Аккумулятор для отопления насоса: Комплекты Инвертор (ИБП) + АКБ для систем резервного электропитания котлов, насосов и прочих систем жизнеобеспечения Вашего дома

Содержание

Бесперебойник для насоса отопления: подбираем нужный

Одним из основных рабочих параметров отопительной системы в частном доме является её автономность. По закону подлости, все серьёзные неисправности происходят в зимний период, во времена лютых морозов. Если система отопления откажет в такое время, то всего за несколько часов может произойти ущерб, на устранение которого потребуется большое количество времени и средств. Поэтому установив отопительный насос, следует сразу сделать следующий важный шаг – стать независимым от промышленной электрической сети. Для этого существуют специальный прибор, получивший название источника бесперебойного питания.

Содержание

Для чего необходим источник бесперебойного питания
Что лучше: ИБП или мобильная электростанция
Как правильно выбрать ИБП для теплового насоса
Что такое интерактивный бесперебойник
Бесперебойники с двойным преобразованием
Как правильно установить прибор

Для чего необходим источник бесперебойного питания

После небольшого введения пора перейти к более скрупулёзному рассмотрению устройства ИБП, а также узнать так уж необходима его установка в доме.

Источник бесперебойного питания (также его называют бесперебойник) служит автономным источником электрической энергии, способный в течение определённого времени поддерживать технику в работоспособном состоянии. Нередко в системах водоснабжения, отопления и канализации происходят поломки, для устранения которых требуется не малое количество времени. За время проведения ремонта не только упадёт температура в помещении, могут пострадать трубопроводы и другие элементы сети.

Но эта проблема требует установки резервной насосной станции. Сейчас необходимо учитывать частые отключения электроэнергии. Данный вопрос очень важен, так как без электричества не будет работать насос, соответственно, прекратиться циркуляция жидкости в отопительной системе. Самое печальное последствие – размерзаются трубы и помещение становится непригодным на определённое время.

Ни одна районная или областная электростанция не восстановит ущерб, вся ответственность лежит на хозяине дома. Именно для таких случаев созданы ИБП, которые аккумулируют электрическую энергию, а при аварийной ситуацию, обеспечивают работу насосов. Такой прибор просто необходим, так как позволит продержаться до устранения неполадок на трансформаторной подстанции или электростанции.

Что лучше: ИБП или мобильная электростанция

Достойной заменой бесперебойника может стать переносная электростанция с бензиновым или дизельным двигателем. Перед окончательным выбором следует ответить на основной вопрос: какую функцию будет выполнять прибор?

Если электричество отключают максимум на 1-2 часа, то ИБП станет идеальным решением проблемы. Но в некоторых регионах хозяева частных домов могут сидеть без света сутки и даже более. В этом случае необходимо приобретать электростанцию, лучше всего с дизельным двигателем.

Преимущества ИПБ:

  • Простота в использовании.
  • Компактные размеры.
  • Высокая экологичность.
  • Бесшумность.

Ко всему вышеперечисленному, бесперебойник является не только автономным источником питания, данный прибор способен выровнять разность потенциалов, предотвратить последствия скачков напряжения или периодически возникающих просадок в электропитании.

Основные плюсы домашней электростанции:

  • Подача электроэнергии в течение длительного времени (пока есть топливо и масло).
  • Простота эксплуатации. Для запуска электростанции современного типа достаточно нажать одну кнопку.
  • Небольшие размеры и мобильность.

Помимо положительных качеств, электростанции имеют и массу недостатков. Например, как всякие механизмы, данные устройства требуют проведения качественного технического обслуживания, а также периодического ремонта. Качество электроэнергии таких приборов (напряжение, частота) не всегда находится на высоком уровне точности. К тому же мобильные электростанции от 5 кВт и выше имеют солидную цену.

Рассматривая положительные и отрицательные качества ИБП и электростанций, лучше всего остановится на первом варианте. Бесперебойники гораздо проще в обслуживании и работе. Не потребляют топливо, кроме электроэнергии, которая по стоимости гораздо ниже дизельного топлива или бензина.

Как правильно выбрать ИБП для теплового насоса

При выборе бесперебойника, следует знать, что тепловые насосы достаточно точно реагируют на изменения электрического тока, напряжения и частоты. Это означает, что для данных устройств требуется электроэнергия определённого качества.

Именно поэтому ИБП должен соответствовать некоторым стандартам:

  • Выходной сигнал устройства должен воспроизводиться без малейших колебаний.
  • Входное напряжение, которое подаётся на ИБП, не станет причиной неисправности, даже если будет сильно отклоняться от номинальных величин.
  • Насос является больше реактивной нагрузкой для бесперебойника, из-за этого ИБП должен быть оснащён определённой защитой, предотвращающей пагубные последствия перегрузок.
  • Настройка прибора очень точна, выполняется так специально для быстрого срабатывания, если в сети образуется резкий скачок разницы потенциалов.
  • Мощность ИБП позволяет быстро и качественно зарядить аккумуляторные батареи.

