Блок питания схема пк: Устройство компьютерных блоков питания и методика их тестирования

Содержание

Схемы блока питания компьютера

Схема БП — мне нужен был новый настольный источник питания, который был бы переменным и недорогим. Я решил повторно использовать старый адаптер питания ноутбука, который больше не использовался, и это дало мне хорошие фильтрованные 19 вольт постоянного тока. Затем я составил схему для регулятора переменного напряжения LM350 на макете, чтобы убедиться, что он работает.

Статья полностью: → Схема БП для ноутбука

Схемы блока питания компьютера

Блок питания схема, которого представлена в этой статье подходит для использования с мощным усилителем низкой частоты. Первое, что нужно сделать, это выбрать подходящий трансформатор. Я предлагаю тороидальный трансформатор, а не традиционные Ш-образные, потому что они излучают меньше магнитного потока и более плоские.

Статья полностью: → Блок питания схема

Схемы блока питания компьютера

Блок питания является неотъемлемой частью каждого компьютера. От его нормальной работы зависит функционирование всего персонального компьютера (PC). Но при этом блоки питания покупаются редко, поскольку однажды приобретенный хороший блок питания может обеспечить несколько поколений непрерывно развивающихся систем.

Схема блока питания ATX 200W →

Схемы блока питания компьютера


Настоящее руководство предназначено для ознакомления с основными техническими характеристиками, принципом и режимами работы и правилами эксплуатации источника бесперебойного питания NTT UPS-800. ИБП обеспечивает питание персональных компьютеров или другой нагрузки ПК с номинальным напряжением питания 220v.

Схема блока питания NTT UPS-800 →

Схемы блока питания компьютера

Корпус блока питания Power Master 250W сделан из качественного листового металла. 120 мм вентилятор S1202512M (12 В, 0,3 А) размещен снизу устройства и прикрыт золотистой решеткой. На задней панели закреплен сетевой разъем, выключатель питания и переключатель напряжения сети. Применены провода AWG 18. Длина проводов до основного разъема составляет 400 мм.

Схема блока питания Power Master 250W →

Схемы блока питания компьютера

Как известно, одним из самых важных компонентов компьютера считается блоки питания. При относительно небольшой цене, они представляют собой мощный, компактный источник напряжения 5 и 12 В 200 – 500 ватт. БП ATX можно использовать и в зарядных устройствах для автомобильных аккумуляторов, и в лабораторных блоках питания, и в сварочных инверторах.

Схема блока питания Power Master 230W →

Схемы блока питания компьютера

Переделка компьютерного блока питания — Блоки питания — Источники питания

Подробное описание.

Хороший лабораторный блок питания — это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.
Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.
Собирают такие блоки питания радиолюбители, как правило из компьютерных БП АТХ, которые везде доступны и дешевы.

В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.

Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.

Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.

Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания «Codegen» схема почти не отличается от этой.

Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.
Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.

Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия — даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.

Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя «дежурки», который нам понадобится для питания ШИМ контроллера и куллера.
Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 9-10 вольт (используется для дежурного питания ТЛ-ки).
Мы и будем использовать для постоянного питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители «дежурки» — синей линией, а всё остальное, что необходимо будет удалить — красным цветом.

Итак всё, что помечено красным цветом — выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП.

Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора — резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.

Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.
На второй и третьей ноге ШИМа — оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа — обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.

Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.

После всех выполненных операций у нас должно получиться следующее.

Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.
На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.

Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.

Вид платы со стороны деталей.

Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;

В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь — при экспериментах с режимом стабилизации тока, на форуме pro-radio, участник форума DWD привёл такую цитату, приведу её полностью:

«Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.

Более 50мВ — нормально, а меньше — нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше — ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.

Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?
Схема прекрасно работает при опорном напряжении в 5мВ!

При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12…13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет…
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А. «

 

Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.

Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) — перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.

Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.

Можно конечно попробовать поступить и так, как написал выше DWD, то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.

Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской «цешки».
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.


Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы — с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора — увеличивает максимальный выходной ток БП.

Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.

Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима — в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.

Схема вновь установленных деталей.

Приведу немного пояснений по схеме;
— Самый верхний выпрямитель — это дежурка.
— Величины переменных резисторов показаны, как 3,3 и 10 кОм — стоят такие, какие нашлись.
— Величина резистора R1 указана 270 Ом — он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
— Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
— Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.

Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа — резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя — обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.

Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!

Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.

Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 50 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Вернее даже не желательно, а необходимо, для того, чтобы остался небольшой запас для регулировки ШИМ, то есть для стабилизации напряжения и тока.
Потом на место подстроечного резистора впаять постоянный.

Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (30-40 вольт например), то нужно будет вместо диодной — сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.

Схема выпрямителя с диодным мостом.

С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;

Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём — просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.

Перемотать трансформатор особого труда не составляет и как это сделать — рассмотрим ниже.

Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.

В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и «поварить» наш трансформатор 20-30 минут.

Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) — острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.

Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.

Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.

Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 — 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на «косу» и в том же направлении, что и начинали — мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.

Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.

В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).

Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором «I».
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.

Может случиться так, что при увеличении тока — лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.

Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.

Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала «Плавно», потом когда у него заканчивается предел, начинает регулироваться «Грубо».
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;


Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.

Удачи Вам в конструировании!

 

Схема блока питания компьютера — электрическая, структурная, подключение, импульсного

Работа любого компьютера невозможна без блока питания. Поэтому стоит отнестись серьезно к выбору. Ведь от стабильной и надежной работы БП будет зависеть работоспособность самого компьютера.

Что это такое

Главной задачей блока питания является преобразование переменного тока и дальнейшее формирование требуемого напряжения, для нормальной работы всех комплектующих ПК.

Напряжение, требуемое для работы комплектующих:

Кроме этих заявленных величин существует и дополнительное величины:

Фото: блок питания

БП выполняет роль гальванической развязки между электрическим током из розетки и комплектующими потребляющие ток. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Часто используются источники питания (ИП) формата ATX.

Обзор схем источников питания

Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь. Работа преобразователей этого типа заключается в использовании двухтактного режима.

Стабилизация выходных параметров ИП осуществляется применением широтно-импульсной модуляции (ШИМ-контроллер) управляющих сигналов.

В импульсных источниках питания часто используется микросхема ШИМ-контроллера TL494, которая обладает рядом положительных свойств:

  • приемлемые рабочие характеристики микросхемы. Это – малый пусковой ток, быстродействие;
  • наличие универсальных внутренних элементов защиты;
  • удобство использования.

Простой импульсный БП

Принцип работы обычного импульсного БП можно увидеть на фото.

Фото: блок схема работы импульсного

Первый блок выполняет изменение переменного тока в постоянный. Преобразователь выполнен в виде диодного моста, который преобразовывает напряжение, и конденсатора, сглаживающего колебания.

Кроме этих элементов могут присутствовать еще дополнительные комплектующие: фильтр напряжения и термисторы. Но, из-за дороговизны, эти комплектующие могут отсутствовать.

Генератор создает импульсы с определенной частотой, которые питают обмотку трансформатора. Трансформатор выполняет главную работу в БП, это – гальваническая развязка и преобразование тока до требуемых величин.

Далее переменное напряжение, генерируемое трансформатором, идет на следующий блок. Этот блок из диодов, выравнивающих напряжение, и фильтра пульсаций. Фильтр состоит из группы конденсаторов и дросселя.

