Диодный мост — это… Что такое Диодный мост?
Дио́дный мо́ст — электрическая схема, предназначенная для преобразования («выпрямления») переменного тока в пульсирующий. Такое выпрямление называется двухполупериодным[1].
Схема включенияВыполняется по мостовой схеме Гретца. Изначально она была разработана с применением радиоламп, но считалась сложным и дорогим решением, вместо неё применялась схема Миткевича со сдвоенной вторичной обмоткой в питающем выпрямитель трансформаторе. Сейчас, когда полупроводники очень дёшевы, в большинстве случаев применяется мостовая схема.
Вместо диодов в схеме могут применяться вентили любых типов — например селеновые столбы, принцип работы схемы от этого не изменится.
Порядок работы
На вход (Input) схемы подаётся переменное напряжение (обычно, но не обязательно синусоидальное). В каждый из полупериодов ток проходит только через 2 диода, 2 других — заперты:
При выпрямлении 3-фазного тока 3-фазным выпрямителем результат получается ещё более «гладким»Выпрямитель
Подключение конденсатораПрактически, для получения постоянного (а не пульсирующего) напряжения, схему надо дополнить фильтром на конденсаторе, а также, возможно, дросселем и стабилизатором напряжения.
Преимущества
Двухполупериодное выпрямление с помощью моста (по сравнению с однополупериодным) позволяет:
- получить на выходе напряжение с повышенной частотой пульсаций, которое проще сгладить фильтром на конденсаторе
- избежать постоянного тока подмагничивания в питающем мост трансформаторе
- увеличить его КПД, что позволяет сделать его магнитопровод меньшего сечения.
Недостатки
- Происходит двойное падение напряжения по сравнению с однополупериодным выпрямлением (прямое напряжение диода × 2 ≈ 1 В), это иногда нежелательно.
- При перегорании одного из диодов схема превращается в однополупериодную, что может быть не замечено вовремя, и в устройстве появится скрытый дефект.
Конструкция
Внешний вид однокорпусных мостовМосты могут быть изготовлены из отдельных диодов, и могут быть выполнены в виде монолитной конструкции (диодная сборка).
Монолитная конструкция, как правило, предпочтительнее — она дешевле и меньше по объёму (хотя не всегда той формы, которая требуется). Диоды в ней подобраны на заводе и наверняка имеют одинаковые параметры и при работе находятся в одинаковом тепловом режиме. Сборку проще монтировать.
В монолитной конструкции при выходе из строя одного диода приходится менять весь монолит. В конструкции из отдельных диодов может меняться только один диод. Какую конструкцию применить решает конструктор, в зависимости от назначения устройства.
Маркировка
В СССР/России:
- материал диодов:
- Ц — мост
- число (2…4 цифры) Обозначают порядковый номер разработки данного типа моста.
- буква
См. также
Ссылки
Примечания
- ↑ Однополупериодным выпрямителем называется выпрямление с помощью 1 диода.
назначение и изготовление своими руками. Особенности диодных мостов и их применение
Диодный мост — простейшая схема, которая преобразует переменный ток в постоянный. Она используется практически во всей современной электронике, поэтому грамотный мастер должен понимать
и уметь его ремонтировать.
Давайте разберем, как работает данное устройство. Оно собирается из диодов — элементов, пропускающих ток в одну сторону. Современные диоды являются полупроводниковыми устройствами небольшого размера — в этой статье мы не будем разбирать их особенности и маркировку, а поговорим только о том, как работает диодный мост.
Состав и принцип работы диода
У диода имеется два контакта — анод и катод. Ток течет от анода к катоду практически с нулевым сопротивлением. Но если ситуация меняется и ток подается на катод, то противоположное сопротивление не дает ему пробиться через элемент (ток практически равен нулю и в большинстве случаев им можно пренебречь). Схему работы вы можете увидеть на приведенном выше рисунке.
Упрощенная схема
Вы уже знаете,
что такое диодный мост, поэтому рассмотрим простейший принцип его работы. Когда переменный ток попадает на анод Uвх, оно проходит через положительные полупериоды, тогда как отрицательные полностью удаляются.
Чтобы сгладить эти пики к схеме подключается конденсатор высокой емкости. Получается выпрямительный диодный мост —на пике конденсатор заряжается, а на падении отдает заряд в сеть. Это позволяет частично сгладить график частоты и выровнять его, выведя на постоянное значение.
Подобная схема соединения диода и конденсатора носит название однополупериодной и не является достаточной для выравнивания тока в современных устройствах. У нее есть серьезные недостатки:
- Нормально выровнять пульсации до настоящей прямой невозможно.
- У схемы довольно малый коэффициент полезного действия.
- Нерациональное использование трансформатора, чересчур большой вес устройства.
Эти системы сегодня практически не используют или применяют их для маломощных устройств. Более логичные и надежные схемы называются двухполупериодными. Их основное достоинство — возможность инвертировать нижние волны в верхние. Именно подобные системы и называют диодным мостом.
Классический диодный мост
Стандартная содержит в себе вместо одного диода и конденсатора четыре диода, объединенных изображенным на рисунке способом. Его можно условно разбить на два полупериода. В каждом полупериоде находится два диода, работающих в одном направлении, и два — запрещающих проход тока. Положительное напряжение приходит на анод VD1, отрицательное на катод VD3. Данные диоды открываются, а VD2 и VD4 — закрываются.
Когда положительный полупериод заменяется на отрицательный, происходит смена работоспособности. Положительное напряжение приходит на анод VD2, отрицательное — на катодный выход VD4. Происходит смена направлений, но ток идет в нужном направлении. Получается, что в подобной схеме частота возрастает в два раза, за счет чего удается добиться лучшего сглаживания, используя идентичный с первой схемой конденсатор. Благодаря этому возрастает коэффициент полезного действия устройства и падают возможные потери.
Принцип работы классического моста
Изучая, не забывайте о том, что не обязательно спаивать его из четырех микроэлементов и подбирать соответствующий конденсатор. В большинстве случаев можно приобрести готовое решение в магазине, с подобранными параметрами и известными характеристиками. Достоинства подобной сборки в маленьких размерах, единых тепловых режимах и небольшом весе. Основной недостаток в том, что если выходит из строя один элемент, то приходится менять весь узел .
Трехфазный мост
Теперь, когда вы знаете,
для чего нужен диодный мост и что он собой представляет, рассмотрим более сложную трехфазную схему, выдающую пульсирующий ток. Он максимально близок к постоянному и подходит для использования в приборах, требующих стабильную подачу. Вход этой системы присоединяется к источнику, подающему трехфазное питание (разумеется речь идет о переменном токе). Это может быть трансформатор или генератор. На выходе системы оказывается практически идеальный постоянный ток, который можно легко сгладить.
Схема выпрямителя
Чтобы сделать качественный двухполупериодный выпрямитель из схемы подключения диодного моста с конденсатором, изучите наш рисунок. В данном случае выпрямляется ток, который снимается с понижающей трансформаторной обмотки. Выравнивание происходит за счет электролитического конденсатора на 5-10 тысяч микрофарад, заряжающегося и отдающего заряд в сеть. В схему также введен дополнительный резистор, который выпрямляет ток при холостой работе. Чем выше нагрузка, тем меньше напряжение на выходе, поэтому
Диодный мост — электрическая схема, предназначенная для преобразования переменного тока в постоянный импульсный. Изобретение схемы в 1897 году приписывается немецкому физику Лео Гретцу, хотя англоязычные источники утверждают, что ещё в 1895 году диодный мост создал «польский Эдисон» — электротехник Карол Поллак. Наибольшее распространение схема получила после широкого внедрения полупроводниковых диодов.
Принцип действия этого типа выпрямительного устройства основан на свойстве полупроводникового диода пропускать электроток в одном направлении и не пропускать в другом. Так, если мы правильно подключим плюс и минус, через устройство пойдёт ток. Поменяем плюс и минус местами — движения не будет.