Если прибор соответствует вышеперечисленным критериям, то его можно приобрести и установить в качестве автономного источника питания для насоса. Конечно ценовая политика такого устройства будет завышенной, но производители ИБП предлагают на свои изделия длительные гарантийные сроки.

Также следует обратить внимание на такой параметр как время автономной работы. Бесперебойник, в среднем, должен работать не менее 12 часов. Такого промежутка времени достаточно для поиска и устранения неисправности в сети. При подключении нескольких дополнительных групп аккумуляторных батарей, время автономной работы можно увеличить.

Что такое интерактивный бесперебойник

Процесс работы обыкновенного ИБП достаточно прост: он является не только автономным источником питания, но и фильтром, улучшающим качество электроэнергии. Переходы на работу от сети или от аккумуляторных батарей происходят автоматически. Электропитание электронной схемы, из которой состоит бесперебойник, осуществляется через инвертор – основной элемент прибора.

Интерактивный ИБП имеет одно существенное конструктивное отличие – помимо инвертора, в схеме данного изделия предусмотрен стабилизатор напряжения. Этот элемент состоит из автотрансформатора, способного производить регулировку разности потенциалов и давать на выходе более устойчивое напряжение. Из-за такой конструкции, интерактивный прибор в несколько раз быстрее выполняет переход как на работу от сети, так и на работу от аккумуляторных батарей.

Используются подобные устройства, особенно для тепловых насосов, очень редко. Конструкция интерактивного изделия не предусматривает снабжения электрической энергией асинхронные двигатели. Также, КПД данных приборов в несколько раз ниже обыкновенных устройств.

Бесперебойники с двойным преобразованием

Такие автономные источники энергопитания сконструированы специально для разновидности «капризных» приборов. Двойное преобразование используют если устройство отрицательно реагирует на малейшие скачки и перепады напряжения или частоты.

В таких бесперебойниках происходит двойное преобразование электрического тока. Сначала из переменного в постоянный, а потом наоборот. Ещё одной важной особенностью данных приборов является то, что аккумуляторы постоянно включены в цепь. Это означает, что время переключения на питание от сети и батарей приближается к нулю.

Конечно такая цифра нереальна, так как минимальный промежуток времени всё же должен пройти. Но всё же устройства с двойным преобразованием считаются максимально быстрыми по качеству работы.

Такая разновидность приборов, помимо выдачи идеального напряжения и частоты, имеют ряд отрицательных моментов:

  • Цена на бесперебойники высока, но за качество очень часто необходимо много платить.
  • Двойное преобразование сопровождается сильным шумом.
  • Такие устройства сильно греются.

Как правильно установить прибор

Установка и монтаж ИБП не займёт много времени, но при этом необходимо руководствоваться некоторыми общепринятыми правилами.

Бесперебойники можно монтировать как на стену, так и устанавливать на полу. Те устройства, конструкция которых предусматривает напольную установку, нередко имеют довольно крупные размеры. Из-за крупных габаритов, такие ИБП очень редко приобретают для частных домов.

На устройство не должна попадать влага или пыль, поэтому лучше всего устанавливать прибор в специальный герметичный шкаф или щиток. Очень часто ИБП монтируют в подвале, чтобы сэкономить больше места. Прибор изначально, ещё с завода-изготовителя оснащается специальными креплениями, которые существенно упростят задачу. Для подключения бесперебойника к насосу, достаточно точно ознакомиться со схемой, которая часто поставляется в стандартной комплектации. Если же возникают проблемы, то лучше всего обратиться к специалистам.

Вам также может понравиться

Источник бесперебойного питания для циркуляционного насоса отопления

Автономные отопительные системы напрямую связаны с работой электрического нагнетательного насоса. Эти системы волне работоспособны, безотказны и безопасны. Но все может измениться в один миг — если отключится централизованная подача электроэнергии. Вероятность того что может возникнуть капитальная авария в контуре отопления весьма высока. Чтобы этого не случилось, нужен источник бесперебойного питания для циркуляционного насоса отопления.

Преимущества бесперебойников

Прогрессивная котельная для частного жилища — довольно сложная в техническом плане инженерная конструкция. Кроме подачи газа для работы котлов необходима и подача электричества для работы насосов. Именно они отвечают за циркуляцию охлаждающей жидкости по системе отопления.

На случай отключения электроэнергии в прогрессивных системах отопления предусмотрена автоматическая остановка котла отопления. Аварийная остановка котла вызовет и немедленное прекращение работы циркуляционных насосов. Вся отопительная система перестает работать.

