Ветрогенератор мини своими руками: Дешевый мини ветрогенератор для дачи фото отчет

Содержание

Как сделать небольшой ветрогенератор своими руками

На чтение 2 мин.

Итак, мы собираемся сделать небольшой ветрогенератор. Его можно изготовить в домашних условиях. 90% деталей выполнены из пластиковых труб и фитинга, поэтому его с легкостью можно разбирать для транспортировки и снова собирать. Давайте начнем.

Изготовление лопастей

Для этого вам понадобится пластиковая труба диаметром 8 см и длиной 25 см.

Разрежьте ее вдоль на три равные части. Каждую часть разрезаем вдоль под углом и из полученных деталей вырезаем лопасть, как на рисунке.

Для основы винта берем любую круглую пластину, диаметр которой 6 см.

Делаем в ней три равноудаленных отверстия и с помощью небольших болтов и гаек крепим лопасти к пластине.

Изготовление основы

На основе и мачте ветрогенератора устанавливается винт, генератор, хвост и поворотный механизм. Основу сделать очень просто.

Для этого понадобится несколько коротких отрезков пластиковой трубы и некоторые элементы фитинга.

4 отвода и 3 тройника соединяем, как на рисунке.

Делаем хвост

Для нормальной работы ветрогенератора нужен хвост. Каково его назначение? Хвост нужен для автоматического поворота оси винта при изменении направления ветра.

Для его изготовления нужно вырезать пластину из оцинкованной стали, сделать прорезь в пластиковой трубе, вставить в нее пластину и закрепить все болтом.

Корпус с генератором

Для изготовления корпуса с генератором понадобятся:

  • электропровод,
  • корпус пластиковой ручки ,
  • пластиковый тройник,
  • два подшипника,
  • мотор (генератор) постоянного тока на 3 В.

Вставьте генератор в тройник.

Закрепите подшипники на общей оси.

В качестве оси можно использовать отрезок корпуса ручки.

Один подшипник должен крепиться к тройнику.


Мини ветрогенератор готов

Поставьте ветрогенератор напротив вентилятора.

Подсоедините щупы к проводам на выходе. Да, прибор покажет, что вырабатывается электрический ток. С эффективным генератором можно зарядить 3-вольтовую батарею. Кроме этого, подобным образом можно сделать ветрогенератор побольше, которым можно будет заряжать мобильный телефон.

Смотрите видео работы ветрогенератора

Ветрогенератор | Полезное своими руками

Я хочу предложить читателям интересное на мой взгляд и полезное устройство — портативную ветроэлектростанцию.

В летнее время я с семьей часто отдыхаю на берегу моря. Каждому понятно, что отдых становится значительно комфортабельней, если есть источник электроэнергии.

После изготовления ветряка отпала необходимость в экономии бортовой сети автомобиля, появилась возможность постоянно пользоваться магнитолой, освещением, телевизором, а во время даже небольшого ветра — автомобильным холодильником.

Мною были изготовлены несколько вариантов ветряных генераторов. В одной из конструкций я даже задействовал шаговый двигатель из поломанного сканера. Однако, могу со всей ответственностью заявить, что вариант, предлагаемый здесь — наиболее прост и доступен.

Изготовление самодельного ветряка (чертеж ветрогенератора)

В качестве генератора, основного агрегата любой электростанции, используется электродвигатель постоянного тока (U = 48В, I = 15А, n = 1200 об/мин). Ротор вращается с частотой менее 500 об/мин, причем по мере усиления ветра обороты не возрастают, а увеличивается ток заряда. На валу генератора установлена цепная звездочка (Z=10) от велосипедного двигателя Д-6. Ведомая звездочка (Z=48) и весь кареточный узел взяты от взрослого велосипеда.

Раму пришлось распилить и придать ей нужную форму, а потом заварить. Генератор крепится к раме при помощи болтов М8. Роликовую цепь с шагом 12,7 мм перед установкой нужно прокипятить несколько минут в моторном масле, а затем вытереть ветошью. Лучше использовать цепь от мотоцикла: ее срок службы значительно дольше. Вал каретки я выточил новый, более длинный. При сборке кареточного узла необходимо смазать подшипники смазкой Литол-24 или ЦИАТИМ. Затем на вал навинчивается до упора гайка М16, надевается фланец (рис.3) и зажимается другой гайкой. К фланцу восемью болтами М6 крепится диск (рис.4) таким образом, чтобы выступ фланца на 40 мм вошел в отверстие диска.

Фланец изготавливается следующим образом: на токарном станке из стали вытачивается диск (рис.3, поз.1), затем головка торцевого ключа на 24 отрезается со стороны держателя по высоте до 20 мм, обе эти детали совмещаются друг с другом соосно и привариваются.

