Чем больше сечение провода тем больше сопротивление: Страница не найдена

Содержание

Электрическое сопротивление проводника, проводимость материалов


Электрическое сопротивление проводника возникает при протекании по проводнику электрического тока. Т.е., когда при движении по проводнику электронов, происходит столкновение этих электронов с атомами проводника. При таком столкновении движущийся электрон выбивает из атома один из его свободных электронов и становится на его место, а часть энергии, полученной электроном от источника Э.Д.С., превращается в тепло, которое нагревает проводник. Выбитый электрон обладает уже меньшей энергией и с меньшей силой ударяет в следующий атом. Подобные столкновения испытывают многие, движущиеся по проводнику электроны, вследствие чего скорость их движения уменьшается и через поперечное сечение проводника будет протекать меньшее количество электронов (сила тока в цепи уменьшается). Можно сказать, что проводник оказывает противодействие протекающему по нему электрическому току. Такое свойство проводника и носит название электрического сопротивления проводника.

Чем длиннее проводник, меньше его поперечное сечение и больше его удельное сопротивление, тем больше сопротивление данного проводника.

R = Lρп / Sп

где:
R — сопротивление проводника;
L — длина проводника;
ρп — удельное сопротивление материала проводника, т.е. сопротивление 1 см3;
Sп — площадь поперечного сечения проводника.

Для измерения величины сопротивления введена единица измерения, которая носит название ом. Сопротивлением в 1 ом обладает ртутный столбик высотой в 106 см и поперечным сечением 1 мм2 при температуре 20° С (международный эталон).

Следует подчеркнуть, что под термином «сопротивление» понимают определённое свойство материала, провода или прибора. В этом смысле, например, говорят: лампа накаливания обладает сопротивлением 150 ом или провод имеет сопротивление 7 ом. Если же говорят об устройстве, предназначенном для включения в электрическую цепь с целью регулирования, уменьшения или ограничения тока цепи, то иногда под термином «сопротивление» подразумевают резистор.

Проводимость материалов

Иногда электропроводящие свойства проводника характеризуют не сопротивлением, а величиной, ему обратной. Эта величина носит название проводимости материалов

G = 1 / R


Провода

Провод устанавливает электрическое соединение между контактами. Как правило, сердечник состоит из волоченого или прокатного металла, длина которого превышает его диаметр.

В специфических для проводов свойствах можно задать признаки провода. Доступны следующие свойства:

Свойство

Описание

Поперечное сечение (CSA / )

Абсолютно необходимое свойство. Поперечное сечение «металлической части» провода, как правило, в [мм²] или [AWG]. В AWG отображается отдельное значение, где разность между метрической величиной и пересчитанным значением AWG не превышает 5 %. Если эта разность превышает 5 %, отображается диапазон значений.

AWG

Спецификация диаметра провода («American Wire Gauge», первоначальное название «Brown & Sharpe Gauge»). Числовая система для размеров проводов, в которой наименьшее число начинается с максимального размера. Интервалы между AWG-размерами составляют 20,6 % исходя из поперечного сечения. Чем меньше число AWG, тем больше диаметр провода.

Указание:

Если поперечное сечение задается в единице площади, то значение AWG заполняется автоматически.

С изоляцией

Если этот флажок установлен, на провод наносится изоляция, а внешний диаметр необходимо ввести вручную. Если он снят, внешний диаметр рассчитывается автоматически.

Внешний диаметр

Абсолютно необходимое свойство. Внешний диаметр провода, включая изоляцию.

Минимальный радиус изгиба

Минимально допустимый радиус изгиба в соответствии со списком данных используемого провода.

Указание:

Он кратен значению Внешний диаметр.

Макс. сопротивление

Максимально допустимое электрическое сопротивление провода.

Макс. напряжение

Максимально допустимое напряжение для надежной эксплуатации.

Макс. сила тока

Максимально допустимая сила тока для надежной эксплуатации.

Электрический класс объекта

Здесь можно задавать классификацию провода (произвольную определяемую пользователем классификацию, как например: «Высокое напряжение», «Данные», «Проверка» и т. д.). Это значение используется в качестве значения по умолчанию для поля провода в рабочем пространстве и может быть изменено в дальнейшем. Это позволит избежать маршрутизации проводов с высоким и низким напряжением в одном пучке. Такой конфликт может быть легко распознан в Списке задач рабочего пространства.

Сокращение материала

Сокращение для материала (напр., ПОЛИВИНИЛХЛОРИД = ПВХ).

Жилы кабелей

Непроводящий многопроволочный провод. Он повышает механическое сопротивление кабеля (в первую очередь устойчивость к растяжению).

Цвет

Цвет провода при размещении в рабочем пространстве и рабочем месте EPLAN Harness proD.

Заметка:

Цвета некоторых проводов могут изменяться в сборочной панели или в чертеже кабеля, чтобы их было видно. Например, можно увеличить контрастность проводов в сравнении с фоном (к примеру, для того чтобы избежать комбинации белых проводов на белом фоне).

Цвет полосы

Цвет полосы провода.

Штамп

Число или комбинация из символов и чисел, которая проштампована на проводе для его обозначения.

Электрическое сопротивление

(Слайдя  1)

Цель: создать условия для формирования у обучающихся представления об электрическом сопротивлении, его зависимости от разных величин через проведение фронтальных экспериментальных заданий и демонстрацию интерактивной модели  электрического тока в металлах.

Задачи:

  • Образовательные:
    • формировать у учащихся представление об электрическом сопротивлении проводников как физической величине;
    • дать объяснение природе электрического сопротивления на основании электронной теории при демонстрации интерактивной модели электрического тока в металлах;
    • показать зависимость сопротивления от размеров проводника при проведении фронтальных экспериментальных заданий.
  • Воспитательные:
    • воспитывать самостоятельность и инициативу учащихся,
    • пробуждать интерес к предмету,
    • способствовать воспитанию таких качеств, как: наблюдательность, внимание, аккуратность.
  • Развивающие:
    • развивать умения наблюдать физические явления, анализировать результаты эксперимента, делать обобщения и выводы.

Тип урока: урок изучения нового материала.

Вид урока: смешанный.

Оборудование:

  • Демонстрационное оборудование: источник питания, амперметр, вольтметр, реостат ползунковый, набор сопротивлений, ключ, провода с наконечниками.
  • Лабораторное оборудование: набор сопротивлений 1, 2 и 4 Ом.
  • Мультимедийное оборудование: компьютер, мультимедийный проектор, звуковые колонки, экран,  презентация, видеофрагмент «Электрический ток в металлах» Физика. 1С: Школа. Библиотека наглядных пособий. Дрофа.
  • Учебник: Перышкин А.В. Физика.8кл.: Учеб. для общеобразоват. учеб. заведений. – М.: Дрофа, 2011,

ХОД УРОКА

1. Организационный  момент

2. Актуализация знаний

Составьте тексты из фраз А, Б, В (слайд  2)

  А Б В
1. Сила тока равна… …отношению работы тока на данном участке… …к электрическому заряду, прошедшему по  участку.
2. Напряжение равно… …отношению электрического заряда, прошедшего через поперечное сечение проводника… …ко времени прохождения заряда
3. Амперметр включают в цепь… …параллельно участку цепи Единицы измерения –  В
4. Вольтметр включают в цепь… …последовательно с потребителем. Единицы измерения –  А

Код ответов (Слайд 3)

1А,2Б, 2В
2А, 1Б, 1В
3А, 4Б, 4В
4А, 3Б, 3В

– К каким точкам нужно подключить ВОЛЬТМЕТР, чтобы измерить напряжение на резисторе (Слайд 3, по щелчку) Ответ –  CD (Слайд 3, по щелчку)

3. Инструктаж по технике безопасности.

– Как называется такое соединение? (Зажимы вольтметра присоединяют к тем точкам цепи, между которыми надо измерить напряжение, такое  включение называется  параллельным.)
– Как включают амперметр в цепь? (Амперметр включают в цепь последовательно с тем прибором, силу тока в котором измеряют. )
– Что обязательно следует учитывать при включении амперметра и вольтметра? (Соблюдать полярность приборов и источника питания.)

4. Сообщение темы и цели урока.

– Сегодня на уроке мы будем изучать новую физическую величину Электрическое сопротивление (Слайд 4) Наша цель: выяснить в чем причина сопротивления от каких величин зависит

5. Изучение нового материала

План изложения нового материала (Слайд 4)

  1. Электрическое сопротивление.
  2. Зависимость сопротивления проводника от его длины, площади поперечного сечения и материала.
  3. Удельное сопротивление.

1. Демонстрация опыта:

– Проведем эксперимент (слайд 5), цель которого – показать, что сила тока в проводнике зависит не только от напряжения, но и от свойств самого проводника. Собираем электрическую цепь из источника тока и медной проволочки на колодке, выключателя, амперметра и вольтметра, реостата. Замыкаем цепь и записываем показания амперметра и вольтметра. Будем менять силу тока в цепи и измерять напряжение на участке, где включен резистор. Сделаем эти измерения с тремя резисторами. Вместо медной проволоки включаем железную такой же длины и сечения. Сила тока в цепи уменьшается. Если же включить никелиновую проволочку, то сила тока опять уменьшается. Вольтметр же при подключении к концам этих проволочек показывает одинаковое напряжение. (Слайд 6)

Вывод: сила тока в цепи  зависит от свойств проводников, включенных в цепь. Для всех трех случаев найдем отношение напряжения к силе тока. (Слайд 6, по щелчку)
В каждом из случаев напряжение прямо пропорционально силе тока: U ~ I.
Коэффициент пропорциональности – это из области математики.
А какое отношение эти числа 1, 2, 4 имеют к природе к току, к напряжению?

–  Вы видели, что сила тока и напряжение менялись, а коэффициент пропорциональности оставался неизменным. Он изменялся только тогда, когда мы заменяли проводник.

Вывод: коэффициент пропорциональности отражает какое-то свойство проводника! Его назвали электрическим сопротивлением!

Итак, сразу три открытия:

1) Напряжение прямо пропорционально силе тока  U ~I.
2) Сопротивление можно определить с помощью амперметра и вольтметра:
3) Чем больше сопротивление проводника, тем меньше сила тока.

2. Работа с интерактивной моделью.

–  Рассмотрим движение и взаимодействие частиц, из которых состоит проводник (Слайд 7, гиперссылка на видеосюжет)
–  Как движутся в проводниках свободные, отрицательно заряженные  электроны? (Беспорядочно, хаотично)
–  Как движутся в проводниках положительно заряженные ионы? (Колеблются около своего места)
–  Что представляет собой электрический ток в металлах? (Упорядоченное, направленное движение электронов проводимости под действием электрического поля). (Слайд 8)
–  Как движущиеся под действием электрического поля электроны проводимости взаимодействуют друг с другом? (Отталкиваются)
–  Как взаимодействуют те же электроны с положительно заряженными ионами кристаллической решетки проводника? (Притягиваются)
–  Электрическое поле ионов тормозит движение электронов, и скорость направленного движения потока их уменьшается.
Число электронов, прошедших через поперечное сечение проводника меньше в единицу времени. Взаимодействие электронов и с ионами – в результате чего наблюдается торможение электронов проводимости ионами кристаллической решетки металлов, и есть причина сопротивления.

Вы можете спросить, неужели так просто открываются законы природы (Слайд 9) Нет. У ученых того времени не было тогда тех приборов, которыми пользуемся мы с вами. У Георга Ома не было ни стабильного источника тока, ни амперметра, ни вольтметра. У него была другая установка.