Видео: Принцип работы ШИМ контроллера БП

АТХ без коррекции коэффициента

Простой импульсный БП хоть и рабочее устройство, но на практике его использовать неудобно. Многие из его параметров на выходе «плавают», в том числе и напряжение. Все эти показатели изменяются из-за нестабильного напряжения, температуры и загруженности выхода преобразователя.

Но если осуществлять управление этими показателями с помощью контроллера, который будет выполнять роль стабилизатора и дополнительные функции, то схема будет вполне пригодной для применения.

Структурная схема БП с использованием контроллера широтно-импульсной модуляции проста и представляет генератор импульсов на ШИМ-контроллере.

Фото: ИП для компьютера с ШИМ-контроллером

ШИМ-контроллер регулирует амплитуду изменения сигналов проходящих через фильтр низких частот (ФНЧ). Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании.

АТХ с коррекцией коэффициента мощности

В новых источниках питания для ПК появляется дополнительный блок – корректор коэффициента мощности (ККМ). ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности (КМ).

Поэтому производителями активно изготавливаются БП с обязательной коррекцией КМ. Это означает, что ИП на компьютере будет работать в диапазоне от 300Вт и более.

Фото: схема блока питания компьютера 300w

В этих БП используют специальный дроссель с индуктивностью выше чем на входе. Такой ИП называют PFC или пассивным ККМ. Имеет внушительный вес из-за дополнительного использования конденсаторов на выходе выпрямителя.

Из недостатков можно выделить невысокую надежность ИП и некорректную работу с ИБП во время переключения режима работы «батарея/сеть».


Это связано с маленькой емкостью фильтра сетевого напряжения и в момент падения напряжения повышается ток ККМ, и в этот момент включается защита от короткого замыкания.

На двухканальном ШИМ-контролере

Часто используют в современных источниках питания для компьютера двухканальные ШИМ-контроллеры. Единственная микросхема способна выполнять роль преобразователя и корректора КМ, что сокращает общее количество элементов в схеме БП.

Фото: схема БП с использованием двухканального ШИМ-котроллера

 

В приведенной схеме первая часть выполняет формирование стабилизированного напряжение +38В, а вторая часть является преобразователем, который формирует стабилизированное напряжение +12В.

Схема подключения блока питания компьютера

Для подключения блока питания к компьютеру следует выполнить ряд последовательных действий:

  • установить БП в системный блок. Все эти действия нужно выполнять аккуратно, чтобы не задеть остальные комплектующие;
  • закрепить БП к задней панели системного блока специальными винтами;
  • подсоединить кабели питания ко всем устройствам находящимся в системном блоке (материнская плата, дисковод, видеокарта, винчестер). Особых предпочтений в порядке подключения нет, главное все сделать аккуратно и правильно.

    фото: схема подключения питания компьютера PcCar CarPc

Конструктивные особенности

Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. На задней его части расположен разъем под сетевой кабель и кнопка выключателя.

Кроме этого может находится еще на задней стенке БП и разъем для подключения монитора.

В различных моделях могут быть и другие разъемы: 

  • индикатор напряжения;
  • кнопки изменения режима работы вентилятора;
  • переключатель входящего напряжения;
  • USB-порты, встроенные в БП.

    Фото: внешний вид БП для ПК

В современных источниках питания для ПК реже устанавливают вентилятор на задней стенке, который вытягивал горячий воздух из БП. В замен этого решения начали использовать вентилятор на верхней стенке, который был больше и работал тише.

На некоторых моделях возможно встретить сразу два вентилятора. Из стенки, которая находится внутри системного блока, выходит провод со специальным разъемом для подачи тока на материнскую плату. На фото указаны возможные разъемы подключения и обозначение контактов.

Фото: обозначение контактов разъемов БП

Каждый цвет провода подает определенное напряжение:

  • желтый — +12 В;
  • красный — +5 В;
  • оранжевый — +3,3 В;
  • черный – заземление.

У различных производителей могут изменяться значения для этих цветов проводов.

Также есть разъемы для подачи тока комплектующим компьютера.

Фото: специальные разъемы для комплектующих

Параметры и характеристики

БП персонального компьютера имеет много параметров, которые могут не указываться в документации. На боковой этикетке указываются несколько параметров – это напряжение и мощность.

Мощность – основной показатель

Эта информация пишется на этикетке крупным шрифтом. Показатель мощности БП указывает на общее количество электроэнергии доступной для внутренних комплектующих.

Казалось бы, выбрать БП с требуемой мощностью будет достаточным просуммировать потребляемые показатели комплектующими и выбрать БП с небольшим запасом. Поэтому большой разницы между 200w и 250w не будет существенной.

Фото: Импульсный блок питания компьютера (ATX) на з00 Вт

Но на самом деле ситуация выглядит сложнее, потому что выдаваемое напряжение может быть разным — +12В, -12В и другим. Каждая линия напряжения потребляет определенную мощность. Но в БП расположен один трансформатор, который генерирует все напряжения, используемые ПК. В редких случаях может быть размещено два трансформатора. Это дорогой вариант и используется в качестве источника на серверах.

В простых же БП используется 1 трансформатор. Из-за этого мощность на линиях напряжений может меняться, увеличиваться при малой нагрузке на других линиях и наоборот уменьшаться.

Рабочие напряжение

При выборе БП следует обратить внимание на максимальные значения рабочих напряжений, а также диапазон входящих напряжений, он должен быть от 110В до 220В.

Правда большинство из пользователей на это не обращают своего внимания и выбирая БП с показателями от 220В до 240В рискуют к появлению частых отключений ПК.

Фото: параметры блока питания компьютера

Такой БП будет выключаться при падении напряжения, которые не редкость для наших электросетей.Превышение заявленных показателей приведет к выключению ПК, сработает защита. Чтобы включить обратно БП придется отключить его от сети и подождать минуту.

Следует помнить, что процессор и видеокарта потребляю самое большее рабочее напряжение в 12В. Поэтому следует обращать внимание на эти показатели.Для снижения нагрузки на разъемы, линию 12В разделяют на пару параллельных с обозначением +12V1 и +12V2. Эти показатели должны быть указаны на этикетке.

Советы по выбору источника

Перед тем как выбрать для покупки БП, следует обратить внимание на потребляемую мощность внутренними компонентами ПК.

Но некоторые видеокарты требуют особый потребляемый ток +12В и эти показатели следует учитывать при выборе БП. Обычно для ПК, в котором установлена одна видеокарта, достаточно источника с мощностью в 500вт или 600.

Фото: Super Power 300X

Также следует ознакомится с отзывами покупателей и обзорами специалистов о выбранной модели, и компании производителе. Лучшие параметры, на которые следует обратить внимание, это: мощность, тихая работа, качество и соответствие написанным характеристикам на этикетке.

Вам необходимо настроить модем в режиме роутера! Подробнее в настройке модема в роутер ByFly.

Интересует настройка роутера ZYXEL KEENETIC LITE PPPoE? Читайте тут.

Настройка IPTV в роутере DIR 620 от Ростелеком? Читайте в статье.

Экономить при этом не следует, ведь от работы БП будет зависеть работа всего ПК. Поэтому чем качественнее и надежнее источник, тем дольше прослужит компьютер. Пользователь может быть уверен, что сделал правильный выбор и не беспокоится о внезапных выключениях своего ПК.

