Что такое диодный мост: Диодный Мост Генератора, Проверка Неисправностей Мультиметром, Снятие, Замена Или Ремонт Своими Руками, Схема Подключения

Содержание

Диодный мост — это… Что такое Диодный мост?

Дио́дный мо́ст — электрическая схема, предназначенная для преобразования («выпрямления») переменного тока в пульсирующий. Такое выпрямление называется двухполупериодным[1].

Схема включения

Выполняется по мостовой схеме Гретца. Изначально она была разработана с применением радиоламп, но считалась сложным и дорогим решением, вместо неё применялась схема Миткевича со сдвоенной вторичной обмоткой в питающем выпрямитель трансформаторе. Сейчас, когда полупроводники очень дёшевы, в большинстве случаев применяется мостовая схема.

Вместо диодов в схеме могут применяться вентили любых типов — например селеновые столбы, принцип работы схемы от этого не изменится.

Порядок работы

На вход (Input) схемы подаётся переменное напряжение (обычно, но не обязательно синусоидальное). В каждый из полупериодов ток проходит только через 2 диода, 2 других — заперты:

При выпрямлении 3-фазного тока 3-фазным выпрямителем результат получается ещё более «гладким»

В результате, на выходе (DC Output) получается напряжение, пульсирующее с частотой, вдвое большей частоты питающего напряжения:

Красным — исходное синусоидальное напряжение , зелёным — однополупериодное выпрямление (для сравнения), синим — рассматриваемое двухполупериодное

Выпрямитель

Подключение конденсатора

Практически, для получения постоянного (а не пульсирующего) напряжения, схему надо дополнить фильтром на конденсаторе, а также, возможно, дросселем и стабилизатором напряжения.

Преимущества

Двухполупериодное выпрямление с помощью моста (по сравнению с однополупериодным) позволяет:

  • получить на выходе напряжение с повышенной частотой пульсаций, которое проще сгладить фильтром на конденсаторе
  • избежать постоянного тока подмагничивания в питающем мост трансформаторе
  • увеличить его КПД, что позволяет сделать его магнитопровод меньшего сечения.

Недостатки

  • Происходит двойное падение напряжения по сравнению с однополупериодным выпрямлением (прямое напряжение диода × 2 ≈ 1 В), это иногда нежелательно.
  • При перегорании одного из диодов схема превращается в однополупериодную, что может быть не замечено вовремя, и в устройстве появится скрытый дефект.

Конструкция

Внешний вид однокорпусных мостов

Мосты могут быть изготовлены из отдельных диодов, и могут быть выполнены в виде монолитной конструкции (диодная сборка).

Монолитная конструкция, как правило, предпочтительнее — она дешевле и меньше по объёму (хотя не всегда той формы, которая требуется). Диоды в ней подобраны на заводе и наверняка имеют одинаковые параметры и при работе находятся в одинаковом тепловом режиме. Сборку проще монтировать.

В монолитной конструкции при выходе из строя одного диода приходится менять весь монолит. В конструкции из отдельных диодов может меняться только один диод. Какую конструкцию применить решает конструктор, в зависимости от назначения устройства.

Маркировка

В СССР/России:

  • материал диодов:
  • Ц — мост
  • число (2…4 цифры) Обозначают порядковый номер разработки данного типа моста.
  • буква

См. также

Ссылки

Примечания

  1. Однополупериодным выпрямителем называется выпрямление с помощью 1 диода.

Строение и принцип работы диодного моста генератора

 

«Автомобильные генераторы бывают двух видов: постоянного и переменного тока», — такую фразу можно прочитать в академических изданиях. В реальности автомобиль с генератором постоянного тока сегодня можно встретить разве что на выставке ретро-техники.

С 60-х годов прошлого века в автомобили устанавливают генераторы переменного тока. Узел выпрямления нужен, чтобы преобразовывать переменный ток в постоянный для питания автомобильных электроприборов. Зачем нужно было так заморачиваться и какие весомые преимущества есть у генераторов переменного тока — тема для отдельной статьи.

Что такое диодный мост и как он работает

Автомобильный генератор вырабатывает трехфазный переменный по величине и знаку ток (напряжение). Чтобы получить постоянную величину тока, в генераторах используют реле-регуляторы.

А чтобы получить ток, постоянный по полярности (+/-), используют диодные мосты, которые подключаются к обмоткам статора и преобразуют переменный ток в постоянный.

Т.е. диодный мост — это узел из выпрямительных полупроводниковых диодов, который выпрямляет переменный ток, вырабатываемый генератором.

Обмотка генератора вырабатывает три фазы тока, каждая из которых имеет форму синусоиды (волны). Часть полуволн заряжена положительно, вторая часть — отрицательно.

Полупроводниковые диоды имеют свойства пропускать ток только в одном направлении. Например, открываются на положительных полупериодах и закрываются на отрицательных.

 

Движение тока в генераторе

 

Как это работает в диодном мосте:

  • переменный ток из обмоток периодически меняет направление движения в цепи;
  • диоды пропускают его только в одном направлении;
  • чтобы не было скачков, на каждую фазу устанавливается по два диода (силовое плечо), работающих в разных направлениях.

Поэтому в стандартной, «базовой» комплектации диодного моста всегда не меньше 6 диодов (по два на каждую фазу). И независимо от полярности тока в обмотках генератора на выходе всегда будет плюс, необходимый для работы электроприборов.

С диодного моста ток поступает в аккумулятор, а оттуда ко всем электроприборам.

Принципиальная конструкция и особенности диодного моста

Диодный мост представляет собой две алюминиевые пластины (плюсовая и минусовая), соединенные изоляционными втулками. На пластинах расположены разъемы для проводов, подключающихся к обмоткам статора и регулятору напряжения.

В каждую пластину запрессованы по три или четыре крупногабаритных диода — это силовой мост.

Чтобы генератор работал более стабильно и эффективно, к 6 (8) основным диодам, которые “выпрямляют” ток,  можно подключить 3 дополнительных слаботочных — они подают питание на реле-регулятор и обмотку возбуждения.

 

 

 

Схема диодного моста генератора

Виды диодных мостов

На современных автомобилях используют диодные мосты на 6 или 8 диодов.

Шестидиодный мост используют в генераторах с любым способом подключения обмоток статора — треугольником или звездой.

 

Подключение обмотки к диодному мосту треугольником

 

Восьмидиодные мосты используются только при обмотке статора звездой, т. к. дополнительное силовое плечо здесь подключено к нулевой точке статора.

Подключение обмотки к диодному мосту звездой

 

Это более мощные мосты: дополнительное силовое плечо повышает мощность генератора на 5-15%, зависит от оборотов двигателя.

И шести-, и восьмидиодные мосты могут быть:

  • только с выпрямительными диодами. Здесь обмотка возбуждения питается от напряжения, которое снято с силовых выпрямителей;
  • с 3-мя дополнительными диодами (9-ти или 11-ти диодные мосты). В этом случае питание регулятора и обмотки идет с вспомогательных диодов.

 

Схема на 8 диодов

 

Кроме того, диодные мосты отличаются по конструкции, способу крепления диодов, бывают разборными и неразборными. В диодных мостах используются полупроводниковые выпрямители, лавинные диоды или диоды Шоттки.

Как проверить и отремонтировать диодный мост

Неисправный генератор заявляет о себе недвусмысленно:

  • Полностью заряженный с вечера аккумулятор на утро разрядился. Если его зарядить снова и завести двигатель, он разрядится через несколько минут.
  • Генератор воет во время движения. ТОнальность воя меняется в зависимости от оборотов.
  • Электроприборы сбоят.

Чтобы убедиться, что неисправен именно диодный мост, измерьте напряжение на выходе генератора — оно должно быть больше 13,5В и прозвоните генератор: если проблема в диодном мосте, “плюс” будет звенеть вместе с обмоткой.

Чтобы окончательно подтвердить предположения, езжайте на хорошее СТО — там мастера работают со спецоборудованием, которое позволяет найти обрывы, пробои, определить тип диодов, обнаружить их деградацию, напряжение обратного пробоя в лавинных диодах.  Такая подробная диагностика позволяет мастеру понять, какой диод нужен на замену, обнаружить деградирующие диоды и качественно отремонтировать генератор.

Если диодный мост разборной, специалисты заменят диоды, пришедшие в негодность. Если нет, придется полностью менять весь блок.

Диодный мост – энциклопедия VashTehnik.ru

Диодный мост – конструкция, позволяющая выпрямить ток результативно. Диодный мост считается двухполупериодным выпрямителем.

Диод, мосты и трудности выпрямления тока

Первоначально диодами называли электронные лампы с двумя электродами. Нагретый катод испускал электроны, способные лететь в единственном направлении – на анод. А в обратном направлении ток не тек. Это позволяло отсечь часть периода переменного напряжения. В результате ток становился выпрямленным.

Недостаток конструкции очевиден – часть времени, половину интервала, схема бездействует. По указанной причине создать высокую эффективность сложно. Говорим не о КПД, скорее, затрагиваем общую мощность. Напряжение в сети ограничено по номиналу, требуется действенно использовать имеющееся. Если повышать потребление через единственный диод, он перегреется и сгорит. Здесь на помощь приходит диодный мост.

Конструкция моста на схеме

Конструкции, рассмотренные в статье, как раз направлены на улучшение определённых свойств. Иначе давно применялся бы диодный мост единственной конфигурации. Известный диодный мост на четырёх вентилях далеко не единственный по простой причине – предназначен для работы с одной фазой напряжения. Это ущербный вариант, поставляемый в наши дома из целей экономии проводов, и в промышленности не применяется.