Переменный ток отличается тем, что в течение одного полупериода он движется в одном направлении, а в течение второго — в противоположном. И если просто включить в цепь один диод, то он будет работать «с пользой» только в течение одного полупериода. А если соединить диоды так, чтобы использовать оба полупериода? Благодаря этой идее и появились мостовые выпрямители.
Схема диодного моста—выпрямителя довольно проста и может быть собрана своими руками. Он состоит из четырёх диодов, соединённых в виде квадрата. На два противолежащих угла подаётся переменный ток от генератора. С двух других противолежащих углов снимается постоянный. В первый полупериод открываются два диода, выпрямляя полуволну переменного тока. Во второй полупериод открываются два других диода, преобразуя вторую полуволну. В итоге на выходе получается постоянный ток с частотой импульсов в два раза выше, чем частота переменного тока.
Преимущества и недостатки схемы
- Для использования выпрямленного тока импульсная составляющая должна быть сглажена с помощью фильтра—конденсатора. Чем выше частота, тем лучше проходит процесс сглаживания. Поэтому удвоение частоты в мостовой схеме является преимуществом.
- Двухполупериодное выпрямление позволяет лучше использовать мощность питающего трансформатора и за счёт этого уменьшить его размеры.
Недостатки .
- Удвоенное падение напряжения по сравнению с однополупериодным выпрямителем.
- Удваиваются потери мощности на рассеяние тепла. Для снижения потерь в мощных низковольтных схемах используются диоды Шоттки с малым падением напряжения.
- При выходе из строя одного из диодов моста выпрямительное устройство будет работать, однако его параметры будут отличаться от нормальных.
Это, в свою очередь, может негативно сказаться на работе систем, запитанных от выпрямителя.
Использование и применение
Сегодня мосты широко применяются во всех случаях, когда используется постоянный ток — от мобильных телефонов, до автомобилей. Промышленность выпускает большое количество выпрямительных устройств, выполненных по мостовой схеме. Поэтому подобрать нужный мостик не составляет труда при условии ясного понимания, зачем он приобретается и какие функции будет выполнять.
Конструктивно выпрямители могут быть выполнены на отдельных диодах либо в виде единого блока. В первом случае при повреждении одного из диодов можно произвести замену. Для этого надо знать, как прозвонить диодный мост. Проверка проводится в виде последовательного перебора всех диодов на пропускание тока в прямом и обратном направлении. В качестве индикатора можно использовать как обычную лампочку, так и прибор, измеряющий силу тока или сопротивление.
Несмотря на доступность фабричных выпрямителей, многих интересует, как сделать диодный мост на 12 вольт самостоятельно. Дело в том, что 12 вольт — наиболее распространённое напряжение для питания многих устройств, например, персональных компьютеров. А стремление собрать выпрямитель самостоятельно зачастую вполне оправданно. Ведь большинство недорогих блоков питания, которые можно приобрести, не соответствуют заявленным параметрам по току и мощности.
Конечно, самодельный блок вряд ли будет выглядеть как фабричный, зато позволит произвести подключение устройств в полном соответствии с нужными параметрами.
Несмотря на то что выпрямительный мостик не является сложной схемой, его сборка требует не только умения спаять детали, но и правильно рассчитать их параметры. Прежде всего потребуется силовой трансформатор, понижающий напряжение до 10 вольт. Дело в том, что выходное напряжение моста выше входного примерно на 18 процентов. Поэтому если подать на выпрямитель 12 вольт переменного тока, то получим 14−15 вольт постоянного тока, а это может быть опасным для устройств, рассчитанных на 12 вольт.
Далее, нужно подобрать диоды, рассчитанные на двукратный запас по току. Так, если предполагается, что выпрямитель должен обеспечить ток силой в 5 ампер, то диоды должны выдерживать не менее 10 ампер. Двукратный запас должен иметь и конденсатор, но по напряжению. А для того чтобы лучше сглаживать выпрямленный ток, он должен иметь большую ёмкость. Поэтому оптимальным является электролитический конденсатор, рассчитанный на напряжение 25 вольт, ёмкостью от 2000 микрофарад. Все эти детали остаётся правильно соединить и проверить выходные параметры с помощью приборов.
Мост бывает через реку, через овраг, а также через дорогу. Но приходилось ли Вам слышать словосочетание «диодный мост»? Что за такой мост? А вот на этот вопрос мы с вами попробуем найти ответ.
Словосочетание «диодный мост» образуется от слова «диод». Получается, диодный мост должен состоять из диодов. Но если в диодном мосту есть диоды, значит, в одном направлении диод будет пропускать , а в другом нет. Это свойство диодов мы использовали, чтобы определить их работоспособность. Кто не помнит, как мы это делали, тогда вам сюда. Поэтому мост из диодов используется, чтобы из переменного напряжение получать постоянное напряжение .
А вот и схема диодного моста:
Иногда в схемах его обозначают и так:
Как мы с вами видим, схема состоит из четырех диодов. Но чтобы схемка диодного моста заработала, мы должны правильно соединить диоды, и правильно подать на них переменное напряжение. Слева мы видим два значка «~». На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов: с плюса и минуса.
Для того, чтобы превратить переменное напряжение в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок:
Переменное напряжение изменяется со временем. Диод пропускает через себя напряжение только тогда, когда напряжение выше нуля, когда же оно становится ниже нуля, диод запирается. Думаю все элементарно и просто. Диод срезает отрицательную полуволну, оставляя только положительную полуволну,
что мы и видим на рисунке выше. А вся прелесть этой немудреной схемки состоит в том, что мы получаем постоянное напряжение из переменного.
Вся проблема в том, что мы теряем половину мощности переменного напряжения . Ее тупо срезает диод.
Чтобы исправить эту ситуацию, была разработана схемка диодного моста. Диодный мост «переворачивает» отрицательную полуволну, превращая ее в положительную полуволну. Тем самым мощность у нас сохраняется. Прекрасно не правда ли?
На выходе диодного моста у нас появляется постоянное пульсирующее напряжение с частой в два раза больше, чем частота сети: 100 Гц.
Думаю, не надо писать, как работает схема, Вам все равно это не пригодится, главное запомнить, куда цепляется переменное напряжение, а откуда выходит постоянное пульсирующее напряжение.
Давайте же на практике рассмотрим, как работает диод и диодный мост.
Для начала возьмем диод.
Я его выпаял из блока питания компа. Катод можно легко узнать по полоске. Почти все производители показывают катод полоской или точкой.
Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220 Вольт трансформирует 12 Вольт. Кто не знает как он это делает, можете прочитать статью устройство трансформатора.
На первичную обмотку цепляем 220 Вольт, со вторичной снимаем 12 Вольт. Мультик показывает чуть больше, так как ко вторичной обмотке не подцеплена никакая нагрузка. Трансформатор работает на так называемом «холостом ходу».
Давайте же расмотрим осциллограмму, которая идет со вторичной обмотки транса. Максимальную амплитуду напряжение нетрудно посчитать. Если не помните как расчитать, можно глянуть статейку Осциллограф. Основы эксплуатации. 3,3х5= 16.5В — это максимальное значение напряжения. А если разделить максимальное значение амплитуда на корень из двух, то получим где то 11.8 Вольт. Это и есть действующее значение напряжения. Осцилл не врет, все ОК.
Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт — это не шутки, поэтому я и понизил переменное напряжение.
Припаяем к одному концу вторичной обмотки транса наш диод.
Цепляемся снова щупами осцилла
Смотрим на осцилл
А где же нижняя часть изображения? Ее срезал диод. Диод оставил только верхнюю часть, то есть та, которая положительная. А раз он срезал нижнюю часть, то он следовательно срезал и мощность.
Находим еще три таких диода и спаиваем диодный мост.
Цепляемся ко вторичной обмотке транса по схеме диодного моста.
С двух других концов снимаем постоянное пульсирующее напряжение щупами осцилла и смотрим на осцилл.
Вот, теперь порядок, и мощность у нас никуда не пропала:-).