Переделка компьютерного блока питания ATX в регулируемый блок питания

Основа современного бизнеса — получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, — просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно — различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат — импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.

Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках «Дефект» столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все — «труба», то хоть какую-нить запцацку снять и вкидануть в другое оборудование.

Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак — несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель — не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.

Часть 1. Так себе.

Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает — можно делать пробный пуск и измерить все напряжения.

+12 В — желтый

+5 В — красный

+3,3 В — оранжевый

-5 В — белый

-12 В — синий

0 — черный

По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.

Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть — блок включится и вентилятор — индикатор включения — начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это «черный» и «зеленый». Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.

Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.

Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.

Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.

Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.

Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.

Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.

Замеряем все напряжения по шинам

+12 В: +2,5 … +13,5

+5 В: +1,1 … +5,7

+3,3 В: +0,8 … 3,5

-12 В: -2,1 … -13

-5 В: -0,3 … -5,7

Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины — 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод — вполне.

Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром — вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.

Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке — типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.

Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.

Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.

Часть 2. Более-менее.

Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения — достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.

Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор — для подбора срабатываний по току. Но получилось неважно — нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.

Измерение параметров дало следующие результаты:

Шина напряжения, В

Напряжение на холостом ходу, В

Напряжение на нагрузке 30 Вт, В

Ток через нагрузку 30 Вт, А

+12

2,48 — 14,2

2,48 — 13,15

0,6 — 1,28

+5

1,1 — 6

0,8 — 6

0,37 — 0,85

-12

2,1 — 11,1

0,2 — 7,7

0,17 — 0,9

-5

0,17 — 5

0 — 4,8

0 — 0,8

Перепайку я начал с выпрямительных диодов. Диодов два и они достаточно слабые.

Диоды я взял от старого блока. Диодные сборки S20C40C — Шоттки, рассчитанные на ток 20 А и напряжение 40 В, но ничего путного не получилось. Либо сборки такие были, но один сгорел и я просто впаял два более сильных диодов.

Влепил разрезанные радиаторы и на них диоды. Диоды стали сильно греться и накрылись 🙂 , но даже с более сильными диодами напряжение на шине -12 В так и не пожелало опуститься до -15 В.

После перепайки двух резисторов и двух диодов можно было скрутить блок питания и включить нагрузку. Вначале использовал нагрузку в виде лампочки, а измерял напряжение и ток по отдельности.

Затем перестал париться, нашел переменный резистор из нихрома, мультиметр Ц4353 — измерял напряжение, а цифровым — ток. Получился неплохой тандем. По мере увеличения нагрузки напряжение незначительно падало, ток рос, но грузил я только до 6 А, а лампа по входу светилась в четверть накала. При достижении максимального напряжения лампа по входу засветилась на половинную мощность, а напряжение на нагрузке несколько просело.

По большому счету переделка удалась. Правда, если включаться между шинами +12 В и -12 В, то защита не работает, но в остальном все четко. Всем удачных переделок.

Однако и такая переделка долго не прожила.

Часть 3. Удачная.

Еще одной переделкой стал блок питания с микрухой 339. Я не приверженец выпаивать все, а затем стараться запустить блок, поэтому по шагам поступил так:

-проверил блок на включение и срабатывание защиты от кз на шине +12 В;

-вынул предохранитель по входу и заменил на патрон с лампой накаливания — так безопасно включать чтобы не сжечь ключи. Проверил блок на включение и кз;

-удалил резистор на 39к между 1 ногой 494 и шиной +12 В, заменил на переменный резистор 45к. Включил блок — напряжение по шине +12 В регулируется в пределе +2,7…+12,4 В, проверил на кз;

-удалил диод с шины -12 В, находится за резистором, если идти от провода. По шине -5 В слежения не было. Иногда стоит стабилитрон, суть его одна — ограничение выходного напряжения. Выпаивание микруху 7905 уводит блок в защиту. Проверил блок на включение и кз;

-резистор 2,7к от 1 ножки 494 на массу заменил на 2к, там их несколько, но именно изменение 2,7к дает возможность изменить предел выходное напряжения. Например, при помощи резистора на 2к на шине +12 В стало возможным регулировать напряжение до 20 В, соответственно увеличив 2,7к до 4к максимальное напряжение стало +8 В. Проверил блок на включение и кз;

-заменил выходные конденсаторы на шинах 12 В на максимальное 35 В, шинах 5 В на 16 В;

-заменил спаренный диод шины +12 В, был tdl020-05f c напряжение до 20 В но током 5 А, поставил sbl3040pt на 40 А, выпаивать из шины +5 В не надо — нарушится обратная связь на 494. Проверил блок;

-измерил ток через лампу накаливания по входу — при достижении потребления тока в нагрузке 3 А лампа по входу светилась ярко, но ток на нагрузке больше не рос, просаживало напряжение, ток через лампу был 0,5 А, что укладывалось в ток родного предохранителя. Убрал лампу и поставил обратно родной предохранитель на 2 А;

-перевернул вентилятор обдува чтобы воздух вдувало внутрь блока и охлаждение радиатора было эффективнее.

В результате замены двух резисторов, трех конденсаторов и диода получилось переделать компьютерный блок питания в регулируемый лабораторный с выходном током больше 10 А и напряжением 20 В. Минус в отсутствии регулирования тока, но зато осталась защита от кз. Лично мне регулировать так не надо — блок итак выдает больше 10 А.

Переходим к практической реализации. Есть блок, правда TX. Но у него есть кнопка включения, тоже удобно для лабораторного. Блок способен выдать 200 Вт с заявленным током по 12 В — 8А и 5 В — 20 А.

На блоке написано, что вскрывать нельзя и внутри нет ничего такого для любителей. Так что мы вроде как профессионалы. На блоке есть переключатель на 110/220 В. Переключатель конечно удалим за ненадобностью, а вот кнопку оставим — пусть работает.

Внутренности более чем скромные — нет входного дроселя и заряд входных кондеров идет через резистор, а не через термистор, в результате идет потеря энергия, которая нагревает резистор.

Выбрасываем провода на переключатель 110 В и все что мешает отделить плату от корпуса.

Заменяем резистор на термистор и впаиваем дроссель. Убираем входной предохранитель и впаиваем вместо него лампочку накаливания.

Проверяем работу схему — входная лампа светится на токе примерно 0,2 А. Нагрузкой является лампа 24 В 60 Вт. Светится лампа на 12 В. Все хорошо и проверка на короткое замыкание работает.

Находим резистор от 1 ноги 494 к +12 В и поднимаем ногу. Подпаиваем переменный резистор вместо него. Теперь будет регулирование напряжения на нагрузке.

Ищем резисторы от 1 ноги 494 к общему минусу. Здесь их три. Все достаточно высокоомные, я выпаял самый низкоомный резистор на 10к и запаял вместо него на 2к. Это увеличило предел регулирования до 20 В. Правда при тесте этого еще не видно, срабатывает защита от перенапряжения.

Находим диод на шине -12 В, стоит после резистора и поднимаем его ногу. Это отключит защиту от перенапряжений. Теперь все должно быть.