Начнём с Николы Тесла. Этот человек первым придумал вращающееся магнитное поле. Прежде переменный ток использовался, но при помощи единственной фазы озвученное явление создать нельзя. Внутри двигателя нужно, чтобы поле вращалось. Единственная фаза физически обеспечить это не в силах. Никола Тесла изобрёл асинхронный двигатель, со множеством полюсов. Отметим, что коллекторные разновидности моторов способны работать от переменного и постоянного тока, но рекомендуется избегать конструкций с постоянными магнитами. Ротор и статор собираются из медных обмоток. Полагаем, что в 19 веке подобных разновидностей двигателей не было.

Вернёмся к фазам. Изобретя асинхронный (индукционный) двигатель переменного тока, Никола Тесла попутно отметил в патенте возможность дальнейшего увеличения фаз, но дальше не пошёл. Позднее Доливо-Добровольский доказал, что гораздо результативнее использовать три фазы. Сегодня промышленные конструкции используют этот вариант. Заметим, любой двигатель может работать на потребление и генерацию тока, читатели поймут, что однофазный диодный мост не станет идеальным решением. Это ущербный, урезанный вариант для бытовой техники. Не более.

Бортовые системы несут в составе генератор на три фазы, это самая результативная конструкция сегодня из возможных. Используется уже схема Ларионова. Так достигается наилучшее соотношение экономии и эффективности. Неплохими характеристиками обладают выпрямительные схемы Миткевича. Школьные и ВУЗовские курсы физики имеют упрощённую структуру ввиду слишком сильного развития науки: невозможно за семестр вместить в головы учащихся всю информацию.

Диодный мост Гретца для бытовой техники не считается единственно возможным. Известны варианты на три фазы, гораздо более распространенные, чем кажется изначально. Диоды по конструкции и характеристикам сильно отличаются друг от друга. Это обусловливает специфику применения. Допустим, силовые разновидности мощные, но несут большие потери. Потому в выходных цепях импульсных блоков питания применяются диоды Шоттки с малым падением напряжения на p-n-переходе.

Конструкции диодных мостов

Единственная конструкция диодного моста не в силах обеспечить всех потребностей. Поэтому в автомобилях применяются схемы Ларионова. Сейчас обсудим конструкции, вначале проясним, почему диодный мост так называется. В 1833 году предложена схема для измерения сопротивления, основанная на выравнивание потенциала средних выводов двух ветвей:

  1. Четыре сопротивления соединяются в квадрат (по одному на сторону геометрической фигуры).
  2. К двум углам подаётся питающее напряжение от аккумулятора или другого источника.
  3. С двух других углом снимаются показания любым регистратором напряжения или тока.

Смысл работы заключается в том, чтобы при помощи потенциометра показания индикатора обратить в нуль. Тогда говорят – наступило равновесие моста. В то время (до публикации законов Кирхгофа) уже знали, что падение напряжение на двух резисторах пропорционально их величине, значит, справедливо, что: R1/R2 = R3/Rx, где R2 – потенциометр, R1 и R3 – постоянные сопротивления известного номинала, Rx – исследуемый элемент. Потом из простой пропорции находится искомая величина.

Мостовой схему в англоязычной литературе называют по причине, что между двумя ветвями электрической цепи, состоящих из сопротивлений R1, R2 и R3, Rx, соответственно, перекинуты перемычка – измерительный прибор. Людям это напомнило мост, схему назвали соответственно.

Диодный мост Гретца

В 1897 году журнал Elektronische Zeitung (часть 25) опубликовал заметку Лео Гретца об исследовании диодного моста. Отдельные читатели решили, что указанный человек стал изобретателем устройства. Поныне (на 2016 год) русский домен Википедии продолжает утверждать неоспоримый факт. В действительности изобретателем диодного моста Гретца стал польский электротехник Карол Поллак. Авторам обзора не удалось найти биографии учёного мужа на русском языке. Неудивительно, что о патенте под номером 96564 от 14 января 1896 года мало известно.

Схема диодного моста

Из рисунка видно объяснение названия схемы – диодный мост, налицо все признаки:

  1. Две ветки из диодов по центру закорочены цепью нагрузки.
  2. Питание переменным током подаётся к двум сторонам квадрата.
  3. На выходе присутствует постоянное напряжение.

К недостаткам схемы относится факт: падение напряжение на p-n-переходе удваивается. В любой момент времени ток проходит через пару диодов, а не один, как в случае однополупериодного выпрямителя. При большом вольтаже потерями возможно пренебречь, чтобы схема не сгорела, её снабжают большими изрезанными металлическими радиаторами. Автомобилисты уже поняли, о чем речь, простым смертным заметим, что для бытовой техники это не всегда справедливо (радиатор отсутствует). Причина не в мощности в цепи легковой машины. Скорее, при постоянном напряжении 12 В бортовой сети высоким оказывается ток, указанный факт приводит к столь сильному выделению тепла.

Поясним. По закону Джоуля-Ленца теплота от протекания электрического тока пропорциональна квадрату величины тока. В низковольтных цепях по этой причине приходится медные провода делать толстыми. Это причина, почему промышленное напряжение выше 12 В. В силовых линиях идут киловольты, что помогает снизить сечение кабелей и сэкономить на материалах. Для преобразования между линиями служит трансформатор, он, как правило, стоит на входе любого бытового прибора.

Это нужно, чтобы быстро создать номиналы напряжений, близкие к требуемым. Особенно ярко утверждение прослеживается на примере телевизоров с электронно-лучевой трубкой. Трансформатор на входе несёт множество выходных обмоток по числу цепей. Остаётся только выпрямить ток при необходимости, что позволяет снизить сложность аппаратуры. Для этого после выходной обмотки трансформатора ставится диодный мост Гретца (речь идёт об однофазных сетях 220 В).

В современных импульсных блоках питания по-другому. Диодный мост ставится прямо после входного фильтра, потом выпрямленное напряжение нарезается на тиристорном (транзисторном) ключе на высокочастотные импульсы, подаваемые на трансформатор. Это позволяет многократно уменьшить размеры сердечника и обмоток. Посмотрите на адаптер для сотового телефона: внутри стоит импульсный трансформатор. По размеру не сравнить с блоком питания телевизора. Порекомендуем обратить внимание на системный блок персонального компьютера, где источник выдаёт не менее 350 Вт. Этого хватит для телевизора с электронно-лучевой трубкой.

Схема моста Гретца

После импульсного трансформатора снова стоит выпрямитель. Иногда это диодный мост на базе диодов Шоттки с низким падением напряжения на p-n-переходе. Вспомним о перечисленных ранее недостатках. Для низких выходных напряжений импульсного блока питания применение диодных мостов невыгодно, удваивается количество вентилей. В результате потери выше, что закономерно снижает КПД. Дополнительным фактором считается выделение тепла: при низких напряжениях приходится использовать радиаторы при большом сопротивлении p-n-перехода.

Сопротивление p-n-перехода

Диодные мосты Гретца де-факто являются доминирующими сегодня в бытовых приборах. Сделаем маленькое отступление по поводу сопротивления p-n-перехода.

Как известно, характеристика диода напоминает в положительной части оси абсцисс параболу. Неважна форма, важен факт, что в любой точке графика становится возможным найти сопротивление. Потребуется просто поделить напряжение на ток. Получается, сопротивление диода зависит от приложенного вольтажа и в типичном случае постоянно меняется. Найдём аналогично действующему значению напряжения (220 В) среднюю цифру и для этого параметра. От неё зависят потери. Чем сопротивление p-n-перехода ниже, тем лучше. Поэтому выгодно использовать диоды Шоттки.

Однофазные выпрямители по схеме Миткевича

Схема не смотрится мостом, за исключением отдельных черт сходства. Из рисунка видно, что нагрузка словно закорачивает ветви обмотки трансформатора и диодов. Это уже натяжка. Так любую цепь можно назвать мостом. В любой момент времени у схемы Миткевича работает половина конструкции. Вторая заперта.

Аналогичное говорится про диодный мост Гретца, но здесь утверждение распространяется на обмотку трансформатора, чего нельзя отметить в предыдущем случае.

Трёхфазные выпрямители

Выпрямитель Ларионова (см. рисунок) мостом не считается, хотя так его упорно называют водители. Известны две разновидности конструкции, по терминологии трёхфазных линий называемые звезда и треугольник. Автомобилисты чаще контактируют с первым вариантом, где напряжением чуть выше, а потери меньше. Это обусловлено соображениями экономичности.

Параллельная и последовательная схемы

Выпрямители Миткевича и Ларионова

Известна схема, дающая упомянутой сто очков форы. Это истинный диодный мост, параллельное либо последовательное соединение трёх полных диодных мостов.

назначение и изготовление своими руками. Особенности диодных мостов и их применение

Диодный мост — простейшая схема, которая преобразует переменный ток в постоянный. Она используется практически во всей современной электронике, поэтому грамотный мастер должен понимать и уметь его ремонтировать. В российских розетках частота тока 50 Герц, и чтобы выровнять его для работы оборудования и применяют это нехитрое устройство.

Давайте разберем, как работает данное устройство. Оно собирается из диодов — элементов, пропускающих ток в одну сторону. Современные диоды являются полупроводниковыми устройствами небольшого размера — в этой статье мы не будем разбирать их особенности и маркировку, а поговорим только о том, как работает диодный мост.

Состав и принцип работы диода

У диода имеется два контакта — анод и катод. Ток течет от анода к катоду практически с нулевым сопротивлением. Но если ситуация меняется и ток подается на катод, то противоположное сопротивление не дает ему пробиться через элемент (ток практически равен нулю и в большинстве случаев им можно пренебречь). Схему работы вы можете увидеть на приведенном выше рисунке.

Упрощенная схема

Вы уже знаете, что такое диодный мост, поэтому рассмотрим простейший принцип его работы. Когда переменный ток попадает на анод Uвх, оно проходит через положительные полупериоды, тогда как отрицательные полностью удаляются. При этом выходное напряжение, обозначенное с правой стороны под аббревиатурой Uвых, не является выпрямленным, хоть и проходит в одном направлении.

Его частота равна тем же 50 Герц, или 50 пикам в секунду.

