Ветрогенераторные установки: Ветрогенераторные установки, проектирование и установка

Содержание

Ветрогенераторные установки, проектирование и установка

Ветрогенераторы для дома

Группа «Зелёные технологии» создаёт проекты на основе горизонтально-осевых ветрогенераторов в 9 вариантах схем включения, а также ветропарков мощностью от 250 кВт.

Заказать проект или купить готовое решение энергосистемы на базе ветрогенератора очень просто, позвоните по телефону +7(499) 707-22-05 или напишите на почту [email protected], наши инженеры свяжутся с вами и обсудят все детали.

Модельный ряд ветрогенераторов

Condor Home
Ветрогенераторы небольшой мощности 0,5 — 5 кВт, которые предназначены для обеспечения электроэнергией небольших частных домов или дач. Доступная цена на такие системы делает их достаточно популярными у покупателей. Их установку можно произвести своими силами без применения специальной техники.

Condor Air
Профессиональные ветровые системы мощностью 10 — 60 кВт

. Они служат для энергообеспечения коттеджей, отелей, больших зданий, объектов промышленного назначения и сельского хозяйства. Для их установки требуется спецтехника, как правило, это кран и автовышка.

Ветроэнергетическая станция — преимущества

  • Высокая мощность и производительность.
  • Продуманный дизайн.
  • Эргономическая конструкция, которая обеспечивает удобство её использования.
  • Не нужны разрешения на установку и эксплуатацию, так как это бытовое изделие.
  • Нет необходимости в топливе.
  • Не оказывает влияния на экологию.
  • Практически не шумит.

Варианты применения

  1. В качестве автономного основного источника энергии для дома или дачи с последующим её накоплением в аккумуляторах.
  2. С сетевым инвертором, без накопления энергии, что существенно снижает затраты за пользование услугами электросетей и из-за постоянного роста тарифов.
  3. В составе гибридной солнечной электростанции в качестве дополнительного источника электроэнергии.
  4. Совместно с дизельным генератором и солнечными панелями с MPPT контроллером, на случай отсутствия ветра.

ОСНОВНОЕ ОБОРУДОВАНИЕ
  • Мачта и тросы.
  • Опорно-поворотный узел.
  • Ротор с генератором.
  • Лопасти и монтажный комплект.
  • Контроллер заряда аккумуляторных батарей (его вольтаж зависит от модели).
  • Документация.

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

В связи с тем, что для разных ветровых и электрических нагрузок одна и та же ветровая электростанция может комплектоваться разным оборудованием, выбор инвертора, аккумуляторов, блока управления, балласта, автоматики происходит индивидуально под конкретный проект.


В компании «Green Technology Group» можно заказать проект ветрогенератора для частного дома или бизнеса с минимальным рабочим комплектом.

Выберете себе ветрогенератор!

Правильное расположение ветрогенератора

В регионах с высокой скоростью ветра, в прибрежных зонах и на объектах, где в зимний период солнечная электростанция «не справляется», для автономного энергоснабжения используют ветрогенераторные станции – «ветрогенераторы», (сокращённо ВГ). Но на большей территории нашей страны средняя скорость ветра составляет всего 4-5м/сек., тогда как ветрогенератору для выработки «номинальной мощности» требуется 10-12м/сек.. Именно поэтому нет никаких сомнений в важности правильной и продуманной установки устройства, достичения точки, где винт его окажется в зоне с максимальной скоростью ветра.

Мощность ветрогенератора и зависимость от скорости ветра и высоты мачты

Почему же так важно «не потерять» ни одного метра в секунду? Определим зависимость мощности ветрогенератора от скорости ветра. 

1. Кинетическая энергия воздуха, движущегося ламинарно (без завихрений)  W=1/2mV2, где m — масса воздуха, V – его скорость.

2. Массу воздуха, проходящего за время t и площадь S можно выразить следующим образом: m=VtSρ, где: S – площадь, описываемая винтом ВГ, ρ – плотность воздуха.

3. Чтобы определить мощность (P), делим энергию на время, подставляем выражение для массы, получаем: P=1/2V3Sρ.

4. Если теперь умножить выражение на КПД устройства в целом, включающее в себя коэффициент преобразования лопастей винта, коэффициент полезного действия редуктора и генератора (ƞ), получим реальную мощность «ветряка»: P=1/2V3Sρ ƞ. На практике обычно значение  ƞ лежит в пределах 0,4-0,5.

Как видно из расчета, мощность ВГ пропорциональна третей степени скорости ветра, то есть увеличение скорости в 2 раза даст увеличение мощности в 8 раз!

Таким образом, скорость ветра и отсутствие турбулентностей (завихрений) должны иметь решающее значение при выборе места установки ветрогенератора. Из этих соображений идеально подходят: 

  • берег крупного водоема;
  • вершина горы или возвышенности;
  • центр протяженного поля. 

Увы, в реальной жизни мало кто имеет на своем участке моря, поля и горы.  Поэтому принцип только один – чем выше установка, тем лучше. В идеале, Ветрогенератор должен быть выше не менее, чем на 6 (шесть) метров окружающих его предметов (дома, деревьев, строений, возвышенностей), чтобы оказаться в зоне ламинарного движения воздуха.

Приведем простой пример, который можно легко проверить в on-line калькуляторе для расчета на нашем сайте. Рассмотрим модель пятилопастного ветрогенератора HY-1000, стоящий в «бесконечном» поле вблизи Санкт-Петербурга:

  • При высоте мачты 5 метров максимальная выработка достигается в сентябре и составляет 1,38кВтч/сутки;
  • Если увеличить высоту мачты до 10 метров, получим 2,43 кВтч/сутки;
  • Увеличим высоту до 20 метров и получим уже – 3,12 кВтч/сутки. 

Вывод напрашивается сам собой —  часто вместо увеличения мощности ветрогенератора достаточно увеличить высоту мачты.

Решающая роль места установки «ветряка» в эффективности энергосистемы

Очень велик соблазн приделать мачту ветрогенератора к дому для увеличения высоты всей конструкции. Несмотря на очевидные плюсы, данный подход имеет ряд минусов:

Во-первых, установка издает звуки, и звуки эти отлично могут быть переданы по мачте на конструкцию дома, что со временем будет раздражать его жителей. Во-вторых, если здание находится в черте города, могут потребоваться дополнительные согласования в надзорных органах.

Стоит также обратить внимание на конструкцию самой мачты. Если горизонтальные линейные размеры мачты сравнимы или превышают размеры ВГ, то, собственно, сама мачта может являться источником турбулентности.

Очень показательный пример, когда мачта по сути мешает работать системе, плюс частично затеняет солнечные батареи, представлен на фотографии.

          

Особое внимание нужно уделить выбору сечения кабеля. Так как ВГ находится на мачте, а контроллер заряда где-то в доме, длина линии может быть значительной, равно как и падение напряжения. Это может привести к снижению эффективности заряда аккумуляторных батарей. Из этих соображений, площадь сечения кабеля должна быть достаточно большой, чтобы данный эффект был незначителен. Для расчёта площади сечения кабеля следует обратиться к правилам, описанным в статье Расчёт сечения провода.

В отличие от монтажа солнечных батарей, установка «ветряка» часто влечет за собой капитальные строительные работы, такие как бетонирование основания, монтаж свай для растяжек, сварочные работы. Тем не менее, правильно выполненный монтаж обеспечит надежную и эффективную работу системы, и максимальную выработку энергии на протяжении всего срока эксплуатации.