Теперь меняем выходной конденсатор на шине +12 В на предел 25 В. И плюс 8 А это с натяжкой для маленького выпрямительного диода, так что и этот элемент меняем на что-то более силовое. И конечно включаем и проверяем. Обязательно проверяем срабатывание защиты при коротком. И делается это при включенной лампе по входу. Ток и напряжение при наличии лампы по входу может сильно не расти если нагрузка подключена. Если нагрузку отключить, то напряжение регулируется до +20 В.

Если все устраивает — меняем лампу на предохранитель. И даем блоку нагрузку.

Для визуальной оценки напряжения и тока я использовал цифровой индикатор с алиэкспрес. Тут еще был такой момент — напряжение на шине +12В начинало с 2,5В и это было не очень приятно. А вот на шине +5В от 0,4В. Поэтому я объединил шины при помощи переключателя. Сам индикатор имеет 5 провод на подключение: 3 на измерение напряжения и 2 на ток. Индикатор питается напряжением от 4,5В. Дежурное питание как раз составляет 5В и им питается микруха tl494.

Очень рад что удалось переделать компьютерный блок питания. Всем удачной переделки.

ИСТОЧНИК ПИТАНИЯ ATX 200W ДЛЯ ПК

Введение

Предлагаю вашему вниманию электрические схемы блока питания компьютеров компании DTK. Этот блок питания имеет дизайн ATX и производительность 200 Вт. Нарисовали схему, когда я ремонтировал этот блок питания.

Принципиальная схема

Описание схемы

В этой схеме питания используется микросхема TL494. Подобная схема используется в большинстве блоков питания с выходной мощностью около 200Вт. В приборе используется двухтактная транзисторная схема с регулировкой выходного напряжения.

Входная часть резервного питания

Сетевое напряжение проходит через цепь входного фильтра (C1, R1, T1, C4, T5) на мостовой выпрямитель. При переключении напряжения с 230 В на 115 В выпрямитель работает как дублер. Варисторы Z1 и Z2 имеют функцию защиты от перенапряжения. на линейном входе. Термистор NTCR1 ограничивает входной ток до конденсаторов C5. и C6 заряжены. R2 и R3 предназначены только для разрядных конденсаторов после отключение питания. Когда источник питания подключен к сетевому напряжению, затем сначала заряжаются конденсаторы C5 и C6 вместе примерно на 300 В.Затем включите вторичный источник питания, управляемый транзистором Q12 и на его на выходе будет напряжение. За регулятором напряжения IC3 будет напряжение 5В, который входит в материнскую плату и необходим для логики включения и для Функция «Разбудить по чему-нибудь». Следующее нестабилизированное напряжение проходит через диод D30. к основной управляющей микросхеме IC1 и управляющим транзисторам Q3 и Q4. Когда основная мощность питание подается, то это напряжение идет с выхода +12 В через диод D.

Дежурный режим

В режиме ожидания основной источник питания заблокирован положительным напряжением на PS-ON. вывод через резистор R23 от вторичного источника питания.Из-за этого напряжения открыт транзистор Q10, открывающий Q1, который применяется опорное напряжение + 5V с контакта 14 IO1 на контакт 4 IO1. Коммутируемая цепь полностью заблокирована. Транзисторы Q3 и Q4 являются как разомкнутыми, так и короткозамкнутыми обмотками вспомогательного трансформатора T2. Из-за короткого замыкания в силовой цепи отсутствует напряжение. По напряжению на выводе 4 мы можем установить максимальную ширину импульса на выходе IO1. Нулевое напряжение означает самая высокая ширина импульса. + 5В означает, что пульс пропал.

Начало поставки

Кто-то нажимает кнопку питания на компьютере.Логика материнской платы заземлена входной контакт PS-ON. Транзистор Q10 закрывается, а следующий Q1 закрывается. Конденсатор С15 начинает свою зарядку через R15 и на выводе 4 начинается IC1. снизить напряжение до нуля благодаря R17. Благодаря этому напряжение максимально длительность импульса непрерывно увеличивается, и основной источник питания плавно работает.

Нормальный режим работы

В нормальном режиме питание контролируется IC1. Когда транзисторы Q1 и Q2 закрываются, затем Q3 и Q4 открываются. Когда мы хотим открыть один из силовых транзисторов (Q1, Q2), мы должны закрыть его возбуждающий транзистор (Q3, Q4).Ток идет через R46 и D14 и одну обмотку. Т2. Этот ток возбуждает напряжение на базе силового транзистора и из-за положительного Транзистор обратной связи быстро переходит в насыщение. Когда импульс закончится, оба возбуждающих транзистора открываются. Положительные отзывы исчезают и быстро выходят за пределы возбуждающей обмотки закрывает силовой транзистор. После этого процесс повторяется со вторым транзистором. Транзисторы Q1 и Q2 поочередно подключают один конец первичной обмотки к положительное или отрицательное напряжение.Силовая ветвь идет от эмиттера Q1 (коллектора Q2) через третью обмотку возбуждающий трансформатор Т2. Далее через первичную обмотку главного трансформатора Т3 и конденсатор С7 к виртуальному центру напряжения питания.

Регулировка выходного напряжения

Выходные напряжения + 5В и + 12В измеряются R25 и R26, и их выход к IC1. Остальные напряжения не стабилизируются и оправдываются обмоткой номер и полярность диода. На выходе необходима катушка реактивного сопротивления из-за высокочастотные помехи.Это напряжение рассчитывается исходя из напряжения перед катушкой, длительности импульса и продолжительности цикла. На выходе за выпрямительными диодами находится общая катушка для всех напряжений. Когда мы сохраняем направление обмоток и номер обмотки, соответствующие выходу напряжения, то катушка работает как трансформатор, и у нас есть компенсация нерегулярная нагрузка отдельных напряжений. Обычной практикой являются отклонения напряжения до 10% от номинального значения. Из внутреннего опорного 5V регулятора (вывод 14 IC1) проходит опорное напряжение через делитель напряжения R24 / R19 на инвертирующий вход (вывод 2) ошибки усилитель мощности.С выхода блока питания через делитель поступает напряжение. R25, R26 / R20, R21 к неинвертирующему входу (контакт 1). Обратная связь C1, R18 обеспечивает стабильность регулятора. Напряжение от усилителя ошибки сравнивается с рампой напряжение на конденсаторе C11. Когда выходное напряжение уменьшается, тогда напряжение на усилителе ошибки слишком велико. уменьшилось. Возбуждающий импульс длиннее, силовые транзисторы Q1 и Q2 длиннее разомкнут, ширина импульса перед выходной катушкой больше, выходная мощность выросла. Второй усилитель ошибки блокируется напряжением на выводе 15 IC1.

PowerGood

Материнской плате необходим сигнал PowerGood. Когда все выходные напряжения станут стабильными, затем сигнал PowerGood переходит на + 5В (логическая единица). Сигнал PowerGood обычно подключен к сигналу RESET.

+ 3.3V Регулировка напряжения

Посмотрите на цепь, подключенную к выходному напряжению + 3,3 В. Эта схема делает дополнительные стабилизация напряжения из-за пропадания напряжения на кабелях. Есть один вспомогательный провод от разъема для измерения напряжения 3.3В на материнской плате.

Цепь повышенного напряжения

Эта схема состоит из Q5, Q6 и множества дискретных компонентов. Схема защищает все выходные напряжения, и когда некоторый предел превышен, мощность поставка остановлена.
Например, когда я по ошибке замыкаю -5V на + 5V, тогда положительное напряжение проходит через D10, R28, D9 до базового Q6. Этот транзистор теперь открыт и открывается Q5. + 5В с вывода 14 IC1 через диод D11 на вывод 4 IC1 и источник питания заблокирован. После этого напряжение снова поступает на базу Q6.Блок питания по-прежнему заблокирован, пока он не будет отключен от входа линии питания.