Чтобы не замарачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате получился очень компактный и удобный диодный мост. Думаю, вы догадаетесь, где импортный, а где советский))).
А вот и советский:
А как Вы догадались? 🙂 Например, на советском диодном мосте, показаны контакты, на которые надо подавать переменное напряжение (значком » ~ «), и показаны контакты, с которых надо снимать постоянное пульсирующее напряжение («+» и «-«).
Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменке, а с двух других контактов снимаем показания на осцилл.
А вот и осциллограмма:
Значит импортный диодный мостик работает чики-пуки.
В заключении хотелось бы добавить, что диодный мост используется почти во всей радиоаппаратуре, которая кушает напряжение из сети, будь то простой телевизор или даже зарядка для сотового телефона. Проверяются диодный мост исправностью всех его диодов.
Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему счастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пожалуйста.
Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,
Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.
а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).
Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:
Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.
Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.
Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.
Ну а теперь к делу.
1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.
2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, намного большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.
3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.
4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.
5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.
6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.
7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.
Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:
Для однополупериодного выпрямителя формула несколько отличается:
Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.
Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В
Для справки — допустимые пульсации:
Микрофонные усилители — 0,001…0,01%
Цифровая техника — пульсации 0,1…1%
Усилители мощности — пульсации нагруженного блока питания 1…10% в зависимости от качества усилителя.
Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.
Во многих электронных приборах, работающих при переменном токе в 220 вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока . Это связано с тем, что для работы большинства приборов используется постоянный ток.
Как работает диодный мост
Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.
Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические с большой емкостью.
Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе.
Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения.
Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями.
Применение диодных мостов
В любых приборах и электронике, для питания которых используется переменный электрический ток, присутствует схема диодного моста на 12 вольт. Ее используют не только в трансформаторных, но и в импульсных выпрямителях. Наиболее характерным импульсным блоком является блок питания компьютера.
Кроме того диодные мосты применяются в люминесцентных компактных лампах или в энергосберегающих лампах . Они дают очень хороший эффект при использовании их в пускорегулирующих электронных аппаратах . Широко применяются и во всех моделях современных аппаратов.
Как сделать диодный мост
Преобразовать переменный ток в постоянный поможет диодный мост — схема и принцип действия этого устройства приводятся ниже. В обычной осветительной цепи течет переменный ток, который 50 раз в течение одной секунды меняет свою величину и направление. Его превращение в постоянный — достаточно часто встречающаяся необходимость.
Принцип действия полупроводникового диода
Рис. 1Название описываемого устройства ясно указывает, что эта конструкция состоит из диодов — полупроводниковых приборов, хорошо проводящих электричество в одном направлении и практически не проводящих его в противоположную сторону. Изображение этого прибора (VD1) на принципиальных схемах приведено на рис. 2в. Когда ток по нему течет в прямом направлении — от анода (слева) к катоду (справа), сопротивление его мало. При изменении направления тока на противоположное сопротивление диода многократно возрастает. В этом случае через него течет мало отличающийся от нуля обратный ток.
Поэтому при подаче на цепочку, содержащую диод, переменного напряжения U вх (левый график), электричество через нагрузку течет только в течение положительных полупериодов, когда к аноду приложено положительное напряжение. Отрицательные полупериоды «срезаются», и ток в сопротивлении нагрузки в это время практически отсутствует.
Строго говоря, выходное напряжение U вых (правый график) является не постоянным, хотя и течет в одном направлении, а пульсирующим. Нетрудно понять, что количество его импульсов (пульсаций) за одну секунду равно 50. Это не всегда допустимо, но пульсации можно сгладить, если подсоединить параллельно нагрузке конденсатор, имеющий достаточно большую емкость. Заряжаясь во время импульсов напряжения, в промежутках между ними конденсатор разряжается на сопротивление нагрузки. Пульсации сглаживаются, а напряжение становится близким к постоянному.
Изготовленный в соответствии в этой схемой выпрямитель называется однополупериодным, поскольку в нем используется лишь один полупериод выпрямленного напряжения. Наиболее существенные недостатки такого выпрямителя следующие:
- повышенная степень пульсаций выпрямленного напряжения;
- низкий КПД;
- большой вес трансформатора и его нерациональное использование.
Поэтому применяются такие схемы только для питания устройств малой мощности. Для исправления этой нежелательной ситуации разработаны двухполупериодные выпрямители, которые превращают отрицательные полуволны в положительные. Сделать это можно по-разному, но самый простой способ — использование диодного моста.
Рис. 2
Диодный мост — схема двухполупериодного выпрямления, содержащая 4 диода вместо одного (рис. 2в). В каждом полупериоде два из них открыты и пропускают электричество в прямом направлении, а два других закрыты, и ток через них не течет. Во время положительного полупериода положительное напряжение приложено к аноду VD1, а отрицательное — к катоду VD3. В результате оба этих диода открыты, а VD2 и VD4 — закрыты.
Во время отрицательного полупериода положительное напряжение приложено к аноду VD2, а отрицательное — к катоду VD4. Эти два диода открываются, а открытые во время предыдущего полупериода закрываются. Ток через сопротивление нагрузки течет в том же направлении. В сравнении с однополупериодным выпрямителем количество пульсаций возрастает вдвое. Результат — более высокая степень сглаживания при той же емкости конденсатора фильтра, увеличение КПД используемого в выпрямителе трансформатора.
Диодный мост может быть не только собран из отдельных элементов, но и изготовлен как монолитная конструкция (диодная сборка). Ее легче монтировать, а диоды обычно подобраны по параметрам. Немаловажно и то, что они работают в одинаковых тепловых режимах. Недостаток диодного моста — необходимость замены всей сборки при выходе из строя даже одного диода.
Еще ближе к постоянному будет пульсирующий выпрямленный ток, который позволяет получить трехфазный диодный мост. Его вход подключается к источнику трехфазного переменного тока (генератору или трансформатору), а напряжение на выходе почти не отличается от постоянного, и сгладить его еще проще, чем после двухполупериодного выпрямления.
Выпрямитель на основе диодного моста
Схема двухполупериодного выпрямителя на основе диодного моста, пригодная для сборки своими руками, изображена на рис. 3а. Выпрямлению подвергается напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т. Для этого нужно подключить диодный мост к трансформатору.
Пульсирующее выпрямленное напряжение сглаживается электролитическим конденсатором С, имеющим достаточно большую емкость — обычно порядка нескольких тысяч мкФ. Резистор R играет роль нагрузки выпрямителя на холостом ходу. В таком режиме конденсатор С заряжается до амплитудного значения, которое в 1,4 (корень из двух) раза выше действующего значения напряжения, снимаемого со вторичной обмотки трансформатора.
С ростом нагрузки выходное напряжение уменьшается. Избавиться от этого недостатка можно, подключив к выходу выпрямителя простейший транзисторный стабилизатор. На принципиальных схемах изображение диодного моста часто упрощают. На рис. 3б показано, как еще может быть изображен соответствующий фрагмент на рис. 3а.
Следует заметить, что, хотя прямое сопротивление диодов невелико, тем не менее, оно отлично от нуля. По этой причине они нагреваются в соответствии с законом Джоуля-Ленца тем сильнее, чем больше величина тока, протекающего по цепи. Для предотвращения перегрева мощные диоды часто устанавливаются на теплоотводах (радиаторах).
Диодный мост — это практически обязательный элемент любого электронного устройства , питающегося от сети, будь то компьютер или выпрямитель для зарядки мобильного телефона.
Большинство электростанций вырабатывает переменный ток. Это связано с особенностью конструкции генераторов. Исключение составляют лишь солнечные панели, с которых снимается постоянный ток.
Вообще, выбор между постоянным и переменным током с точки зрения производства, транспортировки и потребления – это борьба противоречий.
Производить (вырабатывать на электростанциях) удобнее и проще переменный ток.
Транспортировать экономически выгодно постоянный ток. Смена полупериодов переменного напряжения приводит к потерям.
