулировать в широком диапазоне как для нормальной работы, то есть для принудительного режима работы и режима работы без возбуждения, который также известен как противовозбуждение.

Многие предпочитают силовые транзисторы тиристорам из-за низкой (емкость перехода) dV / dT эффекта и лучшего переключения.Биполярные транзисторы с изолированным затвором (IGBT) популярны из-за преимущества их входных MOSFET в сочетании с преимуществом биполярности биполярных переходных транзисторов (BJT). Использование IGBT в выпрямителях, а также в управлении приводами переменного тока очень популярно. Время переключения IGBT может отличаться от MOSFET, но быстрее, чем у BJT. ABB Unitrol — это пример управления возбуждением с помощью IGBT.

10.3.3 Выход контроллера АРН и управление затвором тиристоров в бесщеточной системе возбуждения

Цифровая или микропроцессорная система управления берет измеряемую переменную с трансформатора напряжения на выходной клемме генератора и проверяет значение ошибки, вычитая ее. до заданного значения по желанию.Выход контроллера имеет форму импульсов одинаковой величины, но время их появления на затворе тиристора, то есть на затворе срабатывания или срабатывании, зависит от выхода контроллера. Цифровые системы управления силовыми транзисторами выдают импульсы тока для управления входной базовой схемой, но для IGBT это устройство, управляемое напряжением.

10.3.4 Влияние управления VAR на ток поля АРН / ротора

Во многих случаях ротор выходит из строя из-за протекающего через него очень большого тока, который необходим для поддержания напряжения на клеммах генератора.Изоляция ротора, подверженная сильным механическим нагрузкам, при чрезмерном нагреве из-за высокого тока ротора может выйти из строя на более ранней стадии, чем ожидаемый нормальный срок службы. Поскольку ремонтные работы ротора являются трудоемкими и дорогостоящими, прилагаются большие усилия, чтобы снизить ток ротора до значения, меньшего предельного, но все же безопасного и стабильного. Используя подходящий метод и оборудование для управления реактивной VAR, выходной ток генератора может быть уменьшен с заметным улучшением коэффициента мощности, что, в свою очередь, потребует меньшей ЭДС генератора для поддержания выходного напряжения на клеммах, совместимого с подключением к сети.

электрогенератор | инструмент | Британника

электрический генератор , также называемый динамо-, любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость.Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное изменение полярности в секунду).Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд).Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора.На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока. В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора.Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки. Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже.Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Структура ротора генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора. Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту.Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °. Напряжение, индуцированное в катушке статора, которое охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 Гц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов.Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Генератор с прямым приводом на постоянных магнитах с внешним ротором | Ветряк с прямым приводом

Двигатель с внешним ротором отличается тем, что статор закреплен в среднем положении вала, а ротор вращается по периферии статора, который также представляет собой магнитную структуру с радиальным воздушным зазором.По сравнению с внутренней структурой ротора, ротор и статор заменяют друг друга своим положением. Фигура. 1 — вид сверху генератора с внешним ротором. Статор называется внутренним статором внутри двигателя, а ротор находится вне двигателя, который называется внешним ротором.

Рисунок 1 Вид сверху генератора с внешним ротором

Ниже представлена ​​анимация плоскости генератора с внешним ротором.

Анимация плоскости генератора с внешним ротором

Фиг. 2 — частичный вид статора и ротора. Наружная окружность внутреннего сердечника статора равномерно распределена с множеством пазов для вставки обмоток. Внутренняя окружность внешнего ротора снабжена полюсами постоянных магнитов.И направление магнитного потока показано на рисунке. Когда ротор вращается, обмотка разрезает магнитное поле, чтобы навести потенциал.

Рисунок 2 Магнитная цепь внешней роторной электрической машины

Ветряная турбина с постоянным магнитом и внешним ротором с прямым приводом

Состав и конструкция ветряной турбины с постоянным магнитом с внешним ротором и прямым приводом описаны ниже.Структура представлена ​​моделью генератора с внешним ротором на постоянных магнитах. Левый рисунок на Рисунке 3 представляет собой схему сердечника внутреннего статора. Сердечник статора покрыт пластиной из кремнистой стали с хорошей магнитной проницаемостью. На внешней окружности сердечника статора много прорезей, в них заделаны обмотки генератора. А обмотки распределяются по трехфазному закону распределения (рис. 3 справа).