Читать другие статьи..

мачты для ветрогенератноных установок

Ветрогенераторные

Ветрогенераторы, ветряки, они же ветроэлектростанции все больше становятся популярными благодаря надежности конструкции, удобству эксплуатации и экономии.

Ветрогенератор преобразует энергию ветра в электрическую энергию с высокой эффективностью и надежностью.

Эти установки используют не только как дополнительный источник электричества, а часто и как основной —  для электроснабжения потребителей, не имеющих доступа к сетям централизованного электроснабжения, или если сеть ненадежна или плохого качества:

  • загородных домов и коттеджей;
  • фермерских хозяйств и усадеб;
  • объектов телекоммуникаций и т.д

Популярны модели ветряков (ветрогенераторов) мощностью до 4 кВт благодаря хорошему соотношению цена-эффективность-качество.

Мы, как производители мачт, предлагаем укомплектовывать набор ветрогенераторной системы нашими разработками мачт для ветрогенератора.

Мачты различных высот: 6 м., 9 м., 12 м. выполнены из толстостенной трубы, предполагают наличие растяжек.

Наши мачты рассчитаны на ветровые нагрузки до III ветрового и III гололёдного районов:

Наименование

Вертикальная нагрузка, кг

МВг-6

500

МВг-9

350

МВг-12

220

Для соединения мачты с ветрогенератором, мы производим индивидуальные переходные проставки.

Мачты нашего производства отличаются гарантийной надёжностью, технической поддержкой и адаптивностью под суровые российские условия и требования заказчиков.

 

    

Прайс лист мачты ветрогенераторные (PDF)

Автономная мачта связи – Продукция – ООО «СУЭК-Хакасия» Энергоуправление

Автономные мачты (далее АМ) на солнечных панелях — это новый экологичный продукт с возобновляемым источником энергии, который широко используется в строительстве, горнодобывающем секторе, нефтегазовой отрасли и т.д.

Это мобильное оборудование, которое с помощью использования панелей на монокристаллическом кремнии и ветрогенераторной установки позволяет преобразовывать солнечную энергию и энергию ветра в электрическую, накапливая энергию в аккумуляторах, а затем использовать её для питания различных видов нагрузки.

Генераторная установка в составе мачты обеспечивает дополнительную автономность и надежность установки, а также резервный источник питания оборудования.

АМ выполнена в брызгозащищенном корпусе с двусторонним обслуживанием, установленном на грузовом прицепе, грузоподъёмностью не более 515 кг, и разделена перегородками на отсеки/

№ п.п.

Наименование

Значение

1

Номинальная мощность ветрогенераторной установки, Вт

400

2

Номинальное напряжение, В

220

3

Механический подъем мачты на высоту до, мм

 

 

10000

4

Максимальная ветровая нагрузка

100км/ч (28 м/с)

5

Номинальная мощность генератора, кВт

6,0

6

Номинальная мощность одной солнечной панели, Вт

200

7

Номинальное напряжение солнечной панели, В

24

8

Суммарная мощность солнечных панелей, Вт

600

9

Тип аккумулятора

Необслуживаемый тяговый

10

Ёмкость одной АКБ, А*ч

200

11

Суммарная емкость при 12В не менее, А*ч

400

12

Степень защиты корпуса по ГОСТ 14254-2015

IР34 — брызгозащищенное исполнение

13

Наличие теплоизоляции отсека АКБ

С теплоизоляцией

14

Наличие обогрева отсека автоматики

С обогревом

15

Общий вес, кг

750

16

Общая длина

4760

17

Общая высота (в рабочем положении)

10500

18

Общая ширина (включая арки колес)

2200

19

Общая ширина (включая выдвинутые стабилизаторы)

3960

Рекомендованный диапазон рабочих температур от -5оС до +45 оС.

Температура хранения от -5оС до +45 оС.


Более подробную информацию по продукции, вы можете узнать перейдя по ссылке на сайт сервисных предприятий АО «СУЭК» http://service-suek.ru/

ООО «СУЭК-Хакасия»

ПЕ Энергоуправление 655162, РФ, Республика Хакасия, г. Черногорск, ул.Металлистов, 26А

тел.: 8(390-31)5-59-55, доб. 26600, e-mail: [email protected], [email protected]

Наверх

Ветрогенераторы для электроснабжения и отопления частного дома

Использование энергии ветра для производства электроэнергии потребует как минимум наличие двух компонентов: ветрогенератора и самого ветра. Многие уверены, что использовать ветрогенераторные установки можно только на морских побережьях и на открытой местности, где сильные воздушные потоки будут создавать благоприятные условия для производства электроэнергии. Однако уже доказано, что на Земле в любом регионе можно эффективно эксплуатировать ветрогенераторы. Конечно же нет смысла устанавливать ветрогенератор в лесу или на закрытой со всех сторон площадке в жилом микрорайоне. Для этого понадобится как минимум открытая местность, где вероятность «поймать» воздушные массы будет велика.

Мощность ветрогенератора, т.е. количество электроэнергии, которая будет отдаваться установкой в сеть, определяется скоростью ветра, плотностью воздуха и ометаемой площадью (площадью контактных поверхностей лопастей ветрогенератора). Наибольшее влияние на мощность ветрогенератора оказывают скорость ветра, которая изменяется в течение дня, и размеры лопастей. Конструктивно ветрогенераторы выполняют с вертикальным и горизонтальным расположением лопастей. У последних эффективность преобразования энергии потока ветра достигает 30%.

При эксплуатации ветрогенераторов любой конструкции возникают характерные проблемы, которые могут отпугнуть потенциальных покупателей таких установок. Во-первых, проблемы могут касаться установки ветрогенератора и необходимости отвода значительного участка земли под фундамент и коммуникации. Во-вторых, при выходе из строя тормозного устройства ветрогенератора или возгорании в электрической части в результате неисправности оборудовании или удара молнии установка представляет реальную опасность для всех близлежащих зданий.

Как использовать ветрогенератор?

На сегодняшний день существует два основных механизма использования ветрогенераторных установок.

1. Преобразование механической энергии турбины в электрическую энергию, используемую для питания бытовых приборов. Подобная система, помимо самого ветрогенератора, потребует также установку соответствующих по мощности ветрогенератора аккумуляторных батарей, инвертора напряжения и системы управления. Такое устройство можно назвать универсальным, так как генерируемую электроэнергию можно использовать по различным сценариям.

2. Преобразование механической энергии в тепловую с использованием вихревого теплогенератора. В этом случае для накопления энергии вместо аккумуляторных батарей необходимо использовать специальные теплоаккумулирующие баки, которые располагаются под землей.

Статьи по теме:
Самодельный ветрогенератор: особенностью конструирования, монтажа и эксплуатации
Горизонтальный ветрогенератор: типы, основные особенности
Роторный ветрогенератор своими руками: материалы, особенности сборки и установки
Ветрогенераторы парусного типа: устройство, основные характеристики

Схемы работы ветрогенераторных установок от компании «Техноноватор»

Возможны несколько вариантов схем работы ветрогенератора. Одна из них (схема автономного обеспечения объекта с аккумуляторами) изображена на рис.1.

