Ветрогенератор как устроен: Ветрогенератор своими руками: из автомобильного генератора и на неодимовых магнитах

Содержание

Ветряки для дома своими руками. Выбираем генератор.

В связи с постоянно растущими ценами на электричество, все большее количество владельцев частных домов и дачных участков задумываются об установке источников альтернативного электропитания. Ветряки для дома своими руками являются отличным решением, как для выработки дополнительного электричества, что сможет снизить счета за коммунальные услуги, так и для обеспечения бесперебойным питанием загородные дома, к которым не подключили энергосети

Территория Россия, благодаря преимущественно равнинной местности и обширной площади, круглый год омывается большим количеством ветров, другое дело, что потенциал силы ветра оставляет желать лучшего, так как ветер чаще всего медленный и слабый. Другое дело – это необжитые территории России, где ветры гораздо большей силы. В любом случае, установка ветрогенератора даже при слабых ветрах, сможет обеспечить дом своего хозяина бесперебойной, и главное – бесплатной энергией.

Какой мощности выбрать ветрогенератор?

Первое, что стоит запомнить – ветряки для дома, как и любые другие источники альтернативного электричества, не смогут производить колоссальное количество электроэнергии.

Многие начинающие конструкторы стремятся создать максимально мощный ветрогенератор, который сможет обеспечить электричеством не только освещение на дачном участке или зарядить аккумуляторные батареи, но также будет поддерживать абсолютно все электропитания дома, включая нагрев бойлера и отопительных систем. В принципе, это вполне возможно, если построить ветровой генератор мощностью более 2 киловатт модели W-HR2. Для строительства такого промышленного ветряка необходимы огромное количество денег, сил и расчетов. Соорудить его в одиночку непрофессионалу практически невозможно.

Оптимальным решением будет установка ветрогенератора мощностью до 500 ватт, этого вполне достаточно для обеспечения электроэнергией маленького загородного участка, а при необходимости большей мощности, всегда можно соорудить еще несколько ветряков и создать из них единую электростанцию.

Ниже представляем таблицу мощности ветряков в зависимости от кол-ва лопастей и диаметра всего ветроколеса при скорости ветра 4 м/с

Со стороны может показаться, что показатели несколько завышены, но не стоит забывать, что 4 м/с – это обычная скорость ветра на равнинной территории и чаще всего он достигает порывов выше, чем данная отметка. А чем больше скорость ветра, тем больше дает энергии самодельный ветряк.

Выбираем тип ветроколеса

Именно ветряное колесо является самым важным элементом всей конструкции, так как за счет его движения энергия ветра преобразовывается в механическую.

Самые популярные типы ветроколеса:

  1. Парусные
  2. Крыльчатые

Преимущества парусного ветроколеса заключается в их дешевизне и простоте установке: достаточно на лопасти прикрепить парусный материал и разместить под небольшим углом к ветру, такая конструкция будет в точности повторять старинные ветряные мельницы. К ее недостаткам относится большое аэродинамическое сопротивление воздушному потоку, который будет возрастать при ветре, идущем диагонально относительно лопастей.

Намного более эффективными являются лопасти крыльчатого типа, они немного дороже и сложнее в изготовлении, но устойчивы к силам трения или аэродинамическим потерям. Именно поэтому крылья самолетов имеют похожую форму. К дополнительным преимуществам крыльчатых лопастей относят небольшую затрату материалов для их изготовления, для сравнения можно привести вертикально осевой тип лопастей, чья эффективность будет сравнима с крыльчатыми, но при этом будет гораздо больший расход материалов.

Оптимальное количество лопастей на ветроколесе

При создании ветряков для дома своими руками можно сэкономить на материалах и обойтись всего 2-3 лопастями, но данное решение будет чревато несколькими неприятными моментами:

  • Чем меньше лопастей, тем они быстрее вращаются и создают лишнюю центробежную нагрузку на ветрогенератор, что может привести к поломке мачты и узлов крепления ветряка
  • При высокой частоте оборотов ветроколесу приходиться противодействовать большой силе трения воздуха, которые могут привести к разрушению лопастей. Поэтому лопасти приходиться изготавливать из крепких и дорогостоящих материалов
  • Высокий шум при работе

Исходя из всего вышеперечисленного, наиболее оптимальным числом лопастей будет 5 или 6. Когда определились с количеством лопастей, нужно определиться с диаметром ветроколеса исходя из данных таблицы выше. Следует учитывать, что чем больше длина лопастей, тем массивней конструкция, следовательно придется дополнительно укреплять ветряк и проводить работы по уравновешиванию винта. Наиболее оптимальный диаметр ветроколеса – это 2 метра.

Конечно, чем больше лопастей, тем большая эффективность ветрогенератора, но вместе с тем усложняется и общая конструкция ветряка и будет необходима установка дополнительного редуктора.

Выбираем генератор

При выборе генератора необходимо отталкиваться от скорости вращения ветроколеса. Ниже в таблице приведено количество оборотов зависимости от скорости ветра для ветроколеса с 6 лопастями.

Исходя из данных выше, наилучшим выбором будет веломотор или электродвигатель от ленточного накопителя данных. Преимущество таких двигателей в том, что они имеют низкие рабочие обороты и смогут раскрутить ветряк без установки редуктора.

Создаем ветровые генераторы для дома своими руками

При изготовлении ветрогенератора будем придерживаться данной таблицы. Конечно, способы крепления и расположение узлов может быть несколько изменено, но в целом, для создания эффективного ветряка лучше не отступать от представленной конструкции.

Примечание: Расстояние между мачтой и лопастями должно быть не менее 25 см, если меньше, то есть вероятность того, что лопасти прогнувшись под ветром разобьются о мачту.

Изготовление лопастей

Лучше всего крылья для ветряка вырезать из толстостенной ПВХ трубы. Конечно, можно изготовить лопасти из древесины, но это гораздо более трудозатратно, а также древесина может прийти в негодность под воздействием влаги.

Для лопастей следует использовать трубы с толщиной не менее 4 мм, иначе они будут без проблем прогибаться под ветром и быстро придут в негодность.

Высчитывание оптимальной формы лопастей чаще всего проводится эмпирическим путем при вырезании нескольких образцов разного размера. Но такой способ требует затрат времени и приводит к излишнему переводу материала. Поэтому мы предоставляем Вам ниже шаблон лопасти для трубы диаметром 16 см и длинной в 1 метр.

После того, как вы вырежете 6 лопастей по шаблону, необходимо максимально отполировать их поверхность и сточить края, чтобы они меньше сопротивлялись воздушному потоку.

Теперь изготавливаем головку электродвигателя, к которой будут крепиться лопасти. Для этого берем диск из стали толщиной не более 10 мм и привариваем к нему несколько полос длинной до 30 см, на которых высверливаем отверстия для крепления лопастей.

Чтобы повысить эксплуатационные характеристики ветряка, головку электродвигателя обязательно нужно сбалансировать. Для этого головка крепится вертикально в безветренном помещении. Необходимо следить за тем, чтобы ни одна из сторон головки самопроизвольно не двигалась и находилась в неподвижном состоянии. Если заметно движение, то полосы головки стачиваются до того состояния, пока движение не прекратиться при любом положении головки в пространстве.

Закрепляем генератор на раме

Генератор принимает вращательный момент от лопастей и постоянно находится под давлением больших центробежных и гироскопических нагрузок. Чтобы ветряк раньше времени не вышел из строя, генератор следует плотно закрепить на раме. Сама рама представляет собой пластину из метала, на которой располагаются главные узлы ветряка, а также станину из дюралалюминия с резьбовым отверстием. На станину накручивается вал генератора, а для его лучшего крепления следует использовать на конце соединения гайку с контршайбой.

Укрепление ветрогенератора от штормовых ветров

Рассматриваемый нами в этой статье ветряк не обладает высоким числом оборотов и вряд ли будет достигать таких частот вращения, что составляющие ветряка начнут приходить в негодность. Но при частых переменах направления ветра, хвост ветряка будет резко поворачиваться, что может привести к расшатыванию элементов крепления конструкции. Помимо этого, лопасти ветряка при сильном ветре будут сопротивляются поворотам, что вместе с подвижным хвостом ветрогенератора будет создавать высокую нагрузку в месте соединения рамы и генератора.

Чтобы значительно повысить срок службы ветровой электростанции, необходимо устанавливать специальную защиту от сильного ветра. Такой защитой выступает боковая лопатка – простенькое устройство, собираемое из минимума материалов, но удачно зарекомендовавшая себя во множестве ветровых установках.

С помощью боковой лопатки регулируется наклон ветряка по вертикали и при сильном ветре устанавливает лопасти параллельно ветру. То есть при умеренной силе ветра ветряк находится в стандартном положении перпендикулярно относительно земли, но при штормовых воздушных потоках, ветряк складывается на 90 градусов относительно своего рабочего положения, из-за чего его работа прекращается.

Боковая лопатка состоит из небольшой профильной трубы скрепленной с тонкой металлической пластиной, пружины и растяжки располагающейся между лопаткой и хвостом. Растяжка нужна для того, чтобы контролировать угол складывания ветряка.

В лопатке необходимо использовать крепкую пружину из углеродистой стали, которая в крайней точке выдерживает нагрузку до 12 кг. Растяжку изготавливают из тонкого велосипедного троса.

Устанавливаем мачту

Мачта является опорой для ветряка и на этом этапе ни в коем случае не стоит экономить. Лучше всего будет установить мачту на открытой территории, где в радиусе нескольких десятков метров не будет никаких строений. Сама мачта изготавливается из металличесской водопроводной трубы длинной в 7 метров. Если же возле ветряка находятся строения или деревья, то мачту следует сделать хотя бы на метр выше относительно их уровня. На пути к лопастям ветрового генератора не должно быть никаких препятствий, а иначе КПД ветряка будет значительно меньше ожидаемого.

Ветровой генератор – это массивная конструкция весом в несколько сотен килограмм, поэтому, чтобы он не проседал в почве, его необходимо устанавливать на крепком бетонном фундаменте. Помимо закрепления основы мачты в фундаменте, ветряк дополнительно фиксируется несколькими растяжками из монтажных тросов шириной не менее 5 мм. Растяжки крепятся к мачте хомутов, вытягиваются на максимальную длину и крепятся к колышкам, которые забиваются в землю на глубину не менее метра.

Устанавливать мачту с генератором можно как с помощью автокрана, так и в ручную. Для этого используется противовес, изготовленный из тяжелого деревянного бруса.

Аккумуляторные батареи и электронная система ветряка

Чтобы хранить энергию выработанную ветровой электростанцией, используют небольшие аккумуляторные батареи, емкость которых должна быть не меньше 120 а\ч. Рекомендуется также взять батарею до 300 а/ч, и уже в процессе эксплуатации определить сколько времени необходимо для ее зарядки. На выбор батареи также влияет сфера применения АКБ: если батарея используется для обеспечения электрическом нагревательных приборов, то следует отдать предпочтение более емким аккумуляторам.

Чтобы питать аккумулятором технику работающую при напряжении тока 220 В, необходимо установить специальный инвертор преобразователя напряжения. Инверторы различаются между собой уровнем пиковой мощностью, на которой они могут питать технику. Так, если подключать к АКБ компьютер вместе с монитором, то будет достаточно инвертора рассчитанного на 1000 Вт, если же от аккумуляторной батареи будут работать строительные инструменты, такие как перфоратор, то придется взять инвертор на 2000 Вт.

На рисунке ниже Вы можете видеть простейшую схему для зарядки аккумуляторов ветряком: от генератора идут три вывода, которые подключаются к параллельно идущим трем диодным полумостам. От генератора будет вырабатываться напряжение равное 26 В, поэтому к диодным полумостам будет достаточно последовательно подключить две батареи напряжением 12 В.

Основным преимуществом такой схемы является ее легкость сборки и минимум используемых материалов. Ее недостатком будет то, что при небольших ветрах аккумуляторы практически не будут заряжаться. Процесс зарядки начнется только при ветре в 7 м/с, который не так уж и часто можно встретить на равнинных территориях России.

Как ухаживать за ветрогенератором

Ветряки не требуют включения от внешних источников питания, они полностью автономны, благодаря чему запускаются самостоятельно даже при очень слабом ветре. Ветрогенераторы для дома своими руками могут прослужить десятки лет, для этого следует придерживаться нескольких правил:

  1. Чтобы металлические компоненты ветровой электростанции не сгнили под атмосферными осадками, их стоит красить каждые 2 года
  2. Дважды в год смазывать подшипники в генераторе и поворотном узле
  3. Ветроколесо – самое уязвимое место всей конструкции и может с легкостью разбалансироваться при сильном ветре. Примером разбалансировки может служить излишнее дрожание лопастей. Если дефект ветроколеса был обнаружен, то его следует немедленно снять и провести ремонтные работы

Вам понравится

Ветрогенератор своими руками

Цены на электроэнергию неуклонно растут. Чтобы ваша жизнь была комфортной как жарким летом, так и морозной зимой, следует или потратить немало денег на электроэнергию, или искать альтернативный источник энергии. В развитых странах уже давно используют солнечную энергию, водную и ветровую. Это природный источник питания, за который вам не придется платить. Довольно популярным способом получать энергию является ветряк, использующий ветер для получения электричества – ветрогенератор.