Ссылки

Разъем питания ATX
Штырь Сигнал Цвет 1 Цвет 2 Штырь Сигнал Цвет 1 Цвет 2
1 3,3 В оранжевый фиолетовый 11 3,3 V оранжевый фиолетовый
2 3.3V оранжевый фиолетовый 12 -12V синий синий
3 GND черный черный 13 GND черный черный
4 5V красный красный 14 PS_ON зеленый серый
5 GND черный черный 15 GND черный черный
6 5V красный красный 16 GND черный черный
7 GND черный черный 17 GND черный черный
8 PW_OK серый оранжевый 18 -5V белый белый
9 5V_SB фиолетовый коричневый 19 5V красный красный
10 12В желтый желтый 20 5V красный красный

A Цифровой блок питания постоянного тока (программируемый настольный блок питания), версия оборудования 3.0

tuxgraphics.org: Цифровой блок питания постоянного тока (настольный программируемый блок питания), аппаратная версия 3.0

http://tuxgraphics.org/electronics




A Цифровой блок питания постоянного тока (настольный программируемый блок питания), аппаратная версия 3.0

Аннотация :

Хороший, надежный и простой в использовании настольный блок питания, наверное, самый важное и наиболее используемое устройство в каждой электронной лаборатории.

Правильная электронная стабилизация Настольный блок питания — важное, но тоже дорогостоящее устройство.Используя конструкцию на основе микроконтроллера, мы можем построить мощный блок питания, который имеет множество дополнительных функций, прост в сборке и очень доступен.

Цифровой источник питания постоянного тока tuxgraphics был очень успешный продукт и это уже третье поколение. Он по-прежнему основан на той же идее, что и первая версия, но поставляется с рядом хороших улучшений.


_________________ _________________ _________________

Введение

Этот настольный блок питания менее сложен, чем большинство других схем, но имеет намного больше возможностей:
  1. На дисплее отображаются фактические значения измерения напряжения и тока.
  2. На дисплее отображаются предварительно установленные пределы для напряжения и тока.
  3. Используются только стандартные компоненты (без специальных чипов).
  4. Требуется только один источник питания (нет отдельного отрицательного напряжения питания для рабочего усилители или управляющую логику)
  5. Вы можете управлять блоком питания с ПК. Ты можешь читать ток и напряжение, и вы можете установить их с помощью простых команд. Это очень полезно для автоматизированного тестирования.
  6. Имеется небольшая кнопочная панель для прямого ввода желаемого напряжения и макс.текущий.
  7. Он действительно маленький, но мощный.
Как можно было удалить компоненты и добавить дополнительные функции? Хитрость в том, чтобы функция перемещения, которая обычно основана на аналоговых компонентах, таких как усилители в микроконтроллер. Другими словами, сложность программное обеспечение и алгоритмы выше, но сложность оборудования снижена. Этот снижает общую сложность для вас, поскольку программное обеспечение можно просто скопировать.

Основная идея электрического проектирования

Распространенное заблуждение о цифровых источниках питания состоит в том, что люди предполагают, что все цифровое, и не понимают, как возможно, это могло бы работать со схемой на базе микроконтроллера.Мы хотим чистое и стабильное аналоговое напряжение на выходе, и для этого мы используем аналоговые компоненты. Только аналоговые компоненты быстрые достаточно, чтобы удалить рябь из-за изменений нагрузки или оставшегося шума 50/60 Гц.

Напряжение эмиттера на транзисторе связано с напряжением на базе, а не с входным напряжением на коллекторе. Однако основной ток течет от C к E. Эта простая схема производит чистое постоянное напряжение. Он устраняет шум, проникающий через штырь коллектора, и контролирует изменения нагрузки на стороне эмиттера.


Другими словами, наш цифровой блок питания имеет полностью аналоговую систему управления. для быстрого реагирования на изменения нагрузки и напряжения, и мы накладываем вторая цифровая система управления для более интересных функций, которые необходимы настольному блоку питания. Давайте удалим батарею из этой схемы и построим простейший источник питания с электронной стабилизацией. Он состоит из 2 основных частей: транзистор и опорное напряжение генерируется с Z-диодом.

Выходное напряжение этой цепи Uref — 0.7В. 0,7 В примерно падение напряжения между B и E на транзисторе. Z-диод и резистор генерирования опорного напряжения, который является стабильным, даже если входной колеблется и шумит. Транзистор необходим для работы с более высокими токами. чем могут обеспечить только Z-диод и резистор. В этой конфигурации транзистор просто усиливает ток. Ток, который резистор и Требуемый Z-диод представляет собой выходной ток, деленный на hfe (hef — это число который вы можете найти в техническом описании транзистора).

Какие проблемы с этой схемой?

  • Транзистор умрет при коротком замыкании на выходе.
  • Обеспечивает только фиксированное выходное напряжение.
Это довольно серьезные ограничения, которые делают эту схему непригодной для использования, но это схема по-прежнему является основным строительным блоком всех источников питания с электронным регулированием.

Чтобы преодолеть эти проблемы, вам необходимо некоторый «интеллект», который будет регулировать Ток на выходе и переменного опорного напряжения.Это все (… и это значительно усложняет схему).

В течение последних нескольких десятилетий люди использовали операционные усилители для обеспечения этого интеллект. Операционные усилители могут в основном использоваться как аналоговые калькуляторы для сложить, вычесть, умножить или логически «или» напряжения и токи.

Сегодня микроконтроллеры настолько быстры, что все это можно легко сделать программно. Прелесть в том, что в качестве побочного эффекта вы получаете вольтметр и амперметр. бесплатно. Контур управления в микроконтроллерах должен знать напряжение и текущие значения так или иначе.Вам просто нужно отобразить их. Что нам нужно от микроконтроллера:

  • АЦП для измерения напряжения и актуален все время
  • DA-преобразователь для управления нашим силовым транзистором (обеспечьте опорное напряжение)
Проблема в том, что DA-преобразователь должен быть очень быстрым. Если есть короткое цепь обнаружена на выходе, то мы должны немедленно снизить напряжение на базе транзистора иначе сдохнет. Быстро значит внутри миллисекунды (как у операционного усилителя).

ATmega8 имеет аналого-цифровой преобразователь, который более чем достаточно быстрый, но имеет на первый взгляд нет DA-преобразователя. Возможно использование широтно-импульсной модуляции (ШИМ) и аналоговый фильтр нижних частот, чтобы получить DA-преобразователь, но только ШИМ слишком медленный для программной защиты от короткого замыкания. Как быстро построить DA-преобразователь?

Лестница Р-2Р

Есть много способов построить цифро-аналоговый преобразователь, но нам нужен быстрый и дешевый, который легко подключается к нашему микроконтроллеру.Существует схема DA-преобразователя, известная как «лестница R-2R». Он состоит из резисторов и только переключатели. Есть два типа резисторов. Один со значением R и один с удвоенным значением R.