Чтобы сгладить эти пики к схеме подключается конденсатор высокой емкости. Получается выпрямительный диодный мост —на пике конденсатор заряжается, а на падении отдает заряд в сеть. Это позволяет частично сгладить график частоты и выровнять его, выведя на постоянное значение.

Подобная схема соединения диода и конденсатора носит название однополупериодной и не является достаточной для выравнивания тока в современных устройствах. У нее есть серьезные недостатки:

  1. Нормально выровнять пульсации до настоящей прямой невозможно.
  2. У схемы довольно малый коэффициент полезного действия.
  3. Нерациональное использование трансформатора, чересчур большой вес устройства.

Эти системы сегодня практически не используют или применяют их для маломощных устройств. Более логичные и надежные схемы называются двухполупериодными. Их основное достоинство — возможность инвертировать нижние волны в верхние. Именно подобные системы и называют диодным мостом.

Классический диодный мост

Стандартная содержит в себе вместо одного диода и конденсатора четыре диода, объединенных изображенным на рисунке способом. Его можно условно разбить на два полупериода. В каждом полупериоде находится два диода, работающих в одном направлении, и два — запрещающих проход тока. Положительное напряжение приходит на анод VD1, отрицательное на катод VD3. Данные диоды открываются, а VD2 и VD4 — закрываются.

Когда положительный полупериод заменяется на отрицательный, происходит смена работоспособности. Положительное напряжение приходит на анод VD2, отрицательное — на катодный выход VD4. Происходит смена направлений, но ток идет в нужном направлении. Получается, что в подобной схеме частота возрастает в два раза, за счет чего удается добиться лучшего сглаживания, используя идентичный с первой схемой конденсатор. Благодаря этому возрастает коэффициент полезного действия устройства и падают возможные потери.


Принцип работы классического моста

Изучая, не забывайте о том, что не обязательно спаивать его из четырех микроэлементов и подбирать соответствующий конденсатор. В большинстве случаев можно приобрести готовое решение в магазине, с подобранными параметрами и известными характеристиками. Достоинства подобной сборки в маленьких размерах, единых тепловых режимах и небольшом весе. Основной недостаток в том, что если выходит из строя один элемент, то приходится менять весь узел .

Трехфазный мост

Теперь, когда вы знаете, для чего нужен диодный мост и что он собой представляет, рассмотрим более сложную трехфазную схему, выдающую пульсирующий ток. Он максимально близок к постоянному и подходит для использования в приборах, требующих стабильную подачу. Вход этой системы присоединяется к источнику, подающему трехфазное питание (разумеется речь идет о переменном токе). Это может быть трансформатор или генератор. На выходе системы оказывается практически идеальный постоянный ток, который можно легко сгладить.


Схема выпрямителя

Чтобы сделать качественный двухполупериодный выпрямитель из схемы подключения диодного моста с конденсатором, изучите наш рисунок. В данном случае выпрямляется ток, который снимается с понижающей трансформаторной обмотки. Выравнивание происходит за счет электролитического конденсатора на 5-10 тысяч микрофарад, заряжающегося и отдающего заряд в сеть. В схему также введен дополнительный резистор, который выпрямляет ток при холостой работе. Чем выше нагрузка, тем меньше напряжение на выходе, поэтому к нему подсоединяют стабилизатор на классических транзистора х.

Диодный мост — электрическая схема, предназначенная для преобразования переменного тока в постоянный импульсный. Изобретение схемы в 1897 году приписывается немецкому физику Лео Гретцу, хотя англоязычные источники утверждают, что ещё в 1895 году диодный мост создал «польский Эдисон» — электротехник Карол Поллак. Наибольшее распространение схема получила после широкого внедрения полупроводниковых диодов.

Принцип действия этого типа выпрямительного устройства основан на свойстве полупроводникового диода пропускать электроток в одном направлении и не пропускать в другом. Так, если мы правильно подключим плюс и минус, через устройство пойдёт ток. Поменяем плюс и минус местами — движения не будет.

Переменный ток отличается тем, что в течение одного полупериода он движется в одном направлении, а в течение второго — в противоположном. И если просто включить в цепь один диод, то он будет работать «с пользой» только в течение одного полупериода. А если соединить диоды так, чтобы использовать оба полупериода? Благодаря этой идее и появились мостовые выпрямители.

Схема диодного моста—выпрямителя довольно проста и может быть собрана своими руками. Он состоит из четырёх диодов, соединённых в виде квадрата. На два противолежащих угла подаётся переменный ток от генератора. С двух других противолежащих углов снимается постоянный. В первый полупериод открываются два диода, выпрямляя полуволну переменного тока. Во второй полупериод открываются два других диода, преобразуя вторую полуволну. В итоге на выходе получается постоянный ток с частотой импульсов в два раза выше, чем частота переменного тока.

Преимущества и недостатки схемы

  1. Для использования выпрямленного тока импульсная составляющая должна быть сглажена с помощью фильтра—конденсатора. Чем выше частота, тем лучше проходит процесс сглаживания. Поэтому удвоение частоты в мостовой схеме является преимуществом.
  2. Двухполупериодное выпрямление позволяет лучше использовать мощность питающего трансформатора и за счёт этого уменьшить его размеры.

Недостатки .

  1. Удвоенное падение напряжения по сравнению с однополупериодным выпрямителем.
  2. Удваиваются потери мощности на рассеяние тепла. Для снижения потерь в мощных низковольтных схемах используются диоды Шоттки с малым падением напряжения.
  3. При выходе из строя одного из диодов моста выпрямительное устройство будет работать, однако его параметры будут отличаться от нормальных. Это, в свою очередь, может негативно сказаться на работе систем, запитанных от выпрямителя.

Использование и применение

Сегодня мосты широко применяются во всех случаях, когда используется постоянный ток — от мобильных телефонов, до автомобилей. Промышленность выпускает большое количество выпрямительных устройств, выполненных по мостовой схеме. Поэтому подобрать нужный мостик не составляет труда при условии ясного понимания, зачем он приобретается и какие функции будет выполнять.

Конструктивно выпрямители могут быть выполнены на отдельных диодах либо в виде единого блока. В первом случае при повреждении одного из диодов можно произвести замену. Для этого надо знать, как прозвонить диодный мост. Проверка проводится в виде последовательного перебора всех диодов на пропускание тока в прямом и обратном направлении. В качестве индикатора можно использовать как обычную лампочку, так и прибор, измеряющий силу тока или сопротивление.

Несмотря на доступность фабричных выпрямителей, многих интересует, как сделать диодный мост на 12 вольт самостоятельно. Дело в том, что 12 вольт — наиболее распространённое напряжение для питания многих устройств, например, персональных компьютеров. А стремление собрать выпрямитель самостоятельно зачастую вполне оправданно. Ведь большинство недорогих блоков питания, которые можно приобрести, не соответствуют заявленным параметрам по току и мощности.

Конечно, самодельный блок вряд ли будет выглядеть как фабричный, зато позволит произвести подключение устройств в полном соответствии с нужными параметрами.

Несмотря на то что выпрямительный мостик не является сложной схемой, его сборка требует не только умения спаять детали, но и правильно рассчитать их параметры. Прежде всего потребуется силовой трансформатор, понижающий напряжение до 10 вольт. Дело в том, что выходное напряжение моста выше входного примерно на 18 процентов. Поэтому если подать на выпрямитель 12 вольт переменного тока, то получим 14−15 вольт постоянного тока, а это может быть опасным для устройств, рассчитанных на 12 вольт.

Далее, нужно подобрать диоды, рассчитанные на двукратный запас по току. Так, если предполагается, что выпрямитель должен обеспечить ток силой в 5 ампер, то диоды должны выдерживать не менее 10 ампер. Двукратный запас должен иметь и конденсатор, но по напряжению. А для того чтобы лучше сглаживать выпрямленный ток, он должен иметь большую ёмкость. Поэтому оптимальным является электролитический конденсатор, рассчитанный на напряжение 25 вольт, ёмкостью от 2000 микрофарад. Все эти детали остаётся правильно соединить и проверить выходные параметры с помощью приборов.

Мост бывает через реку, через овраг, а также через дорогу. Но приходилось ли Вам слышать словосочетание «диодный мост»? Что за такой мост? А вот на этот вопрос мы с вами попробуем найти ответ.

Словосочетание «диодный мост» образуется от слова «диод». Получается, диодный мост должен состоять из диодов. Но если в диодном мосту есть диоды, значит, в одном направлении диод будет пропускать , а в другом нет. Это свойство диодов мы использовали, чтобы определить их работоспособность. Кто не помнит, как мы это делали, тогда вам сюда. Поэтому мост из диодов используется, чтобы из переменного напряжение получать постоянное напряжение .

А вот и схема диодного моста:

Иногда в схемах его обозначают и так:

Как мы с вами видим, схема состоит из четырех диодов. Но чтобы схемка диодного моста заработала, мы должны правильно соединить диоды, и правильно подать на них переменное напряжение. Слева мы видим два значка «~». На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов: с плюса и минуса.

Для того, чтобы превратить переменное напряжение в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок:

Переменное напряжение изменяется со временем. Диод пропускает через себя напряжение только тогда, когда напряжение выше нуля, когда же оно становится ниже нуля, диод запирается. Думаю все элементарно и просто. Диод срезает отрицательную полуволну, оставляя только положительную полуволну, что мы и видим на рисунке выше. А вся прелесть этой немудреной схемки состоит в том, что мы получаем постоянное напряжение из переменного. Вся проблема в том, что мы теряем половину мощности переменного напряжения . Ее тупо срезает диод.

Чтобы исправить эту ситуацию, была разработана схемка диодного моста. Диодный мост «переворачивает» отрицательную полуволну, превращая ее в положительную полуволну. Тем самым мощность у нас сохраняется. Прекрасно не правда ли?