Россия довольно большая страна с равнинными территориями. Несмотря на то что во многих местах преимущественно медленные ветры, есть регионы, сильно обдуваемые мощными потоками воздуха. Так почему бы не использовать в хозяйстве это преимущество? Все что требуется – потратить время и средства, чтобы сделать самодельный ветрогенератор. Ветряк полностью окупит себя всего за несколько месяцев. Мы рассмотрим 2 вида ветрогенераторов, которые можно сделать своими руками.

Ветрогенератор роторного типа

Для начала мы рассмотрим, как сделать несложную конструкцию роторного вертогенератора. С простого начинать легче, и вы поймете принцип работы. Этот тип ветрогенератора подойдет для владельцев небольшого садового домика. Использовать сделанный ветряк для большого коттеджа не получится, ввиду маломощности ветрогенератора.

Но ветряк легко справиться с тем, чтобы вечером обеспечить светом хозяйственные помещения, осветить садовую дорожку крыльцо и т. д. Давайте подробно рассмотрим, как сделать такой ветрогенератор своими руками.

Преимущества и недостатки роторного ветрогенератора

Когда ветрогенератор сделать как надо, он будет функционировать без каких-либо ошибок. С аккумулятором на 75А и с хорошим инвертером на 1000 W, ветряк без проблем будет обеспечивать светом улицу, площадку дома, питать защитную сигнализацию, видеонаблюдение и т. д.

Ветрогенераторы такого типа имеют следующие преимущества:

  • простота монтажа;
  • небольшая себестоимость;
  • экономичность;
  • податливость к ремонту;
  • не привередлив к условиям функционирования;
  • надежность и бесшумность работы.

Минусов ветрогенератора несколько:

  • небольшая производительность ветрогенератора;
  • полная зависимость ветряка от ветра;
  • лопасти может сорвать воздушный поток.

Подготовка материалов для ветрогенератора

Первым делом нужно собрать все расходники и детали для ветряка. Сделанный вами ветрогенератор будет выдавать мощность не более 1,5 КВт. Чтобы сделать агрегат вам нужно иметь:

  1. Автомобильный генератор на 12 В.
  2. Гелиевый или кислотный аккумулятор на 12 В.
  3. Специальный преобразователь с 12 В на 220 В и с 700 Вт на 1500 Вт.
  4. Большую емкость из нержавейки или алюминия: ведро или кастрюля.
  5. Простой вольтметр.
  6. Болты, шайбы и гайки.
  7. Реле зарядки аккумулятора от автомобиля и контрольной лампочки заряда.
  8. Провода с разным сечением (2,5 мми 4 мм2).
  9. Хомуты, фиксирующие ветрогенератор.
  10. Выключатель «кнопка» полугерметичный, на 12 В.

Кроме того, запаситесь такими инструментами:

  • болгаркой или ножницами по металлу;
  • рулеткой;
  • строительным карандашом или маркером;
  • отверткой, дрелью, кусачками и сверлом.

Конструкторские работы ветрогенератора

Работа заключается в изготовлении ротора и переделывания шкива генератора. Этапы следующие:

  1. Подготовьте ведро или кастрюлю.
  2. При помощи рулетки и маркера сделайте разметку, разделив емкость на 4 одинаковые части.
  3. Теперь нужно вырезать лопасти.

Обратите внимание! Работая ножницами по металлу, необходимо вырезать под них отверстие. Если же ведро сделано не из покрашенной жести или оцинковки, то можно использовать болгарку.

  1. Снизу ведра и в шкиве пометьте место, где будут отверстия. В них ввинчиваются болты. Не торопитесь, сделайте все ровно, так как при вращении может возникнуть дисбаланс. После чего сделайте отверстия.
  2. Теперь отогните лопасти. Только не забудьте учесть, в каком направлении крутится генератор.
  3. Угол изгиба лопасти влияет на площадь, которую будет встречать ветер. Это напрямую влияет на скорость и частоту оборотов ветряка.
  4. При помощи болтов, закрепите ведро на шкиве.
  5. Установите свой ветрогенератор на мачту, закрепив его хомутами.
  6. Осталось подсоединить провода и собрать цепь.
  7. На мачте зафиксируйте провода, чтобы они не болтались.

Для подсоединения аккумулятора возьмите провода, сечение которых 4 мм2. Рекомендуемый размер – не больше 1 м. А благодаря проводам с 2,5 мм2 подключите свет и приборы. Не забудьте установить инвертер (преобразователь). Подключите прибор в сеть к контактам №7 и №8, показанным на схеме ниже. Пользуйтесь проводами 4 мм2.

Вот и все, теперь ваш ветрогенератор готов к работе. Не может не радовать то, что он сделанный своими руками.

Ветрогенератор аксиальной конструкции на магнитах

В основе такого ветряка на 220в, лежит ступица от легковой машины, имеющая тормозные диски. Если деталь не новая, разберите ее проверьте и смажьте подшипники, а также счистите ржавчину.

Распределяем и закрепляем магниты

Для начала нужно наклеить магниты на диск ротора. При этом используемые магниты не обычные, а специальные неодимовые магниты. Они значительно мощнее. Потребуется 20 магнитов, размер которых 25 на 8 мм. Магниты размещаются с чередованием полюсов. Для правильного расположения сделайте шаблон, как показано на фото ниже.

Совет! По возможности используйте для ветрогенератора не круглые магниты, а прямоугольные. У них магнитное поле сосредотачивается не в центре, а по длине.

Чтобы закрепить магниты на диске, пользуйтесь силикатным клеем. А для прочности в конце можно залить магниты эпоксидной смолой. Во избежание протекания смолы, сделайте пластилиновые бордюры или обмотайте скотчем диск.

Обратите внимание! Чтобы не перепутать где какой полюс у магнита, можете пометить их «+» или «–». Чтобы определить это – поднесите один магнит к другому. Поверхности магнита, которые притягиваются, имеют «+». Если магнит отталкивается, он имеет полюс «–».

Трехфазный и однофазный генератор для ветрогенератора

Если сравнивать их, то прибор с одной фазой хуже, ведь при нагрузке он вибрирует за счет разницы в амплитуде тока. А она появляется из-за непостоянности тока. В трехфазных изделиях этот эффект отсутствует. Их мощность всегда одинаковая. Все дело в том, что одна фаза компенсирует другую и наоборот, если в одной фазе ток пропадет, то в другой он будет увеличиваться.

Что получается в итоге? А то, что трехфазные генераторы имеют отдачу на 50% больше, чем однофазные. Кроме того, радует и отсутствие вибрации, которая может раздражать и влиять на комфортность. Работая под большой нагрузкой, статор не будет гудеть. Если же вам шум не мешает, и вы решили использовать однофазный генератор, будьте готовыми к тому, что вибрация негативно скажется на работе ветрогенератора. Срок его эксплуатации будет меньшим.

Наматываем катушки

Очень быстроходным ветрогенератор назвать нельзя. Требуется сделать все так, чтобы аккумулятор на 12 В заражался от 100–140 об./мин. С такими первоначальными данными, все количество витков в катушках должно быть равно 1000–1200. Но как узнать, сколько витков приходится на 1 катушку? Все просто: эта цифра делится на количество катушек.

Если вы хотите, чтобы ветрогенератор при низких оборотах выдавал больше мощности, требуется сделать больше полюсов. В таком случае в катушке частота колебания тока увеличится. Чтобы уменьшить сопротивление и увеличить сопротивление тока, рекомендуем наматывать на катушки толстый провод. Учитывайте и то, что при сильном напряжении сопротивление обмотки может «съесть» ток.

Обратите внимание, что число и толщина магнитов, которые закреплены на дисках, определяют рабочие параметры генератора. Чтобы выяснить, какую мощность может выдавать ветрогенератор, намотайте одну катушку и прокрутите генератор. Измеряйте напряжение на некоторых оборотах без нагрузки. К примеру, за 200 об./мин вы получили силу тока в 30 В с сопротивлением в 3 Ом. Отнимите от этих 30 В 12 В (напряжение аккумулятора). Теперь разделите число, которое получились на 3 Ом. Выглядит все так:

30 – 12 = 18;

18 : 3 = 6.

В итоге получилось 6 А. Именно они пойдут в аккумулятор. Понятно, что на практике будет немного меньше из-за потерь в проводах.

Катушки лучше делайте вытянутой формы. Тогда медь в секторе выйдет больше, а витки будут прямыми. Диаметр отверстия внутри катушки должен быть равен размеру магнитов или немного превышать его.

Обратите внимание! Толщина статора должна быть такой же, как и толщина магнитов.

Формой для статора может быть фанера. Но сектора для катушек можно разместить и на бумаге, сделав пластилиновый бордюр. Катушки нужно закрепить так, чтобы они не двигались, а концы фаз выведите наружу. Все провода соедините звездой или треугольником. Осталось протестировать ветрогенератор, вращая его рукой.

Делаем винт и мачту для ветрогенератора

Мачта для верогенератора должна быть высокой, от 8 до 12 м. Основание нужно забетонировать. Крепление лучше сделать такое, чтобы труба легко поднималась и опускалась лебедкой. Сверху на трубу будет крепиться винт ветрогенератора.

Вы можете сделать его из пластиковой трубы Ø160 мм. Из нее вырежьте винт с шестью лопастями, длиною 2 м.

 

Чтобы увести винт от сильного порыва ветра сделайте складывающийся хвост. В результате вся энергия, которую выработает ветрогенератор, сможет накапливаться в аккумуляторе.

Вот и все, вы знаете, как сделать ветрогенератор на магнитах. Теперь вы можете пользоваться электроэнергией, выработанной таким ветрогенератором, экономя свои средства. Все ваши усилия вознаградятся.

Заключение

Из этой статьи вы узнали, как сделать ветрогенератор своими руками, да не один, а двух видов. Именно такие ветрогенераторы любят и используют для загородных домов владельцы. Как видите, каждый ветрогенератор хорош в чем-то своем и сделать его не тяжело.

Если вы живете в районе с сильными ветрами, то увидите, насколько меньшими стали счета за электроэнергию, благодаря ветрогенератору. Такой ветряк в хозяйстве никогда не будет лишним. Дополнительно предлагаем вам посмотреть видео, как сделать такой ветрогенератор.

Ветрогенератор своими руками или как сделать самодельный ветрогенератор для дома

Содержание статьи

   Выбор мощности
   Выбор конструкции ветроколеса
   Электрический генератор для ветряной электростанции
   Изготовление ветрогенератора своими руками
   Изготовление лопастей
   Крепление генератора к раме
   Токоприёмник и поворотный узел
   Защита от ураганного ветра
   Мачта
   Электрическая схема
   Уход

Из этой статьи Вы узнаете, как изготовить несложный ветрогенератор своими руками в домашних условиях. Такая ветряная электростанция всегда пригодится в удалённых местах, где нет доступа к бытовой электрической сети, например, на удалённом дачном участке. Конечно, можно использовать бензиновый генератор, но рокот и дым от двигателя внутреннего сгорания вряд ли кому-то придётся по душе, и уж точно это не располагает к отдыху на природе. Кроме того, расходы на бензин будут весьма немаленькими.

Ветряная электростанция сможет заряжать аккумуляторные батареи для автономной работы не сильно мощной бытовой техники и освещения. Впрочем, куда именно тратить полученную энергию, решать Вам.

Эта статья рассчитана на любителей в области конструирования ветрогенераторов своими руками, и поэтому в качестве конструкции выбрана максимально простая схема ветряной электростанции. Это будет относительно тихоходный самодельный ветряк (показатель быстроходности Z=3). Такая конструкция является надёжной и безопасной при работе.

Выбор мощности ветряной электростанции

Наверняка многим, кто читает эту статью, не захочется ограничиваться постройкой ветрогенератора для питания холодильника и освещения на даче, а сразу построить такую электростанцию, чтобы запитать ею не только аккумуляторные батареи, но и батареи отопления или бойлер для горячей воды. Но такая мощная электростанция будет чрезвычайно сложна в изготовлении, ведь усложнение конструкции с ростом мощности возрастает даже не в квадрате, а чуть ли не в кубе!

Как пример ветряной электростанции мощностью всего 2 кВт можно привести промышленный ветрогенератор W-HR2 международной компании AVIC (изображен на фото). Этот ветрогенератор номинальной мощностью 2 кВт имеет ротор диаметром 3,2 м с аэродинамически металлическими лопастями, прочную стальную башню высотой 8 м на массивном железобетонном фундаменте. Монтаж узлов производится при помощи автокрана. Очевидно, что расчет и изготовление подобного ветрогенератора сложно даже для отдельных специализированных фирм, и практически нереально силами одного человека непрофессионала для сооружения такого ветряка своими руками.