С точки зрения трансформации (уменьшение величины напряжения) удобнее работать с переменным током. Принцип работы трансформаторы построен на пульсирующем или переменном напряжении.
Большинство потребителей электроэнергии (речь идет об устройствах) работают на постоянном токе. Электросхемы не могут работать с переменным напряжением.
В результате мы имеем следующую картину:
До розетки доходит переменный ток с напряжением 220 вольт. А все домашние электроприборы (за исключением тех, которые содержат мощные электродвигатели и нагревательные элементы) питаются постоянным током.
Внутри большинства домашнего оборудования есть блоки питания. После понижения (трансформации) величины напряжения, необходимо преобразовать ток из переменного в постоянный. Основой такой схемы является диодный мост.
Для чего нужен диодный мост?
Исходя из определения, переменный ток с определенной частотой (в бытовой электросети 50Гц) меняет свое направление, при неизменной величине.
Важно! Поскольку мы знаем, что для питания большинства электросхем нужно полярное напряжение – в блоках питания приборов происходит замена переменного тока на постоянный.
Происходит это в два или три этапа:
С помощью диодной сборки переменный ток превращается в пульсирующий. Это уже выпрямленный график, однако, для нормального функционирования схемы такого качества питания недостаточно.
Для сглаживания пульсаций, после моста устанавливается фильтр. В простейшем случае – это обычный полярный конденсатор. При необходимости увеличить качество – добавляется дроссель.
После преобразования и сглаживания, необходимо обеспечить постоянную величину рабочего напряжения.
Для этого, на третьем этапе устанавливаются стабилизаторы напряжения.
И все же, первым элементом любого блока питания является диодный мост.
Он может быть выполнен как из отдельных деталей, так и в моно корпусе.
Первый вариант занимает много места и сложнее в монтаже.
Есть и преимущества:
такая конструкция стоит недорого, легче диагностируется, и в случае выхода из строя одного элемента – меняется только он.
Вторая конструкция компактна, исключены ошибки в монтаже. Однако стоимость несколько выше, чем у отдельных диодов и невозможно отремонтировать один элемент, приходится менять весь модуль.
Принцип работы диодного моста
Вспомним характеристики и назначение диода. Если не вдаваться в технические детали – он пропускает электрический ток в одном направлении, и закрывает ему путь в противоположном.
Этого свойства уже достаточно для того, чтобы собрать простейший выпрямитель на одном диоде.
Элемент просто включается в цепь последовательно, и каждый второй импульс тока, идущий в противоположном направлении – отрезается.
Такой способ называется однополупериодным, и у него есть множество недостатков:
Очень сильная пульсация, между полупериодами возникает пауза в подаче тока, равная длине половины синусоиды.
В результате отрезания нижних волн синусоиды, напряжение уменьшается вдвое. При точном измерении уменьшение оказывается больше, поскольку потери есть и в диодах.
Способность снижать напряжение вдвое при его выпрямлении, нашла применение в ЖКХ.
Жильцы многоквартирных подъездов, устав менять постоянно перегорающие лампочки – оснащают их диодами.
При включении последовательно, снижается яркость свечения и лампа «живет» гораздо дольше.
Правда сильное мерцание утомляет глаза, и такой светильник годится лишь для дежурного освещения.
Для уменьшения потерь, применяется соединение четырех элементов.
Двухполупериодный диодный мост, схема работы:
В каком бы направлении не протекал переменный ток на вводных контактах, выход диодного моста обеспечивает неизменную полярность на его выходных контактах.
Частота пульсаций такого соединения ровно в два раза выше частоты переменного тока на входе.
Поскольку плечи моста не могут одновременно пропускать ток в обоих направлениях – обеспечивается стабильная защита схемы.
Даже если у вас в устройстве перегорел диодный мост – короткого замыкания или скачка напряжения не будет.
Надежность мостовой схемы проверена десятилетиями. Защита от перенапряжения на входе гарантируется трансформатором.
От перегрузки спасает стабилизатор на выходе. Пробивает диодный мост лишь в случае использования бракованных деталей, или в автомобиле, где схема подвергается постоянным нагрузкам.
Как работает диодный мост при минимальном напряжении?
Падение напряжения в диодном мосту составляет до 0,7 вольт. При использовании обычной элементной базы в низковольтных схемах, иногда падение напряжения составляет до 50% от номинала блока питания. Такая погрешность недопустима .
Для обеспечения работы блоков питания с напряжением от 1,5 вольт до 12 вольт – используются диоды Шоттки.
При прямом протекании тока, падение напряжения на одном кристалле составляет не более 0,3 вольта. Умножаем на четыре элемента в мосту – получается вполне приемлемое значение потерь.
Кроме того, если диодный мост Шоттки на уровень помех – вы получите значение, недостижимое для кремниевых p-n диодов.
Еще одно достоинство, обусловленное отсутствием p-n перехода – способность работать на высокой частоте.
Поэтому выпрямители сверх высокочастотного напряжения делают исключительно на диодах этого типа.
Однако у диодов Шоттки есть и недостатки
. При воздействии обратного напряжения, пусть даже кратковременном – элемент выходит из строя.
Проверка диодного моста мультиметром показывает, что именно эта причина имеет необратимые последствия.
Обычный германиевый или кремниевый элемент с p-n переходом самостоятельно восстанавливаются после переполюсовки.
Поэтому мосты на диодах Шоттки применяются только в низковольтных блоках питания и при наличии защиты от обратного напряжения.
Что делать, если есть подозрения на поломку моста?
Выпрямитель собран на обычной элементной базе, поэтому мы расскажем, как в домашних условиях проверить диодный мост мультиметром.
На иллюстрации видно, как протекает ток по мосту. Принцип тестирования такой же, как при проверке одиночных диодов.
Смотрим по справочнику, какие выводы модуля соответствуют переменному входу или полярному выходу – и выполняем прозвонку.
Как прозвонить диодный мост без выпаивания из схемы?
Поскольку ток в обратном направлении через диод не течет, неправильные результаты проверки говорят о пробое моста.
Извлекать мост нет необходимости, остальные элементы блока питания не оказывают влияния на измерение.
Итог: Любой из вас сможет как самостоятельно собрать диодный мост, так и отремонтировать его в случае поломки. Достаточно иметь элементарные навыки в электротехнике.
Смотрите видео: как мультиметром проверить диодный мост генератора вашего автомобиля.
Подробный рассказ о том как проверить диодный мост мультиметром в этом видео сюжете
Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.
Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.
Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.
В реальности сборка диодного моста может выглядеть вот так.
Диодная сборка KBL02
на печатной плате
Или вот так.
Диодная сборка RS607
на плате компьютерного блока питания
А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.
Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504 , рассчитанный на прямой ток 25 ампер.
Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.
Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.
Условное изображение диодного моста и диодной сборки
Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.
На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD , а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1 – VD4 . Иногда применяется обозначение VDS . Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD .
Где применяется схема диодного моста?
Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах. .. . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания , но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.
В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.
Какие диоды нужны для диодного моста. Наиболее важные характеристики диода для выпрямителя тока.
Диодный мост используется там, где есть необходимость в получении постоянного тока из переменного. То есть, если взять самый обычный трансформаторный блок питания, то в его основных элементах будет присутствовать – понижающий трансформатор (с железным магнитопроводом), диодный выпрямительный мост, фильтрующий конденсатор (электролит относительно большой емкости). Силовой трансформатор из более высокого сетевого напряжения, величиной 220 вольт, делает более низкое (стандартными напряжениями являются 3, 5, 6, 9, 12, 24 вольта). Но, с выхода этого трансформатора выходит (так же как и входит) переменный ток. И для того, чтобы из переменного тока сделать постоянный, то есть его выпрямить, и используется диодный мост. Но, на выходе моста мы получим постоянный ток, который будет иметь форму скачков напряжения. Эти скачки сглаживаются фильтрующим конденсатором электролитом.