В таком случае, если будут использоваться только две лопасти, диск и фланец можно заменить стальной пластиной (рис.1, поз.3). Лопасти изготавливаются из дюралюминия толщиной 2 мм. После изготовления им необходимо придать дугообразную форму. Для этого лопасть надо положить на что-то круглое (например, трубу диаметром 800 мм и длиной не менее 800 мм) и согнуть по линии, показанной на чертеже. Затем лопасть при помощи шести шурупов крепится к деревянной спице, которая делается из струганного деревянного бруска 36х55х500 мм.

Спицы, в свою очередь (при помощи двух болтов М8 каждая), присоединяются к диску или пластине.

Для использования слабого ветра, 5-8 м/с, у меня сделано шесть одинаковых лопастей. При сильном ветре советую использовать только две. Но даже и при небольшом ветре с двумя лопастями

ветряк дает ток 4-6 А при напряжении 14 В. В принципе, можно уменьшить длину лопастей до 80 см.

К нижней части рамы приварен штырь (кусок трубы длиной 120-150 мм), который с небольшим зазором входит в трубу-мачту. Перед монтажом его необходимо смазать и проложить латунную шайбу, на которой весь узел будет легко вращаться в горизонтальной плоскости и при помощи съемного стабилизатора становиться против ветра. Мачта длиной 3-3,5 м изготовлена из водопроводной трубы ∅34 мм (не менее). К нижней части мачты, с торца трубы, приварена опорная площадка (S 2-3 дм²), к которой, в свою очередь, приварен штырь длиной 150 мм и ∅12-15 мм. При установке мачты штырь просто втыкается в землю.

На расстоянии 1 м от верхнего конца трубы-мачты, по ее окружности, я приварил четыре гайки М10 для крепления растяжек. Мачту лучше изготовить из двух частей — для удобства перевозки на багажнике легкового автомобиля. В стационарных условиях ее можно изготовить и из другого материала, и более длинную. Несколько слов о пульте контроля и зарядки аккумулятора. В него входят амперметр и вольтметр постоянного тока любого типа, но лучше небольших размеров. Амперметр на максимальный ток 20-30 А, вольтметр на 15-30 В (из расчета того, что бортовая сеть автомобиля — 12 В).

Развязывающий диод — любого типа на ток 20 А. В качестве реостата можно использовать проволочное сопротивление типа ППБ-50Г на 5-10 0м, 50 Вт с доработкой: с левого края нужно снять несколько витков провода, чтобы в рабочем положении цепь разрывалась.

Можно использовать и любой другой резистор, выдерживающий ток 20 А в течение нескольких секунд. А нужно это вот зачем: если аккумулятор заряжен полностью и напряжение на нем достигло 14-14,5 В, то резистором в течение трех секунд закорачиваем генератор и тем самым останавливаем его, ток при этом в 3-4 раза меньше рабочего.

Можно затем одну из лопастей привязать к мачте.

Закорачивать генератор резко нельзя, так как может произойти поломка механизма. Вручную, даже при среднем ветре, за лопасть останавливать очень опасно.

Уменьшать этим резистором ток заряда тоже нельзя, так как он выгорит через несколько десятков секунд. Ток заряда можно уменьшить путем добавления количества включенных в розетку ламп. Токоведущий провод — любой мягкий кабель (лучше обрезиненный) сечением 3-4 мм², который пропущен внутри трубы мачты.

Ветрогенератор своими руками. Промышленные аналоги

Здравствуйте, дорогие друзья! Сегодня узнаем как создать ветрогенератор своими руками. Тем, кто часто путешествует и останавливается на дневки и ночевки на природе, наверняка приходило в голову, что хорошо было бы иметь источник подзарядки для автомобильного аккумулятора и аккумуляторов других мобильных устройств: ноутбуков, телефонов, gps навигаторов, фонарей и т.д. Кроме того, имея достаточно мощный источник энергии даже 12 В, можно, используя преобразователь напряжения 12 220, получить полноценную «розетку» 220 В. Это еще более повысит уровень комфорта, к которому так привыкли все горожане и увеличит количество используемых устройств до привычного уровня.

Получить такой уровень комфорта можно с помощью солнечных батарей, ветряных генераторов и гидрогенераторов. При уровне мощности до 1000 Вт, эти устройства могут быть достаточно компактны даже для переноски одним человеком, если говорить об автотранспорте, то вы можете взять с собой и более мощные источники энергии.

С чего начать?

Если вы обладаете навыком работы с простыми инструментами, такими как «болгарка», электродрель, сварочный аппарат, паяльник, шуруповерт, то вам не составит особого труда собрать самодельный ветряк. Но помните, что как и в любом деле, мастерство приходит с опытом. Одно дело собрать действующий макет и совсем другое ветряк, рассчитанный на любой ветер, со стабилизацией напряжения и защитой от перегрузок.