Итак: (Слайд 10) – опорный конспект (ОК)

Электрическое сопротивление – физическая величина, обозначается  R

[R] = Ом. За единицу сопротивления принимают сопротивление такого проводника, в котором при напряжении на концах 1В сила тока равна 1А.

В лабораторной работе использовались резисторы с сопротивлением

R1 = 1 Ом,       R2 = 2 Ом,      R3 = 4 Ом.

Применяются и другие единицы сопротивления: миллиом (мОм), килом (кОм), мегаом (Мом)
Прибор для измерения сопротивления – Омметр.
Причиной электрического сопротивления являются столкновения электронов при своем движении с ионами кристаллической решетки. Чем больше столкновений, тем больше сопротивление.

3. Выполнение фронтальных экспериментальных заданий

Проблема:

– От чего и как зависит сопротивление проводника Чтобы разобраться в этом вопросе выполните экспериментальное задание.

Порядок выполнения работы

1) Рассмотрите имеющиеся у вас проволочные спирали. Запишите в тетрадь их паспортные данные (значения сопротивлений и допустимой силы тока)

2) Сравните длины проводов спиралей сопротивлением 1 и 2 Ом, подсчитав число их витков. Полагая, что обе спирали изготовлены из одного и того же материала, и имеют одинаковое сечение, сделайте вывод о зависимости сопротивления проводника от его длины.

3) Сравните длины проводов, из которых сделаны спирали сопротивлением 2 и 4 Ом. Оцените ориентировочно сечение проводов. Сделайте вывод о зависимости сопротивления проводника от площади его поперечного сечения.

4) Сформулируйте общий вывод о зависимости сопротивления проводника от его длины и площади поперечного сечения. Вывод запишите в тетрадь.

Выводы: сопротивление проводника зависит:

  • от длины проводника – чем больше длина, тем больше столкновений, тем больше сопротивление;
  • от сечения – чем больше сечение, тем больше электронов проходит через проводник в единицу времени, тем меньше сопротивление;
  • от свойств материала, обусловленных сопротивлением кристаллической решетки проводника (расположением атомов и расстоянием между ними).

4. Объяснение учителем нового материала

(Слайд 10) – опорный конспект (ОК) – продолжение.

Впервые это было экспериментально показано Г.Омом. Он установил, что сопротивление проводника прямо пропорционально длине, обратно пропорционально площади поперечного сечения и зависит от материала

Удельное сопротивление.

Если обозначить сопротивление проводника буквой – R, его длину буквой  – l, а площадь поперечного сечения – S, то формула для вычисления сопротивления будет иметь такой вид:

 

где  – коэффициент, характеризующий электрические свойства вещества, из которого изготовлен проводник. Этот коэффициент называется удельным сопротивлением вещества. Это такое сопротивление, которым обладает проводник из данного материала длиной 1 м и площадью поперечного сечения 1м2.  Для измерения используют:  или по формуле

5. Работа с учебником.

Рассмотрим таблицу удельных электрических сопротивлений некоторых веществ. (Табл. № 8, стр. 105.Учебник Физика-8, А.В.Перышкин) Поскольку сопротивление металлических проводников зависит от температуры (оно увеличивается при повышении температуры), то в таблице приводятся значения удельных сопротивлений для температуры 20оС
– Удельное сопротивление никелина  . Что это значит?
– Какие из веществ относятся к лучшим проводникам электричества?

Из таблицы следует, что серебро и медь – лучшие проводники электричества.

– Для нагревательных элементов удобно использовать вещества с большим удельным сопротивлением, назовите такие вещества нихром, удельное сопротивление никелина  .

6. Закрепление изученного. Решение задач

Задача 1

Вычислите сопротивление, если

1)   I = 3 А
      U = 15 В
2)   I = 0,3 А
      U = 3 В

Задача 2

Каково сопротивление медного провода длиной 1м и площадью поперечного сечения 1 мм2

Задача 3

Имеются две алюминиевые проволоки одинаковой толщины. Длина одной 1 м, а другой – 5 м. У какой проволоки  сопротивление меньше и во сколько раз

Задача 4

При устройстве молниеотвода использовали стальной провод сечением 35 мм2 и длиной 70 м. Определите его сопротивление.

7. Подведение итогов урока

Тест-контроль (Слайд 14)

Привести в соответствие строки в 1 и 2  графе

Самопроверка:

Код ответов (Слайд 15)

1 –  Г,
2 –  Ж,
3 – Е,
4 – З,
5 – Б,
6 – Д,
7 – В,
8 – И,
9 – А,
10 – К.

Контроль со стороны учителя по поднятой руке учащихся (кто выполнил задание 9-10 правильных ответов –  «5», 7-8 правильных ответов –  «4», 5-6 правильных ответов – «3», есть ли те, кто не справился с заданием)

8. Домашнее задание (Слайд 16)

§  43, 45, 46 выучить определения, формулы
Упр. 18(1, 2), 20(1, 2)

Экспериментальное задание.

По паспортным  данным лампочек елочных гирлянд и карманного фонаря рассчитайте сопротивление нитей накаливания.

Зависимость сопротивления от длины провода. Электрическое сопротивление проводника

Электрическое сопротивление проводника: 1) величина, характеризующая противодействие проводника или электрической цепи электрическому току;

2) структурный элемент электрической цепи, включаемый в цепь для ограничения или регулирования силы тока.

Электрическое сопротивление металлов з ависит от материала проводника, его длины и поперечного сечения, температуры и состояния проводника (давления, механических сил растяжения и сжатия, т.е. внешних факторов, влияющих на кристаллическое строение металлических проводников).

Зависимость сопротивления от материала, длины и площади поперечного сечения проводника:

где  — удельное сопротивление проводника;

l – длина проводника;

S – площадь поперечного сечения проводника.

Зависимость сопротивления проводника от температуры:

или
,

где R t – сопротивление при температуре t 0 C;

R 0 – сопротивление при 0 0 C;

— температурный коэффициент сопротивления, который показывает, как изменяется сопротивление проводника по отношению к его сопротивлению при 0 0 C, если температура изменяется на один градус;

T – термодинамическая температура.

Соединения сопротивлений: последовательное, параллельное, смешанное.

а) Последовательное соединение сопротивлений представляет собой систему проводников (сопротивлений), которые включены один за другим, так что через каждое из сопротивлений протекает один и тот же ток:

I = I 1 = I 2 == I n .

Напряжение при последовательном соединении сопротивлений равно сумме напряжений на каждом из сопротивлений:

.

Напряжение на каждом из последовательно соединенных сопротивлений пропорционально значению данного сопротивления:

.

Распределение напряжения по последовательно соединенным элементам цепи (делитель напряжения) :

,

U – напряжение на участке цепи с сопротивлением R 1 ;

R – полное сопротивление соединения;

R 1 – сопротивление участка цепи с выбранным сопротивлением.

равно сумме отдельно взятых сопротивлений и оно больше наибольшего из включенных:

.

Общее сопротивление цепи при последовательном соединении n одинаковых сопротивлений :

,

где n – число сопротивлений, включенных последовательно;

R 1 = значение отдельно взятого сопротивления.

б) Параллельное соединение сопротивлений: признаком такого соединения является разветвление тока I на отдельные токи через соответствующие сопротивления. При этом ток I равен сумме токов через отдельно взятое сопротивление:

.

Общее напряжение при параллельном соединении равно напряжению на отдельно взятом сопротивлении:

U = U 1 = U 2 = = U i .

Связь между током и сопротивлением при параллельном соединении: при параллельном соединении сопротивлений токи в отдельных проводниках обратно пропорциональны их сопротивлениям:

.

Величина, обратная полному сопротивлению цепи (общая проводимость) при параллельном соединении, равна сумме проводимостей отдельно взятых проводников. При этом общее сопротивление цепи меньше наименьшего сопротивления из включенных:

;
.

Общая проводимость цепи при параллельном соединении n проводников:

G пар = nG 1 ,

где G пар – проводимость цепи;

G 1 – проводимость отдельного взятого проводника.

Шунтирование электроизмерительных приборов – расширение предела измерения тока с помощью электроизмерительного прибора, к которому присоединяют параллельно проводник с малым сопротивлением (шунт). В этом случае

,

где I п – ток, протекающий через прибор;

I – ток в цепи;

n = R п /R ш – отношение сопротивления прибора R п к сопротивлению шунта R ш.

Добавочное сопротивление – сопротивление, которое присоединяют последовательно к электроизмерительному прибору для расширения предела измерения напряжения. При этом

,

где U п – напряжение на приборе;

U – напряжение в цепи;

N = R д /R п – отношение величины добавочного сопротивления к сопротивлению прибора.

Электрическая проводимость – физическая величина, обратная сопротивлению проводника:

.

Сверхпроводимость – свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определенной критической температуры T k , характерной для данного материала.

Связь удельной проводимости с удельным сопротивлением (удельным электрическим сопротивлением) :

;
.

Зависимость удельного сопротивления проводника от температуры :

,

где  t – удельное сопротивление при температуре t 0 C;

 0 – удельное сопротивление при 0 0 C;

— температурный коэффициент сопротивления, который показывает, как изменяется удельное сопротивление проводника по отношению к его удельному сопротивлению при 0 0 C, если температура изменяется на один градус.

Задания: 1. Ознакомиться с применяемыми в работе электроизмерительными приборами. Результаты занести в табл. 1.

Таблица 1.

2. Измерить удельное электрическое сопротивление.

1. Измерить микрометром в нескольких местах рабочей части проводника его диаметр. Рассчитать среднее значение диаметра.

2. Установить подвижный контакт на 0,5  0,7 от длины рабочей части проводника. Занести значение длины в таблицу 2.

3. Включить установку в сеть переменного тока с напряжением 220 В. При этом должна загореться индикаторная лампочка.

4. Провести измерения тока и напряжения. Результаты занести в таблицу 2.

Таблица 2.

5. Отключить установку. Установить подвижный контакт на другое значение рабочей части исследуемого проводника. Вновь включить установку и определить новые значения тока и напряжения.

Примечание. Изменение длины рабочей части проводника, определение тока и напряжения проводятся 3-5 раз.

6. Так как

,

, (1)

где  — удельное электросопротивление проводника;

ℓ — длина проводника;

S — площадь поперечного сечения.

, (2)

где
— погрешность вольтметра;

— приборная погрешность миллиамперметра;

 — задается преподавателем;

d, ℓ — определяются известными методами.

10. Записать полученный результат в виде доверительного интервала

То как влияет материал проводника учитывается при помощи удельного сопротивления, которое принято обозначать буквой греческого алфавита ρ и являет собой сопротивление проводника сечением 1 мм 2 и длинной 1 м. У серебра наименьшее удельное сопротивление ρ = 0,016 Ом.мм 2 /м. Ниже приводятся значения удельного сопротивления для нескольких проводников:

  • Сопротивление провода для серебра — 0,016,
  • Сопротивление провода для свинеца — 0,21,
  • Сопротивление провода для меди — 0,017,
  • Сопротивление провода для никелина — 0,42,
  • Сопротивление провода для люминия — 0,026,
  • Сопротивление провода для манганина — 0,42,
  • Сопротивление провода для вольфрама — 0,055,
  • Сопротивление провода для константана — 0,5,
  • Сопротивление провода для цинка — 0,06,
  • Сопротивление провода для ртути — 0,96,
  • Сопротивление провода для латуни — 0,07,
  • Сопротивление провода для нихрома — 1,05,
  • Сопротивление провода для стали — 0,1,
  • Сопротивление провода для фехрали -1,2,
  • Сопротивление провода для бронзы фосфористой — 0,11,
  • Сопротивление провода для хромаля — 1,45

Так как в состав сплавов входят разные количества примесей, то удельное сопротивление может изменятся. 2

  • где d — это диаметр провода.