Обычно внешний ротор большого ветряного генератора с прямым приводом имеет от 30 до 40 пар магнитных полюсов, а количество пазов статора составляет от 180 до 240.Чтобы наглядно показать конструкцию внутреннего сердечника статора, количество пазов для катушек в этой модели намного меньше, чем в реальном генераторе с прямым приводом.

Рисунок 3 Сердечник и обмотка статора в генераторе с прямым приводом

Сердечник статора установлен на кронштейне статора. Рама статора имеет фланец, прикрепленный к раме гондолы на одном конце, а внешний вал ротора также является главным валом ветряной турбины на другом конце вала статора. Главный вал выдерживает вес и силу ветра всего ветра. ротор и внешний ротор, а главный вал и фланец имеют высокую прочность (рис.4).

Рис.4 Структура внутреннего статора генератора с прямым приводом

На фиг. 5 показано поперечное сечение конструкции внешнего ротора, показывающее ее структуру в двух направлениях. Внешний ротор похож на втулку цилиндра с обратной стороны статора, сделанную из ферромагнитного материала. Внутренняя окружность «бочки» закреплена магнитным полюсом из постоянного магнита.«Бочка» — это ярмо магнита ротора. Одним из преимуществ является то, что магнитный полюс относительно легко фиксируется, не падает под действием центробежной силы, а ярмо внешнего ротора закреплено на втулке ротора.

Рис.5 Конструкция внешнего ротора генератора с прямым приводом

Внешний ротор установлен на главном валу генератора и образует внешний ротор генератора.На рисунке 6 структура показана с двух сторон. Втулка внешнего ротора не только фиксирует внешний ротор, но также устанавливает весь ветряной ротор и подвергается большой нагрузке. Таким образом, он установлен на главном валу генератора через два больших подшипника.

Рис.6 Конструкция генератора с внешним ротором и прямым приводом

Ветряная турбина с постоянным магнитом и внешним ротором с прямым приводом

При установке ветряной турбины гондола сначала поднимается на вершину башни.Каркас закреплен в гондоле. Фланец генератора с прямым приводом установлен на каркасе (рис. 7).

Рис.7 Рама каркаса гондолы

Генератор поднят к гондоле. Концевой фланец гондолы генератора крепится к фланцу рамы (рисунок 8).

Фиг.8 Установка генератора с прямым приводом

Лопасть установлена ​​на ступице и образует ветряной ротор. Ротор ветра поднимается сбоку от генератора. Высокопрочный болт используется для крепления фланца ступицы ротора и фланца соединительной ступицы внешнего ротора. И ветровой ротор, и внешний ротор могут вращаться синхронно. На внешней стороне ступицы находится спиннер, а в гондоле также есть электрический шкаф, система управления, система охлаждения двигателя, система измерения ветра и так далее.

Фиг. 9 представляет собой структурную схему модели ветряной турбины с постоянным магнитом и прямым приводом с внешним ротором.

Рис.9 Ветряк с прямым приводом с внешним ротором и постоянным магнитом

Давайте посмотрим на анимацию ветряной турбины с постоянным магнитом с внешним ротором и прямым приводом. Понятно, как внешний ротор работает синхронно с ротором.

Внешний ротор с постоянным магнитом, прямой привод, анимация ветряной турбины

Взлетно-посадочная полоса | Система снятия и установки ротора генератора | Генератор Ротор Сервис

Система снятия и установки ротора генератора

Система снятия и установки ротора генератора разработана специально для S.Т. Коттер для снятия и установки ротора (возбуждения) в генераторе электростанции. Система разработана с учетом меняющихся размеров и труднодоступности заводского генератора. Он был разработан с несколькими конфигурируемыми решениями, которые используют гидравлику для толкания, тяги и позиционирования ротора на разных уровнях высоты.

Существующие методы снятия ротора со статора генератора очень трудоемки; требует большого количества операторов и высокого уровня координации.Время и трудозатраты, необходимые для снятия и установки ротора, можно значительно сократить с помощью этой системы с гидравлическим приводом.