При кратковременном отключении электричества на некоторое время понизится уровень комфорта в доме. Как только электроснабжение восстановится, всё пойдет по-прежнему — в доме будет тепло и уютно.

А если аварийная ситуация продлится надолго?

Понятно, что последствия от остановки отопительного оборудования в зимний период, мягко говоря, неприятны.

Если разморозить всю систему отопления, практически неизбежна замена разводящей сети по дому и радиаторов отопления. Нужен ремонт. Естественно всё это будет весьма недешево.

Мало того.

В разных системах отопления циркулирование воды осуществляется по-разному:

  1. Принудительно (вода в системе прокачивается насосом).
  2. Естественная циркуляция.

Если жидкость в системе перестанет циркулировать, она может просто закипеть и привести к взрыву.

Чтобы этого не произошло желательно обзавестись системой резервного электропитания.

Может показаться, что снабдить свой котел резервным источником электричества достаточно просто. Кажется чего проще — у многих в доме есть компьютерный бесперебойник. Добавь к ним аккумулятор от автомобиля и дублирующий источник питания своими руками готов. Но не всё так просто.

Начнем с обязательного комплекта бесперебойного электроснабжения:

  • сам UPS для циркуляционных насосов;
  • комплект мощных аккумуляторов;
  • комплект разнокалиберных проводов и кабелей.

Набор может быть дополнен бензогенератором электричества.

Но бензогенератор нуждается в регуляторе напряжения и по умолчанию не является надежным источником энергии — он может надолго поломаться и произойдет это в самый нежелательный момент.

Поэтому для начала давайте рассмотрим, какие вообще бывают ИБП.

Классификация ИБП

Есть определенные различия в разных ИБП в зависимости от требуемых данных и особенностей компоновки. Они разделяются на три ключевых разновидности:

  • резервные бесперебойники;
  • линейно-интерактивные;
  • UPS с двойным инвертированием.

Резервные

Питание в обычном режиме котла совершается от сети. В случае катастрофического отключения автоматика сама переводит на электропитание от аккумуляторов. Но есть одно непременное условие — конвертировать постоянное напряжение в переменное и повысить его до 220 вольт.

В девайсах такого уровня напряжение не уравновешивается, но по максимуму может использовать пассивный сетевой фильтр от колебаний напряжения.

Плюсы:

  • Обладают приличным КПД;
  • Минимальное тепловыделение и шумность;
  • Относительно недорогие.

Минусы:

  • На переподключение уходит много времени;
  • На выходе вполне вероятно получить напряжение в искаженной форме;
  • Невозможно откорректировать амплитуду и частоту.

Линейно-интерактивные

Здесь в схему включен простой стабилизатор. Он применяется для выравнивания напряжения. По сути это обычный автотрансформатор с электронным коммутатором. Если включить в схему ИБП такой стабилизатор — получим параметры выходного напряжения абсолютно не отличающиеся от номинального. Также такие устройства дополнены преобразователем напряжения, а также обязательным сетевым фильтром.

Плюсы:

  • Обладают высоким КПД;
  • Минимальный уровень шума;
  • Стабильное напряжение.

Минусы:

  • На переподключение уходит много времени;
  • Недостаточная точность;
  • Трапецевидная форма напряжения;
  • Может встречаться смещение по частоте.

UPS с двойным инвертированием

Бесперебойник для насоса отопления с двойственным преобразованием в корне различается от предыдущих схем. Благодаря этой технологии появляется ряд преимуществ, которые отсутствуют у других резервных систем.

Здесь сетевое напряжение уже на входе выпрямляется и разделяется на два потока:

  • Часть уходит на батарею конденсаторов;
  • Часть преобразовывается из постоянного в переменный ток.

Конденсаторы двойного назначения:

  1. При высоком напряжении сохраняются излишки.
  2. Если напряжение падает, выдает сохраненную энергию.

Теплоаккумулятор для котлов отопления — назначение, расчет и монтаж

Отсутствие возможности использовать в качестве источника энергии для обогрева жилья относительно недорогой природный газ вынуждает хозяев домов искать другие приемлемые решения. Так, в регионах, где нет особых проблем с заготовкой или приобретением дров, на помощь приходят твёрдотопливные котлы. Случается и так, что единственной альтернативой становится электрическая энергия. Кроме того, все активнее используются новые технологии, позволяющие направлять на нужды отопления энергию солнечного излучения.

Теплоаккумулятор для котлов отопления

Все эти подходы не лишены существенных недостатков. Так, к ним можно отнести неравномерность, выраженную периодичность поступления тепловой энергии. В случае с электрическим котлом основным негативным фактором будет высокая стоимость потребленной энергии. Очевидно, что существенно поднять экономичность системы отопления, улучшить эффективность, равномерность ее работы, максимально упростить эксплуатационные операции помогло бы включение в общую схему специального прибора, который стал бы накапливать невостребованную в текущий момент тепловую энергию и отдавать ее по мере необходимости. Именно такую функцию выполняет теплоаккумулятор для котлов отопления.