Рис.1. Принципиальная схема работыветрогенератора (OffGrid)

Возможный вариант работы схемы: Ветер раскручивает лопасти ветряка, тот в свою очередь вращает ротор ветрогенератора. На зажимах статора возникает ЭДС, которая через контроллер выпрямляется и заряжает аккумуляторы. К аккумуляторам через тот же контроллер подключен инвертор, преобразующий электроэнергию постоянного тока в напряжение фиксированной (промышленной) частоты и амплитуды.

Также возможны схемы подключения ветрогенератора на работу параллельно с сетью (рис.2). Такиесхемы позволяют переключаться на энергию сети в случае отсутствия ветра. Городская сеть выступает в качестве дополнительно-резервного источника питания.

Рис.2. Работа ветрогенератора с аккумулятором и коммутацией с сетью (OffGrid)

Подключение ветрогенератора на работу параллельно с сетью — без аккумуляторных батарей (рис.3). Предложенная схема актуальна для юридических лиц – субъектов хозяйствования Украины. В случае оформления лицензии на право продавать электроэнергию и оформления «Зелёного тарифа» можно генерировать энергию в сеть.

Такая схема работы пока не разрешена в Украине для частных лиц – в отличии от многих других Европейских стран. Но является перспективным вариантом с точки зрения постройки распределенных электростанций (SmartGrid) в будущем. ТехнологияSmartGrid — представляет собой систему, оптимизирующую энергозатраты, позволяющую перераспределять электроэнергию.

Рис.3. Работа ветрогенератора без аккумулятора на сеть (OnGrid)

Достаточно сложным и дорогостоящим в схемах ветрогенераторов является инверторы. Очень часто в качестве инверторов используют так называемые каскадные многоуровневые преобразователи частоты, позволяющие из большого числа независимых источников энергии с малым уровнем постоянного напряжения (в качестве которых здесь используются аккумуляторы) получить выходное напряжение промышленной частоты, удовлетворяющие всем современным требованиям. Контроллер в каждой схеме подключения ветрогенератора выполняет различные функции и строится на основе микропроцессорной техники. Аккумуляторы являются самыми недолговечными устройствами в схемах. К сожалению, электроэнергия обладает одним очень серьезным недостатком: её сложно аккумулировать и сохранять долгое время.

Карта ветров Украины

Рядом представлена карта ветров Украины на стандартной высоте измерения ( 9 м от поверхности земли на равнине). По ней видно, что скорость ветра практически везде одинакова, но в некоторых районах Востока бывает больше штилей.

Можно использовать метод увеличения высоты мачты, который дает приближение реальной мощности ветрогенератора к номинальной, но этоприводит к конечному удорожанию конструкции.

Мы поможем Вам выбрать ветрогенератор максимально соответствующий по своим техническим характеристикам Вашим потребностям, поставим и соберемего на Вашем объекте, а также предоствим Вам все необходимые консультации по работе ветрянной установки.

 

Инвертор для ветрогенератора. ===Киев=== Советы по выбору.

 

Развитие загородного частного строительства повлекло за собой повышение спроса на обеспечение качественной электроэнергией. Многие коттеджные районы за чертой города терпят неудобство от некачественного электроснабжения, а зачастую и его полного отсутствия. В такой ситуации необходим поиск альтернативного источника электроэнергии. В последнее время большую популярность во всем мире получили ветрогенераторные установки.

 

Ветрогенераторные установки отличаются высоким КПД, при нормальных показателях среднегодовой скорости ветра. Увеличение скорости ветра с 5 до 10 м/с обеспечивает возрастание  мощности генератора в 10 раз. И поэтому данный вид установок получил высокую популярность. Для запуска установки потребуется несколько составных частей:

  • Генератор, оборудованный лопастями и установленный на мачте. Чем выше мачта, тем лучше ветер.

  • Контроллер, управляет основными функциями установки, поворот лопастей, зарядка аккумуляторов.

  • Датчик направления ветра, необходимый для стабильной работы ветроустановки.

  • Инвертор, который преобразовывает постоянный ток аккумуляторов в переменный, необходимый для сети.

 

Использование ветрогенераторных установок разной мощности и для разного применения, допускает использование инверторов разного вида:

  • Модифицированная или квадратная синусоида, инверторы генерируют ток такого качества, который подходит для освещения, обогрева, зарядных устройств;

  • Чистая синусоида, инверторы генерируют ток, подходящий для приборов и оборудования, чувствительных к качеству электрического тока.

  • Трехфазный инвертор преобразует в трехфазное напряжение, необходимое для питания трехфазного оборудования.

 

Вместе с качественным генератором установки требуется применение определенного количества аккумуляторных батарей и инвертора. Для обеспечения потребляемой мощности до 4 кВт потребуется использование определенного количества аккумуляторных батарей. Если напряжение аккумулятора 12В, то для обеспечения 12кВт потребуется 10 аккумуляторов. Соответственно для обеспечения мощности 4 кВт потребуется инвертор для ветрогенератора с определенными параметрами:

  • Выходная мощность от 3 до 6 КВт;

  • Пиковая мощность 9кВт, при всех включенных приборах в доме;

  • Рекомендуемое напряжение аккумулятора 12-24 В;

  • Встроенный стабилизатор напряжения;

  • Выходное напряжение 220В;

  • Выходная частота 50Гц.

 

Во многих случаях правильный расчет необходимой мощности помогает правильно выбрать все комплектующие элементы альтернативной системы электроснабжения. Для этого потребуется произвести осмотр и подсчет всего электрического оборудования. В том случае, если присутствует оборудование, требующее трехфазного напряжения, то потребуется установка дополнительного инвертора, преобразующего постоянный ток аккумуляторов 12В в трехфазный ток 380 В.

 

Для каждого индивидуального случая подключения потребителя к ветрогенераторной станции, потребуется точный расчет необходимой мощности, который сможет сделать только специалист в этой отрасли. Обеспечение загородного дома или объекта полностью автономным электропитанием сложный и ответственный процесс, требующий профессионального подхода.

Мы торгуемся, на все генераторы как бензиновые так и дизельные  есть промо коды на скидку. Не стесняйтесь – всегда спрашивайте про скидку. В Интернет магазине компании Электромотор  скидка  может составлять до 50%.  Все генераторы в нашем Интернет  имеют гарантию 2 года  Обязательно посетите наш Интернет магазин. Мы предлагаем как бытовые так и мощные дизельные промышленные машины для получения электрической энергии. Больше генераторов для дома Вы найдете в нашем магазине — https://elektromotor.com.ua/ На нашем сайте не только китайские модели, но и качественные мировые бренды ведущих мировых производителей. Промо код на скидку generator2020 .

Running Sneakers Store | Upcoming 2021 Nike Dunk Release Dates — Apgs-nsw

Основы ветроэнергетики | NREL

Ветер возникает, когда поверхность земли неравномерно нагревается солнцем. Энергия ветра можно использовать для выработки электроэнергии.

Ветряные турбины

Ветряные турбины, как и ветряные мельницы, устанавливаются на башне, чтобы улавливать как можно больше энергии. На высоте 100 футов (30 метров) и более они могут воспользоваться более быстрым и менее бурный ветер.Турбины улавливают энергию ветра своим пропеллером. лезвия. Обычно на валу устанавливаются две или три лопасти, образующие ротор .

Лезвие действует как крыло самолета. Когда дует ветер, карман низкого давления воздух образуется на подветренной стороне лопасти. Затем воздушный карман низкого давления вытягивает лезвие к нему, заставляя ротор вращаться. Это называется лифт .Сила подъема на самом деле намного сильнее, чем сила ветра, направленная против ветра. передняя сторона клинка, которая называется , драг . Комбинация подъемной силы и сопротивления заставляет ротор вращаться как пропеллер, и вращающийся вал вращает генератор, чтобы вырабатывать электричество.