Мощность, Вт

Диаметр ветроколеса при числе лопастей, м

2

3

4

6

8

16

10

2

1,64

1,42

1,16

1

0,72

20

2,82

2,32

2

1,64

1,42

1

30

3,44

2,82

1,44

2

1,72

1,22

40

4

3,28

2,84

2,32

2

1,42

50

4,48

3,68

3,18

2,6

1,24

1,58

60

4,9

4

3,48

2,84

2,44

1,74

70

5,3

4,34

3,76

3,08

2,64

1,88

80

5,66

4,64

4

3,28

2,82

2

90

6

4,92

4,26

3,48

3

2,12

100

6,34

5,2

4,5

3,68

3,16

2,24

300

10,94

8,98

7,76

6,34

5,46

3,88

500

14

11,48

9,94

8,16

7

5

В табл. 1 показано зависимость мощности ветроколеса крыльчатого типа от его диаметра и ко

Мегаконструкции. Самые большие ветрогенераторы / Хабр


Siemens SWT-7.0-154

Кто говорил, что ветряки не способны конкурировать по мощности с атомными электростанциями? Посмотрите на самую большую в мире ветроэлектрическую установку Siemens SWT-7.0-154. С площадью ометания 18 600 м² этот гигант в одиночку генерирует максимальную мощность 7 МВт при скорости ветра 13-15 м/с. Несколько сотен таких ветряков — и вот вам атомная электростанция.

SWT-7.0-154 — это флагманская модель компании Siemens. В её названии зашифрованы генерируемая мощность (7 МВт) и диаметр ротора с лопастями (154 м). Она пришла на смену предыдущему флагману SWT-6.0-154, от которого практически не отличается по техническим спецификациям, но оснащён более мощными магнитами. Более сильное магнитное поле позволяет генерировать больше электроэнергии при том же диаметре. Другими словами, в этой ВЭН параметр снимаемой мощности с квадратного метра площади ометания выше примерно на 16,7%.

Ветрогенератор включается в работу на минимальной скорости ветра 3-5 м/с, а генерируемая мощность поступательно растёт до максимальной 7 МВт при скорости ветра 13-15 м/с. При достижении скорости ветра 25 м/с генерация прекращается.

Казалось бы, на таких скоростях ветра лопасти ВЭУ должны вращаться быстро, но это совершенно не так. На самом деле они вращаются неторопливо и степенно, делая всего 5-11 оборотов в минуту. То есть полный оборот три лопасти совершают примерно за 5-12 секунд, в зависимости от скорости ветра.

Более сильное магнитное поле в новой модели означает также и то, что эту турбину труднее раскрутить. Для достижения той же скорости вращения 5-11 оборотов в минуту и максимальной генерируемой мощности (7 МВт вместо 6 МВт) этой турбине требуется повышенная скорость ветра: 13-15 м/с вместо 12-14 м/с. Соответственно, и начальная скорость ветрогенерации у неё выше. Вот почему данная модель-гигант наиболее оптимально подходит для размещения на территориях с относительно сильными ветрами, лучше всего в море.

Внутри турбины нет редуктора (коробки передач) — здесь работает система прямого привода, подключенная к синхронному генератору переменного тока с постоянными магнитами. Поскольку скорость генератора определяет напряжение и частоту тока, то «грязный переменный ток» преобразуется в постоянный ток, а затем преобразуется обратно в переменный ток перед подачей в сеть.

В последние годы в области ветряной энергетики происходит очень быстрый научно-технический прогресс. Буквально каждый год появляются новые модели ВЭУ большей мощности и эффективности. Большие и маленькие, рассчитанные на целые посёлки или отдельные дома, на большую скорость ветра в море или на среднюю скорость ветра над крышей частного дома.

Например, мировой рекорд по максимальной генерируемой мощности принадлежит вовсе не Siemens, а другой турбине ещё одного немецкого производителя Enercon E126, которая выдаёт до 7,58 МВт. На видео показан процесс установки такой турбины.


Высота стойки Enercon E126 — 135 м, диаметр ротора — 126 м, общая высота вместе с лопастями — 198 м. Общий вес фундамента турбины — 2500 тонн, а самого ветрогенератора — 2800 тонн. Только электрогенератор весит 220 тонн, а ротор вместе с лопастями — 364 тонны. Общий вес всей конструкции со всеми деталями — 6000 тонн. Первая установка подобного типа была установлена около немецкого Эмдена в 2007 году, хотя в той модификации максимальная мощность была меньше.

Впрочем, ветрогенераторы-гиганты — довольно дорогое удовольствие. Один такой ветряк на 7 МВт обойдётся в $14 млн вместе с установкой, если заказывать все работы у сертифицированных немецких специалистов. Конечно, если освоить производство в своей стране, благо металла хватает, то стоимость вполне можно снизить в несколько раз. Кто знает, может такой гигантский проект национальной стройки занял бы население страны и помог выбраться из экономического кризиса.


Одна из самых последних строящихся в Восточной Европе атомных станций — Белорусская АЭС — получит два энергоблока с реакторами ВВЭР-1200 мощностью по 1200 МВт. Казалось бы, несколько сотен ветряков Siemens сравнятся с атомной электростанцией. Стоимость строительства примерно одинаковая, зато «топливо» бесплатное. Что интересно, Белорусскую АЭС как раз строят в районе, где по климатическим данным за 1962-2000 годы почти самая высокая среднегодовая скорость ветра в Беларуси. Но в реальности эта «самая большая» среднегодовая скорость ветра — всего лишь около 4 м/c (на высоте 10 м), чего едва хватит для запуска ВЭУ на минимальной мощности.

Перед установкой следует сверяться с годовой картой ветров в районе дислокации с данными средней удельной мощности ветрового потока на высоте 100 м и выше. Хорошо бы составить такие карты для всей территории страны, чтобы найти места наиболее оптимального строительства ВЭУ. Нужно иметь в виду, что скорость ветра сильно зависит от высоты, что хорошо известно жителям высотных домов. В обычных прогнозах погоды по ТВ сообщают скорость ветра на высоте 10 м над землёй, а для ветровой турбины следует измерять скорость на высоте 100-150 м, где ветры гораздо сильнее.

Так что наиболее оптимально такие гиганты подходят для установки в море, в нескольких километрах от побережья, на большой высоте. Например, если установить такие установки вдоль северного побережья России с шагом 200 метров, то максимальная мощность массива составит 690,3 ГВт (побережье Северного Ледовитого океана составляет 19724,1 км). Скорость ветра там должна быть приемлемая, только при заливке фундаментов придётся иметь дело с вечной мерзлотой.

Правда, по стабильности работы ВЭУ никогда не сравнятся с АЭС или ГЭС. Здесь энергетикам приходится постоянно следить за прогнозом погоды, потому что генерируемая мощность напрямую зависит от скорости ветра. Ветер должен быть не слишком сильным и не слишком слабым. Хорошо, если в среднем ВЭУ будут выдавать хотя бы треть от максимальной мощности.

Как построить ветрогенератор своими руками? | Ветроэнергетика

Идея использования силы ветра для реализации хозяйственных нужд человека стара как мир. С появлением генераторов идея получило второе дыхание – использование ветра для выработки электроэнергии. Этот способ получения энергии не расходуется никаких ресурсов и отличается высокой эффективностью, что с успехом используется в западных странах. Но когда дело касается производства ветрогенератора в дома, сложно понять каким он должен быть, ведь у каждого свое видение его реализации.

Продолжительные поиски информации на просторах интернета дали плоды в виде некой общей идеи, которая не нова и вовсе не уникальна, но тем не менее, проста в исполнении и не потребует значительных материальных затрат.

Трубы я купил в местном магазине строительных материалов, также как и заглушку, переходной тройник и несколько метров 3/8-16 проводов. Среди собственных запасов был найден генератор переменного тока GM7127.  В Интернет, после непродолжительных поисков, была найдена компания, занимающая реализацией высоковольтных статорных катушек, а также компании, занимающиеся продажей электронных контроллеров и трансмиссий. Электронный контроллер был приобретен для упрощения наблюдения за процессом зарядки аккумулятора.

Покраска механизма обеспечила ему намного более эффектный внешний вид. На верхушке стойки турбины был установлен небольшой диод, после чего она была подсоединена к катушке. В этом генераторе нет постоянного магнита. Установленная лампочка обеспечит самовозбуждение катушки и будет предупреждающим сигналом, показывая, когда заряд не выдается генератором и он может быть отсоединен от аккумулятора.

На фото хорошо видны установленные углеволоконные лопасти, обладающие достаточной прочностью и в то же время малым весом. Ступица и крепежи лопастей для наилучшего визуального эффекта были окрашены в белый цвет. Тестировать сырую версию ветряного генератора в полевых условиях следует в почти безветренный день, чтобы избежать возможных неожиданностей. Генератор 7127 был приобретен в компании AutoZone, набор для статора – MTM Cientific, лопасти из углеволокна и ступица – Picou Builders Supply Co Inc. Как уже была сказано ранее, мелкие детали и трубы были куплены в ближайшем магазине строительных материалов.

Общие расходы составили 135 долларов. Как только установка механизма будет произведена на верхушку башни и подключена, станет возможным рассчитать финансовые затраты на 1 Вт энергии.

Для облегчения процесса монтажа было решено демонтировать лопасти, чтобы исключить их повреждение при поднятии.

В результате более тщательных подсчетов было обнаружено, что установка механизма невозможно при текущей длине флагштока. Для решения этой проблемы было отрезано 16 дюймов трубы, однако новые расчеты показали, что толщина отрезка трубы оказалась на 0.015 дюймов больше необходимой. Затратив около двух часов, при помощи наждачной бумаги и напильника был достигнут необходимый диаметр.

Вместе с помощником турбина была поднята на платформу, однако оказалось, что один человек способен самостоятельно обеспечить правильную балансировку турбины для закрепления ее на стойке. На этом было решено остановиться, а турбину привязали к платформе, чтобы исключить возможность ее падения из-за ветра.

На фото сверху можно увидеть три десятидюймовых куска 3/4 кабеля.  Они довольно дешевы и могут быть приобретены в любом строительном магазине.

Для обеспечения возможности самостоятельного поднятия и монтировки турбины был собран трехногий подъемник.

Инсталляция ветряка произведена успешно. Следующим шагом будет ее подключение к аккумулятору.

В первую же ночь подул сильный ветер, но турбина справлялась. Во время порывов ветра, достигающих 40 миль в час, турбина создавала повышенный шум, но с отличием выдержала испытание. Автомобильный генератор, используемый в нашем случае, из-за заводского ограничения, начинает вырабатывать ток только, когда сила ветра превышает 12 миль в час.  Проблема использования автомобильного генератора в конструкции ветрогенератора заключается в том, что такой генератор не показывает и не вырабатывает напряжение при нулевых оборотах, а при оборотах ниже необходимых для выработки тока, он потребляет его. Это свойство способно привести в негодной любой аккумулятор, поэтому было принято решения модернизировать генератор установкой постоянного магнита.

Была заново произведена обмотка купленного в сети статора. В первоначальном варианте статор имел четыре витка провода номер 14, которые были заменены десятью витками провода номер восемнадцать. Однако во время осуществления обмотки был допущен просчет – она была сделана из одиннадцати витков, вместо десяти планируемых. Укладка первого слоя не составила особенных трудностей, однако в случае с последним слоем четыре дополнительные провода было уложить не так-то просто.
Была предпринята попытка при помощи пресса сделать углубление в старом статоре, однако она не увенчалась успехом. Проблема была решена вытачиванием кармана для нового магнита толщиной, примерно, в палец.
Сама идея ручной перемотки статора оказалась утопической и не работала. Соприкасаясь с металлическим сердечником, некоторые кольца обмотки создавали ток короткого замыкания. По этой причине необходимостью стала покупка лентопротяжного 38В мотора DC Ametek. Для удобства были разведены и помечены капы. Приобретенный ротор со скошенными пазами выдает неплохой пусковой момент. Подсоединив вольтметр, используя ручную тягу, было выработано немногим более в 9 В.

Фланец был выточен для осуществления крепления, аналогичного креплению ранее используемого генератора.

Новый вариант статора обладал значительно меньшими размерами, чем автомобильный генератор, что позволило конструкции активироваться даже при наличии легкого ветра. На основе проведенной работы стало ясно, что этот вариант намного более эффективен, чем предыдущий. Переходу генератора в режим мотора препятствует установленный предохраняющий диод.  Измерения показали, что для генерации 13В, учитывая сопротивление аккумулятора, достаточно ветра силой в 7-8 миль в час чтобы начать зарядку.  Судя по всему, все приложенные усилия не прошли напрасно и дали хороший результат.

На фото сверху изображен старый аккумуляторный блок. Несложно заметить, что наглядность практически отсутствует. По этой причине было принято решение изготовить новую доску с измерительными приборами, которая располагалась бы над аккумуляторами и давала наглядное представление о работе системы. Для этих целей на ней будут размещены измерительный приборы и индикатор заряда аккумулятора, вентилятор системы охлаждения, резистор нагрузки, регулятор зарядки, выпрямительный мост и клемник с предохранителями. На следующий день, после полной зарядки аккумулятора, переключение реле на сеть было осуществлено регулятором зарядки. Подключенный электрический счетчик показал 16 В при 3 А и 8 Ом, и это при силе ветра в 10 миль в час. Весьма неплохо для начала!