В этой теме давайте с Вами рассмотрим, как именно правильно подобрать диодный мост, и на какие основные и важные параметры, характеристики в первую очередь обращать внимание. Как известно, диодный мост состоит из четырёх одинаковых диодов, спаянных определенным образом (схема диодного моста). Для примера возьмём такой популярный диод, как 1N4007.
1 » Максимальный долговременный прямой ток.
Максимальный долговременный прямой ток – это одна из наиболее важных характеристик диода. К примеру, у диода (1N4007) этот ток равен 1 ампер. Это значит, что при температуре не выше 75 °С данный диод спокойно может через себя пропускать силу тока до 1 ампера без ущерба для себя (не получая тепловой или электрический пробой). Ток выше 1 ампера уже грозит увеличением вероятности пробоя и последующего выхода из строя (либо при сгорании он станет диэлектриком, то есть его внутреннее сопротивление уже будет бесконечно большим, или же после сгорания он, наоборот, станет проводником, у которого сопротивление станет очень малым). При выборе диодов для мостов и готовых диодных сборок мостов нужно делать некий запас по току. Например, Ваш блок питания должен выдавать на выходе максимальный ток 0,5 ампера, и поставив диодный мост на 1 ампер мы получим 50% запас по току, что обеспечивает на дополнительную защиту от случайных токовых перегрузок до 1 ампера. Это позволит обеспечить дополнительную надёжность работающего диодного моста в блоке питания.
2 » Максимальное обратное напряжение диодов в диодном мосте.

Максимальное обратное напряжение диодов – это та максимальная величина амплитудного напряжения, которое будет приложено к диоду при его обратном включении. Напомню, что обратное включение диода, это когда плюс источника питания подсоединяется к минусу (катоду) диода, а минус источника питания подсоединяется к плюсу диода (аноду). То есть, наоборот, плюс к минусу, а минус к плюсу. При этом подключении (обратном) диод находится в закрытом состоянии, его сопротивление бесконечно большое. Следовательно, максимальная амплитуда напряжения оседает на диоде. Максимальное обратное напряжение у нашего (к примеру взятого) диода 1N4007 равна 1000 вольтам (1кВ). Это значит, что диодный мост, собранный на таких диодах может выдерживать амплитудное переменное напряжение аж до 1000 вольт. Напряжение выше этого значения уже, как и в случае с током, увеличивает вероятность электрического пробоя диода, с последующим выходом его из строя. При подборе диода по этой характеристики также делайте некий запас (от 25% до 100%, а то и более). Хотя 1000 вольт это и так достаточно много!
3 » Максимальная рабочая частота диода.
Максимальная рабочая частота диода – это наиболее высокая частота, на которой диод (диодный выпрямительный мост) может работать не теряя свои номинальные характеристики, функционировать (переходить из закрытого состояния в открытое и обратно) с максимальный быстродействием, сохраняя свою надёжность. Наш диод серии 1N4007 имеет максимальную рабочую частоту 1 мГц. Это достаточно высокая частота. Работая в схеме обычного блока питания (запитываемого от сети с частотой 50 Гц) этих диодов более чем будет достаточно, касательно этой характеристики. И даже они нормально будут работать в схемах импульсных БП, где обычно используется частота около 10-18 кГц.
4 » Интервал рабочих температур диода.
Интервал рабочих температур диода, что будет работать в схеме диодного моста – это температурная характеристика диода. Она говорит о том, что в определённом диапазоне температур диод будет нормально работать, и его другие параметры останутся в рамках допустимого (поскольку температура полупроводника влияет на электрические характеристики, например изменением внутреннего сопротивления диода). У диода 1N4007 интервал рабочих температур лежит в пределах -65…+175°С. При очень низких температура вряд ли в быту Вы будете использовать диодный мост, а вот высокая температура легко может образоваться при прохождении большой величины тока. Причем, как известно, большинство диодов, и мостов сделаны из кремния. Кремний имеет свою критическую температуру, после которой он начинает необратимо разрушаться. Эта температура около 150-180°С. Работа диода на предельных температурах, это также не совсем хорошо. Нормальной температурой для работы полупроводников можно считать от 0 до 60 °С.
5 » Падение напряжения на диоде.
Падение напряжения на диоде – это то напряжение, которое присутствует на диоде при его прямом включении. Как я ранее говорил о обратном напряжении диода, так вот прямое включение диода, это когда плюс диода (его анод) подключен к плюсу источника питания, а минус диода (его катод) подключен к минусу источника питания. При таком подключении диод находится в открытом состоянии, через него нормально проходит ток. Но даже в открытом состоянии диод имеет своё некоторое внутреннее сопротивление, которое и вызывает определенное падение напряжения на этом диоде. К примеру на нашем диоде 1N4007 при токе в 1 ампер падение напряжения составляет около 1,1 вольта. В общем это самое падение напряжения у диодов из кремния лежит в пределах от 0,6 до 1,2 вольта. На это падение напряжения влияет и сила тока, которая проходит через этот диод. А в целом, чем меньше это самое падение напряжения на полупроводнике, тем меньшая мощность на нём оседает, тем меньше он будет грется, тем лучше (для некоторых схем очень важно, чтобы было как можно меньшее падение напряжения на диоде).
6 » Максимальный импульсный ток.
Максимальный импульсный ток диода. Этот пункт логичнее было указать вторым, но я его опустил по причине упорядочивания по важности характеристик диода. Итак, первым пунктом у нас было максимальный долговременный ток, то есть ток, величина которого постоянна во времени. Импульсный ток уже характеризует амплитудное значение силы тока. Во времени это ток может меняться, и в некоторые моменты времени быть равен нулю. Поэтому общая мощность, которая будет оседать на диоде при прохождении через него импульсного тока будет меньше, чем та, которая была бы при долговременном токе. К примеру, для диода 1N4007 при длительности импульса 3.8 мс величина тока равна 30 ампер. И тут мы видим ощутимую разницу. Если при длительном токе диод может выдерживать до 1 ампера, то при импульсном это значение увеличилось аж в 30 раз.
Видео по этой теме:
P.S. Это и были основные характеристики диодов, которые будут работать в диодном мосте, на которые нужно обращать внимание при выборе. Хотя если свести к еще большей простоте, то для обычных трансформаторных блоков питания важны две характеристики, это максимальный длительный ток и обратное напряжение (первый и второй пункт в моей статье). Все остальные параметры обычно у современных диодов достаточно велики и их более чем достаточно для всех диодных мостов, которые могут быть использованы для простых блоков питания.