Исследования ветроэнергетики

NREL в основном проводятся в кампусе Флэтайронс, отдельном месте недалеко от Боулдера, Колорадо.

Ветряные турбины коммунального назначения на ветряной электростанции Сидар-Крик в Гровере, штат Колорадо. Фото Денниса Шредера / NREL

Плавающая морская ветряная турбина VolturnUS с полупогружной плавучей ветроэнергетической установкой Платформа, Университет штата Мэн, часть консорциума DeepCWind. Фотография из Университета штата Мэн

Наземная ветроэнергетика

Ветровые турбины могут использоваться как автономные приложения или их можно подключать к электросети или даже в сочетании с фотоэлектрической системой (солнечными элементами).Для коммунальные (мегаваттные) источники энергии ветра, большое количество ветряных турбин обычно строятся близко друг к другу, образуя ветряную электростанцию ​​ , также называемую ветровой электростанцией . Некоторые поставщики электроэнергии сегодня используют ветряные электростанции для снабжения электроэнергией своих потребителей.

Автономные ветряные турбины обычно используются для перекачки воды или связи. Однако домовладельцы, фермеры и владельцы ранчо в ветреных районах также могут использовать ветряные турбины. как способ сократить свои счета за электричество.

Распределенная энергия ветра

Малые ветровые системы также обладают потенциалом в качестве распределенных энергоресурсов. Распространено энергоресурсы относятся к множеству небольших модульных технологий производства энергии. которые могут быть объединены для улучшения работы системы подачи электроэнергии. Для получения дополнительной информации о распределенном ветре посетите офис ветроэнергетических технологий Министерства энергетики США.

Морская ветроэнергетика

Оффшорная ветроэнергетика — относительно новая отрасль в США. Америки первая оффшорная ветряная электростанция, расположенная в Род-Айленде, у побережья острова Блок, был запущен в декабре 2016 года. В отчете Wind Vision Министерства энергетики США показано, что к 2050 году морской ветер будет доступен во всех прибрежных регионах по всей стране.

Дополнительные ресурсы

Для получения дополнительной информации о ветровой энергии посетите следующие ресурсы:

Основы ветроэнергетики
Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики США

Карты и данные по ветроэнергетике
DOE’s WINDExchange

Как работают ветряные турбины
U.S. Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики.

Малые ветряные электрические системы
Программа энергосбережения Министерства энергетики США

Американская ассоциация ветроэнергетики

Energy Kids Wind Basics
Управление энергетической информации США Energy Kids

Энергия ветра

Энергия ветра — одна из самых быстрорастущих технологий возобновляемой энергетики.Во всем мире их использование растет, отчасти потому, что снижаются затраты. Согласно последним данным IRENA, глобальная установленная мощность ветроэнергетики на суше и на море увеличилась почти в 75 раз за последние два десятилетия, увеличившись с 7,5 гигаватт (ГВт) в 1997 году до примерно 564 ГВт к 2018 году. В период с 2009 по 2013 год производство ветровой электроэнергии увеличилось вдвое, а в 2016 году на ветровую энергию приходилось 16% электроэнергии, вырабатываемой из возобновляемых источников. Во многих частях света сильный ветер, но лучшие места для выработки энергии ветра иногда находятся в удаленных местах.Оффшорная ветроэнергетика предлагает огромный потенциал.

Ветряные турбины впервые появились более века назад. После изобретения электрического генератора в 1830-х годах инженеры начали попытки использовать энергию ветра для производства электроэнергии. Производство энергии ветра имело место в Соединенном Королевстве и Соединенных Штатах в 1887 и 1888 годах, но считается, что современная ветровая энергия была впервые разработана в Дании, где в 1891 году были построены ветряные турбины с горизонтальной осью и началась ветряная турбина высотой 22,8 метра. операция в 1897 г.

Ветер используется для производства электроэнергии с использованием кинетической энергии, создаваемой движущимся воздухом. Она преобразуется в электрическую энергию с помощью ветряных турбин или систем преобразования энергии ветра. Ветер сначала поражает лопасти турбины, заставляя их вращаться и вращать присоединенную к ним турбину. Это изменяет кинетическую энергию на энергию вращения, перемещая вал, который подключен к генератору, и тем самым вырабатывает электрическую энергию за счет электромагнетизма.

Количество энергии, которое может быть получено от ветра, зависит от размера турбины и длины ее лопастей.Мощность пропорциональна размерам ротора и кубу скорости ветра. Теоретически, когда скорость ветра удваивается, потенциал энергии ветра увеличивается в восемь раз.

Мощность ветряных турбин со временем увеличивалась. В 1985 году типичные турбины имели номинальную мощность 0,05 мегаватт (МВт) и диаметр ротора 15 метров. Сегодняшние новые ветроэнергетические проекты имеют турбинную мощность около 2 МВт на суше и 3-5 МВт на суше.

Имеющиеся в продаже ветряные турбины достигли мощности 8 МВт с диаметром ротора до 164 метров.Средняя мощность ветряных турбин увеличилась с 1,6 МВт в 2009 году до 2 МВт в 2014 году.

По последним данным IRENA, производство ветровой электроэнергии в 2016 году составило 6% электроэнергии, произведенной с помощью возобновляемых источников энергии. Во многих частях света сильный ветер, но лучшие места для выработки энергии ветра иногда находятся в удаленных местах. Оффшорная ветроэнергетика предлагает огромный потенциал.



Виды ветра — У.S. Управление энергетической информации (EIA)

  • Горизонтально-осевые турбины
  • Вертикально-осевые турбины

Размеры ветряных турбин сильно различаются. Длина лопастей — самый важный фактор в определении количества электроэнергии, которую может генерировать ветряная турбина. Небольшие ветряные турбины, которые могут привести в действие один дом, могут иметь электрическую мощность до 10 киловатт (кВт). Самые большие действующие ветряные турбины имеют электрическую мощность до киловатт (10 мегаватт), а турбины большего размера находятся в стадии разработки.Большие турбины часто группируются вместе для создания ветряных электростанций или ветряных электростанций , которые обеспечивают энергией электрические сети.

Источник: адаптировано из Национального проекта развития энергетического образования (общественное достояние)

Вертикально-осевой ветряк Дарье в Мартиньи, Швейцария

Источник: Лисипп, автор Wikimedia Commons (лицензия свободной документации GNU) (общественное достояние)

Горизонтально-осевые турбины аналогичны винтовым двигателям самолетов

Горизонтальные турбины имеют лопасти, как у воздушных винтов, и обычно имеют три лопасти.Самые большие турбины с горизонтальной осью имеют высоту 20-этажного здания и имеют лопасти длиной более 100 футов. Более высокие турбины с более длинными лопастями производят больше электроэнергии. Практически все используемые в настоящее время ветряные турбины представляют собой турбины с горизонтальной осью.

Вертикальные турбины похожи на взбиватели яиц

Турбины с вертикальной осью имеют лопасти, которые прикреплены к верхней и нижней части вертикального ротора. Самый распространенный тип турбины с вертикальной осью — ветряк Дарье, названный в честь французского инженера Жоржа Дарье, запатентовавшего эту конструкцию в 1931 году, — выглядит как гигантский двухлопастный взбиватель для яиц.Некоторые версии турбины с вертикальной осью имеют высоту 100 футов и ширину 50 футов. Сегодня используется очень мало ветряных турбин с вертикальной осью, потому что они не работают так же хорошо, как турбины с горизонтальной осью.