Основное предназначение теплоаккумулятора системы отопления

  • Простейшая система отопления с твердотопливным котлом обладает выраженной цикличностью работы. После загрузки дров и их розжига, котел постепенно выходит на максимальную мощность, активно передавая тепловую энергию в контуры отопления. Но по мере прогорания загрузки теплоотдача начинает постепенно снижаться, и теплоноситель, разносимый по радиаторам, остывает.
Работа обычного твердотопливного котла характеризуется выраженным чередованием пиков и «провалов» в выработке тепловой энергии

Получается, что в период пиковой выработки тепла оно может остаться невостребованным, так как настроенная, оснащенная термостатическим регулированием система отопления лишнего не возьмет. Но в период догорания топлива и, тем более, простоя котла тепловой энергии будет явно недоставать. В итоге часть топливного потенциала расходуется просто впустую, но при этом хозяевам приходится достаточно часто заниматься загрузкой дров.

В определенной степени остроту этой проблемы можно снизить установкой котла длительного горения, но полностью снять – не получается. Несовпадение пиков выработки тепла и его потребления может оставаться достаточно существенным.

  • В случае с электрокотлом на первый план выступает высокая стоимость потребляемой энергии, что заставляет хозяев задуматься о максимальном использовании оборудования в периоды действия льготных ночных тарифов и минимизации потребления в дневные часы.

Выгоды использования дифференцированной тарификации электроэнергии

При грамотном подходе к потреблению электроэнергии льготные тарифы могут принести весьма ощутимую экономию средств. Об этом подробно рассказано в специальной публикации портала, посвященной двухтарифным электросчетчикам.

Напрашивается очевидное решение – накапливать тепловую энергию ночью, чтобы достичь минимального потребления ее днем.

  • Еще ярче выражена периодичность выработки тепловой энергии в случае использования солнечных коллекторов. Здесь прослеживается зависимость не только от времени суток (ночью поступление вообще нулевое).
Работа солнечного коллектора очень зависима и от времени суток, и от погоды

Не поддаются никакому сравнению пики нагрева в яркий солнечный день или в пасмурную погоду. Понятно, что напрямую ставить свою систему отопления в зависимость от текущих «капризов» природы – никак нельзя, но и пренебрегать столь мощным дополнительным источником энергии также не хочется. Очевидно, что требуется какое-то буферное устройство.

Эти три примера, при всей их разноплановости, объединяет одно общее обстоятельство – явное несовпадения пиков выработки тепловой энергии с рациональным равномерным ее использованием на нужды отопления. Для устранения этого дисбаланса и служит специальный прибор, называемый теплоаккумулятором (тепловым накопителем, буферной емкостью).

Цены на теплоаккумуляторы Hajdu

теплоаккумулятор Hajdu

Принцип его действия основан на высокой теплоемкости воды. Если значительный ее объем в период пикового поступления тепловой энергии разогреть до необходимого уровня, то в течение определенного периода можно для нужд отопления использовать этот накопленный энергетический потенциал. Для примера, если сравнивать теплофизические показатели, то всего один литр воды при остывании на 1°С способен разогреть кубометр воздуха на целых 4 °С.

Тепловой аккумулятор всегда представляет собой объемный резервуар с эффективной внешней термоизоляцией, подключенный к контуру (контурам) источника тепла и контурам отопления. Простейшую схему лучше рассмотреть на примере:

Наглядная демонстрация принципа работы простейшего теплового аккумулятора

Самый простой по конструкции теплоаккумулятор (ТА) – это вертикально расположенный объемный бак, в который с двух противоположный сторон врезаны четыре патрубка. С одной стороны он подключён к контуру твердотопливного котла (КТТ), а  с другой – к разведенному по дому контуру отопления.

После загрузки и розжига котла циркуляционный насос (Nк) этого контура начинает прокачивать теплоноситель (воду) через теплообменник. Из нижней части ТА в котел поступает остывшая вода, а в верхнюю прибывает разогретая в котле. Из-за существенной разницы плотности остывшей и горячей воды ее активного перемешивания в баке не будет – в процессе горения топливной закладки будет происходить постепенное заполнение ТА горячим теплоносителем. В итоге, при правильном расчете параметров, после полного прогорания заложенного горючего, емкость будет заполнена горячей водой, разогретой до расчетного уровня. Вся потенциальная энергия топлива (за вычетом, конечно, неизбежных потерь, отраженных в КПД котла), преобразована в тепловую, которая накоплена в ТА. Качественная термоизоляций позволяет сохранять температуру в баке в течение многих часов, а иногда даже – и дней.