Теперь остановимся подробнее на том, как собрать простейший ветряк и что для этого нужно. Следует сказать, что существуют ветряки горизонтального и вертикального типа, т. е. с плоскостью вращения ротора в вертикальной и горизонтальной плоскости.

Наибольшее распространение исторически получили ветряки, с вертикально расположенными роторами (ветряные мельницы). Это несколько странно, если вспомнить, что у горизонтальных есть несколько явных преимуществ. Например, они всеракурсные, т.е. ветер с любой стороны будет вращать их ротор. Им нужен только один подшипник.

У «вертикальных» ветряков необходимо такое же поворотное устройство, хвост для отслеживания ветра и поворота по ветру. Кроме того, им нужен дополнительный подшипник для вращения рабочего ротора и еще шарнир, для защиты от слишком сильного ветра.

Сердце ветряка

В начале, при строительстве ветряка, необходимо определиться с генератором. Это сердце вашего устройства. Первое, что приходит на ум, это автомобильный генератор. Но надо учесть некоторые нюансы.

  • Во-первых, автомобильные генераторы требуют напряжения возбуждения, т.е. требуется дополнительный провод для подключения и дополнительный аккумулятор для запуска, что не очень удобно
  • Во-вторых, автомобильные генераторы требуют высокой скорости вращения для эффективной работы ( более 1000 оборотов в минуту), что усложняет привод
  • В-третьих, они достаточно тяжелы, что усложняет конструкцию мачты

Исходя из вышесказанного, в качестве рабочего генератора, обычно выбирают двигатели постоянного тока. Если покрутить такой двигатель за рабочий вал, то на его клеммах появится напряжение. Хорошо зарекомендовали себя электродвигатели от древних ЭВМ середины прошлого века. В этих устройствах они вращали приводы дисководов и ленточных накопителей. Такие двигатели можно найти на радиорынке или на барахолке, да и плюс Гугл Вам в помощь.

Действующая модель

Конкретно примененный двигатель имел следующие параметры: U=48 В, I=15A, N=1200 об/мин. Ротор ветряка вращается с частотой примерно 500 об/мин, причем с ростом частоты увеличивается не напряжение, а рабочий ток.

Для оптимизации работы устройства, рабочий ротор не насажен на вал двигателя, а применен редуктор. Редуктор может быть как цепной, так и ременный. Цепной гораздо надежнее, а ременный проще в изготовлении. Применен цепной. В качестве привода можно использовать «механику» от старого велосипеда и трубы от его рамы. На роторе стоит звездочка Z=48, на генераторе Z=10, соединение осуществляется велосипедной цепь.

Генератор крепится при помощи болтов, но можно использовать отрезок пластиковой трубы, предварительно вставив в нее генератор и закрепив его при помощи автомобильных резьбовых хомутов. Места крепления болтов и хомутов лучше залить резиновым клеем «Момент».

Ветрогенератор своими руками, как сделать мачту?

Мачта делается из нескольких секций длиной 2-2.5 метра из стальной трубы ¾ дюйма или из алюминиевой трубы, но большего диаметра. Обычно применяется 3-4 секции, так их легче монтировать и перевозить. Чтобы ваша мачта не упала, нужно использовать «пятку» в виде металлического прямоугольника 30х30 см и систему из трех растяжек с металлическими колышками. Можно использовать готовую мачту, например которая применяется для антенн СВ диапазона. Продаются и очень удобные профессиональные телескопические мачты.

Ветрогенератор своими руками, защита от сильного ветра

Несколько слов о защите от перегрузок при очень сильном ветре. Простейший вариант-это дополнительный шарнир на мачте. С помощью этого шарнира ветряк может самостоятельно опрокидываться, «задирая» ротор в небо, при очень сильном ветре, или вы можете сами опрокинуть его с помощью веревки, привязанной к «хвосту» ветряка. Кстати, хвост делается из трубы или уголка с прикрепленной на конце вертикальной лопастью, размерами примерно 50х50 см. Общая длина хвоста примерно 1.8 м.

Ветрогенератор своими руками, пульт управления

Пульт контроля и зарядки аккумуляторов содержит в простейшем варианте вольтметр на 30 В; амперметр на 30 А; диодный мост на 30 А 100 В; балластный проволочный резистор с движком (реостат) на 50 Вт, сопротивлением 5-10 Ом. Резистор дорабатывается путем удаления нескольких последних витков. После доработки, если переместить движок резистора в крайнее положение, его цепь будет разомкнута. Это его рабочее состояние. Резистор включают параллельно генератору до диодного моста, но после амперметра. Он используется для аварийной остановки генератора (снижения числа оборотов ротора).