  • Основные преимущества этой системы:
  • Повышенная безопасность персонала и ротора при отключении
  • Не требуются тяжелые краны и отбойники.
  • Ротор испытан, проверен и хранится на рельсовой системе
  • во время отключения.

Ключевые компоненты системы снятия и установки ротора генератора:

Платформа

• Платформа сконструирована так, чтобы выровнять двухтактную систему с ротором.Его уникальная конструкция предназначена для оптимизации давления на грунт и устойчивости платформы при снятии ротора. Вся платформа может храниться в 20-футовом транспортном контейнере для транспортировки и хранения.

Система Push Pull

• Двухтактная система применяет гидравлическое усилие, необходимое для втягивания и проталкивания ротора в статор. Система включает в себя две тележки, тележку, блокиратор вращения, блоки жесткости ротора и силовой агрегат. Каждая тележка оснащена 4 гидроцилиндрами для подъема и опускания, 2 гидроцилиндрами для перемещения влево и вправо и 2 гидравлическими насосами.Вся двухтактная система может храниться в 20-футовом транспортном контейнере для транспортировки и хранения.

Модульная установка

• Вся система может быть собрана и разобрана с помощью только вилочного погрузчика. Бригада из 6 человек может настроить всю систему за 10–12 часов. После разборки всю систему можно хранить или отправлять в стандартном 20-футовом транспортном контейнере.

термочувствительных роторов генераторов — TG Advisers, Inc.

Термочувствительные роторы генератора имеют тенденцию изгибаться и увеличивать вибрацию подшипников. В некоторых случаях требуется перемотка ротора для восстановления приемлемых рабочих амплитуд колебаний агрегата. Температурная чувствительность обычно является признаком неравномерного нагрева обмотки ротора генератора или неравномерного роста. В этой статье мы обсуждаем причины и даем общие советы по новому оборудованию и техническим характеристикам ремонта.

Неравномерный нагрев обычно вызывается коротким замыканием витков катушек. Когда витки катушки закорочены, ток возбуждения не проходит по заданному пути через все витки катушки.Скорее, ток проходит по более короткому электрическому пути и проходит в обход одного или нескольких витков. В результате общие потери на нагрев I 2 R паза катушки, содержащего короткое замыкание (я), будут меньше, чем прорези катушки, содержащие не замкнутые катушки (соседние пазы и прорези на противоположной стороне ротора). Потери тепла I 2 R меньше, потому что количество витков, по которым проходит ток, было уменьшено из-за короткого замыкания. Поскольку нагрев является функцией квадрата тока возбуждения, это явление будет более выражено при работе устройства с более высокими уровнями тока возбуждения (т.е.е. область перевозбужденного, ограничивающего ток ротора / возбуждения на кривой мощности). Типичные причины короткого замыкания витков включают проскальзывание или отсутствие изоляции витков, медные заусенцы, сколы при пайке, неравномерное движение пакета катушек в конечных витках и загрязнение.

Не все роторы одинаково подвержены проблемам, связанным с коротким замыканием на повороте. Например, ротор с 5-витками на обмотку катушки и большим током возбуждения (например, 6000+ ампер) более чувствителен, чем ротор с 15-витками на обмотку катушки и меньшим током возбуждения (например.грамм. 1500 ампер). В конструкции с 5 витками на катушку полный закороченный виток снижает количество ампер-витков в слоте на 20% по сравнению с 7% для конструкции с 15 витками. Эти числа являются иллюстративными; не весь ток возбуждения следует за коротким замыканием.

Шорты «Turn to Turn» также могут привести к дополнительным шортам, что усугубит проблему. Закороченные участки локально нагреваются из-за потерь I 2 R. Этот локализованный нагрев может ускорить термическую деградацию изоляции соседних витков, вызывая еще большее замыкание витков — это неофициально известно как теория каскадного короткого замыкания.Другая проблема заключается в том, что может произойти замыкание на землю, если локальный нагрев прожигает изоляцию заземленной стены.