Вторая стадия – котел не работает, но функционирует система отопления. С помощью собственного циркуляционного насоса контура отопления происходит прокачка теплоносителя по трубам и радиаторам. Забор производится сверху, из «горячей» зоны. Интенсивного самостоятельного перемешивания опять же не наблюдается – по уже упомянутой причине, и в трубу подачи поступает горячая вода, снизу возвращается охлажденная, и бак постепенно отдает свой нагрев в направлении снизу вверх.

На практике, в процессе топки котла отбор теплоносителя в систему отопления, как правило, не прекращается, и ТА будет накапливать лишь избыточную энергию, которая в текущий момент остается невостребованной. Но при правильном расчете параметров буферной емкости, ни один киловатт тепловой энергии не должен пропасть даром, и к концу цикла топки котла ТА должен быть в максимальной мере «заряжен».

Понятно, что цикличность работы подобной системы с установленным электрическим котлом будет завязана на льготные ночные тарифы. Таймер блока управления включит и выключит питание в установленный срок вечером и утром, а в течение дня контуры отопления будут питаться только (или преимущественно) из теплоаккумулятора.

Конструктивные особенности и основные схемы подключения различных теплоаккумуляторов

Итак, теплоаккумулятор всегда представляет собой объемный резервуар вертикального цилиндрического исполнения, имеющий высокоэффективную термоизоляцию и снабженный патрубками для подключения контуров генерации тепла и его потребления. А вот внутренняя конструкция может различаться. Рассмотрим основные типы существующих моделей.

Основные типы конструкций теплоаккумуляторов
Теплоаккумулятор с прямым подключением контуров выработки и потребления тепловой энергии

1 – Самый простой тип конструкции ТА. Подразумевается прямое подключение и источников тепла, и контуров потребления. Такие буферные емкости используются в следующих случаях:

  • Если в котле и во всех контурах отопления применяется одинаковый теплоноситель.
  • Если максимально допустимое давление теплоносителя в контурах отопления не превышает аналогичный показатель котла и самого ГА.

В том случае, когда требование выполнить невозможно, подключение контуров отопления может производиться через дополнительные внешние теплообменники

  • Если температуры в трубе подачи на выходе их котла не превышает допустимой температуры в контурах отопления.

Впрочем, это требование также может быть обойдено при установке на контуры, требующие более низкого температурного напора, смесительных узлов с трёхходовыми кранами.

Теплоаккумулятор со встроенным теплообменником

2 – Теплоаккумулятор снабжен внутренним теплообменником, расположенным в нижней части емкости. Теплообменник обычно представляет собой спираль, свитую из стальной нержавеющей трубы, обычной или гофрированной. Таких теплообменников может быть несколько.

Подобный тип ТА применяется в следующих случаях:

  • Если показатели давления и достигаемой температуры теплоносителя в контуре источника тепла существенно превосходят допустимые значения для контуров потребления и для самой буферной емкости.
  • Если есть необходимость подключения нескольких источников тепла (по бивалентному принципу). Например, на помощь котлу приходят гелиосистема (солнечный коллектор) или геотермальный тепловой насос. При этом чем меньше температурный напор источника тепла, тем ниже должен в ТА размещаться его теплообменник.
  • Если в контурах источника тепла и потребления используется различный тип теплоносителя.

В отличие от первый схемы, такому ТА свойственно активное перемешивание теплоносителя в емкости – нагрев происходит в нижней ее части, и менее плотная горячая вода стремится вверх.

На схеме по центру ГА показан магниевый анод. За счет более низкого электропотенциала он «оттягивает» на себя ионы тяжелых солей, не допуская зарастания накипью внутренних стенок бака. Подлежит периодической замене.

Теплоаккумулятор со встроенным проточным теплообменником горячего водоснабжения

3 – Теплоаккумулятор дополнен проточным контуром горячего водоснабжения. Вход холодной воды осуществляется снизу, подача до точки горячего водоразбора, соответственно, снизу. Большая часть теплообменника расположена в верхней части ТА.

Такая схема считается оптимальной для условий, когда потребление горячей воды отличается достаточной стабильностью и равномерностью, без выраженных пиковых нагрузок. Естественно, теплообменник должен быть исполнен из металла, отвечающего нормам пищевого водопотребления.

В остальном же схема схода с первой, с прямым подключением контуров генерации тепла и его потребления.

Теплоаккумулятор со встроенным баком горячего водоснабжения

4 – Внутри теплоаккумулятора размещен бак для создания запаса горячей воды для бытового потребления. По сути, такая схема напоминает встроенный бойлер косвенного нагрева.

Применение подобной конструкции в полной мере оправдано в случаях, когда пик выработки тепловой энергии котлом не совпадает с пиком потребления горячей воды. Иными словами, когда сложившийся в доме бытовой уклад предполагает массовое, но довольно непродолжительное расходование горячей воды.