Ветрогенератор своими руками, электрические способы защиты и управления

Резистор должен выдерживать ток 20-30 А в течении 30 сек. Если аккумулятор уже полностью зарядился и не нужно включать дополнительные нагрузки, то в течении нескольких секунд закорачиваем с помощью резистора генератор. Ток при этом в 2-3 раза становится меньше рабочего.

После остановки «опрокидываем» генератор или привязываем одну из лопастей к мачте. Никогда не останавливайте лопасти генератора руками или с помощью посторонних предметов, т.к. это всегда приводит к травмам и поломкам оборудования.

Не стоит ограничивать ток зарядки аккумулятора с помощью резистора, т.к. это скорее всего приведет к его выходу из строя. Для ограничения тока используйте дополнительные нагрузки, обычно это лампы накаливания. Для соединения генератора и системы управления используется обычный кабель без скользящих колец. Сечение кабеля 2х2.5 квадратных миллиметра. Лучший материал, это резина или силикон.

Ветрогенератор своими руками, преобразователь напряжения 12-220 В

В качестве инвертора 12-220 В обычно используют покупные устройства, но они достаточно дорогие. Для таких целей можно использовать списанные офисные «бесперебойники» UPS 1000-UPS 5000. После годичной эксплуатации их аккумуляторы уже не «держат» нагрузки. Такие устройства списывают и выбрасывают на помойку. Подключив автомобильный аккумулятор к UPS, вы получите прекрасный инвертор бесплатно.

Чем порадует рынок готовой продукции?

Теперь посмотрим, что можно купить на нашем рынке из готового оборудования и сравним цены. Посмотрим, «Стоит ли овчинка выделки»? Например, ветрогенераторы «WIND TURBINE » без учета стоимости мачты, преобразователя и устройства управления: 500 Вт 425$, 2 кВт 895$, 3 кВт 1770$, 5 кВт 2670$.

Интересны генераторы серии ВЭУ. Здесь цены несколько ниже, например генератор 1 кВт без систем управления, мачты и т.д. стоит 350$.

Не менее дорогие ветрогенераторы из Китая, например JFWC-1KW стоит 2500$.

Выводы

Выбор, конечно, всегда за вами. Но если у вас еще нет хобби, то смастерив самодельный ветрогенератор, вы сэкономите не менее 500 долларов, познакомитесь со всеми соседями по даче, привлечете повышенное внимание к своей персоне, обретете новых друзей и знакомых и ,возможно, начнете жить по новому. Удачи, лучше делать хоть что-то, чем не делать ничего.

Видео

 

Смотрите также по теме:

   Безлопастной ветрогенератор. Устройство и принцип работы.

   Ветрогенератор. Как выбрать, смонтировать и избежать разочарования?

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Как сделать ветряк для школьного научного проекта

Сделайте ветряную турбину e: Используя несколько обычных вещей, вы можете вместе со своими учениками создать работающую ветряную турбину для любого школьного научного проекта. Если ваши ученики особенно увлечены, вы даже можете заставить его производить электричество.

Ветряная турбина будет генерировать достаточно переменного тока, или переменного тока, для питания небольшой лампочки. а также заряжать мобильный телефон ветровой энергией с небольшими изменениями. Для тестирования вам понадобится небольшой электрический вентилятор, чтобы создавать ветер в классе.

Сделайте свою собственную небольшую ветряную турбину HAWT (ветряные турбины с горизонтальной осью) для проекта School Science из трубы ПВХ и велосипедного генератора (Dynamo)

Введение в проект ветряной турбины:

Ветровая турбина — это устройство, которое преобразует кинетическую энергию из энергии ветра или также энергию ветра преобразует в механическую энергию, а механическую энергию преобразует в электрическую энергию с помощью электрического генератора.

В этой ветряной турбине PSC Host Habab Idress строит ветряную турбину из трубы из ПВХ и старого велосипедного динамо (генератора), максимальная мощность этого генератора составляет 5 Вт, а эффективность лопастей из трубы из ПВХ составляет примерно от 10 до 15%.

Если велосипедная динамо-машина (генератор) недоступна в вашем районе, вы можете сделать электрический генератор, эту ветряную турбину могут спроектировать студенты и преподаватели для их проекта научной выставки. мы стараемся сделать это простым, дешевым и эффективным.

Термины и понятия

Вы должны быть знакомы с приведенными ниже терминами, а также с названиями частей ветряной турбины.

  • Энергия ветра
  • Ветряная турбина
  • Лезвия
  • Работа
  • Аэродинамика
  • Энергия
  • Генератор

Вопросы

  • Как ветряная турбина вырабатывает энергию из ветра?
  • Почему ветряная турбина должна иметь хорошую аэродинамическую конструкцию?
  • Почему демонстрация работы (перетаскивание груза) — это то же самое, что выработка электроэнергии?