Сверху фото вращающегося механизма. Монтаж генератора Ametek производится справа, а крепеж хвоста осуществляется на изогнутую часть трубы сзади. Во время сильного ветра конструкция должна поворачиваться в направлении ветра, заворачивая хвост. Испытания конструкции выявили небольшой дефект – при сильном ветре в сорок миль в часть, вращающиеся лопасти создают звук, как будто над домом завис боевой вертолет Апач, по причине того что задевают флагшток. «Восторг» соседей послужил еще одним стимулом для ее переделки.

Для лучшей наглядности на доску с измерительными приборами была произведена установка вольтметра и амперметра. Это облегчит контроль показаний приборов. Рассчитанная мощность в три раза превышает текущую (около 700ВТ).

Лентопротяжный мотор был соединен с механизмом вращения. Но пока мотор не доведен до ума, рано осуществлять монтаж всей конструкции. Было принято решение заменить подшипники мотора и покрыть его слоем краски, предназначенным для повышения его защиты от воздействия стихии.

Ветрогенератор в действии.

При силе ветра в 13 миль в час при напряжении 20В вырабатывается ток в 10 ампер. Таким образом мощность установки составляет 200 Вт.

{odnaknopka}

Обзор вертикальных ветрогенераторов

     Мы являемся свидетелями развития науки и техники, возникновения сверхэффективных технологий и в то же время в области энергетики мы можем наблюдать парадоксальную тенденцию возвращения к древнейшей технологии использования ветряной энергии. Её использовали в Китае и на Среднем Востоке более 10 веков назад.

     Этому парадоксу есть объяснение. В начале 21 века общество остро столкнулось с проблемой ограниченности ископаемых энергоресурсов. Сегодня происходит замена технических инструментов традиционной энергетики, губительно влияющей на окружающую среду, на возобновляемые экологически чистые источники энергии, в том числе ветровые. 

 

     Несмотря на то, что ветка первенства сегодня принадлежит горизонтальным ветрогенераторам, популярность вертикальных ветрогенераторов стремительно растёт. Это объясняется, в том числе тем, что учёные теоретически и экспериментально доказали, что вертикальные ВЭУ в состоянии догнать по эффективности горизонтальные.  

     Ретроспектива вертикальных ВЭУ 

     Вертикальные ветряки человечество использует уже очень давно. Первые документальные упоминания о вертикальных ВЭУ датированы приблизительно 500-900 годами до нашей эры. В документах описан персидский механизм. Его применяли для добычи подъема воды и помола зерна. Со временем такой ветряк получи название «panemone», т.е. вращается при любом направлении ветра.

 

Первый ветряной двигатель с вертикальной осью вращения

     Вертикальные ветряки использовались и в Китае. Его, кстати, часто упоминают, как родину вертикальных ветряков. Бытует мнение, что ветряную мельницу изобрели именно в Китае более 2000 лет назад. Но самое раннее упоминание о ней датированы 1219 годом нашей эры. Это была ветряная установка с карусельным ротором. В нём использовался принцип давления ветра, с плоскими парусными лопастями. При движении в направление ветра они разворачивались перпендикулярно потоку воздушной массы, а при движении навстречу ветру – параллельно ему.

     В 9 веке н.э. в Персии в городе Нех функционировало 75 ветряных мельниц.Они были построены на возвышенности, расположенной перпендикулярно к направлению преобладающего северного ветра, действующего в этой местности в течение 4 месяцев в году со скоростью 28-47 м/с. Ветряной двигатель персидских мельниц представлял собой вертикально-осевой карусельный ротор с 8 плоскими лопастями из тростника высотой 5,5 м и диаметром 4,3 м. При скорости ветра 30 м/с его мощность составляла около 16 кВт. 

 
Персидская ветряная мельница с вертикально-осевым карусельным ротором

     Чтобы повысить эффективность перед лопастями, движущимися навстречу ветру, был установлен экран. Он снижал тормозящий момент ротора, закрывая лопасти от ветра.  50 таких ветряных мельниц были в рабочем состоянии в 1963 году и, вероятно, эксплуатируются и сегодня. Стоит отметить, что схема изобретенного более 1000 лет назад вертикально-осевого карусельного ротора с плоскими и чашечными лопастями и сегодня применяется практически без изменений. 


Вертикально-осевая ветроэлектрическая установка Д. Блиса с карусельным ротором

      В наше время успешно используются ветрогенераторы с вертикальной осью вращения, получившие патент на конструкцию начиная с 3-го десятилетия ХХ века 


     а) Ротор Савинуса. Изобретён в 1922 году финским инженером Сигурдом Йоханнесом Савониусом.
     б) Ротор Даррье. Изобретён французским авиаконструктором Жоржем Даррье в 1931 году.
     в) Ротор Масгрова. Изобретён английским доктором Масгров из Ридингского университета в 1975 году.
     г) Ротор «Виндсайт». Изобретён финном Йутсиниеми в 1979 году.
     д) Геликоидная турбина Горлова. Изобретена профессором Северо-Восточного Университета Бостона (США) Александром Горловым в 2001 году. Турбину с небольшими отличиями повторяют турбины ветряных электроустановок “Tvister”, “Turby”, “Quitrevolution” и др.

      Принцип работы

      В современных ветряных электроустановках энергия преобразуется в 2 этапа:
       1. Кинетическая энергия ветра преобразуется в механическую.
       2. Механическая энергия преобразуется в электрическую.

     Чтобы энергия ветра превращалась в механическую используют аэромеханические устройства или ветродвигатели. За границей их называют ветряными турбинами. Ветряной двигатель берёт у движущегося с определённой скоростью воздушного потока часть его кинетической энергии. Величина кинетической энергии зависит от принципа работы установки, габаритов движущейся части и режима работы.

     Есть 2 основных способа отбора мощности ветра. На них базируется работа современных ветряных двигателей.
Первый способ использует феномен подъемной силы крыла, которое имеет соответствующий аэродинамический профиль и находящегося в движущем потоке воздуха. Проще говоря – это ветродвигатели подъёмной силы.
Второй способ базируется на дифференциальном (неодинаковом) лобовом сопротивлении твердого тела асимметричной формы, при его различной ориентации относительно направления ветра. Это ветродвигатели дифференциального лобового сопротивления.
Есть конструкции, сочетающие оба способа в разном процентном соотношении.

     Чтобы проводить сравнительную оценку технических решений, в ветровой энергетике выработаны критерии, которые характеризуют энергоэффективность конструкции и режим работы:
1. Коэффициент использования ветряной энергии – отношение механической мощности, которую развивают ветряные двигатели, к механической мощности воздушного потока, протекающиго через пространство, ометаемое рабочими поверхностями ветродвигателя. В зарубежной ветряной энергетике данный коэффициент обозначают Cp (СиПи фактор). Теоретики доказали, что для идеального ветряного двигателя, в котором не учитываются потери, величина СиПи фактора не может превышать 0,593. Это число называли лимитом Бетца. По определению является безразмерной.
2. Быстроходность ветродвигателя – это отношение линейной скорости самой удалённой оси вращения ветряного двигателя точки крыла (определяется радиусом ротора и его частотой вращения) к скорости ветра, принято обозначать символом U. Быстроходность по определению величина безразмерная. Считается, что ветряной двигатель тихоходный, если U<2, и быстроходный, если U=4.
Ветряные двигатели с вертикальной осью вращения «подъёмной силы» 

Работа конструкции подъемной силы крыла

      На рисунке  проиллюстрированы: устройство простейшего ортогонального ветряного двигателя, треугольники скоростей и силы, действующие на лопасть в зависимости от её положения относительно направления ветра. Где:
U – скорость ветра;
V – тангенциальная скорость перемещения лопасти;
W – суммарная («кажущаяся») скорость воздушного потока, взаимодействующего с лопастью;
– угол атаки;
Т – сила, которая создаёт крутящий момент;
N – сила, приложенная к траверсе, соединяющей лопасть с валом установки;
L – подъёмная сила лопасти;
D – сила лобового сопротивления лопасти.

     Ветряной двигатель такой конструкции имеет пульсирующий крутящий момент и для ввода при некотором значении быстроходности в режиме авторотации чаще всего требует раскрутки внешним двигателем.
Увеличение количества лопастей до 3-х и их закрутке вокруг оси ротора (геликоидный ротор), СиПи фактор увеличивает от 0,3 до 0,4. Крутящий момент становится постоянным независимо от положения лопастей относительно направления ветра, достаточно регулярно наблюдается самозапуск на холодном ходу при скоростях ветра 3 метра за секунду и выше. Оптимальный режим работы данных ветряных двигателей (максимальное значение Cp) достигается при значении от 4 до 5 единиц. Увеличение количества лопастей ротора больше 5, как правило, снижает быстроходность и уменьшает Cp. 

Многообразие конструкций современных вертикальных ветродвигателей, использующих для создания крутящего момента подъёмную силу крыла

     Отметим, что вращение турбин приведенных конструкций наблюдается при любом направлении ветра. Т.е. необходимость в устройствах ориентации и дополнительных трансмиссиях, снижающих уровень надежности,полностью отпадает. Это одно из основных преимуществ установок такого типа при сравнении с ветряными электроустановками с горизонтальной осью вращения.
Продолжают появляться новые схемы ветряных электроустановок с горизонтальной осью вращения, в том числе установка с «качающимся крылом», в котором углы атаки крыльев в зависимости от направления ветра изменяются при помощи несложной кинематики. Принцип действия проиллюстрирован на рисунке ниже. Наличие вспомогательных механизмов, с дополнительными потерями на трение, которые к тому же требуют периодического осмотра и ремонта, нейтрализует эффект, получаемый от оптимизации углов атаки крыльев, расположенных в набегающем воздушном потоке. Такие установки производят небольшими сериями. 

Пример конструкции ветряной турбины с вертикальной осью вращения с наведением на ветер

     Ветряные двигатели с вертикальной осью вращения «дифференциального лобового сопротивления»

     Первые ветряные двигатели с вертикальной осью вращения работали, используя данный принцип. Он заключается в том, что твердое тело асимметричной формы (пример, полусфера) при различной ориентации в потоке воздуха (жидкости), имеющего постоянную скорость V, взаимодействуют с потоком с различными усилиями FЛС1 и FЛС2, соответственно. Давление ветра на полусферу, ориентированную к нему вогнутой частью, более чем в 4 раза превышает давление на ту же полусферу, ориентированную к ветру выпуклой частью. При этом площадь сечения тел одинакова. Если полусферы закрепитель на траверсе с 2-х сторон симметрично относительно оси вращения, то при взаимодействии с движущейся воздушной массой появляется крутящий момент, и устройство будет вращаться с некоторой частотой w. 

 
Принцип работы ветряного двигателя «дифференциального лобового сопротивления»

     Величина крутящего момента зависит от разницы усилий, воздействующего тела, расположенные по разные стороны от оси вращения, а эти усилия определяются скоростью ветра, размерами тел (площадью лобового сечения) и коэффициентом лобового сопротивления.
Среди ветряных двигателей, действующих по принципу дифференциального лобового сопротивления, наиболее известны ротор Савониуса и его модификация – ротор Виндсайт. Машины просто устроены, работают даже в условиях очень низких скоростях ветра, но обладают невысоким Cp. Максимальное значение СиПи фактора для ротора Савониуса, приведенное в источниках, равно 0,25. Номинальная быстроходность этих турбин, как правило, меньше единицы, и у них относительно высокий пусковой момент. 

Разнообразие конструкций ветряных двигателей дифференциального лобового сопротивления 

     Комбинированные ветряные двигатели с вертикальной осью вращения

     Выше описанные две основные группы вертикальных ветряных двигателей, которые выпускаются серийно. Но кроме них есть установки, совмещающие в себе оба принципа действия. 

     В установках, изображённых на рисунках а), б) и г), в зависимости от положения каждой лопасти относительно направления ветра проявляются или эффект подъёмной силы, или эффект дифференциального аэродинамического сопротивления. В установке, показанной на рисунке в), ротор Савониуса используется для раскрутки ротора Даррье до необходимой быстроходности.

 
а) – ветряная электроустановка, построенная марокканскими студентами в 1995 году;
б) — ветряная электроустановка, серийно выпускаемые китайскими производителями в 2010 году
 

     В устройствах, показанных на рисунке выше, система ориентации на ветер постоянно обеспечивает максимальное лобовое сопротивление лопасти, движущейся по ветру, и минимальное лобовое сопротивление лопасти, движущейся против ветра. В промежуточных положениях работает подъёмная сила крыла. Для правильной ориентации лопастей они связаны между собой либо трансмиссией с зубчатым ремнём, либо трансмиссией с зубчатыми колёсами. Устройство с трансмиссией, использующей конические зубчатые колёса, было реализовано в 1995 году (рисунок а). Позже в 2000 году детальному исследованию в аэродинамической трубе была подвержена масштабная модель аналогичного по принципу действия двухлопастного устройства. Результаты исследования показали, что СиПи фактор системы не превышает 0,2. После этого опыты с данной конструкцией прекратили. Однако китайские производители ветрогенераторов (рисунок б) в настоящее время выпускают аналогичные установки мощностью 3,5-10 кВт при скоростях ветра 9,10 или 10 м/с, соответственно. 