Диодный мост – электрическое устройство, используемое в современной электронике, люминесцентных лампах, сварочных аппаратах, автомобильных генераторах для выпрямления переменного тока, поступающего от источника, и получения постоянного. Содержание статьиВ однофазной электрической сети в состав мостовой схемы входят 4 кремниевых выпрямительных или 4 диода Шоттки. В трехфазной сети в мост соединяют 6 полупроводников. Эти элементы часто выходят из строя, провоцируя сгорание предохранителя. После замены предохранителя необходимо проверить работоспособность полупроводников. Существует несколько вариантов того, как проверить диодный мост, выбор зависит от вида схемы. Диоды могут располагаться дискретно или представлять собой заводскую сборку, в которой все элементы находятся в одном корпусе. Как прозвонить диодный мост из дискретно расположенных диодовВсе детали мостовой схемы можно прозвонить без выпайки. Для этого необходим мультиметр, в котором есть режим проверки диодов, обычно совмещаемый со звуковой прозвонкой. Суть проверки заключается в измерении разности напряжений между щупами. Как правильно проверить исправность диодного моста тестером:
Прямое подключение диодного моста Обратное подключение диодного моста Если в результате проверки в обоих направлениях наблюдаются высокие значения или срабатывает звуковой сигнал, то диодный мост оборван. Как проверить диодный мост в трансформаторном блоке питания с помощью лампочкиДля этого способа понадобится лампа накаливания мощностью до 100 Вт, вкрученная в патрон. Лампу подключают в разрыв силового фазного провода. Если на плате произошло короткое замыкание, то при включении устройства в сеть перегорит предохранитель, сам провод или выбьют автоматические выключатели. Если провести проверку с использованием лампочки накаливания, то подобных неприятностей можно избежать. При наличии короткого замыкания лампочка, включенная в сеть, загорится ярким светом. Она не сгорит, поскольку сопротивление спирали ограничит ток. Если же электронные компоненты платы исправны, то лампочка не загорится совсем или будет наблюдаться слабое свечение. Пробой диодного моста Простая проверка целостности диодного моста трансформаторного блока питанияЕсли мы выяснили с помощью лампочки, что на плате существуют проблемы, с помощью индикаторной отвертки можно выяснить, есть ли обрыв на диодном мосту. Если на входе в выпрямитель на фазном проводе загорается индикатор, проводим дальнейшую проверку. Если же индикатор не загорелся, то проблема не в диодной схеме, а в силовом кабеле. Индикатором проверяют наличие напряжения на плюсовом выходе выпрямителя. Если оно присутствует, то диодный мост не оборван. Большего количества информации при такой проверке мы не получим. Пробоя диодного моста нет Как точно проверить диодную сборку: подробный анализДля проверки понадобится мультиметр, имеющий режим проверки диодов. Этапы проверки:
Если диодная сборка благополучно пройдет эту проверку, можно с уверенностью сказать, что все элементы исправны. Как проверить диодный мост генератораДиодный мост генератора Диодный мост генератора автомобиля или мотоцикла предназначен для выпрямления переменного тока, вырабатываемого генератором, и получения постоянного тока для зарядки АКБ и других потребителей электропитания. Неисправность диодного моста приводит к полному исчезновению или значительному уменьшению количества тока, вырабатываемого генератором. Наиболее точные результаты можно получить на СТО – на стенде с использованием осциллографа. Один из вариантов простой проверки полупроводников – прозвонка с помощью мультиметра. Однако это ненадежный способ, поскольку нагрузка у прибора совсем небольшая, поэтому неисправность может быть не выявлена. Для проверки диодного моста генератора под нагрузкой используют контрольную лампочку, это может быть обычная автомобильная лампа 12 В. Выпрямительный блок состоит из двух алюминиевых пластин, объединенных в единую конструкцию. В каждую из них впаяны по 3 диода. Положительные и отрицательные диоды спаяны попарно. Проверка мостовой схемы на короткое замыкание (КЗ) между пластинами производится следующим способом:
Видео: как проверить диодный мост мультиметромДругие материалы по темеАнатолий Мельник Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент. |
Как проверить диодный мост генератора: что нужно знать
Генератор автомобиля является важным элементом в устройстве автомобиля. Если просто, генератор, который является электродвигателем, питает всю бортовую сеть автомобиля электричеством после запуска ДВС. Также от генератора осуществляется зарядка аккумулятора (АКБ).
Как показывает практика, по тем или иным причинам могут возникать разные поломки генератора, однако достаточно часто распространенной неисправностью является диодный мост. Далее мы рассмотрим, почему выходят из строя диодные мосты, генератор не заряжает АКБ, а также как проверить диодный мост генератора.
Содержание статьи
Мост диодный: проверка
Итак, неполадки генератора могут привести к тому, что аккумулятор не заряжается. Это приводит к его глубокому разряду. Также выход из строя отдельных элементов генератора может приводить к перезаряду АКБ, выкипанию электролита, повреждению батареи и т.п.
В любом случае, перед заменой АКБ необходимо проверять сам генератор. Если дело не в щетках или подшипниках, тогда виновником неисправностей может оказаться диодный мост.Отметим, что каждому автовладельцу полезно знать, как проверить диодный мост своими руками. Обратите внимание, рассмотренным ниже способом сделать такую проверку можно в условиях обычного гаража.
Диодный мост: схема устройства
Хотя на разных авто устройство генератора может немного отличаться, общий принцип одинаков. Обычно диодные мосты генератора имеют 4 или 6 диодов, задачей которых является преобразование переменного тока в постоянный. В основе лежит двухполярный способ выпрямления.
Фактически, выпрямительные диоды генератора выступают шлюзом, пропускающим ток только в одном направлению. Получается, ток из бортовой сети автомобиля не имеет возможности попасть на обмотки статора.
Если говорить о неисправностях, диоды, расположенные на корпусе генератора, по тем или иным причинам перегорают. Как правило, диодный мост горит по разным причинам, среди которых можно отдельно выделить следующие:
- влага, масло, пыль и грязь, которые попадают на генератор в процессе эксплуатации;
- высокие нагрузки на генератор в момент «прикуривания» авто с разряженной АКБ, когда «плюс» и «минус» перепутаны и т.д.
Как проверить диодный мост мультиметром и при помощи контрольной лампы
Начнем с того, что проверка диодного моста генератора может быть выполнена двумя способами. Один предполагает наличие тестера (мультиметра), тогда как второй выполняется при помощи контрольной 12 В лампы.
- Начнем с простейшего способа с лампой. Сначала нужно реализовать подключение диодного моста (пластины диодного моста) к минусовой клемме аккумулятора. Пластину нужно плотно прижать к корпусу генератора.
Далее берется заведомо рабочая лампочка с проводами, которая одним концом провода подключается к «плюсу» аккумулятора, тогда как второй конец провода присоединяется к клемме выхода дополнительных диодов. Затем подключение производится к болту вывода «+», а также к точкам подключения обмотки статора.
Если лампочка начнет загораться, это четко указывает на то, что произошло перегорание или обрыв диодного моста. Кстати, дополнительная проверка диодного моста на обрыв выполняется так:
Нужно подключить «минус» контрольной лампы на «плюс» аккумулятора, второй конец контрольной лампочки на «минус» АКБ. Далее подключение лампы реализуется в описанных выше местах контактов. Однако в данном случае лама должна гореть ярко. Если это не так (контрольная лампочка не горит или свечение очень слабое), это укажет на обрыв диодного моста.
- Проверка диодного моста мультиметром потребует снятия всего моста с генератора. При этом способ более точный, так как каждый диод проверяется тестером отдельно.
Для проверки мультиметр выставляется в режим так называемого «прозвона». В данном режиме устройство издает звук во время замыкания двух электродов. Если звукового оповещения нет, тогда выставляется режим на 1 кОм.
Далее электроды мультиметра подключаются к двум концам диода, после чего щупы меняются местами. В норме диод должен в одну сторону показать 400-700 Ом, тогда как в другую бесконечность.
Если же бесконечность при прозвоне показывается в обе стороны, это указывает на то, что имеет место обрыв диода. Если же сопротивление есть, но оно слабое или же одинаковое как с одной, так и с другой стороны, в этом случае диод пробит. Теперь давайте рассмотрим такой способ более подробно.
Проверка диодного моста мультиметром
Перед началом диагностики генератора, само устройство нужно очистить от грязи и подготовить. Начинать проверку следует с того, что нужно снять защитный кожух, затем отсоединить выводы регуляторов. Обратите внимание, положительные диоды с красной маркировкой, отрицательные с черной.
Во время проверки тестером сначала проверяется вся цепь дополнительных диодов. Если обнаружены проблемы, тогда каждый диод нужно прозвонить по отдельности. Для проверки положительный щуп тестера присоединяется к шине диодов, а отрицательный к нужному диоду.
Как уже было сказано выше, если диод генератора в норме, показания на приборе покажут бесконечность, а после перестановки щупов появится нужное сопротивление. Если же показания отличаются от нормы, диод или весь мост требуется заменить. Подобным образом можно проверить схему из положительных и отрицательных диодов, прозванивая каждый.
Полезные советы
Как показывает практика, часто выгорает диодный мост генератора именно в результате неосмотрительности самого владельца автомобиля. Если имеет место неправильное подключение клемм аккумулятора, запредельно высокая нагрузка на генератор, тогда диоды горят быстро.
Также важно понимать, что активная эксплуатация автомобиля, в результате чего на генератор попадает грязь и вода, не добавляет ресурса диодному мосту. В результате, чтобы увеличить срок службы, нужно правильно мыть двигатель, соблюдать правила подключения клемм к аккумулятору, уметь прикуривать автомобиль и т.д.