Материал:

  1. Старая или новая 5-ваттная велосипедная динамо-машина (Генератор)
  2. Труба ПВХ диаметром 4 дюйма и длиной 14 дюймов
  3. болты гайки
  4. супер клей
  5. Железная полоса
  6. бумага
  7. резак
  8. маркер
  9. пила по утюгу

Схемы и фото

бумажный шаблон лопастей ветряной турбины

бумажный шаблон лопастей ветряных турбин

бумажный шаблон лопастей ветряных турбин

Вид сбоку лопасти ветряной турбины

Вид сбоку лопасти ветряной турбины

Инструменты и материалы для строительства ветряных турбин

Электрогенератор ветряной турбины

ПВХ труба ветряной турбины

Строительство: Как построить мини-ветряк

сделайте бумажный шаблон в соответствии со схемой, возьмите трубу из ПВХ диаметром 14 дюймов и 4 дюйма, затем прикрепите бумажный шаблон к трубе из ПВХ и обведите контур на трубе. после разметки линий на трубе осторожно разрежьте трубу металлической пилой. Вы должны вырезать 2 части лезвия из трубы ПВХ. После резки лезвия прикрепите оба лезвия друг к другу с помощью железной ленты и просверлите в центре железной ленты сверлильным станком, затем закрепите с помощью генератора.

Полная инструкция по конструкции ветряной турбины посмотрите это видео

Science Fair Project Mini ветряная турбина от paksc

Онлайн-поддержка: посетите https: // paksc.org / community / groups / 4-do-science-help


См. Также


Купить ветряную турбину

Хотите купить эту ветряную турбину для проекта научной выставки? посетите сайт sciencestore.pk ветряная мельница для детей

(только для Пакистана)

Параметры:
  • Материал: ПВХ пластик
  • Лезвие: 2 лезвия диаметром 2 фута
  • Выход: макс. 5 Вт 6 вольт
  • 10 светодиодов

См. Также:

испытание ветряных лопастей

5V Портативная ветряная турбина | Детальный проект с инструкциями

Этот проект связан с проектированием и разработкой портативной ветряной турбины, способной вырабатывать электричество из кинетической энергии ветра.Для схемы требуется двигатель постоянного тока, лопасти вентилятора или пропеллер, повышающий преобразователь постоянного тока в постоянный и энергия ветра для выработки выходного напряжения 5 В постоянного тока.

Производство ветровой энергии — это довольно простой процесс, в котором из обычного миниатюрного двигателя постоянного тока создается очень простой ветрогенератор. Миниатюрный двигатель постоянного тока, такой как RF-300FA-12350, легко доступен на рынке, но его также можно снять со старого привода / проигрывателя CD / DVD (см. Рис. 1).

Рис. 1: Миниатюрный двигатель постоянного тока Рис. 2: Лопасти / гребной винт ветряной турбины Рис. 3: Повышающий преобразователь постоянного тока в постоянный Рис.4: Принципиальная схема для получения 5 В от переносной ветряной турбины

Небольшой пропеллер или лопасти вентилятора могут быть установлены непосредственно на валу двигателя. Обратите внимание, что электродвигатель вырабатывает постоянный ток, и, следовательно, не требуется никаких схем преобразования переменного тока в постоянный, кроме диода защиты полярности. Фактически, диод защиты полярности также не требуется, поскольку пропеллер вращается только в одном направлении (против часовой стрелки) в этой модели из-за уникальной конструкции пластиковых лопастей / пропеллера ветряной турбины.

Доступны компактные и легкие пластиковые лопасти / гребные винты вентилятора. В этом проекте используется обычный трехопорный пластиковый пропеллер (показанный на рис. 2).

Поскольку в качестве роторного двигателя используется миниатюрный двигатель постоянного тока, на выходе доступно лишь небольшое количество постоянного тока (максимум от трех до пяти вольт). Таким образом, для обеспечения стабильного выходного напряжения 5 В постоянного тока требуется схема повышающего преобразователя постоянного тока. Для этого можно использовать любую самодельную / готовую схему повышающего преобразователя постоянного тока в постоянный, однако готовый модуль повышающего преобразователя постоянного тока на основе метода частотно-импульсной модуляции (ЧИМ) со стандартным выходным портом USB, как показано на Инжир.3, является предпочтительным.

Если доступно входное напряжение от 0,9 В до 5 В постоянного тока, этот модуль выдает стабильный выходной сигнал 5 В постоянного тока через разъем USB с эффективностью преобразования до 96 процентов.