     Энергохарактеристики

    Основные свойства ветряных двигателей полностью описывает зависимость Cp = f (1). Её называют главной энергетической характеристикой ветряного двигателя. На рисунке _ приведены главные энергетические характеристики ряда распространенных ветряных двигателей.
Ветроэнергетики хорошо знают, что Сp£0,593, что было теоретически доказано российскими учеными (Сабинин и др.) ещё в 1914 году, но за границей доказательство было опубликовано в 1924 году немецким физиком Бетцем, и поэтому величина 0,593 называется «предел Бетца». 

Главные энергохарактерстики наиболее распространённых ветряных двигателей 

      Рисунок выше очень хорошо показывает, что вертикальных ветряных турбин, которые используют подъёмную силу крыла, имеют Cp по величине, очень близкий к показателю быстроходных малолопастных ветроколёс с горизонтальной осью вращения. Это обстоятельство наряду с относительной конструкции и отсутствием необходимости наведения на ветер, является причиной современного возрождения интереса к вертикальным ветряным двигателям. 


Пример представления технических характеристик на сайте производителя (Китай)

      Не менее важной характеристикой вертикального ветродвигателя (и горизонтального), является кривая развиваемой мощности, представляющая собой зависимость выходной электрической мощности установки от скорости ветра. Серьёзные производители ветрогенераторов обязательно приводят такую кривую в технических характеристиках своей продукции, так как говорить о мощности установки в отрыве от скорости ветра не имеет смысла. При наличии статистики по частотам повторяемости скорости ветра для интересующей нас местности кривая развиваемой мощности позволяет произвести довольно точный расчёт выработки электрической энергии. 

Примеры кривых выходной мощности двух вертикальных ветряных энергоустановок 

     Тенденции развития вертикальных ветрогенераторов 

     Современная волна интереса к вертикальным ветряным энергоустановкам объясняется следующими причинами:
1. Практически исчерпаны концептуальные и технические резервы развития горизонтальных ветрогенераторов. При современном развитии технологий уже невозможно строить более крупные установки.
2. Относительно высокие энергетические характеристики отдельных вертикальных ветряных энергоустановок при значительно простой конструкции, которая не требует в большинстве случаев наведения на ветер.
3. Относительно низкий уровень шумов и вибраций.

     Отметим некоторые тенденции в области проектирования, производства и эксплуатации вертикальных ветрогенераторов. Широко используется компьютерное моделирование. Успехи в развитии современных математических методов и программных средств, дают возможность производить достаточно точные проектные расчёты при наличии существенно турбулентных процессов, имеющих место при работе ветряных электроустановок данного типа. На рисунке ниже приведены характерные формы представления результатов применения программных средств, реализующих метод конечных элементов для расчёта поля скоростей воздушного потока, проходящего через сечение ротора вертикальной ветроустановки. Именно благодаря компьютерному моделированию рассматриваемая область ветряной энергетики получила мощный толчок развития. 


 Типичное представление результатов аэродинамического расчёта методом конечных элементов 

     Постоянное совершенствование конструкций вертикальных ветряных электроустановок и использование новых конфигураций лопастей в области вертикальных ветряных электроустановок спровоцировало тенденцию введения механизации крыла. В случае, если в установке применяется прямое крыло, имеется возможность реализовать комбинацию Савониус-Даррье для работы в различных режимах: 


 Вариант механизации крыла вертикальных ветряных электроустановок

      Разделение ветряных электроустановок с вертикальной осью вращения на 2 группы по соотношению высоты ротора к диаметру. Анализ существующих конструкций вертикальных ветрогенераторов показывает, что с увеличением установленной мощности наблюдается тенденция к увеличению диаметра ротора при одновременном снижении частоты его вращения. Чем больше размеры ротора, тем сложнее осуществить его аэродинамическую симметрию и балансировку, что на высоких частотах вращения чревато возникновением значительных вибраций, которые могут привести к разрушению конструкции. На рисунке 17 приведены наиболее часто встречающиеся пропорции вертикальные ветряные электроустановки, в сравнении с горизонтальными установками. 

 Пропорции вертикальных ветряных электроустановок

      Строительство оффшорных ветропарков на базе вертикальных ветрогенераторов. Важнейшей тенденцией наблюдаемой в современной ветроэнергетике, является строительство ветряных парков на континентальном шельфе. Строительство ветропарка вообще выгоднее, чем строительство отдельной ветряной электростанции. Оффшорные парки позволяют решить более широкий круг проблем, в частности требования по шумам и вибрациям сводятся до минимума, а стробоскопический эффект вообще не учитывается. Плюс к тому в береговой зоне, как правило, наблюдаются устойчивые ветры с достаточными скоростями. До недавнего времени в оффшорных ветряных парках применялись исключительно горизонтальные ВЭУ. Недавно в Интернете опубликована информация о предстоящем строительстве объекта установленной мощностью 10 МВт на базе вертикальных ветрогенераторов.
Мощное ускорение китайских производителей. Ещё 3-4 года назад найти рекламу китайского предприятия по производству ВЭУ в Интернете было практически невозможно. Сегодня на первых 30 страницах поиска по теме вертикальных ветрогенераторов среди китайских производителей иногда проскакивают американские и европейские.
Характерная черта китайской ветряной энергетики – это, то, что в производство запускается любое устройство, способное производить электроэнергию из ветряной энергии независимо от принципа действия и величины Cp. Цены на китайскую продукцию значительно ниже, но и качество пока оставляет желать лучшего. Однако всем нам известен объективный закон перехода количества в качество, согласно которому в ближайшие годы следует ожидать появления нового мирового лидера в области ветряной энергетики. Как упоминалось выше, уже сегодня Китай вышел на втрое место в мире по установленной мощности ветрогенераторов.
Научно-исследовательская лаборатория технологий энергетики возобновляемых источников Международного института компьютерных технологий (г. Воронеж) и Воронежский государственный технический университет в течении ряда лет проводят исследования в области вертикальных ветряных электроустановок. Учёные произвели продувки масштабных моделей роторов. В результате проведённых исследований была разработана перспективная конструкция вертикального ветрогенератора. Демонстрационный масштабный образец сейчас находится на стадии изготовления. 


Разновидности исследованных моделей роторов 

     Рабочая установка имеет оригинальную конструкцию лопасти из композитного материала, магнитный подвес ротора и многополюсный генератор прямого привода с возбуждением от постоянных магнитов. Преобразование энергии осуществляется по следующей схеме:

      Ветряная турбина → синхронный генератор → регулируемый выпрямитель → буферный накопитель энергии →инвертор → потребители/сеть

     Данная схема сегодня считается самой перспективной.


     Приемлемый коэффициент полезного действия устройства обеспечен регулировкой нагрузки в зависимости от скорости ветра/крутящего момента и использованием пассивного магнитного подвеса. Рисунок ниже иллюстрирует полуфабрикаты лопастей модели ротора и 3Д-проекцию демонстрационного макета. 

 Перспективная схема конструкции вертикального ветрогенератора
а) – заготовка лопасти
б) – модель вертикального ветрогенератора в работе
в) – демонстрационный образец мощностью 1,5 кВт

      Для дальнейшего увеличения мощности вертикальных ветряных электроустановок потребуется или специальные генератор, или же мультипликаторы.

      Сегодня в приоритете в развитии энерготехнологий нетрадиционная экологичная энергетика, которая использует возобновляемые источники энергии, в том числе и ветроэнергетика.

     Вертикальные ветрогенераторы можно отнести к новым направлениям ветроэнергетики, поскольку их развитие начинается с 1970-х годов. Горизонтальные ветряные электроустановки имеют многовековую историю. Это также объясняет высокий технический уровень горизонтальных ветрогенераторов.

     Период развития вертикальных ВЭУ составляет около 50 лет. За это время учёные провели огромный объём теоретических основополагающих исследований принципиально новых вопросов аэродинамики, прочности и динамики ротора Дарье, инженерных работ, решающих конструктивные проблемы, которые связаны с повышенной массивностью, инерционностью и циклической нагрузкой вращающихся узлов. Благодаря проделанной работы учёные получили опыт разработки, отработки и использования, вертикальных ветрогенераторов, и что очень важно эффективность и надёжность вертикальных ВЭУ догоняет уровень горизонтальных ВЭУ.

     В настоящее время вертикальные роторы Савониуса и Даррье различных модификаций используют лишь в небольших ветряных электроустановках.

    Часть вертикальных ветрогенераторов на мировом рынке составляет 35%. Это установки мощностью до 50 кВт. Вертикальных ветрогенераторов мощностью более 100 кВт на рынке практически нет.

Анимация: Как работает ветряная турбина

Вы здесь

Сила ветра

Ветровые турбины используют ветер — чистый, бесплатный и широко доступный возобновляемый источник энергии — для выработки электроэнергии.

Анимация ниже является интерактивной. Вы можете запускать и останавливать движение турбины, наводить указатель мыши на детали, чтобы увидеть их описание, и использовать значки в правом нижнем углу анимации для переключения представлений.

Ветряная турбина преобразует энергию ветра в электричество, используя аэродинамическую силу от лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета.Когда ветер проходит через лезвие, давление воздуха с одной стороны лезвия уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает подъемную силу и сопротивление. Сила подъемной силы сильнее сопротивления, и это заставляет ротор вращаться. Ротор подключается к генератору либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют использовать генератор меньшего размера. Этот перевод аэродинамической силы во вращение генератора создает электричество.

Подпишитесь на информационный бюллетень WETO

Будьте в курсе последних новостей, событий и обновлений ветроэнергетики.

Технологии ветрогенераторов | IntechOpen

1.Введение

Энергия ветра играет решающую роль в создании экологически устойчивой низкоуглеродной экономики. В этой главе представлен обзор технологий ветряных генераторов и сравниваются их преимущества и недостатки, используемые для использования энергии ветра. Традиционно машины постоянного тока, синхронные машины и индукционные машины с короткозамкнутым ротором использовались для маломасштабной выработки электроэнергии. Для средних и больших ветряных турбин (WT) индукционный генератор с двойным питанием (DFIG) в настоящее время является доминирующей технологией, в то время как генераторы с постоянным магнитом (PM), импульсным сопротивлением (SR) и высокотемпературными сверхпроводящими (HTS) генераторами все активно исследуются и развивалась годами.В этой главе обсуждаются топологии и особенности этих машин с особым вниманием к их практическим соображениям, связанным с проектированием, управлением и эксплуатацией. Надеемся, что в этой главе представлены краткие справочные руководства по разработке систем генерации ветряных турбин.

2. Использование энергии ветра

Использование энергии ветра можно датировать 5000 годом до нашей эры. когда парусные лодки переправлялись через реку Нил. Было зафиксировано, что с 200 г.C. и далее ветер использовался в качестве источника энергии для перекачивания воды, измельчения зерна и управления транспортными средствами и кораблями в древнем Китае и на Ближнем Востоке. Первая задокументированная ветряная мельница была в книге « Пневматика », написанной героем Александрии примерно в первом веке до нашей эры. или I век н. э. [52]. Фактически, эти ветряные мельницы используются для преобразования кинетической энергии в механическую.

Использование энергии ветра для выработки электроэнергии впервые появилось в конце 19 века [35], но не получило широкого распространения из-за преобладания паровых турбин в производстве электроэнергии.Интерес к ветровой энергии возобновился в середине 1970-х годов после нефтяного кризиса и возросшей озабоченности по поводу сохранения ресурсов. Первоначально ветровая энергия начала набирать популярность в производстве электроэнергии для зарядки аккумуляторов [17] в удаленных энергосистемах, энергосистемах жилого масштаба, изолированных или островных энергосистемах и коммунальных сетях. Сами эти ветряные турбины, как правило, небольшие (мощностью менее 100 кВт), но могут быть преобразованы в большую ветряную электростанцию ​​(мощностью 5 МВт или около того). Это было до начала 1990-х годов, когда ветровые проекты действительно начали развиваться, в основном благодаря правительственным и промышленным инициативам.Это было также в 1990-х годах, когда в основных странах ветроэнергетики, особенно в Европе, наблюдалось смещение акцента с наземной разработки на оффшорную.

Морские ветряные турбины были впервые предложены в Германии в 1930-х годах и впервые установлены в Швеции в 1991 году и в Дании в 1992 году. К июлю 2010 года в Европе было установлено 2,4 ГВт морских ветряных турбин. По сравнению с наземной ветровой энергией, морская ветровая энергия имеет некоторые привлекательные атрибуты, такие как более высокая скорость ветра, доступность более крупных площадок для разработки, более низкий сдвиг ветра и более низкая собственная интенсивность турбулентности.Но недостатки связаны с тяжелыми условиями работы, большими затратами на установку и обслуживание. Для морских операций основные компоненты должны быть обработаны дополнительными антикоррозийными мерами и осушающей способностью [24]. Чтобы избежать внепланового обслуживания, они также должны быть оборудованы системой защиты от неисправностей, чтобы повысить их надежность.