На выходе диодного моста у нас появляется постоянное пульсирующее напряжение с частой в два раза больше, чем частота сети: 100 Гц.

Думаю, не надо писать, как работает схема, Вам все равно это не пригодится, главное запомнить, куда цепляется переменное напряжение, а откуда выходит постоянное пульсирующее напряжение.

Давайте же на практике рассмотрим, как работает диод и диодный мост.

Для начала возьмем диод.

Я его выпаял из блока питания компа. Катод можно легко узнать по полоске. Почти все производители показывают катод полоской или точкой.

Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220 Вольт трансформирует 12 Вольт. Кто не знает как он это делает, можете прочитать статью устройство трансформатора.

На первичную обмотку цепляем 220 Вольт, со вторичной снимаем 12 Вольт. Мультик показывает чуть больше, так как ко вторичной обмотке не подцеплена никакая нагрузка. Трансформатор работает на так называемом «холостом ходу».

Давайте же расмотрим осциллограмму, которая идет со вторичной обмотки транса. Максимальную амплитуду напряжение нетрудно посчитать. Если не помните как расчитать, можно глянуть статейку Осциллограф. Основы эксплуатации. 3,3х5= 16.5В — это максимальное значение напряжения. А если разделить максимальное значение амплитуда на корень из двух, то получим где то 11.8 Вольт. Это и есть действующее значение напряжения. Осцилл не врет, все ОК.

Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт — это не шутки, поэтому я и понизил переменное напряжение.

Припаяем к одному концу вторичной обмотки транса наш диод.

Цепляемся снова щупами осцилла

Смотрим на осцилл

А где же нижняя часть изображения? Ее срезал диод. Диод оставил только верхнюю часть, то есть та, которая положительная. А раз он срезал нижнюю часть, то он следовательно срезал и мощность.

Находим еще три таких диода и спаиваем диодный мост.

Цепляемся ко вторичной обмотке транса по схеме диодного моста.

С двух других концов снимаем постоянное пульсирующее напряжение щупами осцилла и смотрим на осцилл.

Вот, теперь порядок, и мощность у нас никуда не пропала:-).

Чтобы не замарачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате получился очень компактный и удобный диодный мост. Думаю, вы догадаетесь, где импортный, а где советский))).

А вот и советский:

А как Вы догадались? 🙂 Например, на советском диодном мосте, показаны контакты, на которые надо подавать переменное напряжение (значком » ~ «), и показаны контакты, с которых надо снимать постоянное пульсирующее напряжение («+» и «-«).

Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменке, а с двух других контактов снимаем показания на осцилл.

А вот и осциллограмма:

Значит импортный диодный мостик работает чики-пуки.

В заключении хотелось бы добавить, что диодный мост используется почти во всей радиоаппаратуре, которая кушает напряжение из сети, будь то простой телевизор или даже зарядка для сотового телефона. Проверяются диодный мост исправностью всех его диодов.

Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему счастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пожалуйста.

Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,

Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.

а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).

Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:

Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.

Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.

Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.

Ну а теперь к делу.

1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.

2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, намного большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.

4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.

5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.


6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.


7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.

Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

Для однополупериодного выпрямителя формула несколько отличается:

Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.

Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В

Для справки — допустимые пульсации:
Микрофонные усилители — 0,001…0,01%
Цифровая техника — пульсации 0,1…1%
Усилители мощности — пульсации нагруженного блока питания 1…10% в зависимости от качества усилителя.

Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.

Во многих электронных приборах, работающих при переменном токе в 220 вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока . Это связано с тем, что для работы большинства приборов используется постоянный ток.

Как работает диодный мост

Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.

Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические с большой емкостью.

Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе.

Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения.


Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями.

Применение диодных мостов

В любых приборах и электронике, для питания которых используется переменный электрический ток, присутствует схема диодного моста на 12 вольт. Ее используют не только в трансформаторных, но и в импульсных выпрямителях. Наиболее характерным импульсным блоком является блок питания компьютера.

Кроме того диодные мосты применяются в люминесцентных компактных лампах или в энергосберегающих лампах . Они дают очень хороший эффект при использовании их в пускорегулирующих электронных аппаратах . Широко применяются и во всех моделях современных аппаратов.

Как сделать диодный мост

Преобразовать переменный ток в постоянный поможет диодный мост — схема и принцип действия этого устройства приводятся ниже. В обычной осветительной цепи течет переменный ток, который 50 раз в течение одной секунды меняет свою величину и направление. Его превращение в постоянный — достаточно часто встречающаяся необходимость.

Принцип действия полупроводникового диода

Рис. 1

Название описываемого устройства ясно указывает, что эта конструкция состоит из диодов — полупроводниковых приборов, хорошо проводящих электричество в одном направлении и практически не проводящих его в противоположную сторону. Изображение этого прибора (VD1) на принципиальных схемах приведено на рис. 2в. Когда ток по нему течет в прямом направлении — от анода (слева) к катоду (справа), сопротивление его мало. При изменении направления тока на противоположное сопротивление диода многократно возрастает. В этом случае через него течет мало отличающийся от нуля обратный ток.

Поэтому при подаче на цепочку, содержащую диод, переменного напряжения U вх (левый график), электричество через нагрузку течет только в течение положительных полупериодов, когда к аноду приложено положительное напряжение. Отрицательные полупериоды «срезаются», и ток в сопротивлении нагрузки в это время практически отсутствует.

Строго говоря, выходное напряжение U вых (правый график) является не постоянным, хотя и течет в одном направлении, а пульсирующим. Нетрудно понять, что количество его импульсов (пульсаций) за одну секунду равно 50. Это не всегда допустимо, но пульсации можно сгладить, если подсоединить параллельно нагрузке конденсатор, имеющий достаточно большую емкость. Заряжаясь во время импульсов напряжения, в промежутках между ними конденсатор разряжается на сопротивление нагрузки. Пульсации сглаживаются, а напряжение становится близким к постоянному.

Изготовленный в соответствии в этой схемой выпрямитель называется однополупериодным, поскольку в нем используется лишь один полупериод выпрямленного напряжения. Наиболее существенные недостатки такого выпрямителя следующие:

  • повышенная степень пульсаций выпрямленного напряжения;
  • низкий КПД;
  • большой вес трансформатора и его нерациональное использование.

Поэтому применяются такие схемы только для питания устройств малой мощности. Для исправления этой нежелательной ситуации разработаны двухполупериодные выпрямители, которые превращают отрицательные полуволны в положительные. Сделать это можно по-разному, но самый простой способ — использование диодного моста.

Рис. 2

Диодный мост — схема двухполупериодного выпрямления, содержащая 4 диода вместо одного (рис. 2в). В каждом полупериоде два из них открыты и пропускают электричество в прямом направлении, а два других закрыты, и ток через них не течет. Во время положительного полупериода положительное напряжение приложено к аноду VD1, а отрицательное — к катоду VD3. В результате оба этих диода открыты, а VD2 и VD4 — закрыты.

Во время отрицательного полупериода положительное напряжение приложено к аноду VD2, а отрицательное — к катоду VD4. Эти два диода открываются, а открытые во время предыдущего полупериода закрываются. Ток через сопротивление нагрузки течет в том же направлении. В сравнении с однополупериодным выпрямителем количество пульсаций возрастает вдвое. Результат — более высокая степень сглаживания при той же емкости конденсатора фильтра, увеличение КПД используемого в выпрямителе трансформатора.

Диодный мост может быть не только собран из отдельных элементов, но и изготовлен как монолитная конструкция (диодная сборка). Ее легче монтировать, а диоды обычно подобраны по параметрам. Немаловажно и то, что они работают в одинаковых тепловых режимах. Недостаток диодного моста — необходимость замены всей сборки при выходе из строя даже одного диода.

Еще ближе к постоянному будет пульсирующий выпрямленный ток, который позволяет получить трехфазный диодный мост. Его вход подключается к источнику трехфазного переменного тока (генератору или трансформатору), а напряжение на выходе почти не отличается от постоянного, и сгладить его еще проще, чем после двухполупериодного выпрямления.

Выпрямитель на основе диодного моста

Схема двухполупериодного выпрямителя на основе диодного моста, пригодная для сборки своими руками, изображена на рис. 3а. Выпрямлению подвергается напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т. Для этого нужно подключить диодный мост к трансформатору.

Пульсирующее выпрямленное напряжение сглаживается электролитическим конденсатором С, имеющим достаточно большую емкость — обычно порядка нескольких тысяч мкФ. Резистор R играет роль нагрузки выпрямителя на холостом ходу. В таком режиме конденсатор С заряжается до амплитудного значения, которое в 1,4 (корень из двух) раза выше действующего значения напряжения, снимаемого со вторичной обмотки трансформатора.

С ростом нагрузки выходное напряжение уменьшается. Избавиться от этого недостатка можно, подключив к выходу выпрямителя простейший транзисторный стабилизатор. На принципиальных схемах изображение диодного моста часто упрощают. На рис. 3б показано, как еще может быть изображен соответствующий фрагмент на рис. 3а.

Следует заметить, что, хотя прямое сопротивление диодов невелико, тем не менее, оно отлично от нуля. По этой причине они нагреваются в соответствии с законом Джоуля-Ленца тем сильнее, чем больше величина тока, протекающего по цепи. Для предотвращения перегрева мощные диоды часто устанавливаются на теплоотводах (радиаторах).

Диодный мост — это практически обязательный элемент любого электронного устройства , питающегося от сети, будь то компьютер или выпрямитель для зарядки мобильного телефона.

Большинство электростанций вырабатывает переменный ток. Это связано с особенностью конструкции генераторов. Исключение составляют лишь солнечные панели, с которых снимается постоянный ток.

Вообще, выбор между постоянным и переменным током с точки зрения производства, транспортировки и потребления – это борьба противоречий.

Производить (вырабатывать на электростанциях) удобнее и проще переменный ток.