Схема и рабочая

Как показано на рис. 4, схема построена на основе двигателя постоянного тока, диода Шоттки 1N5817 и модуля повышающего преобразователя постоянного тока. Работа этого небольшого модуля повышающего преобразователя постоянного тока основана на методе частотно-импульсной модуляции (ЧИМ).

Преобразователь ЧИМ — это альтернативная архитектура преобразователя питания постоянного тока в постоянный, в которой используются тактовые генераторы переменной частоты для управления переключателями мощности и передачи энергии от входа к выходу.Поскольку частота управляющего сигнала напрямую регулируется для регулирования выходного напряжения, эта архитектура называется ЧИМ. Преобразователь постоянного тока в постоянный с постоянным временем включения или постоянным временем отключения является типичным примером этой архитектуры.

На принципиальной схеме отрицательная клемма (черный провод) двигателя постоянного тока M1 рассматривается как положительная выходная клемма, подключенная к модулю PFM (плата 1) через диод защиты полярности 1N5817 (D1), поскольку двигатель вращается в противоположном направлении. по часовой стрелке.Модуль PFM подключается через буферный конденсатор (C1) для получения стандартного USB-выхода 5 В постоянного тока через разъем USB (A-типа).

Конструкция переносной ветряной турбины

Односторонняя печатная плата реального размера для получения напряжения 5 В от портативной ветряной турбины показана на рис. 5, а расположение компонентов — на рис. 6.

Рис. 5: Односторонняя печатная плата фактического размера для вывода 5 В от портативной ветряной турбины 6: Компоновка компонентов печатной платы Рис. 7: Предлагаемая установка переносной ветряной турбины

Загрузите файлы печатной платы и компоновки компонентов в формате PDF: Щелкните здесь

Хороший воздушный поток необходим для правильной работы контура.Вы можете использовать обычный электрический вентилятор (или настольный вентилятор) или электрический нагнетатель воздуха в качестве источника энергии ветра для целей тестирования. Убедитесь, что воздушный поток от источника ветра падает прямо на переднюю часть гребного винта. Пропеллер должен вращаться с высокой скоростью (против часовой стрелки), чтобы получить более высокую мощность.

Требуется жесткое крепление для ветряной турбины. Для этого вы можете закрепить двигатель на ПВХ / металлической трубе подходящего размера и прикрепить его к опоре основания, как показано на рис. 7. Опора основания может быть диском малого диаметра из дерева или металла.Подключите модуль PFM к цепи на CON1, поместите их в подходящий шкаф и поместите внутри основания таким образом, чтобы вы могли легко получить доступ к USB-порту.

Затем проложите провода от двигателя постоянного тока через трубу к основанию и подключите провода к цепи в точке M1. Поверните пропеллер к источнику ветра. Теперь вы готовы к выходу 5 В постоянного тока через разъем USB. Этот выход также можно использовать для зарядки вашего мобильного телефона.

Осторожно! Вращающиеся лезвия острые и при неправильном обращении могут привести к серьезным травмам.


T.K. Хариендран — любитель электроники, внештатный технический писатель и дизайнер схем

Новое изобретение малой ветряной турбины

Многие коммерчески доступные небольшие ветряные турбины с пластиковыми лопастями и стальными опорами печально известны своей низкой надежностью, высокой энергоемкостью и ограниченной выходной мощностью.

Построив их из дерева, можно решить эти проблемы. Благодаря своей эстетической привлекательности и возможности производить их на месте, небольшие деревянные ветряные турбины также могут повысить признание общественностью энергии ветра.

Кроме того, инновации в конструкции башни облегчают установку небольших ветряных турбин, снижая потребность в бетонных фундаментах и ​​тяжелой технике.

Изображение: ветряная турбина с деревянными лопастями. Источник: EAZ Wind.



Низкая производительность

Испытания показали, что имеющиеся в продаже небольшие ветряные турбины не всегда могут вырабатывать достаточно энергии в течение своего срока службы, чтобы компенсировать энергию, необходимую для их производства.Это происходит по трем причинам. Во-первых, это законы физики. Выработка энергии ветряной турбиной увеличивается быстрее, чем ее высота и размер ротора, а это означает, что по мере того, как ветряная турбина становится меньше, ее выходная мощность уменьшается пропорционально.

Во-вторых, лопасти ветряных турбин обычно изготавливаются из пластика, армированного стекловолокном, производство которого требует больших затрат энергии (и его невозможно переработать). Эту энергию необходимо «окупить» в течение всего срока службы ветряной турбины, что может быть проблематичным для машин с малым диаметром ротора.