Измерить диаметр провода можно микрометром либо штангенциркулем,но если их нету под рукой,то можно плотно намотать на ручку (карандаш) около 20 витков провода, затем измерить длину намотанного провода и разделить на количество витков.

Для определения длинны провода,которая нужна для достижения необходимого сопротивления,можно использовать формулу:

l=(S?R)/ρ

Примечания:

1.Если данные для провода отсутствуют в таблице,то берется некоторое среднее значение.Как пример,провод из никелина который имеет диаметр 0,18 мм площадь сечения равна приблизительно 0,025 мм2, сопротивление одного метра 18 Ом, а допустимый ток 0,075 А.

2.Данные последнего столбца,для другой плотности тока, необходимо изменить. Например при плотности тока 6 А/мм2, значение необходимо увеличить вдвое.

Пример 1 . Давайте найдем сопротивление 30 м медного провода диаметром 0,1 мм.

Решение . С помощью таблицы берем сопротивление 1 м медного провода, которое равно 2,2 Ом. Значит, сопротивление 30 м провода будет R = 30.2,2 = 66 Ом.

Расчет по формулам будет выглядеть так: площадь сечения: s= 0,78.0,12 = 0,0078 мм2. Поскольку удельное сопротивление меди ρ = 0,017 (Ом.мм2)/м, то получим R = 0,017.30/0,0078 = 65,50м.

Пример 2 . Сколько провода из манганина у которого диаметр 0,5 мм нужно чтобы изготовить реостат, сопротивлением 40 Ом?

Решение . По таблице выбираем сопротивление 1 м этого провода: R= 2,12 Ом: Чтобы изготовить реостат сопротивлением 40 Ом, нужен провод, длина которого l= 40/2,12=18,9 м.

Расчет по формулам будет выглядеть так. Площадь сечения провода s= 0,78.0,52 = 0,195 мм 2 . Длина провода l = 0,195.40/0,42 = 18,6 м.

При проектировании электросхем важно правильно выбрать материал и сечение проводов. Чаще всего для этих целей применяется медь, обладающая меньшим сопротивлением.

От чего зависит сопротивление металла

Электрический ток – это направленное движение заряженных частиц. В металлах это свободные электроны. Они двигаются между атомами кристаллической решётки. Сопротивление их движению зависит от металла или сплава, а также его температуры – при её повышении сопротивление провода электрическому току растёт.

Исключение составляют специальные сплавы, применяемые в измерительных приборах. Из них изготавливаются резисторы, не меняющие своих параметров при изменении температуры. Кроме того, для подключения термопар применяются двухжильные провода, сопротивление одного из которых при повышении температуры растёт, а другого – уменьшается. В результате параметры кабеля не меняется.

Удельное сопротивление различных металлов

Разные металлы обладают различными свойствами и используются для разных целей.

Медь и алюминий

Самыми распространёнными проводами являются медные и алюминиевые. У меди ниже электросопротивление, чем сопротивление алюминиевого провода, кабеля из неё имеют меньшее сечение. Она прочнее, это позволяет сделать кабеля тоньше, а также гибкими и многожильными. Кроме того, медь паяется оловянными припоями.

Но у алюминия есть одно преимущество: он намного дешевле. Поэтому его используют для намотки трансформаторов и прокладки проводки, при эксплуатации которой отсутствуют изгибы, движение или вибрация.

Другие металлы

  • Золото. Имеет самое малое электросопротивление, но из-за его цены используется только в отдельных местах в военной и космической технике;
  • Серебро. Обладает лучшим соотношением цена/качество, чем золото, но также применяется ограниченно, в основном для изготовления контактов и разъёмов – оно не окисляется;
  • Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Обладают высокой температурой плавления. Сопротивление нихрома и нихромовой проволоки достаточно большое для изготовления нагревателей и проволочных сопротивлений;
  • Вольфрам. Имеет высокое удельное сопротивление и очень тугоплавкий – 3422 градуса. Из него изготавливаются нити накала в электролампочках;
  • Константан. Сплав из меди, никеля и марганца, не меняющий своих свойств при изменениях температуры. Применяется для изготовления резисторов в измерительных приборах;
  • Компенсационные. Из этих сплавов изготавливаются кабеля для подключения термопар и других датчиков. При повышении температуры электросопротивление одного проводника увеличивается, а другого – уменьшается. В результате общее значение остаётся неизменным.

Интересно. В 50-е годы проектировались трансформаторы для высоковольтных подстанций с серебряными обмотками. С учётом пониженных потерь это было выгодно. Но из-за повышения цены на серебро на мировом рынке эти проекты не были реализованы.

Выбор сечения кабелей

При расчёте сечения токопроводящей жилы учитываются нагрев и падение напряжения в кабелях большой длины. Выполнить расчет сопротивления провода можно по специальным таблицам или при помощи онлайн-калькуляторов.

Сечение, рассчитанное по потерям, может быть больше или меньше рассчитанного по нагреву. Это зависит от длины кабеля. Для прокладки выбирается большее значение.

Выбор сечения проводника по допустимому нагреву

При протекании электрического тока по кабелю он греется. Этот нагрев может расплавить изоляцию, что приведёт к её разрушению и замыканию рядом расположенных проводов между собой или на заземлённые детали конструкций.

Важно! Разрушение изоляции и К.З. (короткое замыкание) могут привести к пожару.

Для того чтобы предотвратить подобную ситуацию, сечение кабеля должно соответствовать току нагрузки, типу изоляции и условиям прокладки. По проводам, проложенным открыто, или с термостойкой изоляцией можно пропускать больший ток, чем по кабелю, проложенному по трубам в виниловой или резиновой оболочке.

Выбор сечения по потерям напряжения

При протекании электрического тока по кабелю происходит уменьшение напряжения возле нагрузки. Это связано с тем, что, хотя и сопротивление небольшого куска провода, и падение напряжения на нём невелико, на большой длине оно может достичь значительной величины.

Например, удельное сопротивление медного провода – 0,017 Ом мм²/м. Но в одножильном кабеле длиной 100 м сечением 10 мм² оно составит 0,17Ом. При токе 80А (допустимому по нагреву) падение напряжения в сети 220В составит 27В (100 м фазного провода и 100 м нулевого с падением 13В в каждом проводнике). Поэтому при допустимом падении напряжения 2% или 5В сечение кабеля должно быть не меньше, чем 66 мм², или ближайшее большее стандартное значение – 75 мм².

Если расчет сечения по нагреву производится по рабочему току электродвигателя и на участке от вводного автомата до устройства, то расчёт по потерям необходимо производить по пусковому току с учётом всей длины кабелей: от магистрали до электромашины.

Сопротивление медного провода – это величина, влияющая на выбор кабелей и проводов для намотки катушек при проектировании электросхем, а также электродвигателей и трансформаторов. Знание того, как выполняется расчет сопротивления проводника, и необходимых формул поможет правильно спроектировать электропроводку и избежать аварийных ситуаций.

Видео

Электрическое сопротивление физическая величина, которая показывает, какое препятствие создается току при его прохождении по проводнику . Единицами измерения служат Омы, в честь Георга Ома. В своем законе он вывел формулу для нахождения сопротивления, которая приведена ниже.

Рассмотрим сопротивление проводников на примере металлов. Металлы имеют внутреннее строение в виде кристаллической решетки. Эта решетка имеет строгую упорядоченность, а её узлами являются положительно заряженные ионы. Носителями заряда в металле выступают “свободные” электроны, которые не принадлежат определенному атому, а хаотично перемещаются между узлами решетки. Из квантовой физики известно, что движение электронов в металле это распространение электромагнитной волны в твердом теле. То есть электрон в проводнике движется со скоростью света (практически), и доказано, что он проявляет свойства не только как частица, но еще и как волна. А сопротивление металла возникает в результате рассеяния электромагнитных волн (то есть электронов) на тепловых колебаниях решетки и её дефектах. При столкновении электронов с узлами кристаллической решетки часть энергии передается узлам, вследствие чего выделяется энергия. Эту энергию можно вычислить при постоянном токе , благодаря закону Джоуля-Ленца – Q=I 2 Rt. Как видите чем больше сопротивление, тем больше энергии выделяется.

Удельное сопротивление

Существует такое важное понятие как удельное сопротивление, это тоже самое сопротивление, только в единице длины. У каждого металла оно свое, например у меди оно равно 0,0175 Ом*мм2/м, у алюминия 0,0271 Ом*мм2/м. Это значит, брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 0,0175 Ом, а такой же брусок, но из алюминия будет иметь сопротивление 0,0271 Ом. Выходит что электропроводность меди выше чем у алюминия. У каждого металла удельное сопротивление свое, а рассчитать сопротивление всего проводника можно по формуле

где p – удельное сопротивление металла, l – длина проводника, s – площадь поперечного сечения.

Значения удельных сопротивлений приведены в таблице удельных сопротивлений металлов (20°C)

Вещество

p , Ом*мм 2 /2

α,10 -3 1/K

Алюминий

0.0271

Вольфрам

0.055

Железо

0.098

Золото

0.023

Латунь

0.025-0.06

Манганин

0.42-0.48

0,002-0,05

Медь

0.0175

Никель

Константан

0.44-0.52

0.02

Нихром

0.15

Серебро

0.016

Цинк

0.059

Кроме удельного сопротивления в таблице есть значения ТКС, об этом коэффициенте чуть позже.

Зависимость удельного сопротивления от деформаций


При холодной обработке металлов давлением, металл испытывает пластическую деформацию. При пластической деформации кристаллическая решетка искажается, количество дефектов становится больше. С увеличением дефектов кристаллической решетки, сопротивление течению электронов по проводнику растет, следовательно, удельное сопротивление металла увеличивается. К примеру, проволоку изготавливают методом протяжки, это значит, что металл испытывает пластическую деформацию, в результате чего, удельное сопротивление растет. На практике для уменьшения сопротивления применяют рекристаллизационный отжиг, это сложный технологический процесс, после которого кристаллическая решетка как бы, “расправляется” и количество дефектов уменьшается, следовательно, и сопротивление металла тоже.

При растяжении или сжатии, металл испытывает упругую деформацию. При упругой деформации вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличиваются, следовательно, электроны испытывают большие затруднения, и в связи с этим, увеличивается удельное сопротивление. При упругой деформации вызванной сжатием, амплитуды тепловых колебаний узлов уменьшаются, следовательно, электронам проще двигаться, и удельное сопротивление уменьшается.

Влияние температуры на удельное сопротивление

Как мы уже выяснили выше, причиной сопротивления в металле являются узлы кристаллической решетки и их колебания. Так вот, при увеличении температуры, тепловые колебания узлов увеличиваются, а значит, удельное сопротивление также увеличивается. Существует такая величина как температурный коэффициент сопротивления (ТКС), который показывает насколько увеличивается, или уменьшается удельное сопротивление металла при нагреве или охлаждении. Например, температурный коэффициент меди при 20 градусах по цельсию равен 4.1 · 10 − 3 1/градус. Это означает что при нагреве, к примеру, медной проволоки на 1 градус цельсия, её удельное сопротивление увеличится на 4.1 · 10 − 3 Ом. Удельное сопротивление при изменении температуры можно вычислить по формуле

где r это удельное сопротивление после нагрева, r 0 – удельное сопротивление до нагрева, a – температурный коэффициент сопротивления, t 2 – температура до нагрева, t 1 — температура после нагрева.