Транспортировать экономически выгодно постоянный ток. Смена полупериодов переменного напряжения приводит к потерям.

С точки зрения трансформации (уменьшение величины напряжения) удобнее работать с переменным током. Принцип работы трансформаторы построен на пульсирующем или переменном напряжении.

Большинство потребителей электроэнергии (речь идет об устройствах) работают на постоянном токе. Электросхемы не могут работать с переменным напряжением.

В результате мы имеем следующую картину:
До розетки доходит переменный ток с напряжением 220 вольт. А все домашние электроприборы (за исключением тех, которые содержат мощные электродвигатели и нагревательные элементы) питаются постоянным током.

Внутри большинства домашнего оборудования есть блоки питания. После понижения (трансформации) величины напряжения, необходимо преобразовать ток из переменного в постоянный. Основой такой схемы является диодный мост.

Для чего нужен диодный мост?

Исходя из определения, переменный ток с определенной частотой (в бытовой электросети 50Гц) меняет свое направление, при неизменной величине.

Важно! Поскольку мы знаем, что для питания большинства электросхем нужно полярное напряжение – в блоках питания приборов происходит замена переменного тока на постоянный.

Происходит это в два или три этапа:
С помощью диодной сборки переменный ток превращается в пульсирующий. Это уже выпрямленный график, однако, для нормального функционирования схемы такого качества питания недостаточно.

Для сглаживания пульсаций, после моста устанавливается фильтр. В простейшем случае – это обычный полярный конденсатор. При необходимости увеличить качество – добавляется дроссель.

После преобразования и сглаживания, необходимо обеспечить постоянную величину рабочего напряжения.

Для этого, на третьем этапе устанавливаются стабилизаторы напряжения.

И все же, первым элементом любого блока питания является диодный мост.

Он может быть выполнен как из отдельных деталей, так и в моно корпусе.


Первый вариант занимает много места и сложнее в монтаже.

Есть и преимущества:
такая конструкция стоит недорого, легче диагностируется, и в случае выхода из строя одного элемента – меняется только он.

Вторая конструкция компактна, исключены ошибки в монтаже. Однако стоимость несколько выше, чем у отдельных диодов и невозможно отремонтировать один элемент, приходится менять весь модуль.

Принцип работы диодного моста

Вспомним характеристики и назначение диода. Если не вдаваться в технические детали – он пропускает электрический ток в одном направлении, и закрывает ему путь в противоположном.

Этого свойства уже достаточно для того, чтобы собрать простейший выпрямитель на одном диоде.

Элемент просто включается в цепь последовательно, и каждый второй импульс тока, идущий в противоположном направлении – отрезается.

Такой способ называется однополупериодным, и у него есть множество недостатков:

Очень сильная пульсация, между полупериодами возникает пауза в подаче тока, равная длине половины синусоиды.

В результате отрезания нижних волн синусоиды, напряжение уменьшается вдвое. При точном измерении уменьшение оказывается больше, поскольку потери есть и в диодах.

Способность снижать напряжение вдвое при его выпрямлении, нашла применение в ЖКХ.

Жильцы многоквартирных подъездов, устав менять постоянно перегорающие лампочки – оснащают их диодами.

При включении последовательно, снижается яркость свечения и лампа «живет» гораздо дольше.

Правда сильное мерцание утомляет глаза, и такой светильник годится лишь для дежурного освещения.

Для уменьшения потерь, применяется соединение четырех элементов.

Двухполупериодный диодный мост, схема работы:

В каком бы направлении не протекал переменный ток на вводных контактах, выход диодного моста обеспечивает неизменную полярность на его выходных контактах.

Частота пульсаций такого соединения ровно в два раза выше частоты переменного тока на входе.

Поскольку плечи моста не могут одновременно пропускать ток в обоих направлениях – обеспечивается стабильная защита схемы.

Даже если у вас в устройстве перегорел диодный мост – короткого замыкания или скачка напряжения не будет.

Надежность мостовой схемы проверена десятилетиями. Защита от перенапряжения на входе гарантируется трансформатором.

От перегрузки спасает стабилизатор на выходе. Пробивает диодный мост лишь в случае использования бракованных деталей, или в автомобиле, где схема подвергается постоянным нагрузкам.

Как работает диодный мост при минимальном напряжении?

Падение напряжения в диодном мосту составляет до 0,7 вольт. При использовании обычной элементной базы в низковольтных схемах, иногда падение напряжения составляет до 50% от номинала блока питания. Такая погрешность недопустима .

Для обеспечения работы блоков питания с напряжением от 1,5 вольт до 12 вольт – используются диоды Шоттки.

При прямом протекании тока, падение напряжения на одном кристалле составляет не более 0,3 вольта. Умножаем на четыре элемента в мосту – получается вполне приемлемое значение потерь.

Кроме того, если диодный мост Шоттки на уровень помех – вы получите значение, недостижимое для кремниевых p-n диодов.

Еще одно достоинство, обусловленное отсутствием p-n перехода – способность работать на высокой частоте.

Поэтому выпрямители сверх высокочастотного напряжения делают исключительно на диодах этого типа.

Однако у диодов Шоттки есть и недостатки
. При воздействии обратного напряжения, пусть даже кратковременном – элемент выходит из строя.

Проверка диодного моста мультиметром показывает, что именно эта причина имеет необратимые последствия.

Обычный германиевый или кремниевый элемент с p-n переходом самостоятельно восстанавливаются после переполюсовки.

Поэтому мосты на диодах Шоттки применяются только в низковольтных блоках питания и при наличии защиты от обратного напряжения.

Что делать, если есть подозрения на поломку моста?

Выпрямитель собран на обычной элементной базе, поэтому мы расскажем, как в домашних условиях проверить диодный мост мультиметром.

На иллюстрации видно, как протекает ток по мосту. Принцип тестирования такой же, как при проверке одиночных диодов.

Смотрим по справочнику, какие выводы модуля соответствуют переменному входу или полярному выходу – и выполняем прозвонку.

Как прозвонить диодный мост без выпаивания из схемы?

Поскольку ток в обратном направлении через диод не течет, неправильные результаты проверки говорят о пробое моста.

Извлекать мост нет необходимости, остальные элементы блока питания не оказывают влияния на измерение.

Итог: Любой из вас сможет как самостоятельно собрать диодный мост, так и отремонтировать его в случае поломки. Достаточно иметь элементарные навыки в электротехнике.

Смотрите видео: как мультиметром проверить диодный мост генератора вашего автомобиля.

Подробный рассказ о том как проверить диодный мост мультиметром в этом видео сюжете

Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.

В реальности сборка диодного моста может выглядеть вот так.


Диодная сборка KBL02 на печатной плате

Или вот так.


Диодная сборка RS607 на плате компьютерного блока питания

А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.

Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504 , рассчитанный на прямой ток 25 ампер.

Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.

Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.


Условное изображение диодного моста и диодной сборки

Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.

На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD , а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1 VD4 . Иногда применяется обозначение VDS . Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD .

Где применяется схема диодного моста?

Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах… . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания , но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.

В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.

Диодный мост КЦ407 — DataSheet

Корпус диодного моста КЦ407

Описание

Блок из кремниевых мезадиффузионных диодов, соединенных по мостовой схеме. Выпускается в пластмассовом корпусе с гибкими выводами. Тип блока и схема соединения электродов с выводами приводятся на корпусе. Масса блока не более 0,5 г.

 

Характеристики диодного моста КЦ407
Параметр Обозначение Маркировка Значение Ед. изм.
Аналог КЦ407А 1N5216
Максимальное постоянное обратное напряжение. Uo6p max, Uo6p и max КЦ407А 400* В
Максимальный постоянный прямой ток. Iпp max, Iпp ср max, I*пp и max КЦ407А 0.5; 3* А
Максимальная рабочая частота диода fд max КЦ407А 20 кГц
Постоянное прямое напряжение Uпр не более (при Iпр, мА) КЦ407А 2.5 (200) В
Постоянный обратный ток Iобр не более (при Uобр, В) КЦ407А 5 (400) мкА
Время обратного восстановления — время переключения диода с заданного прямого тока на заданное обратное напряжение от момента прохождения тока через нулевое значение до момента достижения обратным током заданного значения tвос, обр КЦ407А 5 мкс
Общая емкость. Сд (при Uобр, В) КЦ407А пФ

Описание значений со звездочками(*) смотрите в буквенных обозначениях параметров диодов

 

Зависимость допустимого импульсного прямого тока от длительности импульса

Зависимость допустимого среднего тока от температуры при работе блока в качестве моста

Зависимость допустимого среднего тока от температуры при включении блока выводами 1(6) и 3(4)

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Diode Bridge — обзор

5.3.1 Однофазный выпрямительный диодный мост на одной фазе DG-1

Нагрузка выпрямительного диодного моста подключается к одной из фаз системы DG-1. Это создаст ситуацию нелинейности, а также дисбаланса в MG. Токи в соединительных линиях равны

(5.7) ia (t) = μI1cos (ωt − ϕ1) + I3cos (3ωt − ϕ3) + I5cos (5ωt − ϕ5) + ⋯, ib (t) = I1sin (ωt − 2π / 3 − ϕ1), Ic (t) = I1sin (ωt + 2π / 3 − ϕ1).

Где I 1 — пиковое значение основного тока, когда подключена только линейная сбалансированная нагрузка, а I 3 и I 5 — пиковые значения гармонических токов.Из-за нагрузки однофазного выпрямителя на фазе а основная составляющая будет изменена, и о ней позаботятся с коэффициентом « µ ». Эти линейные токи преобразуются в стационарную систему отсчета с помощью (5.4). В сложной форме записи трехфазные токи могут быть представлены в виде комплексного вектора:

(5,8) I = iα − jiβ.