Все перечисленные схемы могут варьироваться в различных комбинациях – выбор конкретной модели зависит от сложности создаваемой системы отопления, количества и типа источников тела и контуров потребления. Обратите внимание, в большинстве теплоаккумуляторов предусмотрено множество выходных патрубков, разнесенных по вертикали.

Разнесенные по вертикали патрубки подключения контуров позволяют оптимально использовать образующийся в теплоаккумуляторе температурный градиент

Дело в том, что при любой схеме внутри буферной емкости так или иначе образуется температурный градиент (разница в температурном напоре по высоте). Появляется возможность подключения контуров системы отопления, требующих различных температурных режимов. Это существенно облегчает окончательное термостатическое регулирование теплообменных приборов (радиаторов или «теплых полов»), с минимальными ненужными потерями энергии и снижением нагрузки на регулирующие устройства.

Типовые схемы подключения теплоаккумуляторов

Теперь можно рассмотреть основные схемы установки теплоаккумуляторов в систему отопления.

ИллюстрацияКраткое описание схемы

Основы всасывающих аккумуляторов в домашних тепловых насосах


Первоначально опубликовано 10 декабря 2013 г.

Для поиска и устранения неисправностей компонентов системы теплового насоса вы должны сначала понять их. Поскольку большая часть Северной Америки перешла в отопительный сезон, сейчас самое подходящее время для обзора компонента, обычно встречающегося в системах тепловых насосов в жилых домах: всасывающего аккумулятора.

Что такое всасывающий аккумулятор?

Накопители на всасывании являются критически важными компонентами тепловых насосов типа воздух-воздух и воздух-вода.

Что делает всасывающий аккумулятор?

Тепловые насосы с воздушным источником должны поддерживать тонкий баланс и надлежащий контроль жидкого хладагента в условиях низких температур окружающей среды, чтобы обеспечить охлаждение компрессора и избежать чрезмерного обратного перетока хладагента. Если жидкий хладагент может протечь через систему и вернуться в компрессор без испарения, это может вызвать повреждение компрессора. В зависимости от типа компрессора это повреждение может варьироваться от забивания жидкости, потери масла (в компрессоре) или вымывания подшипника.

Для защиты от обратного потока в системах, уязвимых к повреждению жидким хладагентом, таких как тепловые насосы, функция аккумулятора заключается в перехвате жидкого хладагента до того, как он достигнет компрессора. Когда требуется разморозка змеевика, компрессор подвергается внезапным скачкам жидкости, которые могут создать экстремальные напряжения в системе. Аккумулятор может действовать как приемник во время циклов нагрева и оттаивания, когда дисбаланс системы или перезарядка в полевых условиях может привести к чрезмерному содержанию жидкого хладагента в системе.

Аккумулятор может накапливать хладагент до тех пор, пока он не понадобится, и подавать его обратно в компрессор с приемлемой скоростью. Основные движения хладагента происходят в начале и в конце цикла размораживания, и хотя останавливать это движение не обязательно и даже не желательно, важно, чтобы скорость, с которой жидкий хладагент возвращается в компрессор, контролировалась. Наряду с правильным дозированием гидроаккумулятор может эффективно поддерживать температуру картера или нижней части кожуха в приемлемых пределах.Правильно спроектированный всасывающий аккумулятор может обеспечить отличную защиту от обеих потенциальных опасностей.

Аккумулятор какого типа или размера следует использовать?

Этот компонент должен располагаться на линии всасывания компрессора между испарителем и компрессором. Он должен иметь достаточно большой объем / емкость, чтобы удерживать максимальное количество жидкости, которая может вернуться в него, и иметь условия для положительного возврата масла в компрессор.

Фактическая удерживающая способность хладагента, необходимая для данного аккумулятора, определяется требованиями конкретного применения, и аккумулятор должен быть выбран таким, чтобы удерживать максимальный ожидаемый обратный поток жидкости.Типичные аккумуляторы, изготовленные для кондиционирования воздуха или промышленного использования, имеют отверстия для возврата масла диаметром от 0,0625 до 0,125 дюйма. Меньшее отверстие, несомненно, более уязвимо для ограничений со стороны частиц припоя или других посторонних материалов в системе, поэтому было бы целесообразно установить входной экран, особенно в системах с трубопроводами, устанавливаемыми в поле. Следует также позаботиться о том, чтобы припой и флюс не попали в аккумулятор, поскольку чрезмерное количество посторонних материалов может закупорить измерительное отверстие, эффективно задерживая компрессорное масло в аккумуляторе.