Подставив наши значения, мы получим: r=0,0175*(1+0.0041*(154-20))=0,0271 Ом*мм 2 /м. Как видите наш брусок из меди длиной 1 м и площадью поперечного сечения 1 мм 2 , после нагрева до 154 градусов, имел бы сопротивление, как у такого же бруска, только из алюминия и при температуре равной 20 градусов цельсия.

Свойство изменения сопротивления при изменении температуры, используется в термометрах сопротивления. Эти приборы могут измерять температуру основываясь на показаниях сопротивления. У термометров сопротивления высокая точность измерений, но малые диапазоны температур.

На практике, свойства проводников препятствовать прохождению тока используются очень широко. Примером может служить лампа накаливания, где нить из вольфрама, нагревается за счет высокого сопротивления металла, большой длины и узкого сечения. Или любой нагревательный прибор, где спираль разогревается благодаря высокому сопротивлению. В электротехнике, элемент главным свойством которого является сопротивление, называется – резистор . Резистор применяется практически в любой электрической схеме.

Понятие об электрическом сопротивлении и проводимости

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.

Сопротивление обозначается латинскими буквами R или r .

За единицу электрического сопротивления принят ом.

Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм2 при температуре 0° С.

Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4ом.

Для измерения сопротивлений большой величины принята единица, называемая мегомом.

Один мегом равен одному миллиону ом.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению и называемую, проводимостью.

Электрической проводимостью называется способность материала пропускать через себя электрический ток.

Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/R ,обозначается проводимость латинской буквой g.

Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления

Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа — 0,12, удельное сопротивление константана — 0,48, удельное сопротивление нихрома — 1-1,1.



Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника :

R = p l / S ,

Где — R — сопротивление проводника, ом, l — длина в проводника в м, S — площадь поперечного сечения проводника, мм 2 .

Площадь поперечного сечения круглого проводника вычисляется по формуле:

S = Пи х d 2 / 4

Где Пи — постоянная величина, равная 3,14; d — диаметр проводника.

А так определяется длина проводника:

l = S R / p ,

Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.

Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:

S = p l / R

Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:

р = R S / l

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.

Еще одной причиной, влияющей на сопротивление проводников, является температура .

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1°C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.

Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов .

Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре — 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

Сопротивление проводника. Электрическое сопротивление и проводимость

Сопротивление проводника – способность материала препятствовать протеканию электрического тока. Включая случай скин-эффекта переменных высокочастотных напряжений.

Физические определения

Материалы делятся классами согласно удельному сопротивлению. Рассматриваемая величина – сопротивление – считается ключевой, позволит выполнить градацию всех веществ, встречающихся в природе:

  1. Проводники – материалы с удельным сопротивлением до 10 мкОм м. Касается большинства металлов, графита.
  2. Диэлектрики – удельное сопротивление 100 МОм м — 10 ПОм м. Приставка Пета используется в контексте пятнадцатой степени десятки.
  3. Полупроводники – группа электротехнических материалов с удельным сопротивлением в диапазоне от проводников до диэлектриков.

Удельным сопротивление называется, позволяя охарактеризовать параметры отреза провода длиной 1 метр, площадью 1 квадратный метр. Чаще цифрами пользоваться неудобно. Сечение реального кабеля намного меньше. К примеру, для ПВ-3 площадь составляет десятки миллиметров. Расчет упрощается, если пользоваться единицами Ом кв.мм/м (см. рис.).

Удельное сопротивление металлов

Удельное сопротивление обозначается греческой буквой «ро», для получения показателя сопротивления величину домножим на длину, разделив на площадь образца. Перевод меж стандартными единицами измерения Ом м чаще используемыми для расчета показывает: взаимосвязь устанавливается через шестую степень десятки. Иногда удастся найти среди табличных значениях сведения, касающиеся удельного сопротивления меди:

  • 168 мкОм м;
  • 0,00175 Ом кв. мм / м.

Легко убедиться, цифры расходятся примерно на 4%, убедитесь, выполнив приведение единиц. Значит, цифры приводятся сортамента меди. При необходимости точных вычислений вопрос уточняется дополнительно, отдельно. Сведения об удельном сопротивлении образца получают чисто опытным путем. Отрез провода с известными сечением, длиной подсоединяется к контактам мультиметра. Для получения ответа требуется показания разделить на протяженность образца, домножить площадью сечения. В тестах полагается выбирать образец подлиннее, сократив до минимума погрешность. Значительная часть тестеров наделена недостаточной точностью для получения годных значений.

Итак, боящимся физиков, отчаявшимся освоить китайские мультиметры работать с удельным сопротивлением неудобно. Гораздо проще взять готовый отрез (большей длины), оценить параметр полного куска. На практике доли Ома играют малую роль, указанные действия выполняются для оценки потерь. Напрямую определены активным сопротивлением участка цепи и квадратично зависят от тока. Учитывая сказанное, отметим: проводники в электротехнике принято делить на две категории по применяемости:

  1. Материалы высокой проводимости, высокого сопротивления. Первые применяются для создания кабелей, вторые – сопротивлений (резисторов). В таблицах не бывает четкого разграничения, учитывается практичность. Серебро с низким сопротивлением для создания проводов не применяют вовсе, для контактов приборов – редко. По очевидным причинам.
  2. Сплавы с высокой упругостью применяются для создания гибких токонесущих частей: пружин, рабочих частей контакторов. Сопротивление обычно должно быть минимальным. Понятно, для этих целей в корне непригодна обычная медь, которой присуща большая степень пластичности.
  3. Сплавы с высоким или низким температурным коэффициентом расширения. Первые служат основой создания биметаллических пластин, структурно служащих основой . Вторые образуют группу инварных сплавов. Часто требуются, где важна геометрическая форма. У держателей нити (замена дорогостоящему вольфраму) и вакуумплотных спаев на стыке со стеклом. Но еще чаще инварные сплавы никакого отношения к электричеству не имеют, используются в составе станков, приборов.

Формула связи удельного сопротивления с омическим

Физические основы электропроводности

Сопротивление проводника признано величиной, обратной электропроводности. В современной теории не установлено досконально, как происходит процесс образования тока. Физики часто упирались в стену, наблюдая явление, которое никак не могло быть объяснено с точки позиций ранее выдвигавшихся концепций. Сегодня доминирующей считается зонная теория. Требуется привести краткий экскурс развития представлений о строении вещества.

Изначально предполагалось: вещество представлено субстанцией, заряженной положительно, в ней плавают электроны. Так считал небезызвестный лорд Кельвин (урожденный Томсон), в честь которого названа единица измерения абсолютной температуры. Впервые сделал предположение о планетарной структуре атомов Резерфорд. Теория, выдвинутая в 1911 году, была сооружена на факте отклонения альфа-излучения веществами с большой дисперсией (отдельные частицы изменяли угол полета на весьма значительную величину). На основе существующих предпосылок автор заключил: положительный заряд атома сосредоточен внутри малой области пространства, которую назвали ядром. Факт отдельных случаев сильного отклонения угла полета вызван тем, что путь частицы пролегал в непосредственной близости от ядра.

Так установлены пределы геометрических размеров отдельных элементов и для разных веществ. Заключили, что диаметр ядра золота укладывается областью 3 пм (пико – приставка к отрицательной двенадцатой степени десятки). Дальнейшее развитие теории строения веществ выполнил Бор в 1913 году. На основе наблюдения поведения ионов водорода сделал вывод: заряд атома составляет единицу, была определена масса, составившая примерно одну шестнадцатую веса кислорода. Бор предположил: электрон удерживается силами притяжения, определенными Кулоном. Следовательно, что-то удерживает от падения на ядро. Бор предположил, виновата центробежная сила, возникающая при вращении частицы по орбите.

Важную поправку к макету внес Зоммерфельд. Допустил эллиптичность орбит, ввел два квантовых числа, описывающих траекторию – n и k. Бор заметил: теория Максвелла для модели терпит крах. Движущаяся частица обязана порождать в пространстве магнитное поле, тогда постепенно электрон упал бы на ядро. Следовательно, приходится допустить: существуют орбиты, на которых излучения энергии в пространство не происходит. Легко заметить: предположения противоречат друг другу, лишний раз напоминая: сопротивление проводника, как физическую величину, сегодня неспособны объяснить физики.

Почему? Зонная теория выбрала базисом постулаты Бора, гласящие: положения орбит дискретны, вычисляются заранее, геометрические параметры связаны некоторыми соотношениями. Выводы ученого пришлось дополнить волновой механикой, поскольку сделанные математические модели бессильны оказались объяснить некоторые явления. Современная теория говорит: для каждого вещества предусмотрено в состоянии электронов три зоны:

  1. Валентная зона электронов, прочно связанных с атомами. Требуется большая энергия — разорвать связь. Электроны валентной зоны в проводимости не участвуют.
  2. Зона проводимости, электроны при возникновении в веществе напряженности поля образуют электрический ток (упорядоченное движение носителей заряда).
  3. Запрещенная зона – область энергетических состояний, где электроны в нормальных условиях находиться не могут.

Необъяснимый опыт Юнга

Согласно зонной теории, у проводника зона проводимости перекрывается валентной. Образуется электронное облако, легко увлекаемое напряженностью электрического поля, образуя ток. По этой причине сопротивление проводника имеет столь малое значение. Причем ученые прилагают бесполезные усилия объяснить, что представляет собой электрон. Известно только: элементарная частица проявляет волновые и корпускулярные свойства. Принцип неопределенности Гейзенберга ставит факты на места: нельзя с вероятностью 100% одновременно определить местоположение электрона и энергию.

Что касается эмпирической части, учеными подмечено: опыт Юнга, проделанный с электронами, дает любопытный результат. Ученый пропускал поток фотонов через две близкие щели щита, получалась интерференционная картина, составленная рядом полос. Предложили проделать тест с электронами, случился коллапс:

  1. Если электроны проходят пучком, минуя две щели, образуется интерференционная картина. Происходит, будто движутся фотоны.
  2. Если электроны выстреливать по одному, ничего не меняется. Следовательно… одна частица отражается сама от себя, существует сразу в нескольких местах?
  3. Тогда стали пытаться зафиксировать момент прохождения электроном плоскости щита. И… интерференционная картина пропала. Остались два пятна напротив щелей.

Эффект бессильны объяснить с научной точки зрения. Получается, электроны «догадываются» о проводимом наблюдении, перестают проявлять волновые свойства. Показывает ограниченность современных представлений физики. Хорошо, если бы этим можно было удовольствоваться! Очередной муж науки предложил вести наблюдение за частицами, когда они уже прошли сквозь щель (летели в определенном направлении). И что же? Снова электроны перестали проявлять волновые свойства.

Получается, элементарные частицы вернулись обратно во времени. В тот момент, когда проходили щель. Проникли в тайну будущего, узнав, будет ли вестись наблюдение. В зависимости от факта скорректировали поведение. Понятно, ответ не может быть попаданием в яблочко. Загадка ждет разрешения по сей день. Кстати, теория Эйнштейна, выдвинутая в начале XX века, теперь опровергнута: найдены частицы, скорость которых превышает световую.