В-третьих, обслуживание малых ветряных турбин зависит от способности производителя продолжать бизнес и обеспечивать своих клиентов запасными частями. В отличие от солнечных панелей, ветряные турбины имеют много движущихся частей и, следовательно, с большей вероятностью нуждаются в ремонте. Однако поставщики малых ветряных турбин, как правило, имеют еще более короткий срок службы, чем их продукция. [1]

Лезвия по дереву с ручной резьбой

Законы физики изменить нельзя, но сами по себе они не делают небольшие ветряные турбины неэкономичными и неустойчивыми.Решающими являются два других фактора, и с ними можно бороться. Фактически, более двух десятилетий они решались шотландским инженером Хью Пигготтом, который строит небольшие ветряные турбины мощностью 1-2 кВт с диаметром ротора 2-4 метра с использованием твердых деревянных лопастей. [2]

Лезвия из дерева ручной резьбы. Источник: [5]

Лезвия вырезаны вручную на месте с использованием базовых навыков работы с деревом и инструментов. В отличие от лезвий из стекловолокна, для их производства используется мало или совсем не энергия.Это увеличивает вероятность того, что ветряная турбина будет производить больше энергии в течение своего срока службы, чем было необходимо для ее производства.

Вопреки привычному стремлению к эффективности, ветряные турбины Piggott жертвуют пиковой мощностью ради более надежной работы. В машинах используется система закрутки, которая ограничивает мощность турбины при ветре 8 м / с (Beaufort 5), в то время как большинство коммерческих моделей продолжают работать до более высоких скоростей ветра. Это увеличивает надежность, потому что чем быстрее машина вращается, тем быстрее изнашиваются ее детали.[3]

Местное производство

Сравнение ветряных турбин Piggott с коммерчески доступными моделями пришло к выводу, что повышенный выход энергии, генерируемый последними при скорости ветра выше 8 м / с, в значительной степени тратится впустую, поскольку большая часть дополнительной энергии вырабатывается, когда батареи уже полностью заряжены. Исследование также показало, что шотландский дизайн примерно на 20% дешевле с учетом как капитальных, так и эксплуатационных затрат. [3]

Деревянные ветряки в Непале.Источник: [5]

Открытый исходный код

Piggott породил тысячи небольших ветряных турбин своими руками по всему миру. Он также стал основой для нескольких инициатив по ветровой электрификации сельских районов в Монголии, Непале, Перу и Никарагуа. [4-7] В «развивающихся» странах возможность производить и обслуживать турбины на месте является большим преимуществом по сравнению с использованием коммерческих ветряных турбин или солнечных батарей.

Коммерческие ветряные турбины с деревянными лопастями

Использование лопастей из цельной древесины, когда-то обычное для небольших ветряных мельниц и ветряных турбин, в последнее время вызывает новый интерес.[8-9] Наиболее примечательной является история успеха голландской компании EAZ Wind, основанной в 2014 году четырьмя молодыми виндсерфингистами. Фирма, в которой сейчас работает более 40 сотрудников, продает ветряные турбины с прочными деревянными лопастями фермам и энергетическим кооперативам в регионе. С диаметром ротора 12 метров и выходной мощностью 10 кВт турбины примерно в пять раз больше, чем машины Пигготта.

Ветряк с деревянными лопастями производства EAZ Wind.

Лезвия изготовлены из массивных деревянных балок, которые склеиваются и шлифуются для придания им формы.Затем они покрываются эпоксидным покрытием, чтобы защитить их от влаги, а острая сторона лезвия покрывается полосой армированного стекловолокном пластика, чтобы сделать его более прочным.

По данным производителя, ветряные турбины, установленные на опорах высотой 15 м, производят около 30 000 кВтч электроэнергии в год, что соответствует потреблению электроэнергии десятью голландскими домохозяйствами. Машина продается за 46 000 евро, что делает ее дешевле, чем солнечная фотоэлектрическая система (4600 евро на семью, или менее половины цены солнечной фотоэлектрической системы).Срок окупаемости — в ветреных северных Нидерландах — от 7 до 10 лет.

Общественное признание

Интересно, что выбор EAZ Wind для деревянных лопастей не обусловлен стремлением снизить энергопотребление ветряной турбины. Скорее, миссия компании состоит в том, чтобы сделать сельскую местность — особенно фермы, но также и небольшие деревни — самодостаточными с точки зрения производства электроэнергии путем разработки более красивых ветряных турбин местного производства, на которые люди не жалуются.Как и во многих других странах, большие ветряные турбины — и идущие с ними линии электропередачи — вызывают большое сопротивление местных жителей в Нидерландах.

Установка ветряка. Изображение: EAZ Wind.

Подход вроде работает. Когда ферма устанавливает ветряную турбину, ее соседи обычно являются следующими клиентами. К настоящему времени EAZ Wind продала более 400 ветряных турбин. Общественное признание ветровой энергии, по-видимому, поощряется двумя факторами. Во-первых, ветряки с деревянными лопастями имеют более естественный вид, что увеличивает их эстетическую привлекательность.