Обратите внимание, что компонент i γ не рассматривается, поскольку при анализе мгновенного потока мощности нет соответствующей составляющей v γ для напряжений на клеммах [23].Токи в неподвижной системе отсчета также могут быть представлены в терминах векторов всех составляющих прямой и обратной последовательности основных и гармонических токов как

(5.9) I = (Iqd1pejωt + Iqd1ne − jωt + Iqd3pej3ωt + Iqd3ne − j3ωt + Iqd5ωt + Ipeqd5 −j5ωt).

Коэффициенты для всех компонентов последовательности, таких как Iqd1p, Iqd1n и т. Д., Являются векторами. В общем, они представлены как

fqdk = fqk + jfdk,

, где k обозначает k -ю гармоническую составляющую.Верхний индекс p и n обозначают компоненты положительной и отрицательной последовательности соответственно. Используя (5.6) и (5.9), кажущийся поток мощности в линии рассчитывается как:

(5.10) S = (Vqdpejω1t) (Iqd1pejω1t + Iqd1ne − jω1t + Iqd3pej3ω1t + Iqd3ne − j3ω1t + Iqd5 * j5qq1 + Iqd5 * j5q5 .

Действительная часть (5.10) дает активную мощность, а мнимая часть дает реактивную мощность. Активную мощность можно компактно выразить как

(5.11) P12 (t) = P0 + ∑k = 1,3,5 (Pcnkcos ((k + 1) ω1t) + Psnksin ((k + 1) ω1t)) + ∑k = 3,5 (Pcpkcos ((k − 1) ω1t) + Pspksin ((k − 1) ω1t)).

Коэффициенты мощности Pcn1, Psn1, Qcn1, Qsn1 и т. Д. Определены в Приложении 5.1, Коэффициенты мощности. В (5.11) P 0 обусловлено основными составляющими прямой последовательности напряжений и токов. Его можно заменить выражением (5.12), которое обычно представляет собой поток мощности в условиях сбалансированной нагрузки.

(5.12) P0 (t) = B12sinδ12, при B12 = 3V1V2ω0L12,

, где В 1 и В 2 — напряжения на клеммах инвертора, ω 0 — номинальная частота, а L 12 — индуктивность линии между DG-1 и DG-2.Подставляя (5.12) в (5.11), P 12 можно записать как:

(5.13) P12 (t) = B12sinδ12 + ∑k = 1,3,5 (Pcnkcos ((k + 1) ω1t) + Psnksin ((k + 1) ω1t)) + ∑k = 3,5 (Pcpkcos ((k − 1) ω1t) + Pspksin ((k − 1) ω1t)).

Поток мощности в соединительной линии P 12 , таким образом, представляет собой комбинацию мощности из-за напряжений прямой последовательности основной частоты и основной частоты, а также гармонических и несимметричных токов.

Аналогичное выражение получено для потока реактивной мощности в соединительных линиях, который задается как

(5.14) Q12 (t) = Q0 + ∑k = 1,3,5 (Qcnkcos ((k + 1) ω1t) + Qsnksin ((k + 1) ω1t)) + ∑k = 3,5 (Qcpkcos ((k− 1) ω1t) + Qspksin ((k − 1) ω1t)).

Диодный мостовой выпрямитель, трехфазный выпрямитель

C&H Technology специализируется на сильноточных диодных мостовых выпрямителях, однофазных и трехфазных диодных мостовых выпрямителях. Типичные области применения этих входных выпрямительных мостов: сварка, генератор, зарядное устройство, привод двигателей переменного тока и тяга.Мостовые выпрямители в сборе с воздушным и водяным охлаждением до 20 000 ампер.

Диодный мост или мостовой выпрямитель — это система из четырех диодов в мостовой конфигурации, которая обеспечивает одинаковую полярность выходного напряжения для любой полярности входного напряжения. В наиболее распространенном применении для преобразования входного переменного тока (AC) в выход постоянного тока (DC) он известен как мостовой выпрямитель. Мостовой выпрямитель обеспечивает двухполупериодное выпрямление от двухпроводного входа переменного тока, что приводит к снижению стоимости и веса по сравнению с конструкцией трансформатора с центральным отводом.

Однофазный диодный мостовой выпрямитель

  • Ток: от 1А до 50А
  • Изолированное основание для прямого монтажа на радиаторе
  • Клеммы: быстроразъемные, винтовые, под пайку для печатной платы
  • 100% не содержит свинца и соответствует требованиям RoHS
  • Сертификат UL для промышленного оборудования E78996

Трехфазный диодный мостовой выпрямитель

  • Ток: от 25А до 200А
  • Изолированное основание для прямого монтажа на радиаторе
  • Клеммы: быстроразъемные, винтовые, под пайку для печатной платы
  • 100% не содержит свинца и соответствует требованиям RoHS
  • Сертификат UL для промышленного оборудования E78996

Трехфазный тиристор

  • Цепи тиристорного моста и переключателя переменного тока
  • Ток: от 55А до 110А
  • Изолированное основание для прямого монтажа на радиаторе
  • Клеммы: быстроразъемные, винтовые, под пайку для печатной платы
  • 100% не содержит свинца и соответствует требованиям RoHS
  • Сертификат UL для промышленного оборудования E78996

Для получения дополнительной информации о нашем опыте и решениях в области диодных мостовых выпрямителей свяжитесь с нами сегодня.

Мостовой выпрямитель — определение, изготовление и работа

Раньше собираясь мостовой выпрямитель, нам нужно знать, что на самом деле выпрямитель есть и зачем нужен выпрямитель. Так Сначала давайте посмотрим на эволюцию выпрямителей.

Эволюция выпрямители

Выпрямители находятся в основном подразделяется на три типа: полуволна выпрямитель, Центр двухполупериодный выпрямитель с отводом и мостовой выпрямитель.Все у этих трех выпрямителей есть общая цель — преобразовать Чередование Ток (переменный ток) в постоянный Ток (постоянный ток).

Нет все эти три выпрямителя эффективно преобразуют Переменный ток (AC) в постоянный ток (DC), только двухполупериодный выпрямитель с центральным ответвлением и мостовой выпрямитель эффективно преобразовывать переменный ток (AC) в постоянный Ток (постоянный ток).

В однополупериодный выпрямитель, допускается только 1 полупериод и оставшаяся половина цикла заблокирована. В результате почти половина приложенная мощность тратится на полуволновой выпрямитель. В в дополнение к этому, выходной ток или напряжение производимый однополупериодным выпрямителем — это не чистый постоянный ток, а пульсирующий постоянный ток, который не очень полезен.

В чтобы преодолеть эту проблему, ученые разработали новый тип выпрямителя, известный как двухполупериодный с отводом по центру выпрямитель.

Основным преимуществом двухполупериодного выпрямителя с центральным ответвлением является то, что пропускает электрический ток как во время положительного, так и отрицательного полупериоды входного сигнала переменного тока.В результате DC выходная мощность двухполупериодного выпрямителя с отводом в два раза больше то из полуволнового выпрямителя. В дополнение к этому, DC выход двухполупериодного выпрямителя с центральным ответвлением содержит очень меньше ряби. В результате выход постоянного тока центра двухполупериодный выпрямитель с ответвлениями более плавный, чем полуволновой выпрямитель.

Однако двухполупериодный выпрямитель с центральным ответвлением имеет один недостаток: трансформатор с центральным отводом, используемый в нем, очень дорого и занимает большую площадь.

Кому сократить эти дополнительные расходы, ученые разработали новый тип выпрямитель, известный как мостовой выпрямитель. В мостовом выпрямителе, центральный кран не требуется. Если уйти или подняться напряжения не требуется, тогда даже трансформатор можно устранен в мостовом выпрямителе.

выпрямительный КПД мостового выпрямителя практически равен к центру двухполупериодного выпрямителя.Единственное преимущество мостового выпрямителя над двухполупериодным выпрямителем с отводом по центру это снижение стоимости.

В мостовой выпрямитель, вместо использования центрального отвода трансформатор, используются четыре диода.

Сейчас мы получаем представление о трех типах выпрямителей. Половина волновой выпрямитель и двухполупериодный выпрямитель с отводом по центру (двухполупериодный выпрямитель) уже обсуждались в предыдущем учебные пособия.В этом уроке основное внимание уделяется мосту. выпрямитель.

Let’s взгляните на мостовой выпрямитель…!

Мост выпрямитель определение

А мостовой выпрямитель — это тип двухполупериодного выпрямителя, в котором используется четыре или более диодов в конфигурации мостовой схемы для эффективного преобразовать переменный ток (AC) в постоянный ток (ОКРУГ КОЛУМБИЯ).

Мост выпрямитель строительный

строительство Схема мостового выпрямителя показана на рисунке ниже. Мостовой выпрямитель состоит из четырех диодов. а именно D 1 , D 2 , D 3 , D 4 и нагрузочный резистор R L . Четыре диода подключены в конфигурации с замкнутым контуром (мостом) к эффективно преобразовывать переменный ток (AC) в постоянный Ток (постоянный ток).Главное достоинство этой мостовой схемы конфигурация такова, что нам не нужен дорогой центр трансформатор с ответвлениями, что снижает его стоимость и габариты.

входной сигнал переменного тока подается на две клеммы A и B и выходной сигнал постоянного тока получается через нагрузочный резистор R L , который подключается между клеммами C и Д.

четыре диода D 1 , D 2 , D 3 , D 4 расположены последовательно только с двумя диодами, что позволяет электрическому ток в течение каждого полупериода. Например, диоды D 1 и D 3 рассматриваются как одна пара, что позволяет электрический ток в течение положительного полупериода, тогда как диоды D 2 и D 4 считаются другая пара, которая пропускает электрический ток во время отрицательный полупериод входного сигнала переменного тока.

Как мост выпрямитель работает?

Когда входной сигнал переменного тока подается на мостовой выпрямитель, во время положительного полупериода диоды D 1 и D 3 имеют прямое смещение и пропускают электрический ток, в то время как диоды D 2 и D 4 смещены в обратном направлении и блокирует электрический ток.С другой стороны, во время диоды отрицательного полупериода D 2 и D 4 имеют прямое смещение и пропускают электрический ток, а диоды D 1 и D 3 имеют обратное смещение и блокирует электрический ток.