Как образуется сопротивление проводников

Современные воззрения говорят: свободные электроны перемещаются по проводнику со скоростью порядка 100 км/с. Под действием возникающего внутри поля дрейф упорядочивается. Скорость перемещения носителей вдоль линий напряженности мала, составляет единицы сантиметров в минуту. В ходе движения электроны сталкиваются с атомами кристаллической решетки, некая доля энергии переходит в тепло. И меру этого преобразования принято называть сопротивлением проводника. Чем выше, тем больше электрической энергии переходит в тепло. На этом основан принцип действия обогревателей.

Параллельно контексту идет численное выражение проводимости материала, которое можно увидеть на рисунке. Для получения сопротивления полагается единицу разделить на указанное число. Ход дальнейших преобразований рассмотрен выше. Видно, что сопротивление зависит от параметров — температурное движение электронов и длина их свободного пробега, что прямо приводит к строению кристаллической решётки вещества. Объяснение — сопротивление проводников отличается. У меди меньше алюминия.

Этот сайт никак не мог обойтись без статьи про сопротивление. Ну никак! Есть в электронике самое фундаментальное понятие, которое является к тому же физическим свойством. Ты наверно уже знаком с вот этими друзьями:

Сопротивление — это свойство материала мешать потоку электронов. Материал как бы сопротивляется, препятствует этому потоку, как паруса фрегата сильному ветру!

В мире практически всё имеет свойство сопротивляться: воздух сопротивляется потоку электронов, вода тоже сопротивляется потоку электронов, но они всё равно проскальзывают. Медные провода тоже сопротивляются потоку электронов, но лениво. Так что они очень хорошо пропускают такой поток.

Не имеют сопротивления только сверхпроводники, но это уже другая история, так как раз у них нет сопротивления, то сегодня они нам не интересны.

Кстати, поток электронов — это и есть электрический ток. Формальное определение более педантичное, так что ищи его сам в такой же сухой книге.

И да, электроны между собой взаимодействуют. Сила такого взаимодействия измеряется в Вольтах и называется напряжением. Скажешь, что странно звучит? Да ничего странного. Электроны напрягаются и двигают другие электроны с усилием. Несколько по-деревенски, зато понятен основной принцип.

Осталось упомянуть про мощность. Мощность — это когда ток, напряжение и сопротивление собираются за одним столом и начинают работать. Тогда и появляется мощность — энергия, которую теряют электроны, проходя через сопротивление. Кстати:

I = U/R P = U * I

Есть у тебя, к примеру, лампочка на 60Вт с проводом. Втыкаешь её в розетку на 220В. Что дальше? Лампочка оказывает потоку электронов с потенциалом в 220В некоторое сопротивление. Если сопротивление слишком мало — бум, сгорела. Если слишком большое — нить накала будет светиться очень слабо, если вообще будет. А вот если оно будет «в самый раз», тогда лампочка скушает 60Вт и превратит эту энергию в свет и тепло.

Тепло при этом побочный эффект и называется «потерей» энергии, так как вместо того, что бы светить ярче лампочка тратит энергию на нагрев. Пользуйтесь энергосберегающими лампами! Кстати, провод тоже обладает сопротивлением и если поток электронов будет слишком большим, то он также нагреется до заметной температуры. Тут можно предложить почитать заметку про то, зачем спользуются высоковольтные линии

Уверен, теперь ты понимаешь о сопротивлении больше. При этом мы не свалились в детали подобные удельному сопротивлению материала и формулы типа

где ρ — удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, м².

Немного анимашек для полноты картины

И наглядно о том, как поток электронов меняется от в зависимости от температуры проводника и его толщины

Не имея определенных начальных знаний об электричестве, тяжело себе представить, как работают электрические приборы, почему вообще они работают, почему надо включать телевизор в розетку, чтобы он заработал, а фонарику хватает маленькой батарейки, чтобы он светил в темноте.

И так будем разбираться во всем по порядку.

Электричество

Электричество – это природное явление, подтверждающее существование, взаимодействие и движение электрических зарядов. Электричество впервые было обнаружено еще в VII веке до н.э. греческим философом Фалесом. Фалес обратил внимание на то, что если кусочек янтаря потереть о шерсть, он начинает притягивать к себе легкие предметы. Янтарь на древнегреческом – электрон.

Вот так и представляю себе, сидит Фалес, трет кусок янтаря о свой гиматий (это шерстяная верхняя одежда у древних греков), а затем с озадаченным видом смотрит, как к янтарю притягиваются волосы, обрывки ниток, перья и клочки бумаги.

Данное явление называется статическим электричеством . Вы можете повторить данный опыт. Для этого хорошенько потрите шерстяной тканью обычную пластмассовую линейку и поднесите ее к мелким бумажным кусочкам.

Следует отметить, что долгое время это явление не изучалось. И только в 1600 году в своем сочинении «О магните, магнитных телах и о большом магните – Земле» английский естествоиспытатель Уильям Гилберт ввел термин – электричество. В своей работе он описал свои опыты с наэлектризованными предметами, а также установил, что наэлектризовываться могут и другие вещества.

Далее на протяжении трех веков самые передовые ученые мира исследуют электричество, пишут трактаты, формулируют законы, изобретают электрические машины и только в 1897 году Джозеф Томсон открывает первый материальный носитель электричества – электрон, частицу, благодаря которой возможны электрические процессы в веществах.

Электрон – это элементарная частица, имеет отрицательный заряд примерно равный -1,602·10 -19 Кл (Кулон). Обозначается е или е – .

Напряжение

Чтобы заставить перемещаться заряженные частицы от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение . Единица измерения напряжения – Вольт (В или V ). В формулах и расчетах напряжение обозначается буквой V . Чтобы получить напряжение величиной 1 В нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж (Джоуль).

Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под естественным давлением покидает резервуар через трубу. Давайте условимся, что вода – это электрический заряд , высота водяного столба (давление) – это напряжение , а скорость потока воды – это электрический ток .

Таким образом, чем больше воды в баке, тем выше давление. Аналогично с электрической точки зрения, чем больше заряд, тем выше напряжение.

Начнем сливать воду, давление при этом будет уменьшаться. Т.е. уровень заряда опускается – величина напряжения уменьшается. Такое явление можно наблюдать в фонарике, лампочка светит все тусклее по мере того как разряжаются батарейки. Обратите внимание, чем меньше давление воды (напряжение), тем меньше поток воды (ток).

Электрический ток

Электрический ток – это физический процесс направленного движения заряженных частиц под действием электромагнитного поля от одного полюса замкнутой электрической цепи к другому. В качестве частиц, переносящих заряд, могут выступать электроны, протоны, ионы и дырки. При отсутствии замкнутой цепи ток невозможен. Частицы способные переносить электрические заряды существуют не во всех веществах, те в которых они есть, называются проводниками и полупроводниками . А вещества, в которых таких частиц нет – диэлектриками .

Единица измерения силы тока – Ампер (А ). В формулах и расчетах сила тока обозначается буквой I . Ток в 1 Ампер образуется при прохождении через точку электрической цепи заряда в 1 Кулон (6,241·10 18 электронов) за 1 секунду.

Вновь обратимся к нашей аналогии вода – электричество. Только теперь возьмем два резервуара и наполним их равным количеством воды. Отличие между баками в диаметре выходной трубы.

Откроем краны и убедимся, что поток воды из левого бака больше (диаметр трубы больше), чем из правого. Такой опыт – явное доказательство зависимости скорости потока от диаметра трубы. Теперь попробуем уравнять два потока. Для этого добавим в правый бак воды (заряд). Это даст большее давление (напряжение) и увеличит скорость потока (ток). В электрической цепи в роли диаметра трубы выступает сопротивление .

Проведенные эксперименты наглядно демонстрируют взаимосвязь между напряжением , током и сопротивлением . Подробнее о сопротивлении поговорим чуть позже, а сейчас еще несколько слов о свойствах электрического тока.

Если напряжение не меняет свою полярность, плюс на минус, и ток течет в одном направлении, то – это постоянный ток и соответственно постоянное напряжение . Если источник напряжения меняет свою полярность и ток течет то в одном направлении, то в другом – это уже переменный ток и переменное напряжение . Максимальные и минимальные значения (на графике обозначены как Io ) – это амплитудные или пиковые значения силы тока. В домашних розетках напряжение меняет свою полярность 50 раз в секунду, т.е. ток колеблется то туда, то сюда, получается, что частота этих колебаний составляет 50 Герц или сокращенно 50 Гц. В некоторых странах, например в США принята частота 60 Гц .

Сопротивление

Электрическое сопротивление – физическая величина, определяющая свойство проводника препятствовать (сопротивляться) прохождению тока. Единица измерения сопротивления – Ом (обозначается Ом или греческой буквой омега Ω ). В формулах и расчетах сопротивление обозначается буквой R . Сопротивлением в 1 Ом обладает проводник к полюсам которого приложено напряжение 1 В и протекает ток 1 А.

Проводники по-разному проводят ток. Их проводимость зависит, в первую очередь, от материала проводника, а также от сечения и длины. Чем больше сечение, тем выше проводимость, но, чем больше длина, тем проводимость ниже. Сопротивление – это обратное понятие проводимости.

На примере водопроводной модели сопротивление можно представить как диаметр трубы. Чем он меньше, тем хуже проводимость и выше сопротивление.

Сопротивление проводника проявляется, например, в нагреве проводника при протекании в нем тока. Причем, чем больше ток и меньше сечение проводника – тем сильнее нагрев.

Мощность

Электрическая мощность – это физическая величина, определяющая скорость преобразования электроэнергии. Например, вы не раз слышали: «лампочка на столько-то ватт». Это и есть мощность потребляемая лампочкой за единицу времени во время работы, т.е. преобразовании одного вида энергии в другой с некоторой скоростью.

Источники электроэнергии, например генераторы, также характеризуется мощностью, но уже вырабатываемой в единицу времени.

Единица измерения мощности – Ватт (обозначается Вт или W ). В формулах и расчетах мощность обозначается буквой P . Для цепей переменного тока применяется термин Полная мощность , единица измерения – Вольт-ампер (В·А или V·A ), обозначается буквой S .

И в завершение про Электрическую цепь . Данная цепь представляет собой некоторый набор электрических компонентов, способных проводить электрический ток и соединенных между собой соответствующим образом.

Что мы видим на этом изображении – элементарный электроприбор (фонарик). Под действием напряжения U (В) источника электроэнергии (батарейки) по проводникам и другим компонентам обладающих разными сопротивлениями 4.59 (220 Голосов)

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Главная » Технологии » Сопротивление проводника. Электрическое сопротивление и проводимость

Как подобрать сечение провода

Почему падает напряжение ленты, если блок питания расположен далеко от нее?

Поговорим немного об основах электротехники, которые помогут нам лучше разобраться в теме.

Сопротивление проводов.

Любой провод, как известно, обладает электрическим сопротивлением. У медных проводов сопротивление меньше, чем у алюминиевых, тем не менее оно есть. Оно будет зависеть от длины, толщины и материала провода.

Мощность, рассеиваемая в проводах. Нагрев проводов.

Так как абсолютно любой провод имеет сопротивление, то в любой цепи он тоже будет брать на себя часть нагрузки, а значит, будет рассеивать и определенную мощность, которая будет зависеть от сопротивления провода и величины протекающего через него тока. Куда же девается эта мощность, раз она не доходит до потребителя? Она превращается в тепло, то есть наши провода нагреваются. Если нагрев слишком сильный, то это может даже привести к расплавлению изоляции, короткому замыканию и даже пожару.