Выше показан 3-битный преобразователь R2R-DA. Логика управления перемещает переключатели между GND и Vcc. Цифровая «единица» соединяет коммутатор с Vcc, а цифровая «нуль» к GND. Что делает эта схема? Он выдает напряжения с шагом Vcc / 8. Обычно выходное напряжение равно Z * (Vcc / (Zmax + 1), где Z — цифровой число.В случае 3-битного аналого-цифрового преобразователя это: 0-7.

Внутреннее сопротивление цепи, если смотреть с выхода, равно R.

Вместо использования отдельных переключателей мы можем подключить лестницу R-2R к выходные линии микроконтроллера.

Генерация переменного сигнала постоянного тока с ШИМ (широтно-импульсной модуляцией)

Широтно-импульсная модуляция — это метод где вы генерируете импульсы и пропускаете их через фильтр нижних частот с частотой среза намного ниже частоты импульсов.Это приводит к сигналу постоянного тока, и напряжение зависит от ширины этих импульсов.
Использование ШИМ для генерации переменного напряжения постоянного тока.

Atmega8 обеспечивает аппаратное обеспечение 16-битный ШИМ. То есть: теоретически у вас может быть 16-битный ЦАП с всего очень мало компонентов. Чтобы получить истинный сигнал постоянного тока из сигнала ШИМ, необходимо усреднить это может быть проблемой при высоком разрешении. Чем выше точность, тем ниже частота сигнала ШИМ.Это снова означает, что вам нужны конденсаторы большой емкости и время отклика. очень медленно. Первое и второе поколение цифрового источника питания постоянного тока имело 10-битный R2R-лестничный ЦАП. То есть: выход может быть установлен с шагом 1024. Если вы запустите atmega на частоте 8 МГц и используете 10-битный ЦАП с ШИМ, тогда импульсы сигнала ШИМ имеют частоту 8 МГц / 1024 = 7,8 кГц. Чтобы получить из этого несколько хороший сигнал постоянного тока, вам нужно его отфильтровать с фильтром нижних частот второго порядка 700 Гц или меньше.

Вы можете себе представить, что произойдет, если использовать 16-битный ШИМ.8 МГц / 65536 = 122 Гц. Для этого понадобится НЧ 12 Гц.

Объединение R2R-лестницы и PWM

Возможно совмещение идеи ШИМ и R2R-лестницы. В этом дизайне мы будем использовать 7-битную R2R-лестницу в сочетании с 5-битной ШИМ-сигнал. С системными часами 8 МГц и разрешением 5 бит мы получим сигнал 250 кГц. 250 кГц можно преобразовать даже с небольшими конденсаторами в сигнал постоянного тока.

Оригинальная версия цифрового блока питания постоянного тока tuxgraphics имела 10-битный ЦАП на основе лестницы R2R.В этом новом дизайне мы используем R2R-лестница и ШИМ с общим разрешением 12 бит.

Передискретизация

За счет некоторого времени обработки можно увеличить разрешение аналого-цифрового преобразователя (АЦП). Это называется передискретизацией.
Четырехкратная передискретизация дает двойное разрешение. То есть: 4 подряд сэмплы можно использовать, чтобы получить вдвое больше шагов на АЦП. Теория передискретизации объясняется в PDF-документе, который вы можете найти в конце этой статьи.Мы используем передискретизация для контура регулирования напряжения. Для текущего контура управления мы используем исходное разрешение АЦП, так как время отклика здесь больше важнее, чем разрешение.

Детальный проект

Итак, вот теперь более подробный дизайн вышеуказанной схемы.

Некоторые технические детали все еще отсутствуют:
  • ЦАП (цифро-аналоговый преобразователь) не может обеспечить ток для привода силовой транзистор
  • Микроконтроллер работает при 5 В, поэтому максимальный выход ЦАП составляет 5 В. это означает, что максимальное выходное напряжение за силовым транзистором будет 5-0.7 = 4,3 В.
Чтобы исправить это, мы должны добавить усилители тока и напряжения.

Добавление усилительного каскада к ЦАП

Добавляя усилители, мы должны помнить, что они должны работать с большими сигналы. Большинство конструкций усилителей (например, для аудио) выполнены в предположении что сигналы будут слабыми по сравнению с напряжением питания. Так что забудь все классические книги о конструкции транзисторных усилителей.

Мы могли бы использовать операционные усилители, но для этого потребуются дополнительные положительные и отрицательные напряжения питания, которых мы хотим избежать.

Существует также дополнительное требование, чтобы усилитель шел с нуля. напряжение до стабильного состояния без колебаний. На словах не должно быть коротких колебаний или скачков выходного сигнала при переключении. на блоке питания.

На схеме ниже показан каскад усиления, который подходит для этой цели.

Начнем с силового транзистора. Мы используем BD245 (Q1). Согласно даташиту этот транзистор имеет hfe = 20 на выходе 3А. Таким образом, он потребляет около 150 мА.Для усиления тока мы используем конфигурация, известная как «транзистор Дарлингтона». Для этого ставим среднюю мощность транзистор спереди. Обычно они имеют значение hfe от 50 до 100. Это уменьшит ток, необходимый для менее 3 мА (150 мА / 50). 3 мА можно управлять с помощью транзисторов с малым сигналом, таких как BC547 / BC557. Те Тогда малосигнальные транзисторы очень хороши для построения усилителя напряжения.

Для выхода 30 В мы должны как минимум усилить 5 В от ЦАП в 6 раз. Для этого мы объединяем транзисторы PNP и NPN, как показано выше.Усиление напряжения коэффициент этой схемы составляет:

Vampl = (R6 + R7) / R7
 
Источник питания должен быть Доступны 2 версии: макс. выход 30 и макс. выход 22 В. Комбинация 1К и 6,8K дает коэффициент 7,8, что хорошо для версии 30V и имеет некоторые место для возможных потерь из-за более высоких токов (наша формула линейна. нелинейна). Для 22V версии мы используем 1К и 4,7К.

Внутреннее сопротивление цепи, как видно на основе BC547, составляет:

Rin = hfe1 * S1 * R7 * R5 = 100 * 50 * 1K * 47K = 235 МОм

- hfe составляет от 100 до 200 для транзистора BC547
- S - наклон кривой усиления транзистора и равен
 около 50 [единица = 1 / Ом]
 
Этого более чем достаточно для подключения к нашему ЦАП с внутренним сопротивлением 5 кОм.

Внутреннее эквивалентное выходное сопротивление:

Rout = (R6 + R7) / (S1 + S2 * R5 * R7) = около 2 Ом
 
Достаточно низкий, чтобы управлять следующим транзистором Q2.

R5 связывает основу BC557 с эмиттер, что означает «выключено» для транзистора, пока не появятся ЦАП и BC547. R7 и R6 сначала связывают основание Q2 с землей, что закрывает выход. Дарлингтон упал.
Другими словами, все компоненты в этом усилительном каскаде изначально отключены. Это означает, что мы не получим от этих транзисторов никаких колебаний или выходного сигнала. заглядывает при включении или выключении.Очень важный момент. Я видел дорогое промышленные блоки питания, которые вырабатывают скачок напряжения при отключении питания. Такой однозначно следует избегать источника питания, так как он может легко убить чувствительную схемы.