Ветряные электростанции или ветряные электростанции производят электроэнергию

Ветряные электростанции — это группы ветряных турбин, которые производят большое количество электроэнергии. Ветряная электростанция обычно имеет много турбин, разбросанных по большой площади. Одна из крупнейших ветряных электростанций США — Центр ветроэнергетики Хорс-Холлоу в Техасе, в котором по состоянию на конец 2019 года было 422 ветряных турбины, расположенных на площади около 47000 акров.Общая электрическая мощность проекта составляет около 735 мегаватт (или 735 000 киловатт).

Горизонтально-осевые ветряки на ветроэлектростанции

Источник: стоковая фотография (защищена авторским правом)

Последнее обновление: 4 декабря 2020 г.

Нет, замерзшие ветряные турбины не виноваты в отключении электроэнергии в Техасе

Подпишитесь на The Brief, наш ежедневный информационный бюллетень, который держит читателей в курсе самых важных новостей Техаса.

Замерзшие ветряные турбины в Техасе заставили некоторых консервативных политиков штата заявить во вторник, что штат слишком полагается на возобновляемые источники энергии. Но на самом деле ожидалось, что энергия ветра будет составлять лишь малую часть того, что штат запланировал на зиму.

Совет по надежности электроснабжения Техаса прогнозировал, что 80% зимней мощности сети, или 67 гигаватт, можно будет вырабатывать за счет природного газа, угля и некоторой части ядерной энергии.

Февральская зимняя буря 2021 года

  • Когда вернется моя вода? Как мне тем временем достать воду?

    Мы не знаем. Государственные и городские власти призывают к терпению и просят техасцев, у которых есть проточная вода, вскипятить ее. Примите все необходимые меры, чтобы подготовиться к нескольким дням без воды. Официальные лица в Остине, например, заявили.19, что восстановление водоснабжения, вероятно, станет многодневным процессом для всего города. Здесь у нас есть некоторые ресурсы, но лучший вариант, чтобы найти бесплатную воду, — это проверить местные СМИ.

  • Получу ли я большой счет за электроэнергию?

    Не надо сразу. Власти Техаса подписали приказ, временно запрещающий поставщикам электроэнергии отправлять счета жителям.Приказ является временной мерой, чтобы дать чиновникам время для решения проблемы резкого роста счетов некоторых жителей. Чиновники также подписали приказ, запрещающий поставщикам коммунальных услуг отключать обслуживание жителей, не оплативших счет. Подробнее читайте здесь.

  • Как я могу получать обновления?

    Подпишитесь на наши новости, отправив текстовое сообщение «привет» на номер 512-967-6919 или посетив эту страницу.

  • Я был без электричества больше суток. Почему люди называют это откатывающимися отключениями?

    Когда 15 февраля в 1:25 утра по московскому времени оператор электросетей штата начал отключать электричество, это планировалось как временная мера на случай экстремальных зимних явлений. Вместо этого некоторые техасцы остаются без электричества намного дольше, сталкиваясь с днями без электричества вместо первоначально запланированных 45 минут. Электросеть была спроектирована так, чтобы пользоваться большим спросом летом, когда техасцы включают дома кондиционеры.Но некоторые источники энергии, питающие сеть летом, отключены зимой. Поэтому, когда техасцы остались дома во время шторма в воскресенье и потребовали рекордное количество электроэнергии, энергосистема штата не выдержала.

  • Подождите, у нас есть своя электросеть? Почему?

    Да, в Техасе есть своя собственная энергосистема, управляемая агентством ERCOT, Совет по надежности электроснабжения Техаса.История длинная, но короткая версия такова: в Техасе есть своя собственная сеть, чтобы избежать соблюдения федеральных правил. В 1935 году президент Франклин Д. Рузвельт подписал Закон о федеральной энергетике, по которому Федеральная энергетическая комиссия возлагала на Федеральную комиссию по энергетике ответственность за межгосударственные продажи электроэнергии. Но коммунальные предприятия Техаса не пересекают границы штата. ERCOT была образована в 1970 году после крупного отключения электроэнергии на северо-востоке в ноябре 1965 года, и ей было поручено управлять надежностью сети в соответствии с национальными стандартами.Обратите внимание, что не весь Техас находится в одной электросети. Эль-Пасо находится на другой сетке, как и верхний Панхэндл и кусок Восточного Техаса.

  • Я читал в Интернете, что ветряные турбины — причина того, что мы потеряли электроэнергию. Это правда?

    Нет. Потеря энергии ветра составляет лишь часть сокращения генерирующих мощностей, которое привело к отключениям миллионов техасцев.Представитель Совета по надежности электроснабжения Техаса заявил 16 февраля, что 16 гигаватт возобновляемой энергии, в основном ветровой, отключены. Почти вдвое больше, 30 гигаватт, было потеряно из-за источников тепла, включая газ, уголь и ядерную энергию. «Техас — это газовый штат», — сказал Майкл Уэббер, профессор энергетических ресурсов Техасского университета в Остине. «Газ сейчас терпит крах самым зрелищным образом».

  • Как мне согреться? Как я могу помочь другим?

    Национальная метеорологическая служба призывает людей закрывать шторы и шторы, собираться, если возможно, в одной комнате и закрывать двери для других, а также засовывать полотенца в щели под дверями.Носите свободные слои теплой легкой одежды. Перекус и потребление жидкости помогут согреть тело. В некоторых городах есть центры обогрева и транспорт по мере необходимости — местные ресурсы можно найти здесь. Если у вас есть ресурсы или вы можете сделать финансовые пожертвования, найдите здесь некоммерческие организации, которые помогают людям.

  • Посмотреть больше материалов

Представитель Совета по надежности электроснабжения Техаса заявил во вторник днем, что 16 гигаватт возобновляемой энергии, в основном ветровой, отключены.Почти вдвое больше, 30 гигаватт, было потеряно из-за источников тепла, включая газ, уголь и ядерную энергию.

К среде эти цифры изменились, поскольку все больше операторов изо всех сил пытались работать в холодную погоду: всего 45 гигаватт были отключены, из них 28 гигаватт от тепловых источников и 18 гигаватт от возобновляемых источников, заявили представители ERCOT.

«Техас — это газовый штат», — сказал Майкл Уэббер, профессор энергетических ресурсов Техасского университета в Остине.

В то время как Уэббер сказал, что в энергетическом кризисе виноваты все источники энергии Техаса, газовая промышленность производит значительно меньше энергии, чем обычно.

«Газ сейчас терпит крах, — сказал Уэббер.

Дэн Вудфин, старший директор ERCOT, поддержал это мнение во вторник.

«Похоже, что большая часть поколения, которое сегодня отключилось от сети, в основном связано с проблемами в системе природного газа», — сказал он во вторник во время телефонного разговора с журналистами.

Тем не менее, некоторые обвиняют ветроэнергетику.

«Это то, что происходит, когда вы заставляете сеть частично полагаться на ветер в качестве источника энергии», — написал в Твиттере во вторник во второй половине дня представитель США Дэн Креншоу из штата Хьюстон. «Когда погодные условия становятся плохими, как на этой неделе, прерывистая возобновляемая энергия, такая как ветер, перестает быть там, когда она вам нужна».