Рисунок 1.

Постоянно растущие размеры ветряных турбин с горизонтальной осью [36].

За последние три десятилетия ветряные турбины претерпели значительные изменения, поскольку мировой рынок ветроэнергетики постоянно и быстро растет.К концу 2009 г. мировая мощность достигла 160 ГВт [7]. Прогнозируется, что на мировом рынке электроэнергии проникновение энергии ветра вырастет с 1% в 2008 году до 8% в 2035 году [45]. Это достигается просто за счет разработки более крупных ветряных турбин и использования их в ветряных электростанциях. По размерам большие ветряки порядка МВт начали появляться в ЕС, США, а теперь и в Китае и Индии. Как правило, мощность крупных установленных ветряных турбин в электрических сетях составляет от 1,5 до 5 МВт, в то время как мощность от 7,5 до 10 МВт находится в стадии интенсивной разработки, как показано на рис.1. В настоящее время современные ветряные турбины надежны, бесшумны, рентабельны и коммерчески конкурентоспособны, в то время как технологии ветряных турбин проверены и отработаны. В настоящее время технические проблемы обычно связаны с постоянно растущими размерами ветряных турбин, передачей энергии, накоплением энергии, энергоэффективностью, стабильностью системы и отказоустойчивостью.

Рис. 2.

Мировой энергетический потенциал наземных ветряных турбин (расчетный выход энергии в кВтч / кВт от ветряной турбины, рассчитанной на скорость 11 м / с) [36].

В настоящее время ветроэнергетика широко признана основным реальным источником возобновляемых источников энергии, которые можно экономно использовать в больших количествах. Мировая карта потенциала энергии ветра проиллюстрирована на рис. 2. Если взять, например, Соединенное Королевство, используемой морской ветровой энергии достаточно, чтобы обеспечить в три раза больше, чем требуется в стране, потребление электроэнергии при достаточной поддержке. Тем не менее, энергия ветра колеблется по своей природе, и такие приложения требуют высокой надежности и доступности, в то время как рынок все еще стремится снизить вес, сложность и эксплуатационные расходы.

3. Ветровые турбины

Очевидно, что ветроэнергетика занимает важное место в правительственной и институциональной повестке дня. Однако на пути его широкого распространения есть некоторые камни преткновения.

Ветряные турбины имеют разную топологию, архитектуру и конструктивные особенности. Схема системы генерации ветровой турбины показана на рис. 3. Некоторые варианты топологии ветряной турбины следующие [35],

  • Ориентация оси ротора: горизонтальная или вертикальная;

  • Положение ротора: по ветру или по ветру от башни;

  • Скорость вращения ротора: постоянная или переменная;

  • Ступица: жесткая, качающаяся, карданная или шарнирная лопасти;

  • Жесткость: неподвижная или гибкая;

  • Количество лезвий: одно, два, три или даже больше;

  • Управление мощностью: сваливание, тангаж, рыскание или аэродинамические поверхности;

  • Контроль рыскания: активный или свободный.

В этой главе рассматриваются только ветряные турбины с горизонтальной осью (HAWT), которые являются преобладающим типом топологии ветряных турбин, что подтверждается на рис. 4.

Рис. 3.

Схема системы выработки ветряных турбин [50].

Ветровые турбины включают критически важные механические компоненты, такие как лопасти и роторы турбины, привод и генераторы. Они стоят более 30% от общих капитальных затрат на морской ветроэнергетический проект [24]. В общем, ветряные турбины предназначены для использования в относительно труднодоступных местах, что накладывает некоторые ограничения на конструкцию несколькими способами.В случае оффшорной среды сайт может быть реально доступен для обслуживания один раз в год. В результате отказоустойчивость ветряной турбины имеет большое значение для развития ветряной электростанции.

Рисунок 4.

Общепризнанный тип ветряной турбины и его разновидности [24].

Одним из ключевых компонентов ветряной турбины является привод, который связывает аэродинамический ротор и электрические выходные клеммы. Оптимизация ветрогенераторов не может быть осуществлена ​​без учета механических, конструктивных, гидравлических и магнитных характеристик трансмиссии.Обзор технологий трансмиссии показан на рис. 5 для сравнения. Как правило, их можно разделить на четыре типа в соответствии с их структурой [24]:

  • Обычные: редуктор и высокоскоростной генератор с несколькими парами полюсов.

  • Прямой привод: любая трансмиссия без коробки передач и тихоходного генератора с большим количеством пар полюсов.

  • Гибрид: любая трансмиссия с коробкой передач и частотой вращения генератора между двумя вышеуказанными типами.

  • Несколько генераторов: любая трансмиссия с более чем одним генератором.

Топологии приводной передачи могут вызывать такие проблемы, как интеграция ротора и коробки передач / подшипников, изоляция валов шестерни и генератора от механических изгибающих нагрузок, целостность и пути нагрузки. Хотя обслуживание отдельных компонентов ветряных турбин, таких как редукторы, подшипники и генераторы, может быть проще, промышленность все больше отдает предпочтение системной конструкции интегрированных компонентов трансмиссии.

4. Генераторы ветряных турбин

Одним из ограничивающих факторов в ветровых турбинах является технология их генераторов. Среди ученых и представителей промышленности нет единого мнения о лучших технологиях ветряных генераторов. Традиционно существует три основных типа ветряных генераторов (WTG), которые можно рассматривать для различных систем ветряных турбин: это синхронные генераторы постоянного тока (DC), переменного тока (AC) и асинхронные генераторы переменного тока. В принципе, каждый из них может работать с фиксированной или переменной скоростью.Из-за изменчивого характера энергии ветра выгодно использовать WTG с переменной скоростью, что снижает физическую нагрузку на лопатки турбины и привод, а также улучшает аэродинамическую эффективность системы и переходные характеристики крутящего момента.

(a) Технологии генераторов постоянного тока

В обычных машинах постоянного тока поле находится на статоре, а якорь — на роторе. Статор состоит из нескольких полюсов, которые возбуждаются постоянными магнитами или обмотками постоянного тока.Если машина находится в электрическом возбуждении, она обычно работает по принципу генератора постоянного тока с шунтирующей обмоткой.

Рисунок 5.

Технологии трансмиссии системного уровня [24].

Пример системы ветрогенератора постоянного тока показан на рис. 6. Он состоит из ветряной турбины, генератора постоянного тока, инвертора на биполярном транзисторе с изолированным затвором (IGBT), контроллера, трансформатора и электросети. Для генераторов постоянного тока с шунтирующей обмоткой ток возбуждения (и, следовательно, магнитное поле) увеличивается с рабочей скоростью, в то время как фактическая скорость ветряной турбины определяется балансом между крутящим моментом привода WT и крутящим моментом нагрузки.Ротор включает в себя намотанные на якорь проводники, которые соединены с комментатором с разъемным контактным кольцом. Электроэнергия извлекается через щетки, соединяющие комментатор, который используется для преобразования генерируемой мощности переменного тока в выход постоянного тока. Очевидно, что они требуют регулярного обслуживания и относительно дороги из-за использования коммутаторов и щеток.

В целом, эти WTG постоянного тока необычны для ветряных турбин, за исключением ситуаций с низким потреблением энергии [47; 23; 33; 54], где нагрузка физически близка к ветряной турбине, в системах отопления или при зарядке аккумулятора.

Рисунок 6.

Схема системы генератора постоянного тока [33].

(b) Технологии синхронных генераторов переменного тока

С самого начала разработки ветряных турбин были предприняты значительные усилия по использованию трехфазных синхронных машин. Синхронные WTG переменного тока могут принимать постоянное или постоянное возбуждение от постоянных магнитов или электромагнитов и поэтому называются синхронными генераторами с постоянными магнитами (PMSG) и синхронными генераторами с электрическим возбуждением (EESG) соответственно.Когда ротор приводится в движение ветряной турбиной, трехфазная энергия генерируется в обмотках статора, которые подключены к сети через трансформаторы и преобразователи мощности. Для синхронных генераторов с фиксированной скоростью частота вращения ротора должна поддерживаться точно на уровне синхронной скорости. Иначе синхронизация будет потеряна.

Синхронные генераторы — это проверенная машинная технология, поскольку их характеристики для выработки энергии изучались и широко применялись в течение долгого времени. Схема обычного синхронного генератора в разрезе показана на рис.7. Теоретически характеристиками реактивной мощности синхронных WTG можно легко управлять через цепь возбуждения для электрического возбуждения. Тем не менее, при использовании синхронных генераторов с фиксированной скоростью случайные колебания скорости ветра и периодические возмущения, вызванные эффектами затенения башни и естественными резонансами компонентов, будут передаваться в электросеть. Кроме того, синхронные WTG имеют тенденцию к низкому демпфирующему эффекту, поэтому они не позволяют электрически поглощать переходные процессы трансмиссии.Как следствие, они требуют дополнительного демпфирующего элемента (например, гибкой муфты в трансмиссии) или узла редуктора, установленного на пружинах и демпферах. Когда они интегрированы в электрическую сеть, синхронизация их частоты с частотой сети требует деликатной операции. Кроме того, они, как правило, более сложны, дороги и более подвержены отказу, чем индукционные генераторы. В случае использования электромагнитов в синхронных машинах управление напряжением происходит в синхронной машине, в то время как в машинах с возбуждением от постоянных магнитов управление напряжением достигается в цепи преобразователя.

Рисунок 7.

Разрез синхронного генератора [22].

В последние десятилетия генераторы PM постепенно используются в ветряных турбинах из-за их высокой плотности мощности и малой массы [39]. Часто эти машины называют синхронными генераторами с постоянными магнитами (PMSG) и рассматривают как предпочтительную машину в небольших ветряных генераторах. Структура генератора относительно проста. Как показано на рис. 8. Прочные PM устанавливаются на ротор для создания постоянного магнитного поля, а генерируемое электричество отбирается от якоря (статора) с помощью коммутатора, контактных колец или щеток.Иногда PM могут быть встроены в цилиндрический литой алюминиевый ротор для снижения затрат [35]. Принцип работы генераторов PM аналогичен принципу работы синхронных генераторов, за исключением того, что генераторы PM могут работать асинхронно. Преимущества PMSG включают отсутствие коммутатора, контактных колец и щеток, что делает машины прочными, надежными и простыми. Использование PM устраняет обмотку возбуждения (и связанные с ней потери мощности), но делает невозможным управление полем, а стоимость PM может быть непомерно высокой для больших машин.

Поскольку фактическая скорость ветра переменная, PMSG не могут вырабатывать электроэнергию с фиксированной частотой. В результате они должны быть подключены к электросети путем преобразования переменного тока в постоянный ток преобразователями мощности. То есть генерируемая мощность переменного тока (с переменной частотой и величиной) сначала выпрямляется в фиксированный постоянный ток, а затем преобразуется обратно в мощность переменного тока (с фиксированной частотой и величиной). Также очень привлекательно использовать эти машины с постоянными магнитами для прямого привода.Очевидно, что в этом случае они могут устранить неисправные редукторы, которые вызывают большинство отказов ветряных турбин. Машины должны иметь большое число полюсов и быть физически большими, чем редукторные машины аналогичного номинала.

Рис. 8.

Разрез синхронного генератора с постоянными магнитами [18].

Потенциальным вариантом синхронных генераторов является высокотемпературный сверхпроводящий генератор [31; 27; 49; 55]. См. Рис. 9 для низкоскоростной системы синхронного генератора HTS с несколькими МВт.Машина содержит статор железо, медь статора обмотку, HTS полевых катушки, сердечник ротора, опорную конструкцию ротора, ротор систему охлаждения, криостат и внешний холодильник, электромагнитный экран и заслонку, подшипник, вал и корпус. В конструкции машины компоновка статора, ротора, охлаждения и редуктора может создавать особые проблемы для поддержания катушек HTS в условиях эксплуатации при низких температурах.

Рисунок 9.

Схема системы синхронного генератора HTS [11].

Сверхпроводящие катушки могут пропускать в 10 раз больший ток, чем обычные медные провода, с незначительным сопротивлением и потерями в проводнике. Без сомнения, использование сверхпроводников устранит все потери мощности в цепи возбуждения, а способность сверхпроводимости увеличивать плотность тока позволяет создавать сильные магнитные поля, что приводит к значительному уменьшению массы и размеров генераторов ветряных турбин. Таким образом, сверхпроводящие генераторы являются многообещающими в плане высокой мощности и снижения веса, возможно, лучше подходят для ветряных турбин мощностью 10 МВт или более.В 2005 году компания «Сименс» успешно запустила в производство первый в мире сверхпроводящий ветрогенератор, представляющий собой синхронный генератор мощностью 4 МВт. Тем не менее, существует множество технических проблем, с которыми приходится сталкиваться, особенно в отношении долговечных и не требующих обслуживания ветряных турбин. Например, всегда существует необходимость в обслуживании криогенных систем, так что время на охлаждение и восстановление работы после остановки будет дополнительной проблемой.