Обратите внимание, что вход хладагента смещен от верха J-трубки. Когда хладагент и масло входят в емкость, происходит разделение по скоростям, и хладагент расширяется из-за окружающей температуры, создавая источник тепла. В этот момент поступающее масло (вместе с любым жидким хладагентом) отделяется от парообразного хладагента и падает на дно. Пар хладагента движется по J-трубке, поскольку компрессор вызывает перепад давления между входом и выходом аккумулятора.Когда хладагент проходит через J-образную трубку, это вызывает эффект Вентури через отверстие, втягивая масло со дна емкости. Парообразный хладагент с контролируемой скоростью переносит масло обратно в компрессор.


Читать дальше: Руководство подрядчика по ремонту или замене систем отопления, вентиляции и кондиционирования воздуха, поврежденных наводнением

Как работает тепловой насос | HVAC

В тепловом насосе с воздушным источником тепла используются передовые технологии и цикл охлаждения для обогрева и охлаждения вашего дома.Это позволяет тепловому насосу обеспечивать комфорт в помещении круглый год — независимо от сезона.

Тепловой насос в режиме кондиционирования воздуха

При правильной установке и функционировании тепловой насос может поддерживать прохладную комфортную температуру, снижая при этом уровень влажности в вашем доме.

  1. Теплый воздух изнутри вашего дома втягивается в воздуховоды с помощью моторизованного вентилятора.
  2. Компрессор обеспечивает циркуляцию хладагента между внутренним испарителем и наружными конденсаторными блоками.
  3. Теплый воздух в помещении затем направляется в воздухообрабатывающий агрегат, в то время как хладагент перекачивается из внешнего змеевика конденсатора во внутренний змеевик испарителя. Хладагент поглощает тепло, проходя через воздух в помещении.
  4. Этот охлажденный и осушенный воздух затем проталкивается через соединительные внутренние воздуховоды к вентиляционным отверстиям по всему дому, снижая внутреннюю температуру.
  5. Цикл охлаждения снова продолжается, обеспечивая постоянный метод охлаждения.


Тепловой насос в тепловом режиме

Тепловые насосы уже много лет используются в регионах с более мягкими зимами. Тем не менее, технология тепловых насосов с воздушным источником тепла претерпела значительные изменения, что позволяет использовать эти системы в районах с длительными периодами отрицательных температур.

  1. Тепловой насос может переключаться из режима кондиционирования воздуха в режим нагрева путем реверсирования цикла охлаждения, в результате чего внешний теплообменник работает как испаритель, а внутренний теплообменник — как конденсатор.
  2. Хладагент проходит через замкнутую систему холодильных линий между наружным и внутренним блоком.
  3. Хотя наружные температуры низкие, достаточно тепловой энергии поглощается из внешнего воздуха змеевиком конденсатора и выделяется внутри змеевиком испарителя.
  4. Воздух изнутри вашего дома втягивается в воздуховоды с помощью моторизованного вентилятора.
  5. Хладагент перекачивается из внутреннего змеевика во внешний змеевик, где он поглощает тепло из воздуха.
  6. Этот нагретый воздух затем проталкивается через соединительные каналы к вентиляционным отверстиям по всему дому, повышая внутреннюю температуру.
  7. Цикл охлаждения продолжается снова, обеспечивая постоянный способ согреться.

Детали теплового насоса


Чтобы лучше понять, как ваш воздух нагревается или охлаждается, полезно немного узнать о частях, составляющих систему теплового насоса. Типичная система теплового насоса с воздушным источником представляет собой раздельную или состоящую из двух частей систему, в которой в качестве источника энергии используется электричество.Система содержит наружный блок, похожий на кондиционер, и комнатный кондиционер. Тепловой насос работает вместе с устройством обработки воздуха, распределяя теплый или прохладный воздух по внутренним помещениям. Помимо электрических компонентов и вентилятора, система теплового насоса включает:

Компрессор: Перемещает хладагент по системе. Некоторые тепловые насосы содержат спиральный компрессор. По сравнению с поршневыми компрессорами спиральные компрессоры тише, имеют более длительный срок службы и обеспечивают на 10–15 ° F более теплый воздух в режиме нагрева.

Плата управления: Определяет, должна ли система теплового насоса находиться в режиме охлаждения, обогрева или размораживания.

Змеевики: Конденсатор и испарительный змеевик нагревают или охлаждают воздух в зависимости от направления потока хладагента.

Хладагент: Вещество в охлаждающих трубопроводах, которое циркулирует через внутренний и наружный агрегаты.

Реверсивные клапаны: Измените поток хладагента, который определяет, охлаждается или нагревается ваше внутреннее пространство.

Термостатические расширительные клапаны: Регулируют поток хладагента так же, как кран крана регулирует поток воды.

Аккумулятор: Резервуар, который регулирует заправку хладагента в зависимости от сезонных потребностей.

Холодильные линии и трубы: Подсоедините внутреннее и внешнее оборудование.