Подбор сечения кабеля.

Чтобы этого не произошло, нужно правильно подобрать сечение кабеля.
Кабели выпускаются нескольких стандартных сечений, а для подбора медного провода можно пользоваться простым соотношением:
На каждые 10А протекающего тока должно приходиться не менее 1 мм2 сечения провода. Таким образом, при токе 18А, нужно использовать кабель 2 мм2, а при токе 0,6А – 0,75 мм2 (выбираем сечение провода из представленных на рынке).

На рынке вы можете найти огромное разнообразие проводов, шнуров и кабелей, различающихся материалом, толщиной, количеством и расположением жил, толщиной и количеством слоев изоляции.

  • В первую очередь, обращайте внимание на материал кабеля. Медный — беспроигрышный вариант.
  • Второй по значимости параметр – это условия производства. Если кабель изготовлен по ГОСТ, то его сечение будет соответствовать заявленному. Если же он произведен согласно ТУ, то его сечение может быть до полутора раза меньше. Если по такому проводу пустить ток, на который вы его рассчитали, то он может перегреться со всеми вытекающими последствиями. Поэтому всегда лучше выбрать кабель, на упаковке которого есть знак ГОСТ.

Потери в проводах.

Теперь мы понимаем, что любые соединительные провода от источника до потребителя – это тоже, своего рода, потребители, а значит, напряжение будет распределяться между потребителем и проводами. То есть, если напряжение источника питания – 12В, то на проводах мы можем потерять несколько вольт, и чем длиннее провода и больше ток, тем меньше достанется нашему потребителю (например светодиодной ленте). Это значит, что светодиодная лента может светить неравномерно по своей длине или светить с меньшей яркостью, чем заявлено на упаковке.

  • Подбирайте толстые и короткие провода. Чем тоньше и длиннее провода, тем больше в них потери.
  • Можно использовать систему, рассчитанную на большее напряжение (например вместо 12В использовать 24В). При одинаковой мощности, чем выше напряжение, тем меньше ток. Этим активно пользуются энергетики, передавая электричество от электростанций на большие расстояния с помощью высоковольтных линий, а уже на месте понижая их до привычных 220В.

Источник. SWGshop.ru

Автоматика. Электроэнергия. Электричество. Электрика. Электроснабжение. Программирование

Нагрев провода или кабеля – весьма нежелательное явление. Постоянный нагрев провода в течении длительного времени вызывает разрушение изоляции, что в будущем чревато коротким замыканием и возгоранием. Кабели могут греться не обязательно в старых домах с алюминиевой проводкой. Даже при подключении новых электроустановок и электроприборов нагрев подводящей проводки частое явление. Разберёмся, почему происходит нагрев проводов и как с этим бороться.

Почему происходит нагрев проводника?

Любой провод имеет электрическое сопротивление. Ток проходя по проводнику преодолевает это сопротивление. Чем выше сопротивление проводника, тем «сложнее пройти по нему току», происходит множество столкновений электронов с атомами вещества и как результат выделяется тепло и образуется нагрев проводника. При повышении температуры проводника его сопротивление возрастает. Явление нагрева проводника описывает закон Джоуля-Ленса.

Как устранить нагрев провода?

Первым делом необходимо разобраться, греется сам провод по всей длине или какой-то конкретный его участок, как правило место соединения, например, вилка с розеткой. Если кабель греется по всей длине, то одна из причин – это превышение силы тока для данного значения сечения проводника. Или иными словами, провод не справляется с наложенной на него нагрузкой. В старых домах, не предусматривали такого количество электроприборов, как сегодня, и прокладка кабелей делалась по потребностям электроприборов прошлого века. Решение – это уменьшить количество потребителей или выбрать потребители меньшей мощности, или заменить электропроводку на современную, как правило медную необходимого сечения. Для квартиры оптимальным считается медная проводка 2,5 кв.мм на розеточные группы – максимальная мощность нагрузки 4,6 кВт при закрытой проводке и 1,5 кв.мм на освещение – 3,3 кВт.

Если провод греется в какой-то конкретной части, чаще всего в контактном соединении, будь то болтовые или простейшая скрутка с пайкой или без неё, то причина кроется в плохом контакте. Если соединяются медный и алюминиевый провод, то важно помнить, что по причине различной электропроводности меди и алюминия, эти два провода запрещается соединять обычной скруткой, то есть с прямым контактом двух металлов. Если нет возможности проложить медную проводку, то соединение выполняются через специальные клеммники, типа WAGO или другие, или болтовое соединение используя бронзовые шайбы.

Что делать если греется удлинитель?

Не рекомендуется использовать удлинитель для мощной нагрузки, особенно если он имеет большую длину и небольшое сечение жил, как правило 0,75 кв.мм. Длинный удлинитель с тонкими жилами имеет некоторое сопротивление, из-за этого на нем происходит небольшое падение напряжения, которое выделяется в виде тепла. Чем меньше длинна кабеля и чем больше сечение провода, тем меньше его сопротивление. Электрический удлинитель намотанный на катушке хуже охлаждается и сильнее греется, поэтому рекомендуется его размотать.

И так, подведём итоги, как избавить от перегрева кабеля:

увеличить сечение провода
уменьшить нагрузку (мощность электроприборов)
создать лучшие условия для охлаждения кабеля, если это возможно, к примеру, замурованный в стене кабель нагревается сильнее, чем проложенный вне стены. Размотать намотанный на катушку удлинитель
греющиеся места соединения кабеля (вилка, розетка, болтовые соединения, клеммники) подтянуть или заменить

Нагрев провода или кабеля – весьма нежелательное явление. Постоянный нагрев провода в течении длительного времени вызывает разрушение изоляции, что в будущем чревато коротким замыканием и возгоранием. Кабели могут греться не обязательно в старых домах с алюминиевой проводкой. Даже при подключении новых электроустановок и электроприборов нагрев подводящей проводки частое явление. Разберёмся, почему происходит нагрев проводов и как с этим бороться.

Почему происходит нагрев проводника?

Любой провод имеет электрическое сопротивление. Ток проходя по проводнику преодолевает это сопротивление. Чем выше сопротивление проводника, тем «сложнее пройти по нему току», происходит множество столкновений электронов с атомами вещества и как результат выделяется тепло и образуется нагрев проводника. При повышении температуры проводника его сопротивление возрастает. Явление нагрева проводника описывает закон Джоуля-Ленса.

Как устранить нагрев провода?

Первым делом необходимо разобраться, греется сам провод по всей длине или какой-то конкретный его участок, как правило место соединения, например, вилка с розеткой. Если кабель греется по всей длине, то одна из причин – это превышение силы тока для данного значения сечения проводника. Или иными словами, провод не справляется с наложенной на него нагрузкой. В старых домах, не предусматривали такого количество электроприборов, как сегодня, и прокладка кабелей делалась по потребностям электроприборов прошлого века. Решение – это уменьшить количество потребителей или выбрать потребители меньшей мощности, или заменить электропроводку на современную, как правило медную необходимого сечения. Для квартиры оптимальным считается медная проводка 2,5 кв.мм на розеточные группы – максимальная мощность нагрузки 4,6 кВт при закрытой проводке и 1,5 кв.мм на освещение – 3,3 кВт.

Если провод греется в какой-то конкретной части, чаще всего в контактном соединении, будь то болтовые или простейшая скрутка с пайкой или без неё, то причина кроется в плохом контакте. Если соединяются медный и алюминиевый провод, то важно помнить, что по причине различной электропроводности меди и алюминия, эти два провода запрещается соединять обычной скруткой, то есть с прямым контактом двух металлов. Если нет возможности проложить медную проводку, то соединение выполняются через специальные клеммники, типа WAGO или другие, или болтовое соединение используя бронзовые шайбы.

Что делать если греется удлинитель?

Не рекомендуется использовать удлинитель для мощной нагрузки, особенно если он имеет большую длину и небольшое сечение жил, как правило 0,75 кв.мм. Длинный удлинитель с тонкими жилами имеет некоторое сопротивление, из-за этого на нем происходит небольшое падение напряжения, которое выделяется в виде тепла. Чем меньше длинна кабеля и чем больше сечение провода, тем меньше его сопротивление. Электрический удлинитель намотанный на катушке хуже охлаждается и сильнее греется, поэтому рекомендуется его размотать.

И так, подведём итоги, как избавить от перегрева кабеля:

увеличить сечение провода
уменьшить нагрузку (мощность электроприборов)
создать лучшие условия для охлаждения кабеля, если это возможно, к примеру, замурованный в стене кабель нагревается сильнее, чем проложенный вне стены. Размотать намотанный на катушку удлинитель
греющиеся места соединения кабеля (вилка, розетка, болтовые соединения, клеммники) подтянуть или заменить

(Просмотрено 39580 раз)

Электрическое сопротивление | Encyclopedia.com

Электрическое сопротивление провода или цепи — это сопротивление протеканию электрического тока. Объект, сделанный из хорошего электрического проводника, например медь, будет иметь низкое сопротивление по сравнению с идентичным объектом из плохого проводника. Хорошие изоляторы, такие как резиновые или стеклянные изоляторы, обладают высоким сопротивлением. Сопротивление измеряется в омах (Ом) и связано с током в цепи и напряжением в цепи по закону Ома, В = IR (где В, — напряжение, I — ток, а R — это напряжение. сопротивление, все в соответствующих единицах).Иногда желательно сопротивление, например, в электронных компонентах, называемых резисторами, которые имеют определенное сопротивление. С другой стороны, сопротивление иногда нежелательно, как в проводах, предназначенных для передачи сигналов или мощности от одной точки к другой.

Когда ток течет через объект с ненулевым сопротивлением, энергия рассеивается в виде тепла. Количество мощности (энергии в единицу времени) P , рассеиваемой сопротивлением R , несущим ток I, определяется как P = I 2 R .Мощность рассеивается в виде тепла. Потери мощности из-за резистивного нагрева являются причиной того, почему протяженные линии электропередач спроектированы так, чтобы иметь минимально возможное сопротивление и работать при возможном высоком напряжении; по закону Ома высокое напряжение означает низкий ток, а по закону силы тока низкий ток означает низкое рассеивание мощности.

Сопротивление данного куска провода зависит от трех факторов: длины провода, площади поперечного сечения провода и удельного сопротивления материала, из которого он состоит.Чтобы понять, как это работает, представьте себе воду, текущую по шлангу. Количество воды, протекающей по шлангу, аналогично току в проводе. Подобно тому, как через толстый пожарный шланг может пройти больше воды, чем через тонкий садовый шланг, толстый провод может пропускать больше тока, чем тонкий. Для провода чем больше площадь поперечного сечения, тем меньше сопротивление; чем меньше площадь поперечного сечения, тем выше сопротивление. Теперь рассмотрим длину. По очень длинному шлангу труднее протекать воде просто потому, что она должна течь дальше.Точно так же току труднее проходить по более длинному проводу. Более длинный провод будет иметь большее сопротивление. Удельное сопротивление — это свойство материала в проводе, которое зависит от химического состава материала, но не от количества материала или формы (длины, площади поперечного сечения) материала. Медь имеет низкое удельное сопротивление, но сопротивление данной медной проволоки зависит от ее длины и площади. Замена медного провода на провод той же длины и площади, но с более высоким удельным сопротивлением приведет к более высокому сопротивлению.В аналогии со шлангом это похоже на наполнение шланга песком. Через шланг, заполненный песком, будет течь меньше воды, чем через такой же свободный шланг. Фактически песок имеет более высокое сопротивление потоку воды. Таким образом, полное сопротивление провода представляет собой удельное сопротивление материала, составляющего провод, умноженное на длину провода, деленное на площадь поперечного сечения провода.