Рисунок 1 Износ изоляции концевых витков, вызывающий короткое замыкание витков

Короткие витки обычно диагностируются путем изменения Vars путем увеличения и уменьшения тока возбуждения при постоянной МВ-нагрузке и оценки изменений в вибрации ротора генератора. Датчик потока в воздушном зазоре между статором и ротором — еще один отличный инструмент для обнаружения и диагностики. Проблемы с вибрацией, по крайней мере, в краткосрочной перспективе, часто можно смягчить за счет балансировки, снижающей пиковую вибрацию при высокой нагрузке, за счет компромисса с более высокой вибрацией при более низких нагрузках.

Неравномерный рост обмотки ротора генератора является вторым фактором термической чувствительности. Неравномерный рост происходит, когда части обмотки заедают или застревают под нагрузкой. Коэффициент теплового расширения меди превосходит сталь. Соответственно, когда на ротор генератора подается ток возбуждения, медь в пазах ротора расширяется больше, чем стальной корпус ротора. Обмотка должна иметь возможность свободно перемещаться, чтобы компенсировать это дифференциальное расширение. В противном случае неравномерный рост обмотки может вызвать дисбаланс ротора и проблемы с вибрацией.

Рисунок 2 Закороченные витки в выводе полюса 1 к термочувствительной носовой части ротора

Слои скольжения системы изоляции «земля-стена» (т.е. вкладыши пазов / ячейки / броня и изоляция удерживающего кольца), блокирующие обмотки концевых витков и компоненты заполнения пазов предназначены для того, чтобы обмотка могла расширяться и сжиматься во время работы. Если эти системы не работают должным образом, это может привести к связыванию и неравномерному расширению.

Прогоны нагрева после первоначального изготовления или перемотки обычно используются для проверки системы намотки.Ротор нагревается со скоростью, имитирующей расширение меди под нагрузкой CF. Соответственно, скользящие слои испытываются, чтобы гарантировать надлежащие материалы и сборку. Хотя нагрев за счет возбуждения ротора может имитировать работу в поле, внешний нагрев, а также сопротивление ветру и трению также работают. Основная цель — знать, что обмотки ротора могут расширяться и сжиматься в соответствии с конструкцией без термической вибрации. Кроме того, рекомендуется выполнить электрическую проверку ротора на короткое замыкание витков, когда обмотки находятся в горячем / рабочем положении и после охлаждения.

Наконец, заблокированные вентиляционные проходы — еще один источник неравномерного нагрева и роста. Если вентиляционные проходы змеевика ротора генератора заблокированы, температура может легко превысить рабочие пределы изоляции витков и заземления. Типичные блокировки вызваны инородным мусором, смещенной изоляцией витков или поврежденной блокировкой концевых витков.

Температурная чувствительность — это проблема не только винтажного дизайна. Сегодня у дизайнеров есть отличные инструменты моделирования, позволяющие снизить затраты за счет уменьшения допустимых пределов проектирования или увеличения возможностей для заданного размера кадра.Примером последнего являются генераторы с воздушным охлаждением мощностью 300 МВА, которые стали возможными благодаря использованию вычислительной гидродинамики (CFD) для оптимизации конструкции охлаждающего потока и максимального увеличения теплопередачи.

Однако существует предел того, насколько точно разработчики могут приблизить вращательные потоки, существующие в роторе генератора. Например, поскольку воздух намного тяжелее водорода, иногда охлаждающему воздуху трудно получить доступ ко всем катушкам ротора генератора, и в зависимости от направления вращения и конструкции компонентов управления воздушным потоком некоторые катушки могут нагреваться сильнее и расширяться более чем задумано дизайнерами.Конечный результат этого будет зависеть от того, какая катушка (-ы) нагревается сильнее, чем ожидалось. Это упоминается здесь, поскольку относится к возможности связанного расширения и сжатия.

Спецификации для нового оборудования или ремонта должны включать требования по использованию проверенных технологий для слоев скольжения, изоляции грунтовых стен, изоляции витков и клеев. Также следует уточнить внутрипроизводственные, ротационные и ожидаемые окончательные приемочные испытания ротора.