Во время положительный полупериод, клемма A становится положительной в то время как клемма B становится отрицательной.Это вызывает диоды D 1 и D 3 с прямым смещением и при при этом вызывает диоды D 2 и D 4 обратный смещенный.

направление тока в течение положительного полупериода равно показано на рисунке A (то есть от A до D, от C до B).

Во время отрицательный полупериод, клемма B становится положительной в то время как клемма A становится отрицательной.Это вызывает диоды D 2 и D 4 с прямым смещением и при при этом вызывает диоды D 1 и D 3 обратный смещенный.

показано текущее направление потока во время отрицательного полупериода на рисунке B (то есть от B до D, от C до A).

От два вышеупомянутых рисунка (A и B), мы можем заметить, что направление тока через резистор нагрузки R L то же самое в течение положительного полупериода и отрицательного полупериода цикл.Следовательно, полярность выходного сигнала постоянного тока то же самое как для положительных, так и для отрицательных полупериодов. Выход Полярность сигнала постоянного тока может быть либо полностью положительной, либо отрицательный. В нашем случае это полностью положительно. Если направление диодов перевернут, то мы получаем полный отрицательный постоянный ток Напряжение.

Таким образом, мостовой выпрямитель пропускает электрический ток во время обоих положительные и отрицательные полупериоды входного сигнала переменного тока.

формы выходных сигналов мостового выпрямителя показаны на рисунок ниже.

Характеристики из мостовой выпрямитель

Пик обратный Напряжение (PIV)

максимальное напряжение, которое диод может выдержать при обратном смещении состояние называется пиковым обратным напряжением (PIV)

или

максимальное напряжение, которое может выдержать непроводящий диод называется пиковым обратным напряжением (PIV).

Во время положительный полупериод, диоды D 1 и D 3 находятся в проводящем состоянии, а диоды D 2 и D 4 находятся в непроводящем состоянии. На с другой стороны, во время отрицательного полупериода диоды D 2 и D 4 находятся в проводящем состоянии, в то время как диоды D 1 и D 3 находятся в непроводящее состояние.

Пиковое обратное напряжение (PIV) для мостового выпрямителя дано по

PIV = V Smax

Коэффициент пульсации

гладкость выходного сигнала постоянного тока измеряется с использованием известного коэффициента как фактор пульсации. Выходной сигнал постоянного тока с очень меньшим рябь рассматривается как плавный сигнал постоянного тока, в то время как выходной сигнал постоянного тока с высокой пульсацией считается высоким пульсирующий сигнал постоянного тока.

Пульсация фактор математически определяется как отношение пульсации напряжения к чистое постоянное напряжение.

коэффициент пульсаций для мостового выпрямителя равен

.

коэффициент пульсаций мостового выпрямителя составляет 0,48, что аналогично в качестве двухполупериодного выпрямителя с отводом по центру.

Выпрямитель эффективность

выпрямитель КПД определяет, насколько эффективно выпрямитель преобразует Переменный ток (AC) в постоянный ток (DC).

Высокая выпрямитель КПД указывает на самый надежный выпрямитель, в то время как низкий КПД выпрямителя указывает на плохой выпрямитель.

Выпрямитель эффективность определяется как отношение выходной мощности постоянного тока к мощности переменного тока. входная мощность.

Максимальный выпрямительный КПД мостового выпрямителя — 81.2% который аналогичен двухполупериодному выпрямителю с отводом по центру.

Преимущества выпрямителя моста

Низкий пульсации в выходном сигнале постоянного тока

Выходной сигнал постоянного тока мостового выпрямителя более плавный, чем однополупериодный выпрямитель. Другими словами, мост выпрямитель имеет меньше пульсаций по сравнению с полуволновым выпрямитель.Однако коэффициент пульсации моста Выпрямитель такой же, как двухполупериодный выпрямитель с отводом по центру.

Высокая выпрямитель эффективность

выпрямитель КПД мостового выпрямителя очень высок по сравнению с к однополупериодному выпрямителю. Однако выпрямитель КПД мостового выпрямителя и двухполупериодного отвода с центральным ответвлением выпрямитель такой же.

Низкий потеря мощности

В однополупериодный выпрямитель только один полупериод входного переменного тока сигнал разрешен, а оставшийся полупериод ввода Сигнал переменного тока заблокирован. В результате почти половина приложенная входная мощность тратится впустую.

Однако в мостовом выпрямителе допускается наличие электрического тока в течение как положительных, так и отрицательных полупериодов ввода Сигнал переменного тока.Таким образом, выходная мощность постоянного тока почти равна входная мощность переменного тока.

Недостатки из мостовой выпрямитель

Мост выпрямитель схема выглядит очень сложной

В полуволновой выпрямитель, используется только один диод, тогда как в двухполупериодном выпрямителе с отводом по центру используются два диода. Но в мостовом выпрямителе мы используем четыре диода для схема работы.Так выглядит схема мостового выпрямителя сложнее, чем однополупериодный выпрямитель и с отводом по центру двухполупериодный выпрямитель.

Подробнее потеря мощности по сравнению с полной волной с центральным ответвлением выпрямитель

В электронный цепей, чем больше диодов мы используем, тем больше будет падение напряжения происходить. Потери мощности в мостовом выпрямителе почти равны двухполупериодный выпрямитель с отводом по центру.Однако в мосту выпрямитель, падение напряжения немного выше по сравнению с двухполупериодный выпрямитель с отводом по центру. Это связано с двумя дополнительные диоды (всего четыре диода).

В двухполупериодный выпрямитель с отводом по центру, проводит только один диод в течение каждого полупериода. Значит падение напряжения в цепи составляет 0,7 вольт. Но в мостовом выпрямителе два диода, которые соединены последовательно в течение каждого полупериода.Так падение напряжения происходит из-за двух диодов, что равно 1,4 вольта (0,7 + 0,7 = 1,4 вольта). Однако потеря мощности из-за этого падение напряжения очень мало.

«Это статья посвящена только мостовому выпрямителю. Если вы хотите читайте про мостовой выпрямитель с посещением фильтра: мостовой выпрямитель с фильтром «

ДИОДНЫЕ МОСТОВЫЕ КОМПРЕССОРЫ — TIM FROM BUZZ AUDIO

Диодные мостовые компрессоры

После популярности нашего обзора диодных мостовых компрессоров на выбывание и любви, полученной от интервью с Дэйвом Дерром из Empirical Labs о дистрессоре (и его рассказом об аспектах) вы, возможно, не знали об этом) мы подумали, что было бы разумно попросить опытного дизайнера компрессоров диодного моста (Тим Фаррант из Buzz Audio) поделиться дополнительной информацией об этом стиле и поделиться некоторой мудростью, которую вы можете не осознавать, что можете делать с ними или напомнить вам, что вы можете сделать с (по крайней мере, на наш взгляд) одним из наиболее интересных с точки зрения звучания типов компрессоров.


Знания — сила, поэтому вот некоторые из них, которые могут вам помочь. И мы рекомендуем поиграть с перестрелками в обзорах компрессоров диодного моста в сочетании с этим интервью, чтобы действительно улучшить ваше понимание на собственном опыте. Запечатлейте этот материал в своем мозгу, и он останется с вами надолго.

1 — В чем особенность стиля сжатия диодного моста и как он работает по сравнению с другими конструкциями (VCA, Opto, FET)?
Tim Buzz Audio — Я полагаю, это искажение, которое он генерирует, и это создает гармоники.Оптические компрессоры обычно имеют низкий уровень искажений из-за низкой скорости LDR, а VCA спроектированы так, чтобы иметь как можно более низкие искажения. Полевые транзисторы и диоды похожи в том, что вы используете их при очень низких уровнях сигнала, чтобы воспользоваться их нелинейной областью передачи. Конечно, то, как вы спроектируете схему боковой цепи, будет иметь огромное влияние на то, как она работает с реальным звуком, и каждый компрессор с диодным мостом отличается в этом отношении.

2 — Что особенного и особенного в новом многослойном трансформаторе из радиостальной стали, который вы создали для DBC-20 и DBC-M, и почему вы создали его, а не использовали другой тип готового трансформатора?
Tim Buzz Audio — На самом деле, это дешевый преобразователь, который мы сделали для использования в приложениях громкой связи lo-fi! Но, тщательно внедрив его в схему, мы можем получить хорошую частотную характеристику, и она добавляет некоторую насыщенность по мере увеличения входного уровня.Основная причина его использования — низкая цена, это не увеличивает стоимость DBC-20, но добавляет винтажной атмосферы!

3 — Как, по вашему мнению, люди могут извлечь максимальную пользу из DBC (для ясности или цвета) — например, на каких этапах лучше проехать?
Tim Buzz Audio — Как я сказал выше, трансформатор имеет тенденцию к насыщению при повышении уровня входного сигнала, поэтому толчок и подача большого количества входного сигнала добавят больше цвета.

4 — Каким образом конструкция адаптивного соотношения DBC выигрывает от сжатия по сравнению с другими компрессорами — на какие другие компрессоры он похож в этом отношении?
Tim Buzz Audio — Есть много известных компрессоров, которые работают таким образом, наиболее заметным из них является Fairchild 670.В основном вещь имеет характерное широкое «мягкое колено». DBC перейдет от низкого соотношения 2: 1 к 20: 1, в зависимости от того, насколько жестко вы его водите. Так что, если подумать, этот тип работы идеально подходит, если вы хотите контролировать вокал, поскольку чем громче он становится, тем больше вам нужно «зажима». Это также полезно на сложном материале, если при использовании быстрой атаки для управления переходными процессами компрессор воздействует на переходный процесс с высоким коэффициентом, но оставляет средний уровень без изменений. Адаптивное соотношение также упрощает использование устройства — на одно решение меньше!