Закон Ома

Мы рассматриваем фундаментальную связь в электронике и физике.

Закон Ома был открыт Георгом Омом в 1837 году, и это основное уравнение, которое управляет многими схемами.Три основных ингредиента — это ток через простую цепь, приложенное напряжение (обычно от батареи) и сопротивление устройства, которое использует ток для выполнения некоторой работы, обычно тепла или света. На этом этапе вы узнаете о
  • математическая формулировка закона Ома и основная обратная зависимость, которую он кодирует
  • как аналогия с водопроводной трубой может помочь понять значение закона Ома.

Закон Ома

Закон Ома гласит, что if (normalsize {V}) — это напряжение (измеренное в вольтах) на резисторе (normalsize {R}) (измеренное в омах), которое потребляет ток (normalsize {I}) (измеренный в амперах), то [Большой {V = IR}.] Резистор — это объект, который использует электрическую энергию и преобразует ее во что-то еще, например, тепло или свет. Примером может служить тостер. Электроэнергия, протекающая через тостер, питается от перепада напряжения, подаваемого через электрическую розетку. Чем выше напряжение, тем больше тока (нормального размера {I}) проходит через тостер. Итак, для фиксированного резистора (нормальный размер {R}) закон Ома устанавливает линейную пропорциональность между напряжением и током. Нити для тостера Ник Карсон на en.wikipedia CC BY 3.0, через Wikimedia Commons Однако мы можем взглянуть на закон и по-другому. Если мы рассматриваем напряжение (нормальный размер {V}) как фиксированное, то сопротивление и ток обратно пропорциональны, поскольку их произведение постоянно и равно фиксированному напряжению. Если мы увеличиваем сопротивление, то ток уменьшается, а если мы уменьшаем сопротивление, то ток увеличивается. Это ситуация с цепью, работающей от батареи, или с электричеством в нашем доме, где подаваемое напряжение является постоянным ((нормальный размер {110-120}) вольт в большинстве стран Америки (нормальный размер {220-230}) вольт в Европе, Австралии и большинстве стран Азии).Однако, строго говоря, в этом случае напряжение меняется по направлению. В предельном случае, когда сопротивление становится равным нулю, например, если вы заменяете тостер на провод, то течет бесконечно большой ток. Затем возникает короткое замыкание , часто с катастрофическими последствиями, особенно если у вас нет предохранителя, который бы разомкнул цепь в такой аварийной ситуации.

Некоторые примеры

Если мы подключим лампу к цепи, работающей от батареи на 6 В, и потребляем ток 3 А, тогда сопротивление (нормальный размер R) будет равно [Large R = frac {V} {I} = frac 63 = 2; text {ohms}.] Теперь, если мы подключим ту же лампу к 10-вольтовой батарее, то ток (нормальный размер I) будет [Большой I = гидроразрыв {V} {R} = гидроразрыв {10} 2 = 5; текст {амперы}.] Если мы хотим сделать свет ярче, нам нужно увеличить ток, скажем, до 8 ампер, тогда нам нужно увеличить наше напряжение до [Большой V = IR = 8 × 2 = 16; текст {вольт}.]

Q1 (E): электрическое устройство подключено к напряжению 120 вольт. Найдите ток, если сопротивление 480 Ом.

Q2 (E): Предположим, что у нас есть батарея с некоторым постоянным напряжением, освещающая небольшую лампу, и амперметр показывает 40 мА, где мА означает миллиампер, что составляет одну тысячную амперметра.Если ток упал до 20 мА, что случилось с сопротивлением?

Как резистор сопротивляется?

Резистор — это любое устройство, замедляющее прохождение тока в цепи. Электричество, по сути, перемещает электроны, и, как и вода, если поток прерывается, ограничивается или сопротивляется , проходит меньше. Некоторые материалы имеют низкое сопротивление, например медная проволока, что позволяет электронам проходить через них без особых проблем. Другие материалы, такие как дерево, обладают высоким сопротивлением, почти мгновенно останавливая электрический ток.На практике у нас есть такие вещи, как лампы и тостеры, которые генерируют свет или тепло от электронов, замедляя их, но все же пропуская.

Ом также обнаружил другой закон, который описывает, какое сопротивление имеет данный материал, например кусок проволочной трубки:

[Large R = frac {rho L} {A}]

где (нормальный размер L) — длина резистора, (нормальный размер rho) — величина, которая зависит от материала, а (нормальный размер A) — площадь поперечного сечения резистора.Итак (нормальный размер R) равен , прямо пропорционально длине (нормальный размер L): удвоить длину проволочной трубки, и ее сопротивление удвоится. Но (нормальный размер R) также обратно пропорционален площади поперечного сечения (нормальный размер A): удвоить площадь и половину сопротивления.

3 кв. (E): трубчатый резистор имеет форму проволоки. Если мы утроим его длину и уменьшим вдвое диаметр, что произойдет с его сопротивлением?

Гидравлический аналог

Для понимания закона Ома иногда бывает полезна аналогия с гидравликой для начинающих.Представьте себе воду, текущую по горизонтальной трубе. Давление воды (нормальный размер P) аналогично напряжению (нормальный размер V), потому что это разница давлений между двумя точками вдоль трубы, которая заставляет воду течь. Фактический расход воды (нормальный размер F) в этом случае является аналогом тока (нормальный размер I).

А что с аналогом резистора? Это можно представить как нечто, препятствующее потоку воды, например, ограничители или отверстия в трубах. Если вода проталкивается через очень тонкую трубку, то чем длиннее трубка и чем меньше ее площадь поперечного сечения, тем большее сопротивление (нормальный размер R) она будет оказывать на расход воды (нормальный размер F).И чем больше сопротивление, тем меньше расход.

Соответствующее уравнение для нашего гидравлического аналога в соответствующих единицах измерения:

[Большой P = FR.]

Таким образом, если мы сохраняем давление фиксированным, то расход и ограничение будут обратно пропорциональны: по мере уменьшения размера ограничения (нормальный размер R) расход (нормальный размер F) должен увеличиваться.

На рисунке ниже мы ожидаем, что более тонкая трубка будет действовать как сопротивление потоку в большой трубке.

ответов

A1. По закону Ома ток можно найти по

[Большой {I = гидроразрыв {V} {R} = гидроразрыв {120} {480} = 0,25; текст {амперы}}.]

A2. При постоянном напряжении соотношение между током и сопротивлением обратное. Следовательно, если ток уменьшается вдвое, сопротивление увеличивается вдвое.

A3. Увеличение длины резистора в три раза увеличивает его сопротивление в 3 раза, а уменьшение его диаметра вдвое увеличивает площадь поперечного сечения на 1/4.В целом сопротивление изменяется в раз (frac {3} {1/4} = 12).

РЕШЕНИЕ: Какие электрические компоненты будут иметь большее сопротивление проводимости? Р 20 80 ‘ IF to opuadop на образце 1 геометрической трубы и размера_ Примечания Комментарии 8

Стенограмма видео

В данной задаче мы должны обсудить сопротивление провода и его связь с площадью поперечного сечения провода.Итак, на самом деле, мы должны обсудить, по какому проводу будет легче течь электричество. Итак, нам были предложены провода, одна с большим диаметром поперечного сечения, а другая — с малым диаметром. Выражение для помощи, предлагаемой кондуктором, как правило, дается в L каждой веревкой. Это чувствительность? L — длина проводника, на A — его площадь поперечного сечения. Таким образом, очевидно, что сопротивление проводника будет обратно пропорционально зависеть от его площади поперечного сечения и поперечного сечения среды.Он дан нам художниками, а здесь радиус R равен половине диаметра. Таким образом, мы можем сделать вывод, что сопротивление проводника будет обратно пропорционально квадрату Die Amita. Таким образом, очевидно, что для наименьшей из стоек диаметр должен быть больше. Для наименьшего диаметра сопротивления диаметр поперечного сечения должен быть больше. И для большего сопротивления этот диаметр должен быть меньше поперечного сечения. Электричество будет проводиться с наименьшим сопротивлением в проводе с большим диаметром поперечного сечения, поэтому электричество будет проводить не наименьшее сопротивление.Понимаете, проволока большого сечения диаметром. Мы также можем обосновать это с помощью диаграмм. Я полагаю, что это два провода, один с малым диаметром поперечного сечения, а другой с большим диаметром поперечного сечения. Таким образом, электроны будут двигаться от низкого потенциала к высокому потенциалу в обоих этих проводах, поэтому они будут подвергаться большему количеству столкновений. Здесь вы знаете, где электроны с меньшим диаметром поперечного сечения будут подвергаться большему количеству столкновений. Белый. Вы знаете, почему у нас большой диаметр поперечного сечения, и электрон будет подвергаться меньшему количеству столкновений при переходе от низкого потенциала к слишком высокому.Вот почему вы можете видеть, что электричество будет проводиться с наименьшим сопротивлением в проводнике с большим диаметром поперечного сечения. Спасибо

Что такое высокое электрическое сопротивление?

Что означает высокое электрическое сопротивление?

Высокое электрическое сопротивление — это противодействие протеканию тока в цепи. Электрическое сопротивление объясняет взаимосвязь между напряжением и током.

Высокое электрическое сопротивление электрического проводника — это противодействие прохождению электрического тока через этот проводник; обратная мера известна как электрическая проводимость.Единицей измерения электрического сопротивления в системе СИ является ом (О).

Свойство высокого электрического сопротивления находит важное применение в электрических и электронных устройствах. Он часто используется в датчиках коррозии электрического сопротивления для контроля коррозии в полупроводниковых средах, таких как нефть, газ и атмосфера.

Corrosionpedia объясняет высокое электрическое сопротивление

Переменные, влияющие на электрическое сопротивление:

  • Общая длина — чем длиннее провод, тем выше сопротивление.
  • Площадь поперечного сечения провода — Более широкие провода имеют большую площадь поперечного сечения. Предполагая, что другие переменные постоянны, заряд может течь с большей скоростью через провода с большей площадью поперечного сечения, чем через более тонкие провода.
  • Проводимость материала — Проводимость материала зависит от электронной структуры материала и его температуры. Для большинства материалов электрическое сопротивление увеличивается с повышением температуры.

Объект с однородным поперечным сечением имеет сопротивление, пропорциональное его электрическому сопротивлению и длине, и обратно пропорционально его площади поперечного сечения.Все материалы обладают некоторым сопротивлением, за исключением сверхпроводников, у которых сопротивление равно нулю.

Омметр — это прибор для измерения сопротивления.

Одним из наиболее распространенных электронных методов контроля коррозии является метод электрического сопротивления. Этот метод включает измерение изменения электрического сопротивления проводящей части и использование этой скорости изменения для расчета скорости коррозии.

Как работают резисторы? Что внутри резистора?

Когда вы впервые узнаете об электричестве, вы обнаружите, что материалы делятся на две основные категории, называемые проводниками и изоляторы. Проводники (например, металлы) пропускают электричество через их; изоляторы (например, пластмассы и дерево), как правило, этого не делают. Но Нет ничего проще, не так ли? Любое вещество будет вести электричество, если на него подать достаточно большое напряжение: даже воздух, который обычно является изолятором, внезапно становится проводником, когда в облаках накапливается мощное напряжение — вот что делает молния.Вместо того, чтобы говорить о проводниках и изоляторах, это часто яснее говорить о сопротивлении: легкость, с которой что-то позволит электричеству течь через него. У проводника низкое сопротивление, в то время как изолятор имеет гораздо более высокое сопротивление. Устройства под названием резисторы позволяют вводить точно контролируемые величины сопротивления в электрические цепи. Давайте подробнее разберемся, что они из себя представляют и как они работают!