Далее он обратил внимание на остановку ядерного реактора в Бэй-Сити из-за холода и, наконец, дошел до того, что эксперты по энергетике считают самым большим виновником, написав: «Низкое снабжение природного газа: ERCOT запланировал на 67 ГВт из природного газа / угля. , но в сети можно было получить только 43 ГВт.У нас не закончился природный газ, но у нас закончилась возможность получать природный газ. На трубопроводах в Техасе не используется холодная изоляция, поэтому все замерзало ».

Комиссар по сельскому хозяйству Сид Миллер, известный своими публикациями правых взглядов в Facebook, которые в прошлом распространяли дезинформацию и усиливали теории заговора, также опубликовал в Facebook неприукрашенный обзор ветроэнергетики: «Мы никогда не должны строить еще одну ветряную турбину в Техасе. «

В другом посте Миллер был еще более откровенен, но также вводил в заблуждение.«К травме добавилось оскорбление: эти уродливые ветряные турбины — одна из основных причин отключения электричества», — написал он. «Разве это не иронично? … Вот вам и неприглядные и непродуктивные, лишающие энергии памятники Обаме. По крайней мере, они показывают нам, где живут идиоты ».

В то время как скептики ветроэнергетики утверждали, что неделя заморозки означает, что на ветровую энергию нельзя положиться, ветровые турбины, как и газовые электростанции, могут быть «подготовлены к зиме» или модифицированы для работы при очень низких температурах.Эксперты говорят, что многие электрогенераторы Техаса не инвестировали необходимые средства для предотвращения сбоев в работе оборудования, поскольку в штате редко случаются сильные зимние штормы.

По оценкам, из общей зимней мощности сети около 80%, или 67 гигаватт, может быть произведено за счет природного газа, угля и некоторой ядерной энергии. Ожидалось, что только 7% прогнозируемой зимней мощности ERCOT, или 6 гигаватт, будет приходиться на различные источники ветровой энергии по всему штату.

Производство природного газа в штате резко упало из-за морозных условий, что затрудняет получение электростанциями топлива, необходимого для их работы. По словам экспертов, на электростанциях, работающих на природном газе, обычно не так много топлива. Вместо этого заводы полагаются на постоянный поток природного газа из трубопроводов, которые проходят через штат от таких областей, как Пермский бассейн, добывающий нефть и природный газ, в Западном Техасе до крупных центров спроса, таких как Хьюстон и Даллас.

Губернатор

Грег Эбботт уточнил, что источники ископаемого топлива вносят свой вклад в проблемы с энергосистемой, описывая ситуацию в понедельник днем.

«Возможности некоторых компаний, производящих электроэнергию, были заморожены. Это включает в себя генераторы природного газа и угля », — написал он в твиттере.

Хизер Зичал, генеральный директор отраслевой группы Американская ассоциация чистой энергии, заявила, что противники возобновляемой энергии пытались отвлечься от сбоев в других частях системы и замедлить «переход к экологически чистой энергии будущего».”

«Позорно видеть, как давние противники чистой власти — которые нападают на нее, идет ли дождь, снег или светит солнце — участвуют в политически оппортунистической шараде, вводя американцев в заблуждение, продвигая программу, не имеющую ничего общего с восстановлением власти. сообществам Техаса », — сказала она.

Мэтью Уоткинс предоставил репортаж.

Раскрытие информации: Facebook и Техасский университет в Остине оказывали финансовую поддержку The Texas Tribune, некоммерческой, непартийной новостной организации, которая частично финансируется за счет пожертвований членов, фондов и корпоративных спонсоров.Финансовые спонсоры не играют никакой роли в журналистике Tribune. Полный их список можно найти здесь.

Энергия ветра — образование в области энергетики

Рисунок 1. Ветряная электростанция в Техасе. [1]

Энергия ветра — это выработка электроэнергии из ветра. Энергия ветра собирает поток первичной энергии атмосферы, образующийся в результате неравномерного нагрева поверхности Земли Солнцем. Таким образом, энергия ветра — это косвенный способ использования солнечной энергии. Энергия ветра преобразуется в электрическую с помощью ветряных турбин. [2]

Ресурс ветра

Несколько различных факторов влияют на потенциальный ветровой ресурс в районе. На выходную мощность влияют три основных фактора: скорость ветра , плотность воздуха и радиус лопасти . [3] Ветровые турбины должны регулярно находиться в районах с сильным ветром, что более важно, чем периодические сильные ветра.

Скорость ветра

Рисунок 2. Произвольная кривая мощности ветряной турбины мощностью 1 МВт в сравнении со скоростью ветра.Обратите внимание на скорость резки. [4]

Скорость ветра в значительной степени определяет количество электроэнергии, вырабатываемой турбиной. Более высокая скорость ветра генерирует больше энергии, потому что более сильный ветер позволяет лопастям вращаться быстрее. [3] Более быстрое вращение приводит к большей механической мощности и большей электрической мощности от генератора. Взаимосвязь между скоростью ветра и мощностью для типичной ветряной турбины показана на рисунке 2.

Турбины предназначены для работы в определенном диапазоне скоростей ветра.Пределы диапазона известны как скорость включения и скорость отключения. [5] Скорость включения — это точка, при которой ветряная турбина может вырабатывать электроэнергию. Между скоростью включения и номинальной скоростью, где достигается максимальная мощность, выходная мощность будет увеличиваться кубическим образом со скоростью ветра. Например, если скорость ветра увеличится вдвое, выходная мощность увеличится в 8 раз. Это кубическое соотношение делает скорость ветра таким важным фактором для ветроэнергетики. Эта кубическая зависимость действительно отключается при номинальной скорости ветра.Это приводит к относительно пологой части кривой на Рисунке 2, поэтому кубическая зависимость наблюдается при скоростях ниже 15 м / с (54 км / ч).

Скорость отключения — это точка, при которой турбина должна быть остановлена, чтобы избежать повреждения оборудования. Скорости включения и выключения зависят от конструкции и размера турбины и определяются до начала строительства. [6]

Плотность воздуха

Выходная мощность связана с местной плотностью воздуха, которая является функцией высоты, давления и температуры.Плотный воздух оказывает большее давление на роторы, что приводит к увеличению выходной мощности. [7]

Конструкция турбины

Ветряные турбины спроектированы так, чтобы максимально увеличить радиус лопастей ротора и максимизировать выходную мощность. Лопасти большего размера позволяют турбине улавливать больше кинетической энергии ветра за счет перемещения большего количества воздуха через роторы. [8] Однако для работы более крупных лопастей требуется больше места и более высокая скорость ветра. Как правило, турбины имеют расстояние в четыре раза больше диаметра ротора. [6] Это расстояние необходимо, чтобы избежать помех между турбинами, что снижает выходную мощность. [5] Относительное расстояние между ветряными турбинами показано на Рисунке 1.