Исследования индукционного генератора с твердым железным ротором с самовозбуждением на JSTOR

Абстрактный

В статье представлены теоретические и экспериментальные исследования самовозбуждающегося индукционного генератора с твердым железным ротором.Прогнозирование импеданса ротора основано на линейной теории, а параметры эквивалентной схемы выводятся из размеров машины, чтобы облегчить их компьютерное проектирование. Экспериментальные исследования индукционных генераторов с твердым железом и пластинчатыми роторами одинаковых размеров представлены в поддержку анализа, а также для их сравнительного исследования. Эта статья является полезным дополнением к нашим более ранним исследованиям [1] в этой области.

Информация о журнале

Постоянно публикуемый с 1977 года, Wind Engineering является старейшим и наиболее авторитетным рецензируемым англоязычным журналом, полностью посвященным ветроэнергетике.Под руководством выдающегося редактора и редакционной коллегии Wind Engineering выходит раз в два месяца с полностью рецензируемыми вкладами активных деятелей в этой области, книжными заметками и резюме наиболее интересных статей из других источников. В Wind Engineering публикуются статьи по аэродинамике роторов и лопастей; подсистемы и узлы машин; дизайн; тестовые программы; производство и передача электроэнергии; методы измерения и регистрации; установки и приложения; а также экономические, экологические и правовые аспекты.Ветроэнергетика представляет огромную ценность для всех, кто связан с ветром как источником энергии

Информация об издателе

Сара Миллер МакКьюн основала SAGE Publishing в 1965 году для поддержки распространения полезных знаний и просвещения мирового сообщества. SAGE — ведущий международный поставщик инновационного высококачественного контента, ежегодно публикующий более 900 журналов и более 800 новых книг по широкому кругу предметных областей. Растущий выбор библиотечных продуктов включает архивы, данные, тематические исследования и видео.Контрольный пакет акций SAGE по-прежнему принадлежит нашему основателю, и после ее жизни она перейдет в собственность благотворительного фонда, который обеспечит дальнейшую независимость компании. Основные офисы расположены в Лос-Анджелесе, Лондоне, Нью-Дели, Сингапуре, Вашингтоне и Мельбурне. www.sagepublishing.com

Купите доступный ротор дизельного генератора и оставайтесь включенным Сертифицированные продукты

Поддерживайте свое оборудование в идеальном рабочем состоянии с помощью первоклассных средств. ротор дизельного генератора в продаже на Alibaba.com. Вы можете выбрать их как часть запаса, если у вас есть домен. дизель-генератор ротор бизнес и расширьте свой ассортимент, чтобы удовлетворить потребности ваших клиентов. Файл. Ротор дизельного генератора оснащен последними инновациями, которые устраняют неэффективность многих генераторов. Сделайте правильный звонок сегодня и выберите эти ценные предметы, которые заставят вас забыть об отключениях, связанных с неисправными генераторами.

The. Ротор дизель-генератора изготовлен с использованием тщательно подобранных материалов для обеспечения высокого уровня качества и долговечности.На Alibaba.com вы найдете широкий выбор. ротор дизель-генератора . Как следствие, различные пользователи получат наиболее подходящие продукты в зависимости от их потребностей и технических характеристик. Для того, чтобы все. Ротор дизель-генератора отличается высоким качеством и стабильно надежной производительностью, на сайте доступны только проверенные и сертифицированные поставщики.

Дизайн и инновации, лежащие в основе этого. ротор дизельного генератора делает их очень эффективными, идеально подходят и повышают эффективность работы генераторов.Превосходные стандарты. ротор дизельного генератора повышает производительность и мощность за счет устойчивости к экстремальным условиям, таким как жара. Не думайте, что даже с этими удивительными функциями. Дизель-генератор роторный стоит дорого. Вы обязательно найдете это увлекательным. ротор дизельного генератора скидки, которые делают их дешево доступными для вас.

Не упустите этот шанс. Воспользуйтесь соблазнительным. ротор дизель-генератора на Alibaba.com и присоединяйтесь к другим экономителям.Находчивый. ротор дизельного генератора будет гарантировать, что генераторы продолжат работать и подавать электрический ток своим пользователям. Купите их сегодня и улучшите свой бизнес или дом.

.

Добавить комментарий

Ваш адрес email не будет опубликован.