Фото: четыре типичных резистора, установленных бок о бок в электронной схеме.Резистор работает, преобразуя электрическую энергию в тепло, которое рассеивается в воздухе.

Что такое сопротивление?

Электричество течет через материал, переносимый электронами, крошечные заряженные частицы внутри атомов. В широком смысле говоря, материалы, которые хорошо проводят электричество, — это те, которые позволяют электронам свободно течь. через них. В металлах, например, атомы заперты в прочная кристаллическая структура (немного похожа на металлическую подъемную раму в детская площадка). Хотя большинство электронов внутри этих атомов зафиксированные на месте, некоторые из них могут проходить сквозь конструкцию, унося с собой электричество.Поэтому металлы — хорошие проводники: металл относительно небольшое сопротивление протекающим через него электронам.

Анимация: Электроны должны проходить через материал, чтобы переносить через него электричество. Чем тяжелее электронам течь, тем больше сопротивление. Металлы обычно имеют низкое сопротивление потому что электроны могут легко проходить через них.

Пластмассы совсем другие. Хотя часто они твердые, у них нет того же кристаллическая структура.Их молекулы (которые обычно очень длинные повторяющиеся цепи, называемые полимерами), связаны между собой в такие способ, которым электроны внутри атомов полностью заняты. Там Короче говоря, нет свободных электронов, которые могут перемещаться в пластмассах. проводить электрический ток. Пластик — хорошие изоляторы: ставят до высокого сопротивления протекающим через них электронам.

Это все немного расплывчато для такого предмета, как электроника, которая требует точного контроля электрических токов. Вот почему мы определяем сопротивление, точнее, напряжение в вольтах, необходимое для через цепь протекает ток 1 ампер.Если требуется 500 вольт для сделать расход 1 ампер, сопротивление 500 Ом (написано 500 Ом). Ты можешь см. это соотношение, записанное в виде математического уравнения:

V = I × R

Это известно как закон Ома для немецкого языка. физик Георг Симон Ом (1789–1854).

Фото: Используя мультиметр, подобный этому, вы можете автоматически определить сопротивление электронного компонента; измеритель пропускает через компонент известный ток, измеряет напряжение на нем и использует закон Ома для расчета сопротивления.Хотя мультиметры достаточно точны, вы должны помнить, что провода и щупы также имеют сопротивление, которое внесет ошибку в ваши измерения (чем меньше сопротивление, которое вы измеряете, тем больше вероятная ошибка). Здесь я измеряю сопротивление громкоговорителя в телефоне, которое, как вы можете видеть на цифровом дисплее, составляет 36,4 Ом. Вставка: переключатель на мультиметре позволяет мне измерять различные сопротивления (200 Ом, 2000 Ом, 20K = 20000 Ом, 200K = 200000 Ом и 20M = 20 миллионов Ом).

Сопротивление бесполезно?

Сколько раз вы слышали такое в фильмах о плохих парнях? Это часто верно и в науке. Если материал имеет высокое сопротивление, он означает, что электричеству будет сложно пройти через него. Чем больше электричеству приходится бороться, тем больше энергии потрачено впустую. Это звучит вроде плохая идея, но иногда сопротивление далеко не «бесполезно» и на самом деле очень полезно.

Фото: Нить накаливания внутри старой лампочки. Это очень тонкий провод с умеренным сопротивлением.Он нагревается, поэтому ярко светится и излучает свет.

В лампочке старого образца, например, электричество проходит через очень тонкий кусок проволоки называется нитью. Провод такой тонкий, что электричество действительно нужно бороться, чтобы пройти через это. Это делает провод чрезвычайно горячий — настолько сильно, что даже излучает свет. Без сопротивление, такие лампочки не работают. Конечно недостаток в том, что приходится тратить огромное количество энергии на нагрев нить.Такие старые лампочки зажигают свет, тепло, поэтому их называют лампами накаливания; Новые энергоэффективные лампочки излучают свет, не выделяя много тепла, благодаря совершенно иному процессу флуоресценции.

Тепло, которое выделяют нити, не всегда тратится впустую. В таких приборах, как электрические чайники, электрические радиаторы, электрические души, кофеварки и тостеры, есть более крупные и прочные версии волокон, называемые нагревательные элементы. Когда через них протекает электрический ток, они получают достаточно горячей, чтобы вскипятить воду или приготовить хлеб.В нагревательных элементах, по крайней мере, сопротивление далеко не бесполезно.

Сопротивление также полезно в таких вещах, как транзисторные радиоприемники и телевизор. наборы. Предположим, вы хотите уменьшить громкость на телевизоре. Ваш ход ручка громкости, и звук становится тише, но как это происходит? Регулятор громкости на самом деле является частью электронного компонента, называемого переменный резистор. Если вы уменьшите громкость, вы на самом деле повышение сопротивления в электрической цепи, которая приводит в движение громкоговоритель телевизора. Когда вы включаете сопротивление, электрический ток, протекающий по цепи, уменьшается.С меньшим током, меньше энергии для питания громкоговорителя, поэтому он звучит намного тише.

Фотография: «Переменный резистор» — это очень общее название компонента, сопротивление которого может изменяться в зависимости от перемещение диска, рычага или какого-либо элемента управления. Более конкретные типы переменных резисторов включают потенциометры (небольшие электронные компоненты с тремя выводами) и реостаты (обычно намного больше и сделанные из нескольких витков спирального провода со скользящим контактом, который перемещается по катушкам, чтобы «отвести» некоторую часть сопротивления). .Фотографии: 1) Маленький переменный резистор, действующий как регулятор громкости в транзисторном радиоприемнике. 2) Два больших реостата от электростанции. Вы можете увидеть регуляторы набора, которые «отталкивают» большее или меньшее сопротивление. Фото Джека Баучера из журнала Historic American Engineering Record любезно предоставлено Библиотекой Конгресса США.

Как работают резисторы

Люди, занимающиеся изготовлением электрических или электронных цепей для особых рабочие места часто нуждаются в точном сопротивлении. Они могут сделайте это, добавив крошечные компоненты, называемые резисторами.Резистор — это маленький пакет сопротивления: подключите его к цепи, и вы уменьшите ток на точную величину. Снаружи все резисторы выглядят более-менее то же самое. Как вы можете видеть на верхнем фото на этой странице, резистор — это короткий червеобразный компонент с цветными полосами на сторона. Он имеет два соединения, по одному с каждой стороны, так что вы можете зацепить это в цепь.

Что происходит внутри резистора? Если вы сломаете одну открытую и соскоблите внешнее покрытие изоляционной краски, вы можете увидеть изолирующий керамический стержень, проходящий через середину, с медной проволокой, обернутой снаружи.Такой резистор называют проволочной обмоткой. Количество витков меди регулирует сопротивление очень точно: чем больше витков меди, тем тоньше медь, тем выше сопротивление. В резисторах меньшего номинала предназначены для схем малой мощности, медная обмотка заменена на спиральный узор из углерода. Такие резисторы намного дешевле марки и называются карбон-пленкой. Как правило, резисторы с проволочной обмоткой более точны и стабильны при более высоких рабочих температурах.

Фото: внутри резистора с проволочной обмоткой.Разломайте пополам, соскребите краску, и вы сможете отчетливо увидеть изолирующий керамический сердечник и проводящий медный провод, обернутый вокруг него.

Как размер резистора влияет на его сопротивление?

Предположим, вы пытаетесь протолкнуть воду по трубе. Различные виды трубок будут более или менее услужливыми, поэтому более толстая труба будет сопротивляться воде меньше, чем более тонкая и более короткая труба будет оказывать меньшее сопротивление, чем более длительное. Если вы заполните трубу, скажем, галькой или губкой, вода будет по-прежнему просачиваться через него, но гораздо медленнее.Другими словами, длина, площадь поперечного сечения (площадь вы смотрите в трубу, чтобы увидеть, что внутри), и все, что внутри трубы, влияет на ее сопротивление воде.

Электрические резисторы очень похожи — на них действуют те же три фактора. Если вы сделаете провод тоньше или длиннее, электронам будет труднее перемещаться по нему. И, как мы уже видели, электричеству труднее проходить через одни материалы (изоляторы), чем через другие (проводники). Хотя Георг Ом наиболее известен тем, что связывает напряжение, ток и сопротивление, он также исследовал эту взаимосвязь. между сопротивлением и размером и типом материала, из которого изготовлен резистор.Это привело его к другому важному уравнению:

R = ρ × L / A

Проще говоря, сопротивление (R) материала увеличивается с увеличением его длины (поэтому более длинные провода обеспечивают большее сопротивление) и увеличивается с уменьшением его площади (более тонкие провода обеспечивают большее сопротивление). Сопротивление также связано с типом материала, из которого изготовлен резистор, и в этом уравнении это обозначено символом ρ, который называется удельным сопротивлением и измеряется в единицах Ом · м (омметры).У разных материалов очень разные удельные сопротивления: проводники имеют гораздо более низкое удельное сопротивление, чем изоляторы. При комнатной температуре алюминий имеет сопротивление около 2,8 x 10 -8 Ом · м, тогда как медь (лучший проводник) значительно ниже — 1,7 -8 Ом · м. Кремний (полупроводник) имеет удельное сопротивление около 1000 Ом · м, а стекло (хороший изолятор). измеряет около 10 12 Ом · м. Из этих цифр видно, насколько разные проводники и изоляторы обладают способностью переносить электричество: кремний примерно в 100 миллиардов раз хуже, чем медь, а стекло снова примерно в миллиард раз хуже!

Диаграмма: Хорошие проводники: сравнение удельного сопротивления 10 обычных металлов и сплавов с удельным сопротивлением серебра при комнатной температуре.Например, вы можете видеть, что нихром, сплав, используемый в нагревательных элементах, имеет примерно в 66 раз большее сопротивление, чем аналогичный кусок серебра. Данные из разных источников.

Сопротивление и температура

Сопротивление резистора непостоянно, даже если это определенный материал фиксированной длины и площади: оно постоянно увеличивается с до по мере увеличения температуры. Почему? Чем горячее материал, тем сильнее его атомы или ионы качаются и тем труднее его выдерживать. электроны должны пробираться сквозь них, что приводит к более высокому электрическому сопротивлению.Говоря в широком смысле, удельное сопротивление большинства материалов линейно увеличивается с температурой (поэтому, если вы увеличите температура на 10 градусов, удельное сопротивление увеличивается на определенную величину, а если вы его увеличите еще на 10 градусов удельное сопротивление снова возрастает на ту же величину). Если вы охладите материала , вы снизите его удельное сопротивление, а если охладите его до чрезвычайно низкого температуры, иногда можно заставить сопротивление вообще исчезнуть, что является известным явлением. как сверхпроводимость.

Диаграмма: Сопротивление материала увеличивается с температурой. На этой диаграмме показано, как удельное сопротивление (основное сопротивление материала, независимо от его длины или площади) увеличивается почти линейно при повышении температуры от абсолютного нуля до примерно 600 К (327 ° C) для четырех обычных металлов.

Добавить комментарий

Ваш адрес email не будет опубликован.