Нагревательные полосы: Электрический нагревательный элемент используется для дополнительного нагрева. Этот добавленный компонент используется для добавления дополнительного тепла в холодные дни или для быстрого восстановления после низких температур.

Воздуховоды: Служат воздушными туннелями в различные помещения внутри вашего дома.

Термостат или система управления: Устанавливает желаемую температуру

Общие применения аккумуляторов — Accumulators, Inc.

Запрос предложений: Нажмите здесь, чтобы узнать цену и доступность любого из наших продуктов

Аккумуляторы имеют множество различных применений; мы перечислили некоторые из самых популярных ниже:

Уменьшение времени отклика

Благодаря мгновенному времени отклика гидроаккумуляторы будут подавать жидкость на быстродействующие клапаны, тем самым сокращая время задержки для отклика привода.Аккумуляторы особенно эффективны в схемах пропорциональных и сервоклапанов.

Энергосбережение

Аккумуляторы

могут снизить затраты на электроэнергию в различных областях применения. Помогая выходному потоку для насосов с прерывистым рабочим циклом, аккумулятор снижает требования к мощности системы. В сочетании с насосами переменного объема с компенсацией давления гидроаккумуляторы не только снижают требования к мощности, но и помогают удовлетворить потребности в быстром потоке.

Поглощение гидравлического удара линии

Аккумуляторы могут снимать ударную нагрузку с линии, когда клапан закрывается или происходит какое-либо другое действие, приводящее к «гидроудару». Благодаря уменьшению ударов в линии, компоненты системы, такие как насосы, клапаны, шланги и фитинги, не подвергаются скачкам давления; таким образом продлевая срок службы каждого из ваших компонентов.

Аварийное резервное питание — сбой электропитания

При наличии полностью заряженных аккумуляторов, интегрированных в цепь, в случае сбоя электропитания аккумуляторы будут обеспечивать достаточный поток и давление для завершения цикла, закрытия клапана или перемещения привода.Использование аккумуляторов в качестве аварийного источника питания гарантирует, что электрический сбой не приведет к необратимому повреждению вашей системы и не вызовет других нежелательных эффектов.

Аварийное резервное питание — немедленное реагирование

Когда в аварийной ситуации требуются большие объемы жидкости для приведения в действие больших клапанов, цилиндров или гидроцилиндров, заряженный аккумулятор или группа аккумуляторов обеспечат мгновенный отклик. Большие блоки аккумуляторов, называемые системами управления противовыбросовыми превенторами (BOP), обеспечивают аварийное питание для предотвращения выбросов во время бурения и разведки.

Передаточный барьер для разделения жидкости

Аккумуляторы

Transfer Barrier используются в приложениях, где две жидкости должны передавать давление между собой, но не могут быть смешаны вместе. Аккумуляторы Transfer Barrier также могут использоваться для циклического перемещения различных жидкостей под давлением в камеры и из них.

Вспомогательный источник питания

Накопители

могут использоваться для пополнения потока насоса для периодически возникающих высоких требований во многих системах.Использование гидроаккумуляторов позволяет значительно уменьшить размер насоса и требуемую мощность.

Давление

Аккумуляторы широко используются для удержания давления в контуре, особенно там, где используются приводы. Аккумулятор компенсирует любую утечку и поддерживает давление в системе, когда все клапаны закрыты.

Газовые баллоны и баллоны под давлением

Accumulators, Inc. производит газовые баллоны для хранения всех типов газов и жидкостей под давлением до 10 000 фунтов на квадратный дюйм.Доступен широкий ассортимент соединений для удовлетворения самых взыскательных требований к сантехнике. В отличие от газовых баллонов DOT, наши продукты спроектированы, изготовлены и испытаны в соответствии с самыми строгими требованиями ASME Section VIII, Div I.

Компенсация теплового расширения и сжатия

Аккумуляторы особенно эффективны, когда из-за тепла объем жидкости в системе увеличивается. В системах, где установлена ​​«жесткая» сантехника, аккумулятор чрезвычайно важен для предотвращения разрыва линий и труб из-за теплового расширения жидкости.Когда жидкости вместо этого сокращаются из-за охлаждения, аккумуляторы могут компенсировать уменьшение объема.

Компенсация утечки жидкости

Аккумуляторы

могут гарантировать, что объемное давление жидкости в вашей системе поддерживается на постоянном уровне, несмотря на любые внутренние утечки; особенно важно, если ваша система содержит золотниковые клапаны, картриджные клапаны или гидроцилиндры.

Дозатор для смазочных материалов под давлением

Аккумуляторы — отличный выбор для точного распределения жидкостей для смазки.Расход, контролируемый аккумулятором, не имеет пульсаций.

Добавить комментарий

Ваш адрес email не будет опубликован.