В случае, когда нового диодного моста нет, тогда решение – замена вышедших из строя отдельных элементов. Для замены нужен мощный паяльник, а также заведомо исправные диоды в запасе.
Обратите внимание, сразу выполнять замену всего диодного моста также не всегда целесообразно. Если генератор служит давно, тогда оптимально менять диодный мост в сборе, однако это будет более затратным решением.
В случаях, когда генератор не старый, а поломка произошла по причине случайной ошибки самого владельца (например, после прикуривания авто), можно ограничиться только ремонтом генератора. Зачастую, в этом случае не следует опасаться, что другие диоды также начнут быстро выгорать (при условии соблюдения правил во время дальнейшей эксплуатации).
Что в итоге
Как видно, диодный мост (мост диодов генератора) является важным элементом. На практике, кроме щеток генератора, обмотки статора и ротора, а также подшипников, в списке частых поломок находится и сам диодный мост.
По этой причине во время проверки генератора на работоспособность следует учитывать, что вероятность перегорания диодов достаточно высокая (особенно если генератор уже далеко не новый).
Напоследок отметим, чтобы продлить сок службы генератора, специалисты рекомендуют периодически проводить его профилактику, которая заключается в диагностике, а также в просушке и качественной очистке от различных загрязнений.
Читайте также
Зачем нужен диодный мост
Одним из базовых элементов в современной электронике является диод. Он используется в схемах, где необходимо выпрямление переменного тока, и применяется практически во всех бытовых приборах. Найти его можно в телевизоре, компьютере, холодильнике, магнитофоне и т.д. Так же он широко используется в промышленной электронике, входит в состав схем, управляющих технологическими процессами. Мощные силовые диоды используются в полууправляемых тиристорных преобразователях. На базе диода собрана так называемая схема Гертца, которая получила название диодный мост. Соединение диодов по мостовой схеме позволило выпрямлять переменное напряжение и преобразовывать его в пульсирующее, которое потом можно стабилизировать и выпрямить с помощью схем стабилизации напряжения и конденсаторов. В результате на выходе такого прибора можно получить постоянное напряжение.
Во времена Лео Гертца использовать диодный мост было проблематично, так как диоды в то время были ламповые. Ставить на выпрямление переменного тока сразу четыре лампы было, по крайней мере, непрактично, в то время они были очень дорогими. Ситуация сильно изменилась с появлением полупроводниковых приборов, они гораздо компактнее и дешевле.
Собрать диодный мост можно и самому, например, для собственной домашней лаборатории. Для этого подбираем четыре диода с допустимым обратным напряжением 400-500 Вольт. Катоды одной пары диодов соединяем вместе — это будет плюсовой вывод моста. Аноды второй пары также соединяем вместе – это, соответственно, минусовой вывод. Теперь объединяем две пары в мостовую схему, на оставшиеся два вывода можно подавать переменное напряжение. На выходе диодного моста запаиваем полярный конденсатор и параллельно ему — разрядное сопротивление. Получился диодный мост, который можно вмонтировать в рабочий стол и подсоединить через переменное высокоомное сопротивление к питающей сети. Выходное напряжение такого устройства будет регулироваться от нуля и до величины амплитудного значения питающей сети, что очень удобно для питания маломощных схем в процессе наладки или для создания опорного напряжения.
Также мостовая схема применяется в автомобиле, здесь используется так называемый диодный мост генератора. Он служит для преобразования переменного напряжения, которое вырабатывает генератор, в постоянное напряжение, которое используется во всех устройствах автомобиля. Постоянное напряжение также необходимо для подзарядки автомобильного аккумулятора. Выход из строя даже одного элемента диодного моста приводит к нестабильной работе всей схемы.
Для сварки постоянным током также необходимо использование диодного моста. В этом случае применяют диоды большей мощности, чем в автомобиле, и с большим допустимым значением обратного напряжения. Диодный мост для сварочного аппарата можно собрать самостоятельно, используя мощные диоды. Класс диодов выбирается в зависимости от питающего напряжения, получаемого со сварочного трансформатора.
Как работают диоды и что такое диодный мост?
Здравствуйте друзья! Каждый день мы встречаем огромное число людей, людей с которыми мы общаемся, живем, учимся или ходим не работу. Готов поспорить что как минимум половина людей с которыми вы общаетесь имеет смутное представление о диодах, и это не смотря на то что понятие диодов входит в школьную программу .
Возможно что такое понятие как диодный мост вызывает точно такие же ассоциации как и Бруклинский. Я все-таки думаю, что эта статья в какой-то степени уменьшит подобные ассоциации в головах людей и принесет чуточку понимания, по крайней мере я на это надеюсь.
Ну что? Заинтересовал? Тогда поехали.
[contents]
О чем сегодня статья
Как вы наверное поняли из вступления сегодняшняя статья будет ориентирована на новичков. И сегодня я освещу сакральную тему, свет которой будет освещать полупроводниковые приборы под названием диоды.
Как работает диод
Как работает диод? Многих новичков интересует данный вопрос и многие учителя в школах и вузах начинают чертить на доске электрические схемы и временные диаграммы. Я считаю что это полная фигня, так как пока ты не получишь практический опыт ты не достигнешь полного понимания и весь наукоемкий фарш останется лишь непонятными каракулями на доске.
Так что же я этим хочу сказать? А сказать я хочу,что нужно просто брать в руки паяльник и идти вперед — превращать теорию в ценный практический опыт!
Хорошо, а теперь обсудим немного теорию.
На электрических схемах диоды изображаются как равнобедренный треугольник на одной из вершин которого размещается черточка. Это словесное описание условного графического обозначения диода (принятое сокращение УГО). Графически это обозначение выглядит вот так.
У диода всего два вывода и обозначаются они катод и анод. На условном обозначении диода вывод катода всегда обозначен «палочкой», а треугольник можно представить как стрелка указывающая на черточку катода.
Впрочем так диоды обозначаются на электрических схемах. В жизни диоды могут быть разными, к примеру могут быть как на этих картинках.
Как определить на каком выводе у диода анод, а на каком катод? В принципе это можно определить визуально, по маркировке.
Как правило катод на корпусе диода обозначается полоской, точкой или чертой. Если сомневаетесь то катод и анод можно определить с помощью мультиметра. О том как пользоваться мультиметром и в частности как проверить диод мультиметром я писал здесь, так что почитаете и разберетесь — ничего сложного.
Диоды примечательны тем, что обладают односторонней проводимостью. Это значит что электрический ток «потечет» через диод только в том случае если к аноду приложить плюс (более положительный потенциал ) а к катоду приложить минус (более отрицательный потенциал). В обратной ситуации у вас ничего не получится. Подобное поведение диода определяется таким понятием как ВАХ.
Что означает ВАХ диода?
ВАХ диода это просто напросто вольтамперная характеристика диода. Она описывает зависимость тока от напряжения прикладываемого к диоду. Давайте рассмотрим это обстоятельство чуток подробнее.
Слева у нас показан вольтамперной характеристики для резистора. Как видите, зависимость тока от напряжения линейная, чем больше напряжение приложенное к резистору тем больше ток.
Для диода кривая зависимости явно отличается. Если мы подключим к аноду положительный потенциал, а к катоду отрицательный и будем плавно повышать напряжение то будет происходить следующее. Ток в начальный момент времени будет очень мал поэтому диод еще не будет открыт по полной. Но если мы будем прибавлять напряжение то это приведет к полному открытию диода.
Хорошо, а что же случится если мы подключим диод иначе? Положительный потенциал приложим к катоду, а отрицательный к аноду. В этом случае график ВАХ диода у нас буквально перевернется и картина будет следующая. При плавном повышении напряжения ток будет повышаться, но величина тока будет настолько незначительной, что им зачастую пренебрегают. Этот ток при обратном подключении называют еще током утечки.