Интерактивный график

Ветроэнергетика довольно быстро растет во многих регионах; изучите приведенные ниже данные, чтобы увидеть, как растет энергия ветра в разных странах. [9]

Для дальнейшего чтения

Список литературы

  1. ↑ Wikimedia Commons [Online], Доступно: https: // commons.wikimedia.org/wiki/File:GreenMountainWindFarm_Fluvanna_2004.jpg#/media/File:GreenMountainWindFarm_Fluvanna_2004.jpg
  2. ↑ Развитие ветроэнергетики. (18 августа 2015 г.). Основы ветроэнергетики [Онлайн], доступно: http://windeis.anl.gov/guide/basics/
  3. 3,0 3,1 Европейская ветроэнергетическая ассоциация. (2013, 4 ноября). Как работает ветряная турбина [Online]. Доступно: http://www.ewea.org/wind-energy-basics/how-a-wind-turbine-works/
  4. ↑ По материалам: R.Вольфсон, Энергия, окружающая среда и климат, 2-е изд. Нью-Йорк: Norton, 2012. и WindPowerProgram, [Online], Доступно: http://www.wind-power-program.com/popups/powercurve.htm
  5. 5,0 5,1 Д. Вуд, частное сообщение, октябрь 2013 г.
  6. 6,0 6,1 Отдел энергетических исследований (нет данных). (2013, 4 ноября). Метеорологические данные Отделения энергетических исследований [Онлайн]. Доступно: http://www.elm.eru.rl.ac.uk/ins4.html
  7. ↑ WindTurbines.net (4 ноября 2013 г.). Факторы, влияющие на КПД ветряных турбин [Online]. Доступно: http://www.slideshare.net/windturbinesnet/factors-affecting-wind-turbine-efficiency-7146602
  8. ↑ Оренда. (2013, 4 ноября). Имеет ли значение длина лопастей ветряной турбины? [Интернет]. Доступно: http://orendaenergy.com/does-wind-turbine-blade-length-really-matter/
  9. ↑ BP Worldwide. (2014, 1 июля). Статистический обзор мировой энергетики за 2017 год [Онлайн]. Доступно: https: // калькуляторы.io / статистический-обзор-мировой-энергетики /

Ветровые турбины — обзор

2.07.4 Выбор модели ветряной турбины

Ветряная турбина является основным компонентом оборудования ветряного парка. Следовательно, выбор подходящей модели ветряной турбины является одним из наиболее важных этапов разработки проекта ветропарка. Выбор модели ветряной турбины осуществляется на основании нескольких параметров, наиболее важные из которых указаны ниже:

номинальная мощность ветряной турбины

физические размеры ветряной турбины

доступная площадь на месте установки ветропарка в зависимости от номинальной мощности ветряной турбины

имеющийся ветровой потенциал

некоторые особенности, наблюдаемые на общей географической территории место установки

ограничения, вызванные воздействием на окружающую среду и деятельностью человека

требование коммунального предприятия о некоторых спецификациях относительно качества электроэнергии, производимой ветряной турбиной

существующая техническая инфраструктура на место установки (доступность площадки)

закупочная стоимость ВЭУ

срок поставки от производителя.

Номинальная мощность ветряной турбины определяет размер машины. Очевидно, что по мере увеличения рабочей площади ротора турбины кинетическая энергия ветра, улавливаемая турбиной, также увеличивается. Следовательно, строительство ветряных турбин с более высокой номинальной мощностью подразумевает создание более крупных машин. В таблице Таблица 2 представлена ​​эволюция ветряных турбин за последние 30 лет.

Таблица 2. Развитие ветряных турбин за последние 30 лет

33 903
Год 1980 1985 1990 1995 2000 2005 2010
Номинальная мощность (кВт) 50 100 250 600 1000 3000 5000
Диаметр (м) 15 20 30 40436 105
Рабочая площадь ротора (м 2 ) 177 314 706 1256 2375 6361 865324 35 50 55 60 80 100

Как видно из таблицы, ветряк с номи при номинальной мощности 1 МВт имеет диаметр ротора приблизительно 55 м, в то время как ветряная турбина с номинальной мощностью 3 МВт имеет диаметр ротора 90 м.Расстояние пилона ветряной турбины от границ места установки ветропарка должно быть не менее 1,0–1,5 ∙ R , где R — радиус ротора, в зависимости от соответствующего национального законодательства каждой страны. Кроме того, чтобы избежать эффекта тени от ветряных турбин, минимальное расстояние между двумя ветряными турбинами, установленными на линии, перпендикулярной основному направлению ветра, должно быть не менее 2,5–3,0 ∙ D , где D — диаметр ротора. . Подробное описание основных правил микросайтинга ветряных турбин будет представлено в следующем разделе.

В соответствии с вышеупомянутыми ограничениями, на рисунках , рисунках 28, и , 29, показано расположение ветропарка номинальной мощностью 3 МВт. В Рисунок 28 установлены ветряные турбины номинальной мощностью 1 МВт и диаметром ротора 55 м, а в Рисунок 29 — ветряная турбина номинальной мощностью 3 МВт и диаметром ротора 90 м. В случае Рисунок 28 , общая ортогональная площадь 357,5 м × 82,5 м = 29 493,75 м 2 требуется для установки ветропарка.В случае Рисунок 29 требуется общая квадратная площадь 135 м × 135 м = 18 225 м 2 . На этом простом примере показано, что в случае наличия ограниченной площади для установки ветряного парка, выбор модели ветряной турбины с более высокой номинальной мощностью позволяет установить ветропарк с более высокой общей номинальной мощностью.

Рисунок 28. Микросайтинг ветропарка для ветропарка мощностью 3 МВт с ветряными турбинами номинальной мощностью 1 МВт. Аббревиатуры S1, S2 и т. Д. Обозначают места установки ветряных турбин.

Рисунок 29. Микросайтинг ветропарка для ветропарка мощностью 3 МВт с одной ветряной турбиной номинальной мощностью 3 МВт.

Как видно из Таблица 2 , высота ступицы и общая максимальная высота ветряной турбины увеличиваются вместе с номинальной мощностью ветряной турбины. Например, ветряная турбина номинальной мощностью 1 МВт имеет высоту ступицы 60 м и максимальную общую высоту 87,5 м, а ветряная турбина номинальной мощностью 3 МВт имеет высоту ступицы 80 м и максимальную общую высоту. 125 м.Увеличенная высота ветряной турбины означает, что возможные удары турбины становятся более интенсивными, например, видимость турбины из особо интересных мест, таких как археологические раскопки, туристические объекты и т. Д. Еще один важный вопрос — близость ветропарка к аэропортам. На нормальную работу специальных средств связи, установленных в диспетчерских пунктах аэропортов, влияет максимальная высота, которую может достигнуть кончик лопастей ветряной турбины. В обоих вышеупомянутых случаях наиболее вероятно, что ответственные органы потребуют, чтобы владелец ветропарка выбрал модель ветряной турбины с меньшей номинальной мощностью и физическими размерами.Характер общей географической области, к которой принадлежит объект, также может повлиять на выбор модели ветряной турбины. Например, установка модели ветряной турбины мощностью 3 МВт на вершине горы на небольшом острове в Эгейском море вызовет более сильное визуальное воздействие и может вызвать серьезные негативные реакции со стороны местного населения, чем в промышленной зоне в Центральной Европе. Как правило, на участках с природной красотой и особой эстетикой установка небольших ветряных турбин может быть охарактеризована как надежный выбор, способный защитить реализацию проекта ветропарка от нескольких проблем.