Пределы

Из предыдущего опыта я знаю, что некоторые читатели хотели бы немного «настроить» схему. Вот список аппаратных ограничений и как их побороть:
BD245B: 10А 80Вт. Однако 80W имеют температуру 25 ° C.
        Другими словами, добавьте запас прочности и рассчитайте для 60-70 Вт:
        (Максимальное входное напряжение * Максимальный ток) <65 Вт

        Вы можете добавить второй BD245B, чтобы увеличить мощность до 120 Вт.Для обеспечения
        чтобы ток распределялся поровну добавить резистор 0,22 Ом
        в линию эмиттера каждого BD245B.
        Можно использовать ту же схему и плату. Установите транзисторы
        на соответствующий алюминиевый кулер и соедините их короткими
        провода к плате. Усилитель может управлять вторым силовым транзистором.
        (это максимум), но вам может потребоваться отрегулировать
        коэффициент усиления.

Шунт для измерения тока:
        Мы используем резистор 0,75 Ом на 6 Вт.2 * 0,75 <= 6 Вт). Используйте резистор
        с большей мощностью для более высоких токов.
 

Источники питания

Вы можете использовать трансформатор, выпрямитель и большие конденсаторы или Вы можете попробовать получить блок питания для ноутбука 32/24 В. Я выбрал более поздний вариант. Эти "кирпичики" блока питания ноутбука иногда продаются очень дешево (на складе), а некоторые из них предоставляют 70 Вт при 24 В или даже 32 В постоянного тока.

Большинство людей, вероятно, выберут трансформатор, потому что он очень легко достать.

22В 2.Версия 5А: нужен трансформатор 18В 3А, выпрямитель
                   и конденсатор емкостью 2200 мкФ или 3300 мкФ. (причина: 18 * 1,4 = 25В)

Версия 30V 2A: вам понадобится трансформатор 24V 2.5A, выпрямитель и
                   конденсатор емкостью 2200 мкФ или 3300 мкФ. (причина: 24 * 1,4 = 33,6 В)

Не помешает купить трансформатор, который может дать больше тока.

Мост силовых диодов с 4 диодами, которые указаны для
низкое падение напряжения (например, BYV29-500) дает хорошее
выпрямитель.
 

Вы также можете используйте более «тяжелый» трансформатор.

Проверьте электрическую цепь на предмет надлежащей изоляции. Убедитесь, что не прикасайтесь к любой части, которая может находиться под напряжением 110/230 В, даже когда корпус открыт. Подключите все металлические части шасси к земле (не к GND цепи).

Трансформаторы и блоки питания ноутбуков

Если вы хотите использовать два или более блоков питания в цепи чтобы получить положительное и отрицательное напряжение для вашей схемы, тогда Важно, чтобы трансформатор был действительно изолирован. Быть осторожен с блоком питания ноутбука кирпичи.Они милые и маленькие, но некоторые из них может подключать минусовой вывод на выходе к заземляющему выводу на входе. Это приведет к короткому замыканию в заземляющем проводе, если вы используете два блока питания в цепи.

Другие ограничения по напряжению и току

Две предоставленные конфигурации: 22 В, 2,5 А и 30 В, 2 А. Если хочешь для создания версии с другими (более низкими) выходными напряжениями или ограничениями по току затем просто отредактируйте файл hardware_settings.h.

Пример: чтобы создать версию 18V 2.5A, вы просто отредактируете файл hardware_settings.час файл и измените максимальное выходное напряжение на 18 В.
Затем можно использовать источник питания 20 В, 2,5 А.

Пример: чтобы собрать версию 18V 1.5A, вы просто отредактируете hardware_settings.h файл и измените максимальное выходное напряжение на 18 В и макс. ток к 1.5A.
Затем можно использовать источник питания 20 В, 1,5 А.

Тестирование

Последним компонентом, который нужно припаять к плате, должен быть микроконтроллер. Перед тем, как вставить его, я бы порекомендовал провести несколько основных тестов оборудования:

Тест1: Подключите источник питания (не менее 10 В) к входу питания схемы и убедитесь, что за регулятором напряжения подается 5 В постоянного тока.

Test2: Измерьте выходное напряжение. Оно должно быть 0 В (или близким к нулю, например 0,15 В, и он упадет до нуля, если вы установите "нагрузку" от 2К до 5К на выходе.)

Test3: припаяйте микроконтроллер к плате и загрузите программное обеспечение для тестирования ЖК-дисплея, запустив в каталоге распакованного пакета tar.gz digitaldcpower.

сделать test_lcd.hex
сделать load_test_lcd
 
Вы должны увидеть на дисплее «ЖК-дисплей работает».

Теперь вы можете загрузить окончательную версию программного обеспечения.

Предупреждение для дальнейшего тестирования окончательной версии программного обеспечения: будьте осторожны с короткими цепей, пока вы не проверите функцию ограничения тока.Спасительный способ Проверка ограничения тока заключается в использовании резистора с низким сопротивлением, например автомобильной лампочки.

Установите нижний предел тока, например 30 мА при 10 В. Вы должны увидеть напряжение немедленно спуститься почти до нуля, как только вы подключите лампочку к выходу. Все еще есть ошибка в цепи, если он не выходит из строя. Автомобильная лампочка защитит мощность цепь питания, даже если есть неисправность, так как это не полное короткое замыкание.

Программное обеспечение

В этом разделе вы узнаете, как программное обеспечение работает, и вы можете использовать полученные знания для внесения изменений.Однако имейте в виду, что защита от короткого замыкания также программного обеспечения. Если где-то ошиблись, то эта защита может не работать. Если вы стали причиной короткого замыкания на выходе ваше оборудование может отключиться в облаке дыма. Чтобы избежать этого Вы должны использовать автомобильную лампочку 12 В (см. выше), чтобы проверить короткое замыкание охрана.

Теперь немного о структуре программного обеспечения. Сначала посмотрите на основную программу (файл main.c, загрузите в конце этого статья) вы увидите что выполняется всего несколько строк кода инициализации при включении, и затем программа входит в бесконечный цикл.
В этой программе действительно 2 бесконечных цикла. Один из них - это основной цикл ("while (1) {...}" в файле main.c) и другой - периодическое прерывание от аналогового цифрового Конвертер (функция "ISR (ADC_vect) {...}" в файле analog.c). Во время инициализации прерывание настраивается на выполнение каждого 104μ сек. Все выполняемые функции и код запускаются в контекст одной из этих задач (задача имя для процесса или поток выполнения в ОС реального времени, поэтому я использую это слово здесь, даже если нет ОС).


Задача прерывания может остановить выполнение основного цикла в в любой момент. Затем он будет выполняться без прерывания и затем выполнение снова продолжается в основном цикле на месте где это было прервано. Это имеет два последствия:
  1. Код в прерывании не должен быть слишком длинным, поскольку он должен закончить до появления следующего прерывания. Что здесь имеет значение количество инструкций в машинном коде. Математический формула, которая может быть записана как одна строка C-кода может приводят к сотням строк машинного кода.
  2. Переменные, которые вы разделяете между кодом прерывания и кодом в основной задаче может внезапно измениться в середине исполнение.
Все это означает, что такие сложные вещи, как обновление отображение, проверка кнопок, преобразование ампер и значения напряжения на внутренних блоках и т. д. должны выполняться в основном задача. В прерывании мы выполняем только то, что пора критические: контроль тока и напряжения, защита от перегрузки и настройка ЦАП.Чтобы избежать сложной математики все расчеты в прерывании производятся в блоках АЦП. То есть те же единицы, которые производит АЦП (целые значения от 0 ... 1023 для тока и 0..2047 для напряжений).