(c) Асинхронные генераторы переменного тока

В то время как в традиционной выработке электроэнергии используются синхронные машины, в современных ветроэнергетических системах широко используются индукционные машины в ветряных турбинах.Эти индукционные генераторы делятся на два типа: индукционные генераторы с фиксированной скоростью (FSIG) с роторами с короткозамкнутым ротором (иногда называемые индукционными генераторами с короткозамкнутым ротором — SQIG) [40; 1] и индукционные генераторы с двойным питанием (ДФИГ) с намотанными роторами [9; 29; 19; 32, 43; 13; 34]. Схемы в разрезе индукционного генератора с короткозамкнутым ротором и индукционного генератора с двойным питанием представлены на рисунках 10 и 11 соответственно, а их топология системы дополнительно проиллюстрирована на рисунке 12.

При питании от трехфазного переменного тока При подаче питания на статор через воздушный зазор создается вращающееся магнитное поле.Если ротор вращается со скоростью, отличной от синхронной, возникает проскальзывание, и в цепь ротора подается питание. В целом индукционные машины просты, надежны, недороги и хорошо разработаны. Они обладают высокой степенью демпфирования и способны поглощать колебания скорости ротора и переходные процессы трансмиссии (т. Е. Отказоустойчивые). Однако асинхронные машины потребляют реактивную мощность из сети, и поэтому требуется некоторая форма компенсации реактивной мощности, такая как использование конденсаторов или преобразователей мощности.В асинхронных генераторах с фиксированной частотой вращения статор подключен к сети через трансформатор, а ротор подключен к ветряной турбине через редуктор. Скорость ротора считается фиксированной (фактически, варьирующейся в узком диапазоне). До 1998 года большинство производителей ветряных турбин выпускали индукционные генераторы с фиксированной частотой вращения мощностью 1,5 МВт и ниже. Эти генераторы обычно работали со скоростью 1500 оборотов в минуту (об / мин) в электросети 50 Гц [37] с трехступенчатой ​​коробкой передач.

Рисунок 10.

Разрез индукционного генератора с короткозамкнутым ротором [22].

Рисунок 11.

Разрез индукционного генератора с двойным питанием и вращающимся трансформатором [43].

SCIG могут использоваться в ветряных турбинах с регулируемой скоростью, а также в управлении синхронными машинами. Однако выходное напряжение нельзя контролировать, и реактивная мощность должна подаваться извне. Очевидно, что индукционные генераторы с фиксированной скоростью могут работать только в очень узком диапазоне дискретных скоростей.Другие недостатки машин связаны с размерами машины, шумом, низкой эффективностью и надежностью. Доказано, что эти машины вызывают серьезные сбои в обслуживании и последующее техническое обслуживание.

Рис. 12.

Схема двух систем индукционных генераторов.

SCIG лидировали на рынке ветряных турбин до последнего тысячелетия [16; 26], уступив место широкому распространению DFIG. В настоящее время более 85% установленных ветряных турбин используют DFIG [41], а самая большая мощность промышленных ветряных турбин с DFIG увеличилась до 5 МВт в промышленности.В топологии DFIG статор напрямую подключен к сети через трансформаторы, а ротор подключается к сети через силовые преобразователи с ШИМ. Преобразователи могут управлять током в цепи ротора, частотой и сдвигом фазового угла. Такие индукционные генераторы могут работать в широком диапазоне скольжения (обычно ± 30% от синхронной скорости). В результате они предлагают множество преимуществ, таких как высокий выход энергии, снижение механических напряжений и колебаний мощности, а также возможность управления реактивной мощностью.

Для индукционных генераторов вся реактивная мощность, приводящая в действие магнитные цепи, должна поступать от сети или местных конденсаторов. Индукционные генераторы подвержены нестабильности напряжения. Когда конденсаторы используются для компенсации коэффициента мощности, существует риск самовозбуждения. Кроме того, эффект демпфирования может привести к потерям мощности в роторе. Нет прямого контроля ни напряжения на клеммах (а значит, реактивной мощности), ни устойчивых токов короткого замыкания.

Как показано на рис.12 (b), ротор DFIG механически связан с ветряной турбиной через систему привода, которая может содержать высокоскоростные и низкоскоростные валы, подшипники и редуктор. Ротор питается от двунаправленных преобразователей напряжения. Таким образом, скорость и крутящий момент DFIG можно регулировать, управляя преобразователем на стороне ротора (RSC). Другая особенность заключается в том, что DFIG могут работать как в подсинхронных, так и в суперсинхронных условиях. Статор всегда передает мощность в сеть, а ротор может обрабатывать мощность в обоих направлениях.Последнее связано с тем, что преобразователи ШИМ способны подавать напряжение и ток с разными фазовыми углами. В подсинхронном режиме преобразователь на стороне ротора действует как инвертор, а преобразователь на стороне сети (GSC) — как выпрямитель. В этом случае активная мощность течет от сети к ротору. В сверхсинхронном режиме RSC работает как выпрямитель, а GSC как инвертор. Следовательно, активная мощность течет от статора, а также от ротора к электросети.

Рисунок 13.

Пофазная эквивалентная схема DFIG.

Для анализа характеристик DFIG всегда необходимо использовать его пофазную эквивалентную схему, как показано на рисунке 13. Из этого рисунка видно, что DFIG отличается от обычной индукционной машины в цепи ротора, где Источник напряжения добавлен для подачи напряжения в цепь ротора. Фактическое управление DFIG d q аналогично регулированию величины и фазы подаваемого напряжения в цепи.

Матричная форма уравнения для этой схемы:

[VsVr / s] = [Rs + j (Xs + Xm) −jXm − jXmRr / s + j (Xr + Xm)] [IsIr] E1

Входная мощность P в можно суммировать из выходной мощности P из и общей потери P потерь . Последние включают потери в проводе статора P cu1 , потери в проводнике ротора P cu2 , потери в сердечнике P сердечник , потери на ветер и трение P wf и потеря паразитной нагрузки P паразитная .Среди этих потерь предполагается, что P cu1 изменяется в зависимости от квадрата тока статора I с , а P cu2 изменяется в зависимости от квадрата тока ротора I r . Потери паразитной нагрузки можно разделить на две части: основной компонент P fun , возникающий на стороне статора, и P har на стороне ротора.Таким образом, P удовольствие пропорционально I s 2 , а P har пропорционально I r 2 .

Суммарные потери тогда равны

Ploss = 3Is2 (Rs + Rfun) + 3Ir2 (Rr ‘+ Rhar) + Pcore + PwfE2

Эффективность DFIG составляет

η = PoutPin = 3Voutcosφr6Is (Rs + Rfun + Rr’ + Rhar) + 3VoutcosφrE3

КПД можно выразить как функцию тока нагрузки I s , и эта функция является непрерывной и монотонной.Следовательно, максимальная эффективность может быть найдена, когда

То есть условие максимальной эффективности для DFIG составляет

Строительство ветряного генератора на вашем заднем дворе

Для многих энтузиастов окружающей среды ветряные турбины с горизонтальной осью (HAWT), похожие на ветряные мельницы, медленно вращающиеся вдалеке, являются довольно привычным зрелищем. К сожалению, есть немало предостережений, из-за которых их труднее принять, несмотря на тот факт, что использование возобновляемых источников энергии более устойчиво, чем использование природного газа и топлива, которые могут быть исчерпаны.Поскольку они обращены к одной оси, они должны иметь возможность отслеживать ветер, или же иметь возможность получить максимальную отдачу энергии. Также в турбулентных и порывистых условиях HAWT сталкиваются с повышенной утомляемостью при уборке урожая.

Разработка ветряной турбины с вертикальной осью (VAWT) решает несколько из этих проблем. Кроме того, турбины обычно расположены ближе к земле, а замена редуктора проще и эффективнее. Техническое обслуживание более доступно из-за размера турбин, поэтому для доступа к важным компонентам на месте обычно не требуется тяжелая техника.Кроме того, коробка передач по характеру своей работы снижает утомляемость и способна работать в условиях турбулентного ветра, что снижает вероятность отказов.

Для простой версии VAWT, которую вы можете построить самостоятельно, [BlueFlower] опубликовал несколько механических чертежей, которые подробно описывают схему конструкции. В ветроэнергетическом генераторе используются 24 магнита, медный провод, скрученный в катушки, и металлическая пластина для основного генератора. Катушки расположены по кругу на неподвижной пластине, в то время как магниты расположены на равном расстоянии от движущейся круглой пластины.Когда магниты проходят по катушкам, поток индуцирует ток, который увеличивается по мере ускорения вращения пластин.

Лопасти генератора сделаны из синей пены с металлическим стержнем, проходящим через нее для структуры. Три лезвия прикреплены треугольными стержнями к центральному стержню, который также удерживает вращающуюся магнитную пластину.

В первоначальных испытаниях [BlueFlower] с использованием VAWT для зарядки аккумулятора они смогли выработать максимальную мощность 15 Вт в режиме ускорения и 30-70 Вт при зарядке в режиме ШИМ.Неплохо для самодельного ветрогенератора!

Однако в дизайне есть не только плюсы. Хотя VAWT могут быть дешевле, более мобильными и более устойчивыми к износу, есть некоторые конструктивные особенности, которые препятствуют работе генераторов, а также HAWT при сборе энергии. Лезвия не создают крутящий момент одновременно, некоторые из них просто толкаются. Это приводит к большему сопротивлению лопастям при их вращении, ограничивая эффективность всей системы. Кроме того, более высокие скорости ветра обычно наблюдаются на больших высотах, поэтому VAWT будут работать лучше, если будут установлены на возвышающейся конструкции.Силы вибрации вблизи земли также могут привести к износу подшипников, что приведет к увеличению затрат на техническое обслуживание и увеличению затрат.

Ветрогенераторов сегодня

На проекте ветряной электростанции Guris Dinar компания GE установила свою блестящую турбинную технологию серии 2X. Эта новая технология позволяет турбинам подключаться друг к другу, к сетевым системам, а также к операторам месторождения. Вероятно, самая важная технология, которая была установлена ​​в турбинах, — это то, что они называют системой управления нагрузкой.Эта система […]

Читать статью полностью …

Инженерное дело может спасти жизни, просто помогая людям решать проблемы, с которыми они сталкиваются каждый день. В городских районах вы найдете множество зданий и препятствий, которые заставляют ветер хаотично перемещаться. Обычно ветряки можно встретить в местах с большими открытыми пространствами. O Wind Turbine — это […]

Читать статью полностью …

Почему ветряки белые? Вы никогда не задумывались, почему вы никогда не видите ветряные турбины красного, синего, оранжевого или зеленого цвета? На самом деле для этого есть причина.Они намеренно окрашены в белый цвет, потому что он считается нейтральным и ненавязчивым. Если бы вы посмотрели на турбину снизу, она бы вписалась в […]

Читать статью полностью …

Почему ветроэнергетика субсидируется в Соединенных Штатах Америки? Что происходит, так это то, что при использовании электроэнергии вашей местной энергетической компании они фактически взимают с вас плату за киловатт-час. Однако фактические производители энергии выставляют счета тем же компаниям по рыночной стоимости.Это можно сравнить с тем, когда ваш супермаркет платит […]

Читать статью полностью …

В недавнем интервью руководитель производства GE Energy Кен Джонс объяснил, что на самом деле успех компании зависит от разнообразия группы людей, составляющих их персонал. Самым большим преимуществом является то, что все они разные, поэтому вы можете учиться на каждом из них каждый раз, когда взаимодействуете, что упрощает […]

Прочтите статью полностью…

Какое влияние на окружающую среду оказывают ветряные турбины? Все мы знаем, что когда дело доходит до возобновляемых источников энергии, энергия ветра является отличной альтернативой по сравнению с ископаемым топливом. Все мы знаем, что ветряные турбины во время работы не выделяют парниковых газов. Однако есть несколько способов, которыми они могут повлиять на […]

Читать статью полностью …

Будущее ветровой энергии во многом зависит от способности отрасли снизить затраты.Один из способов сделать это — построить более крупные ветряные турбины. Однако, если они также смогут внедрить стратегии управления, которые помогут снизить затраты на компоненты, а также на техническое обслуживание. Выгоды могут не быть […]

Читать статью полностью … Компания

Ampyx Power провела исследование плавающего применения своей воздушной ветроэнергетической системы, которая имеет жесткое крыло для выработки энергии воздушного змея. Поскольку было обнаружено, что кончики лопастей ветряной турбины отвечают за улавливание большей части энергии.Ampyx Power решила заменить наконечники на самолет, поэтому […]

Читать статью полностью …

Компания ACCIONA, занимающаяся ветроэнергетикой, создала первую гибридную установку, единственной целью которой является хранение произведенной электроэнергии в батареях, а не подача энергии непосредственно в сеть. Аккумуляторные батареи расположены на их ветряной электростанции в Испании, и они подают энергию в сеть по мере необходимости. Это одна и та же компания […]

Прочтите статью полностью…

Похоже, скоро мы перейдем от морских ветряных электростанций к тем, которые оснащены воздушными змеями. В начале августа 2019 года ветроэнергетическая компания Makani Power провела испытание полета своего воздушного змея с платформы, плавающей в Северном море, недалеко от побережья Кармёй, Норвегия. Преимущество […]

Прочитать статью полностью Ветряной генератор

| Учебники по альтернативной энергии

Генератор ветряной турбины Статья Учебники по альтернативной энергии 19.06.2010 27.07.2020 Учебники по альтернативной энергии

Поделитесь / добавьте в закладки с:

Типы ветрогенераторов

Ветряная турбина состоит из двух основных компонентов, и, посмотрев на один из них, конструкцию лопастей ротора в предыдущем уроке, мы теперь можем взглянуть на другой, ветрогенератор или WTG , который является электрическая машина, используемая для выработки электроэнергии.Электрический генератор с низкой частотой вращения используется для преобразования механической вращательной мощности, производимой энергией ветра, в полезную электроэнергию для снабжения наших домов и составляет основу любой ветроэнергетической системы.