С другой стороны, установка большого количества ветряных турбин меньшей номинальной мощности вместо нескольких ветряных турбин более высокой номинальной мощности увеличивает вероятность столкновения птиц с вращающимися лопастями ветряных турбин. Первые случаи гибели птиц во всем мире наблюдались в ветропарке Альтамонт в Калифорнии, где огромное количество установленных небольших ветряных турбин привело к созданию «эффекта ограды», вызвавшего гибель тысяч птиц. Орнитологи предлагают установить несколько ветряных турбин более высокой номинальной мощности на больших расстояниях между ними, чтобы приблизиться к общей номинальной мощности ветропарка, вместо большего количества ветряных турбин меньшего размера и меньших расстояний, которые увеличивают риск столкновения птиц с ветром. вращающиеся лезвия.

Доступность к месту установки — еще один важный параметр, который необходимо учитывать при выборе модели ветряной турбины. Места на вершине гор труднодоступны. Транспортировка ветряных турбин очень большого размера может потребовать расширенных инфраструктурных работ, таких как модификация существующих дорог или строительство новых дорог, или даже транспортировка с помощью вертолетов. Эти задачи увеличивают стоимость установки проекта. Вышеупомянутые трудности с транспортировкой оборудования наиболее остро ощущаются в сельской местности (напр.г., острова). В худшем случае установка больших ветряных турбин в труднодоступных местах может оказаться даже невозможной. В этих случаях выбор модели ветряной турбины меньшего размера является единственно возможным выбором.

Особые требования к спецификациям ветряного генератора обычно предъявляются коммунальными предприятиями в случаях установки ветряных электростанций в слабых изолированных энергосистемах. Эти требования связаны с допусками турбин-генераторов к изменениям напряжения и частоты в системе.Коммунальные предприятия могут также потребовать особых характеристик генератора, таких как хорошо известная технология «устранения неисправностей». Эти требования могут ограничивать альтернативный выбор доступных моделей ветряных турбин.

Имеющийся ветровой потенциал места установки определяет класс ветряной турбины. В таблице 3 классы ветряных турбин представлены в стандарте IEC 61400-1 [30]. Каждая ветряная турбина сконструирована для установки на площадках с определенным ветровым потенциалом в соответствии с классами ветряных турбин, определенными в вышеупомянутом стандарте.Например, ветряные турбины класса I могут быть установлены на площадках со средней годовой скоростью ветра более 8,5 м с −1 , а ветряные турбины класса II могут быть установлены на площадках со средней годовой скоростью ветра от 7,5 до 8,5 м с −1 . Установка ветряной турбины класса II в месте с высоким ветровым потенциалом может привести к разрушению машины. С другой стороны, установка ветряной турбины класса I на участках с низким ветровым потенциалом приведет к снижению выработки электроэнергии турбиной.Наконец, некоторые производители построили специальные ветряные турбины для участков с очень высоким ветровым потенциалом (средняя годовая скорость ветра выше 11 м с -1 ). Эти турбины относятся к особому классу, названному производителем турбины. Их принципиальное отличие от турбин класса I заключается в несколько меньших габаритах (меньшая высота ступицы и диаметр ротора).

Таблица 3. Параметры скорости ветра и интенсивность турбулентности для классов ветряных турбин согласно IEC 61400-1

12 12

Средние за десять минут, скорость ветра на высоте ступицы, плотность воздуха 1.225 кг м −3 .

Наконец, при выборе модели турбины следует также учитывать стоимость ветряных турбин и, возможно, срок поставки производителя.

Все вышеперечисленные параметры могут повлиять на выбор модели ветряной турбины. Значение каждого из них может быть разным для разных проектов ветропарков. Их необходимо внимательно осмотреть, чтобы сделать оптимальный выбор.

В случае морского ветряного парка основными параметрами для выбора модели ветряной турбины являются более высокая стоимость фундамента по сравнению со стоимостью фундамента на суше, а также технико-экономические ограничения установки ветряных турбин, как правило, на глубине. более 30 м.На больших глубинах стоимость фундамента ветряных турбин значительно возрастает. Обычно использование ветряных турбин высокой номинальной мощности (более 3 МВт) предпочтительнее в прибрежных зонах по следующим двум причинам:

Высокая стоимость фундамента на опору подразумевает, что общая установка проекта стоимость снижается по мере уменьшения количества ветряных турбин. В этом случае общая номинальная мощность ветропарка может быть максимизирована за счет использования ветряных турбин высокой номинальной мощности.

В случае глубокого моря возможные положения установки на глубине более 30 м ограничены; следовательно, количество ветряных турбин, которые могут быть установлены, также уменьшается. Таким образом, для обеспечения осуществимости проекта обычно требуется использование ветряных турбин большой номинальной мощности.

Следовательно, в оффшорных ветряных парках установка ветряных турбин высокой номинальной мощности — единственный разумный выбор, направленный на осуществимость морского проекта и минимизацию общих затрат на установку.

После оценки имеющегося ветрового потенциала на всей площади места установки и выбора модели ветряной турбины необходимо спроектировать микросхему размещения ветряных турбин на месте установки.

Дания превращает ненужные лопасти ветряных турбин в убежища для велосипедов

Поскольку использование невозобновляемых источников энергии для выработки энергии только ускоряет судьбу Земли, отрасли во всем мире в последние несколько десятилетий смещают свое внимание на более экологичные альтернативы.Но хотя эти альтернативы оказались полезными в сокращении выбросов и создании более устойчивого мира, внедрение технологий использования возобновляемых источников энергии приводит к увеличению отходов оборудования.

Вот где Re-wind Network приходит с гениальными идеями перепрофилирования старых лопастей датских ветряных турбин.

Переоборудование лопастей ветряных турбин в общественных местах

Дания — одна из стран-первопроходцев в области экологически чистой энергии. Страна вырабатывает 40% своей общей потребности в энергии за счет ветра и обещает увеличить ее до 70% к 2030 году.В то время как энергия ветра является одновременно устойчивым и разумным вариантом по сравнению с углем и газом, и Дания заслуживает всяческих похвал за свою приверженность более экологичному будущему, ветряные турбины обычно имеют срок службы 20-25 лет. В результате они огромны, не пригодны для вторичной переработки или биоразложения, и часто оказываются на свалках, занимая большие площади.

В качестве решения этой постоянно растущей общесистемной проблемы правительство Дании поручило некоторым компаниям выполнить задачу по переработке в течение трехлетнего периода, включая Siemens, которая в начале этого месяца построила первую в мире ветряную турбину, пригодную для вторичной переработки.

Сейчас другая группа исследовательского проекта Re-Wind работает над проблемой, которая показала, что эти гигантские лопасти ветряных турбин могут быть использованы как навесы для велосипедов, пешеходные мосты и стоянки для коммерческого использования в целом. Более того, все, что нужно этим лезвиям, — это немного придать форму с небольшим количеством материала, необходимого для повторного использования.

Исследовательская группа в настоящее время изучает возможность повторного использования старых лопастей ветряных турбин в архитектурных и инженерных сооружениях Дании.

Как и большинство решений основных проблем, технологии использования возобновляемых источников энергии решают проблему традиционных источников энергии, которые способствуют загрязнению окружающей среды, но неизбежно сопряжены с некоторыми собственными проблемами.

Добавить комментарий

Ваш адрес email не будет опубликован.

Класс I II III S
Параметры скорости ветра 904
Базовая средняя скорость ветра U ref за 10 мин (м с −1 ) 50.0 42,5 37,5 Значения, указанные проектировщиком
Классы интенсивности турбулентности A B C A B C C A 904
Интенсивность турбулентности на расстоянии 15 м с −1 I 15 (%) 16 14 12 16 14 12 16 14