Это основная идея программы. Я также объясню что вы найдете в каких файлах, и тогда вы сможете понимать код (при условии, что вы знакомы с C).

Программное обеспечение: какой файл содержит что

main.c - в этом файле находится основная программа.Вся инициализация
         сделано отсюда. здесь. Здесь также реализован основной цикл.

analog.c - аналого-цифровой преобразователь и все такое
         работает в контексте задачи прерывания, можно найти здесь.

dac.c - цифро-аналоговый преобразователь. Инициализировано с ddcp.c, но
         используется только с analog.c

kbd.c - код клавиатуры

lcd.c - драйвер LCD. Это специальная версия, которая не понадобится
         вывод RW дисплея. Вместо этого он использует внутренний таймер
         который должен быть достаточно длинным, чтобы дисплей выполнил свою задачу.

Загрузка и использование программного обеспечения

Для загрузки программного обеспечения в микроконтроллер вам понадобится программист, например как avrusb500. Вы можете скачать архивы программного обеспечения в формате ziped в конце статьи.

Отредактируйте файл hardware_settings.h и настройте его в соответствии с оборудованием. Здесь же можно сделать калибровку вольтметра и амперметра. Файл хорошо прокомментирован.

gedit hardware_settings.h
 
Подсоедините кабель программатора и включите схему.Затем запустите:
сделать предохранитель

Это установит тактовую частоту микроконтроллера на 8 МГц. В
программное обеспечение рассчитано на эту частоту.

сделать

Это скомпилирует программное обеспечение.

сделать нагрузку

Это загрузит программное обеспечение.
 

Управление блоком питания с любого ПК (Win, Linux, Mac, ...)

Этим источником питания можно управлять с помощью 5 кнопок на передней панели. или через USB-соединение с ПК. Источник питания для интерфейса USB - дополнительная карта расширения.

Цифровой источник питания USB-интерфейс с гальванической развязкой.
Примечание: мы наконец решили использовать разъем USB-B. Блок питания
, показанный на заглавном изображении этой статьи, имеет другой разъем
, поскольку он был построен до принятия этого решения.

Карта предлагает гальваническую развязку так что вы можете использовать этот источник питания относительно любую контрольную точку (например, построить два блока питания и использовать один как отрицательный и один как положительный источник питания).

Гальваническая развязка достигается за счет использования двух микросхем оптопары.Информация передается световыми импульсами внутри чипа. но нет электрического соединения между приемником и передающая сторона.

Блок питания отображается как виртуальный com-порт на вашем компьютере. и вы можете подключиться к нему с помощью любого последовательного терминала. HyperTerminal - популярное программное обеспечение последовательного терминала для Windows но это немного сложно использовать. Я предпочитаю шпатлевку (http://www.chiark.greenend.org.uk/~sgtatham/putty/). Для Linux я могу порекомендовать Picocom (http://code.google.com / p / picocom /) Он прост и удобен в использовании. Просто запустите команду «picocom -l -b 9600 / dev / ttyUSB0», а чтобы отключить вы набираете Crtl-a Crtl-x.

Настройки порта следующие:

    скорость передачи: 9600
    четность: нет
    flowcontrol: нет
    стоп-биты: 1
    бит: 8
 

Командный интерфейс для источника питания

Блок питания принимает простые команды типа «u = ..» для установки напряжения. или «i = ..» для установки текущего.Также есть команда "help", которая объясняет все команды и синтаксис. В командной строке отображается та же информация, которую можно увидеть на ЖК-дисплее источника питания.

Управлять цифровым блоком питания можно командами. Число команд предусмотрены для этого. Они на данный момент доступно для Linux, Mac и Windows:

ddcp-script-ttyinit - инициализировать COM-порт (запустить один раз в
                        с начала)
ddcp-script-getval - получить текущие значения (такие же, как на ЖК-дисплее)
ddcp-script-setval - отправить команду на блок питания
 
С его помощью вы можете написать сценарий оболочки

Power Supply Circuits | Принципиальная электрическая схема.Org

Недорогая, качественная, стабильная и регулируемая цепь питания. Схема идеальна для использования в качестве лабораторного источника питания ...

Вот схема питания 5 В на микросхеме LM 7805. LM7805 - это известный стабилизатор положительного напряжения, ИС поставляется с тремя клеммами и обеспечивает фиксированный выход 5 В постоянного тока ...

Выходное напряжение регулируется от 1,25 В до 37 В, а максимальный выходной ток составляет 1,5 А. Схема очень проста в сборке и содержит меньше компонентов, но дает наилучшие результаты...

Регулируется от 0 до 15 В постоянного тока с токовым выходом 1 А. Все части схемы легко найти, транзистор 2N3055 и потенциометр обеспечивают регулировку ...

Схема, представленная ниже, предназначена для обеспечения стабильного напряжения от 1,2 В до 25 В и тока 3 А. Выходное напряжение можно регулировать с помощью потенциометра 2,7 кОм ...

Схема, упомянутая ниже, представляет собой простую и надежную схему источника питания, которая способна обеспечивать любое напряжение от 3 до 12 вольт, выбирая подходящие значения частей, вы можете получить напряжение в соответствии с вашими потребностями...

В схеме используется выходной трансформатор 16 В от сети 230 В. Конденсатор емкостью 470 мкФ фильтрует напряжения после выпрямления с помощью бёдерджа 2 А, а микросхема LM7809 ретранслирует его, чтобы обеспечить стабильное питание 9 В постоянного тока ...

Это схема простой цепи питания постоянного тока 12 В, 3 А, использующей транзистор 2N3055. Эта схема может быть очень полезна там, где вам нужен большой ток, например, 3A ...

У нас есть много электроники, которая работает от разных напряжений, таких как 4,5 В, 6 В, 9 В и т. Д., И мы можем запускать их с нашими батареями 12 В, используя схему преобразователя.Вот простая схема, которая подойдет ...

- схема умножителя напряжения, увеличивающая 12 В постоянного тока до 24 В постоянного тока. Схема основана на очень известной микросхеме NE555 ...

.

Схема, упомянутая здесь, обеспечивает выходное напряжение от 1,2 до 25 В с током 1,5 А. Цель ограничения выхода до 25 вольт - сделать схему простой и вневременной ...

Это принципиальная схема источника питания, обеспечивающего от 1,2 до 15 вольт. В этой схеме используется микросхема LM 1084, обеспечивающая регулируемый выходной ток в 3 ампера.Для ИС требуется радиатор ...

Эта схема очень проста в изготовлении и обеспечивает полезный регулируемый выход 9 вольт 2 ампера. В схеме используется микросхема IC 7809 для обеспечения регулируемого выхода. Вы можете использовать вход от 12 до 35 вольт постоянного тока. Схема настолько проста и очень полезна для электронных экспериментаторов ...

Очень маленькая, простая и легкая в сборке схема источника питания 1,3 В. Схема использует всего четыре компонента для выполнения своей задачи. Это универсальная схема, которую можно использовать для многих целей...

Авторские права 2018 CircuitDiagram.Org. Все права защищены .

Здравствуйте, читатели! Мы часто добавляем новые принципиальные схемы, поэтому не забывайте почаще возвращаться. Спасибо.

.

Добавить комментарий

Ваш адрес email не будет опубликован.