Преобразование вращательной механической энергии, генерируемой лопастями ротора (известной как первичный двигатель), в полезную электрическую энергию для использования в бытовых системах электроснабжения и освещения или для зарядки батарей может быть выполнено любым из следующих основных типов вращательных электрических машины, обычно используемые в ветроэнергетических установках:

  • 1.Машина постоянного тока (DC), также известная как Dynamo
  • 2. Синхронная машина переменного тока (AC), также известная как генератор переменного тока
  • 3. Индукционная машина переменного тока, также известная как генератор переменного тока

Все эти электрические машины представляют собой электромеханические устройства, работающие по закону электромагнитной индукции Фарадея. То есть они действуют за счет взаимодействия магнитного потока и электрического тока или потока заряда.Поскольку этот процесс обратим, та же машина может использоваться как обычный электродвигатель для преобразования электроэнергии в механическую энергию или как генератор, преобразующий механическую энергию обратно в электрическую.

Индукционный генератор ветровой турбины

Электрические машины, которые чаще всего используются для ветряных турбин, работают как генераторы, причем синхронные генераторы и индукционные генераторы (как показано) обычно используются в более крупных системах ветряных генераторов.Обычно небольшие или самодельные ветряные турбины, как правило, используют низкоскоростной генератор постоянного тока или динамо, поскольку они маленькие, дешевые и их намного проще подключить.

Так имеет ли значение, какой тип электрического генератора мы можем использовать для производства энергии ветра. Простой ответ — и да, и нет, поскольку все зависит от типа системы и приложения, которое вы хотите. Низковольтный выход постоянного тока от генератора или динамо-машины старого типа можно использовать для зарядки батарей, в то время как более высокий синусоидальный выход переменного тока от генератора переменного тока может быть подключен непосредственно к местной сети.

Кроме того, выходное напряжение и потребляемая мощность полностью зависят от имеющихся у вас приборов и от того, как вы хотите их использовать. Кроме того, расположение ветряного генератора, будет ли ветровой ресурс поддерживать его постоянное вращение в течение длительных периодов времени, или скорость генератора и, следовательно, его мощность будут изменяться вверх и вниз в зависимости от изменения имеющегося ветра.

Производство электроэнергии

A Ветряная турбина Генератор — это то, что производит ваше электричество, преобразовывая механическую энергию в электрическую.Давайте проясним: они не создают энергии и не производят больше электрической энергии, чем количество механической энергии, используемой для вращения лопастей ротора. Чем больше «нагрузка» или электрическая нагрузка на генератор, тем больше механической силы требуется для вращения ротора. Вот почему генераторы бывают разных размеров и производят разное количество электроэнергии.

В случае «ветряного генератора» ветер толкает непосредственно лопасти турбины, что преобразует линейное движение ветра во вращательное движение, необходимое для вращения ротора генератора, и чем сильнее ветер толкает, тем больше электрическая энергия может быть произведена.Тогда важно иметь хорошую конструкцию лопастей ветряной турбины, чтобы извлекать как можно больше энергии из ветра.

Все электрические турбогенераторы работают из-за эффектов движения магнитного поля мимо электрической катушки. Когда электроны проходят через электрическую катушку, вокруг нее создается магнитное поле. Аналогичным образом, когда магнитное поле движется мимо катушки с проволокой, в катушке индуцируется напряжение, как определено законом магнитной индукции Фарадея, заставляя электроны течь.

Простой генератор с использованием магнитной индукции

Затем мы можем видеть, что при перемещении магнита мимо одиночной проволочной петли, напряжение, известное как и ЭДС (электродвижущая сила), индуцируется внутри проволочной петли из-за магнитного поля магнита. Когда напряжение индуцируется через проволочную петлю, электрический ток в форме электронного потока начинает течь вокруг петли, генерируя электричество.

Но что, если бы вместо одной отдельной проволочной петли, как показано, у нас было бы много петель, намотанных вместе на одном и том же каркасе, чтобы образовать катушку из проволоки, гораздо большее напряжение и, следовательно, можно было бы генерировать при том же количестве магнитного потока.

Это связано с тем, что магнитный поток проходит через большее количество проводов, создавая большую ЭДС, и это основной принцип закона электромагнитной индукции Фарадея, и генератор переменного тока использует этот принцип для преобразования механической энергии, такой как вращение ветряной турбины или гидротурбины. , в электрическую энергию, создающую синусоидальную форму волны.

Итак, мы видим, что есть три основных требования к производству электроэнергии, а именно:

  • Катушка или набор проводников
  • Система магнитного поля
  • Относительное движение между проводниками и полем

Тогда чем быстрее вращается катушка с проволокой, тем больше скорость изменения, с которой магнитный поток отсекается катушкой, и тем больше индуцированная ЭДС внутри катушки.Точно так же, если магнитное поле становится сильнее, наведенная ЭДС увеличится при той же скорости вращения. Таким образом: Индуцированная ЭДС Φ * n. Где: «Φ» — поток магнитного поля, а «n» — скорость вращения. Также полярность генерируемого напряжения зависит от направления магнитных линий потока и направления движения проводника.

Существует два основных типа электрического генератора и генератора переменного тока: генератор с постоянным магнитом и генератор с возбужденным полем , причем оба типа состоят из двух основных частей: статора и ротора .

Статор — это «неподвижная» (отсюда и название) часть машины, и в его конструкции может быть либо набор электрических обмоток, образующих электромагнит, либо набор постоянных магнитов. Ротор — это часть машины, которая «вращается». Опять же, ротор может иметь вращающиеся выходные катушки или постоянные магниты. Как правило, генераторы и генераторы переменного тока, используемые для генераторов ветряных турбин, определяются тем, как они создают свой магнетизм, будь то электромагниты или постоянные магниты.

У обоих типов нет реальных преимуществ и недостатков. Большинство бытовых ветряных генераторов на рынке используют постоянные магниты в своей конструкции турбогенератора, которые создают необходимое магнитное поле при вращении машины, хотя в некоторых действительно используются электромагнитные катушки.

Эти высокопрочные магниты обычно изготавливаются из редкоземельных материалов , таких как неодимовое железо (NdFe) или самарий-кобальт (SmCo), что устраняет необходимость в обмотках возбуждения для обеспечения постоянного магнитного поля, что приводит к более простой и прочной конструкции .Обмотки намотки поля имеют то преимущество, что их магнетизм (и, следовательно, мощность) согласовывается с изменяющейся скоростью ветра, но для создания необходимого магнитного поля требуется внешний источник энергии.

Теперь мы знаем, что электрический генератор обеспечивает средство преобразования энергии между механическим крутящим моментом, создаваемым лопастями ротора, называемым первичным двигателем, и некоторой электрической нагрузкой. Механическое соединение генератора ветряной турбины с лопастями ротора осуществляется через главный вал, который может быть либо простым прямым приводом, либо с помощью редуктора для увеличения или уменьшения скорости генератора относительно скорости вращения лопастей.

Использование редуктора позволяет лучше согласовать скорость генератора со скоростью турбины, но недостатком использования редуктора является то, что как механический компонент он подвержен износу, что снижает эффективность системы. Однако прямой привод может быть более простым и эффективным, но вал и подшипники ротора генератора подвергаются полному весу и вращательной силе лопастей ротора.

Кривая выходной мощности ветрогенератора

Таким образом, тип ветряного генератора, необходимого для конкретного места, зависит от энергии, содержащейся в ветре, и характеристик самой электрической машины.Все ветряные турбины имеют определенные характеристики, связанные со скоростью ветра.

Генератор (или генератор переменного тока) не будет вырабатывать выходную мощность до тех пор, пока его скорость вращения не превысит заданную скорость ветра, когда сила ветра на лопасти ротора достаточна для преодоления трения, а лопасти ротора разгоняются достаточно для запуска генератора. производя полезную мощность.

Выше этой скорости включения генератор должен вырабатывать мощность, пропорциональную кубу скорости ветра (K.V 3 ), пока не достигнет максимальной номинальной выходной мощности, как показано.

Выше этой номинальной скорости ветровые нагрузки на лопасти ротора будут приближаться к максимальной прочности электрической машины, и генератор будет вырабатывать максимальную или номинальную выходную мощность, когда будет достигнуто окно номинальной скорости ветра. Если скорость ветра продолжит увеличиваться, генератор ветряной турбины остановится в точке отключения, чтобы предотвратить механическое и электрическое повреждение, что приведет к нулевой выработке электроэнергии. Тормозом для остановки генератора и его повреждения может быть либо механический регулятор, либо электрический датчик скорости.

Купить ветрогенератор, такой как ECO-WORTHY 400 Watt Wind Turbine Generator, для зарядки аккумулятора непросто, и необходимо учитывать множество факторов. Цена только одна из них. Обязательно выберите электрическую машину, соответствующую вашим потребностям. Если вы устанавливаете систему, подключенную к сети, выберите генератор сетевого напряжения переменного тока. Если вы устанавливаете систему на батарейках, ищите генератор постоянного тока для зарядки батарей. Также учитывайте механическую конструкцию генератора, такую ​​как размер и вес, скорость работы и защиту от окружающей среды, поскольку он будет проводить весь свой срок, установленный на вершине столба или башни.

В следующем уроке о ветряных генераторах мы рассмотрим машины постоянного тока и то, как мы можем использовать генератор постоянного тока для производства электроэнергии из энергии ветра. Чтобы узнать больше о «Генераторах ветряных турбин» или получить дополнительную информацию об энергии ветра о различных доступных ветроэнергетических системах, или изучить преимущества и недостатки энергии ветра, щелкните здесь, чтобы получить копию одного из лучших «Ветряных турбин» Гиды »прямо сейчас с Amazon.

Список ветроэнергетических компаний

  • Hopeful Wind Energy Technology Co., ООО

    Основанная в 2010 году компания Hopeful Wind Energy Technology Co., Ltd специализируется на разработке и производстве небольших ветряных турбин. Мы ориентируемся на современное оборудование, связанное с турбинами, из лучших материалов. Наша продукция предназначена для …

    Адрес : 2 / F, Building C, № 18 7th Keji Road, National Hi-tech zone, Jinding, Zhuhai, China Тип бизнеса : Производитель, торговая компания

  • Qingdao Hengfeng Wind Power Generator Co., ООО

    Qingdao Hengfeng Wind Power Generator Co., Ltd является одним из ведущих производителей ветряных турбин в Китае. Мастерская занимает более 5000 квадратных метров. это примерно 1 час на машине до аэропорта. И порт 30мин. Трафик очень …

    Адрес : № 226 Taishan Road, Jiaonan City, Qingdao, China Тип бизнеса : Производитель, торговая компания

  • Шэньчжэнь Lemon Digitals Limited

    Обладая несколькими патентами на разработку и производство лопастей и систем управления генератором, компания Shenzhen LemonDigitals Limited в настоящее время является одним из ведущих производителей в области малой ветроэнергетики Китая.Производим на экспорт 15 …

    Адрес : Блок 5A, Башня 3, Хуа Цай Тянь Ченг, Вэньсинь 2-я дорога, Центральный район Наньшань, Шэньчжэнь, Гуандун, Китай Вид деятельности : Производство

  • QINGDAO QIANGSHENG MAGNETS Co., Ltd

    QM является дочерней компанией Beijing Ruyu Magnetoelectricity Science and echnology Co., Ltd, которая специализируется на передовых технологиях, которые специализируются на производстве магнитов, ветряных генераторов, вертикальных осей, турбин, горизонтальных…

    Адрес : Китай Вид деятельности : Производство

  • Shenzhen Wind Power Co Ltd

    Shenzhen Wind Power CO., LTD — высокотехнологичное предприятие ветроэнергетической отрасли в Китае. Наша компания-производитель объединяет исследования и разработки, производство, продажи, послепродажное обслуживание. Мы специализируемся на средних и средних предприятиях. малый …

    Адрес : shenzhen xixiang street fuyuan road, Шэньчжэнь, Гуандун, Китай Вид деятельности Business Производство

  • Zhejiang Huaying Wind Power Generator Co., ООО

    Zhejiang Huaying Wind Power Generator Co., Ltd, член группы Tongkun — ведущий промышленный конгломерат Китая, постоянный заместитель директора подразделения Китайская ветроэнергетическая ассоциация, является высокотехнологичной начинающей компанией .

  • Добавить комментарий

    Ваш адрес email не будет опубликован.