5 — Почему вы выбрали именно те диоды, которые есть в DBC, и насколько разные диоды будут обеспечивать звук в устройстве?
Tim Buzz Audio — Мы используем сигнальные диоды с барьером Шоттки, и я выбрал их, потому что они имеют нужный мне звук, который был немного более резким, чем стандартные кремниевые диоды.Кроме того, они также имеют очень жесткие производственные допуски, поэтому нам не нужно подбирать их, что экономит труд и помогает снизить стоимость устройства.

Послушайте компрессор с диодным мостом Buzz Audio DBC-20 ниже.

НАЖМИТЕ, ЧТОБЫ ЗАГРУЗИТЬ ВЫСТРЕЛ tiny-kog

Если вы хотите обсудить или сделать какие-либо запросы о компрессорах с диодным мостом или о любом оборудовании, которое вы хотите, чтобы мы испытали, присоединяйтесь к нашей группе в Facebook и подпишитесь на наш список рассылки внизу страницы.

Если вам нравится то, что вы слышите, и цените дополнительную информацию от Тима, посетите сайт Buzz Audio (где вы также можете приобрести его и порадовать его)
или обратитесь к местному дилеру.

Вот наш краткий обзор трех различных типов компрессоров с диодным мостом

И вот полезное дополнительное чтение от Дэйва Хилла из Cranesong о компрессорах

Если вы хотите узнать о первом в мире компрессоре с диодным мостом (и его дедушке) практически всех современных компрессоров) Узнайте об U13 здесь

Модулятор типа диодного моста | Трансформаторная муфта

Модулятор типа диодного моста: Модулятор типа диодного моста

— Рисунок 14.33 показан кольцевой модулятор с кремниевым диодом и связанный с ним усилитель постоянного тока со связью по переменному току. Сам усилитель имеет коэффициент усиления 65 дБ и ровную характеристику в пределах ± 1 дБ в диапазоне от 8 Гц до 80 кГц. Принимаются меры для защиты усилителя от внезапных скачков напряжения, активная величина которых превышает напряжение питания 9 В постоянного тока, за счет использования стабилитрона 10 В в качестве защитного элемента.

Функцию диодного модулятора невесты лучше всего можно понять из Рис. 14.33 (a). Устройство можно рассматривать как переключатель, чувствительный к полярности, в котором циклы переменного тока возбуждения включают или выключают входной постоянный ток.

Сигнал формируется через резистор R 1 и поступает на усилитель через конденсатор C 1 . Каждая пара диодов проводит чередующиеся полупериоды возбуждения переменного тока. В течение одного полупериода эффект заключается в открытии пути между входом сигнала постоянного тока и последующим усилителем переменного тока. Во время интервала другого цикла путь проводимости закрыт. Трансформатор может быть установлен для гальванической развязки и / или повышения напряжения, как показано на рис.14.33 (б).

В схеме модулятора, показанной на рис. 14.33 (b), используется обычный диодный мост, который модулирует сигнал постоянного тока низкого уровня (через R 2 ), усиливает модулированный сигнал, а затем демодулирует его для получения сигнала постоянного тока высокого уровня. Центральные отводы трансформатора имеют решающее значение для успешной работы, а кремниевые диоды, используемые здесь, требуют согласованных прямых характеристик и обратного тока менее 10 -8 А. Форма выходного сигнала в основном представляет собой прямоугольную волну, фильтруемую выходным трансформатором.Амплитуда выходного сигнала, доступного на R 3 , пропорциональна величине входного сигнала постоянного тока. Фаза выходного сигнала относительно сигнала несущей пропорциональна знаку сигнала постоянного тока.

Трехфазный идеальный диодный мостовой выпрямитель

с малыми потерями снижает тепловыделение и снижает тепловую нагрузку

Семейство микросхем InnoSwitch4-Pro, представленное Power Integrations на APEC 2018 на этой неделе, упрощает разработку и производство полностью программируемых источников питания.Базовый интерфейс I 2 C используется для настройки, управления и контроля работы подсистемы питания, обеспечивая динамическое регулируемое управление выходным напряжением (с шагом 10 мВ) и током (с шагом 50 мА) в паре с микроконтроллер или с входами от системного ЦП.

Компания Power Integrations заявляет, что может выдавать до 65 Вт и достигать КПД до 94% в условиях линии и нагрузки, устройства InnoSwitch4-Pro хорошо подходят для источников питания переменного / постоянного тока, где желательна точная регулировка выходного напряжения и тока. .

Сюда входят практически любые протоколы быстрой зарядки, включая USB Power Delivery (PD) 3.0 + PPS, Quick Charge 4/4 + и другие промышленные и потребительские зарядные устройства, а также драйверы балласта с регулируемой яркостью и настраиваемые промышленные источники питания. При таком использовании эффективность системы повышается, поскольку InnoSwitch4-Pro устраняет необходимость в пострегуляторах постоянного и переменного тока (что также снижает количество BOM).

ИС преобразования мощности включают в себя источник питания микропроцессора V CC , что устраняет необходимость во внешнем LDO для питания микроконтроллера.Также включен n-канальный драйвер полевого транзистора, который можно использовать для включения или отключения основного выхода питания. Кроме того, серия предлагает встроенную телеметрию по напряжению, току и неисправностям шины, а также динамически настраиваемые функции защиты, такие как OTP, OV / UV линии, выход OV / UV и короткое замыкание.

В микросхемах

InnoSwitch4-Pro используется высокоскоростная цифровая коммуникационная технология FluxLink компании Power Integrations, а также синхронное выпрямление, квазирезонансное переключение и точный датчик обратной связи вторичной стороны и схема управления обратной связью.Устройства сертифицированы CQC, признаны UL и одобрены TUV (EN60950) для преодоления изоляционного барьера

Во время представления продукта Шьям Дуджари, директор по маркетингу продуктов Power Integrations, отметил: «Возможность точно контролировать выходное напряжение и ток источника питания в широком диапазоне также полезна для разработчиков специализированных приложений с небольшими производственными партиями, так как они могут легко настроить дизайн одной платы для нескольких артикулов продукта с помощью программного обеспечения либо при производстве, либо во время установки.”

образцов уже доступны.

R.M.R. Цепь диодного моста крытого вагона

В примерно в 1963-64 гг. в Центральном исследовательском центре Вариана был проект по изучению фотоэмиссионные спектры некоторых газов, ионизированных короткими интенсивные импульсы тока и / или света того или иного рода. Мне выпало спроектировать и построить необходимое оборудование для обработки выходных данных фотоумножитель и представить его в каком-нибудь подходящем виде. Прямой подход, подача сигнала от PM к осциллограф, был как-то неадекватен. Насколько я помню, частотная характеристика дешевой осциллограф был неадекватным. я проконсультировался с Диком Уайтхорном, экспертом в области электроники, и он предложил диодный мост Boxcar. Я никогда не слышал об этом раньше и спросил его, как это имя полученный. Он сказал, что он узнал об устройстве, когда работал с группой RADAR в Массачусетском технологическом институте. во время Великой Отечественной войны, и название к этому времени было установлено. Каким-то образом он не мог описать выход устройства, когда отображается на осциллографе, создается последовательность блоков, движущихся по экран, напоминающий воображаемому человеку вереницу движущихся товарных вагонов по сельской местности. Что бы ни Приложение по тем временам устройство идеально подходило для моих нужд. Понять операцию несложно. В состоянии покоя все 4 диода имеют обратное смещение. Предположим, что напряжение на порте импульсного входа равно нулю, на земле потенциал.Когда SCR выключатель срабатывает, на выходе равномерно появляется короткий импульс каждого из импульсных трансформаторов с такой полярностью, чтобы преодолеть смещение напряжения и, если все 4 диода имеют одинаковые характеристики, равные токи будут течь в каждом. В Импульс тока через диод D2 зарядит конденсатор C + до ссылается на землю. Ток через D4 заряжает конденсатор C до +. Таким образом, чистый заряд на C будет равен нулю, если импульсные напряжения равны равны, если R1 = R2, а диоды все одинаковые. Предположим, что мы подаем +1 вольт постоянного тока на порт импульсного входа. Теперь, когда срабатывает тиристор и подаются импульсные напряжения, D1 будет отрезать, и D3 будет проводить раньше D4. Напряжение с T2 будет падать на резисторе R2 и через D4 не будет протекать ток или мало. D2 будет проводить, а D1 — нет, и будет взиматься небольшая чистая плата. поставить конденсатор C, + на землю. В зависимости от постоянной времени R-C и значений R1 = R2 и импульсного напряжения, заряд на C будет продолжать накапливаться с каждым импульс до тех пор, пока напряжение на C не станет таким же, как напряжение на Pulse Входной порт и мост снова уравновешиваются. Таким образом, ограничивающее напряжение на C является значением напряжения на Входной порт в то время, когда импульсное напряжение включено. Если импульсное напряжение, иногда называемое напряжением выборки, очень сильно более короткая длительность, чем импульсное напряжение на входном порте, и если входной импульс повторяется бесконечно, квази-постоянное напряжение на выходе порт будет копировать входное импульсное напряжение во время время выборки напряжения. Полный импульс входного напряжения может быть отображен в квазипостоянной форме с помощью сканирование времени срабатывания SCR по продолжительности входной импульс. Если, как часто случается, входной импульс включает шумовую составляющую, этот метод выборки приводит к воспроизведению среднего значения входного импульса.

я за эти годы несколько раз нуждались, хотели или вспоминали об этом устройство и еще не встретил никого из экспертов в области электроники, который когда-либо слышал о товарном вагоне или диодном мосту. Сомневаюсь, что такая полезная идея могла быть потеряна навсегда, но тогда случались более странные вещи. Может поэтому у нас есть музеи. РЕНЕ


.

Добавить комментарий

Ваш адрес email не будет опубликован.