Во-вторых, машины производятся на месте, а это означает, что покупка ветряной турбины поддерживает местную экономику. Древесина для лезвий поступает из соседней провинции и обрабатывается местными компаниями.

Деревянные башни

Турбины EAZ Wind имеют деревянные лопасти, но стальные башни. Шведская компания InnoVentum использует другой подход: ее ветряные турбины имеют деревянную башню, а лопасти сделаны из пластика. Башни высотой 12 м или 20 м имеют уникальную конструкцию и состоят из небольших деревянных модулей, которые можно скрепить болтами на земле за несколько часов.

Деревянная башня ветряной турбины Innoventum.

Для многоярусных башен не требуется — или гораздо меньше — бетона для их фундамента, и они могут быть возведены без использования крана, используя вместо этого трос и лебедку. С 2012 года их было установлено около пятнадцати. Как и EAZ Wind, компания стремится создать новый эстетический уровень, который может помочь повысить признание ветряных турбин.

Деревянная башня ветряной турбины Innoventum.

Конечно, оба подхода можно объединить, в результате чего получатся небольшие ветряные турбины с деревянными лопастями, башней и другими конструктивными элементами.Небольшая ветряная турбина, которая почти полностью построена из дерева — без редуктора и генератора — еще больше снижает количество энергии, необходимой для ее производства, что делает ее более экономичной и устойчивой на протяжении всего срока службы.

С точки зрения выбросов углерода небольшая деревянная ветряная турбина может даже считаться поглотителем углерода, потому что древесина поглощает CO2, который деревья забрали из атмосферы.

Ветряк с деревянными лопастями и башней. InnoVentum.

Сочетание ветра и солнца

Новейшие продукты от EAZ Wind и InnoVentum включают солнечные панели в основе конструкции. Поскольку ветряная турбина и солнечная фотоэлектрическая система могут использовать одну и ту же опорную конструкцию, электрическую систему и накопитель энергии, такой подход позволяет экономить деньги и ресурсы. Сочетание солнечной и ветровой энергии также увеличивает шансы на получение достаточной выходной мощности в любое время, снижая потребность в хранении энергии, что является наиболее неустойчивой частью автономной энергетической установки.

Солнечные панели и ветряная турбина используют одну и ту же несущую конструкцию. Изображение: InnoVentum.

В гибридной модели солнечного ветра от EAZ Wind мощность ветряной турбины вдвое превышает мощность солнечных фотоэлектрических панелей, что отражает местный климат (ветреный, но не очень солнечный). Добавление солнечных панелей увеличивает выработку электроэнергии до 45 000 кВтч в год, что соответствует потребности в электроэнергии 14 голландских домашних хозяйств. Однако использование солнечных панелей значительно увеличивает реальную энергию системы, так что она больше не может быть поглотителем углерода.

Солнечные панели и ветряная турбина используют одну и ту же несущую конструкцию. Изображение: InnoVentum.

Децентрализованное производство электроэнергии

Небольшие деревянные ветряные турбины предлагают дополнительные преимущества, присущие всем децентрализованным источникам энергии. Тот факт, что за них платят те же люди, которые пользуются их льготами, увеличивает их общественное признание. Они также устраняют необходимость в линиях электропередачи, и чем больше электроэнергии производится и используется на местном уровне, тем менее сложным становится интеграция непредсказуемой энергии ветра в центральную сеть.И последнее, но не менее важное: связь между использованием энергии и спросом способствует более низкоэнергетическому образу жизни.

Часть 2: Можем ли мы снова строить большие ветряные турбины из дерева?

Крис Де Декер


Артикул:

[1] Костакис, Василис и др. «Конвергенция цифровых ресурсов общего пользования с местным производством с точки зрения роста: два показательных случая». Журнал чистого производства 197 (2018): 1684-1693.

[2] Как построить ветряную турбину.High Piggott, 2003.

.

[3] Суманик-Лири, Джон и др. «Небольшие ветряные турбины местного производства: в сравнении с коммерческими машинами». Материалы 9-го семинара PhD по ветроэнергетике в Европе. 2013.

[4] Мишнаевский, Леон и др. «Материалы для лопастей ветряных турбин: обзор». Материалы 10.11 (2017): 1285.

[5] Мишнаевский-младший, Леон и др. «Прочность и надежность древесины для компонентов недорогих ветряных турбин: расчетно-экспериментальный анализ и приложения.»Wind Engineering 33.2 (2009): 183–196.

[6] Мишнаевский-младший, Леон и др. «Малые ветряные турбины с деревянными лопастями для развивающихся стран: выбор материалов, разработка, установка и опыт».

Добавить комментарий

Ваш адрес email не будет опубликован.