Только есть здесь один нюанс. Если мы будем и дальше повышать обратное напряжения на диоде, то можно добиться резкого повышения тока. На вольтамперной характеристике этот момент выглядит в виде небольшого «хвостика» причудливо оттопыренного в конце. Это так называемый обратимый пробой диода. Такой пробой не страшен, если напряжение уменьшить то ток снова уменьшится и будет вновь очень незначительным. Явление подобного обратимого пробоя является побочным и для диода его всегда стараются сводить к минимуму.
Как видите всю эту информацию мы получили лишь используя график ВАХ, но будет полезно все это проверить своими руками на практике. Действительно, соберите несложную схему и сделайте несколько замеров мультиметром, это пойдет на пользу. Вот только диод нужно уметь правильно подключать, ато ведь его легко можно пожечь, так что читайте дальше -поведаю обо всем.
Для чего используют диоды и как включать в цепь?
О том как функционирует диод мы поговорили, вот только пока непонятно как его можно применять и вообще для чего все это.
Для начала рассмотрим простейший пример включения диода в электрическую цеп, причем в переменке.
И для начала простой вопрос, зачем здесь резистор? Внимательный читатель посмотрит вольтамперную характеристику диода и все станет ясно. Ток в диоде без дополнительной нагрузке начнет очень быстро расти, возникнет подобие короткого замыкания от чего диоду может не поздоровиться. Дабы не произошло подобного конфуза применяют токоограничивающий резистор.
Свойство односторонней проводимости диода применяется не просто широко а повсеместно. В состав любого блока питания входят диоды как сами по себе так и в составе диодного моста. Ведь в любом блоке питания происходит один очень важный момент, а именно происходит превращение переменного тока в постоянный. А вот эту ответственную миссию берут на себя именно диоды. Полное превращение мы рассмотрим когда будем обсуждать диодные мосты, но как ведет себя диод в переменном токе мы сейчас увидим. Схема все та же что и была, диод и резистор включенные в цепь переменного тока.
Вот вам наглядный пример в виде временной диаграммы зависимости тока от напряжения до и после применения диода.
Как видите произошел очень интересный момент, нижние полупериоды диод просто срезал, оставив холмики положительной полярности. Это уже более похоже на постоянку, можно еще кстати использовать конденсатор для лучшего сглаживания.
Хотя диод и справляется с задачей выпрямления переменного тока, все-таки с этой задачей диодный мост справится лучше, кстати диодный мост мы сейчас и рассмотрим.
Как построить диодный мост?
При использовании одиночного диода в целях выпрямления переменки остаются ощутимые провалы в диаграмме. Этого нужно как-то избегать, а вот избежать этого явления нам поможет диодный мостик.
Диодный мост это не один диодик а целых четыре, включенных специальным образом. На электрических схемах додные мосты выглядят вот таким незамысловатым образом.
Кликните чтобы увеличить
И диодный мост отчасти позволяет решить проблему провалов, возникающую при использовании одиночного диода.
Как видите диодный мост работает на каждом полупериоде синусоиды, организуя такие холмики положительной полярности. Это уже более похоже на постоянку, хотя постоянный здесь только знак положительного потенциала. О постоянном напряжении здесь пока говорить рано. Далее вид выходного напряжения еще можно будет скорректировать используя стабилитрон и конденсатор. Правда о конденсаторах мы сегодня разговаривать не будем, а как работает стабилитрон рассмотрим в следующих статьях так что не пропустите и обязательно подпишитесь.
Ну чтож, на этом у меня все, поэтому я буду закругляться и пойду готовить материалы для новых статей. Также очень советую подписаться через форму Email рассылок, тогда вы точно ничего не пропустите и более того каждый подписчик получит от меня подарок.
Желаю вам удачи , успехов и до новых встреч.
С н/п Владимир Васильев.
Что такое мостовые диоды? | Полупроводник
Мостовой диод — это диодный модуль, который образует мостовое соединение от 4 до 6 диодов в одном корпусе, и он используется для выпрямления переменного тока в постоянный или пульсирующий ток.
Для однофазного переменного тока
Для трехфазного переменного тока
Как использовать мостовые диоды… Двухполупериодное выпрямление
-
- Входное напряжение: AC
-
- Выходное напряжение: пульсирующее / постоянное
Мостовой диод инвертирует сторону отрицательного напряжения для входа переменного тока и выдает пульсирующий ток.
Выходная сторона сглажена конденсатором, который позволяет выводить постоянное напряжение.
Существует множество мостовых диодов, предназначенных для выпрямления промышленных частот 50/60 Гц, и обычные выпрямительные диоды могут использоваться в качестве типа диода.
Когда эти диоды используются для выпрямления высоких частот, например, вторичного выпрямления на импульсных источниках питания, тогда в качестве мостовых диодов используются диоды с быстрым восстановлением или диоды с барьером Шоттки.
Значение сертификации мостовых диодов UL
Может быть прикреплен непосредственно к шасси (заземлению), не проходя через изоляционный лист
Пример обозначения каталога
- следующий «Что такое диоды TVS?»
- Перечень продукции «Мостовые диоды»
Диодный мост — обзор
5.3.1 Однофазный диодный мостовой выпрямитель на одной фазе DG-1
Нагрузка диодного моста выпрямителя подключена к одной из фаз системы DG-1. Это создаст ситуацию нелинейности, а также дисбаланса в MG. Токи в соединительных линиях равны
(5.7) ia (t) = μI1cos (ωt − ϕ1) + I3cos (3ωt − ϕ3) + I5cos (5ωt − ϕ5) + ⋯, ib (t) = I1sin (ωt − 2π / 3 − ϕ1), Ic (t) = I1sin (ωt + 2π / 3 − ϕ1).
Где I 1 — пиковое значение тока основной гармоники, когда подключена только линейная сбалансированная нагрузка, а I 3 и I 5 — пиковые значения гармонических токов.Из-за нагрузки однофазного выпрямителя на фазе-а основная составляющая будет изменена, и о ней позаботятся с коэффициентом « µ ». Эти линейные токи преобразуются в стационарную систему отсчета с помощью (5.4). В сложной форме записи трехфазные токи можно представить в виде комплексного вектора:
(5.8) I = iα − jiβ.
Обратите внимание, что компонент i γ не рассматривается, поскольку при анализе мгновенного потока мощности нет соответствующей составляющей v γ для напряжений на клеммах [23].Токи в стационарной системе отсчета также могут быть представлены через векторы всех составляющих прямой и обратной последовательности основных и гармонических токов как
(5.9) I = (Iqd1pejωt + Iqd1ne − jωt + Iqd3pej3ωt + Iqd3ne − j3ωt + Iqd5ωt + Ipeqd5 −j5ωt).
Коэффициенты для всех компонентов последовательности, таких как Iqd1p, Iqd1n и т. Д., Являются векторами. В общем, они представлены как
fqdk = fqk + jfdk,
, где k обозначает k -ю гармоническую составляющую.Верхний индекс p и n предназначен для компонентов положительной и отрицательной последовательности соответственно. Используя (5.6) и (5.9), кажущийся поток мощности в линии рассчитывается как:
(5.10) S = (Vqdpejω1t) (Iqd1pejω1t + Iqd1ne − jω1t + Iqd3pej3ω1t + Iqd3ne − j3ω1t + Iqd5 * j5q5 .
Действительная часть (5.10) дает активную мощность, а мнимая часть дает реактивную мощность. Активную мощность можно компактно выразить как
(5.11) P12 (t) = P0 + ∑k = 1,3,5 (Pcnkcos ((k + 1) ω1t) + Psnksin ((k + 1) ω1t)) + ∑k = 3,5 (Pcpkcos ((k − 1) ω1t) + Pspksin ((k − 1) ω1t)).
Коэффициенты мощности Pcn1, Psn1, Qcn1, Qsn1 и т. Д. Определены в Приложении 5.1, Коэффициенты мощности. В (5.11) P 0 обусловлено основными составляющими прямой последовательности напряжений и токов. Его можно заменить выражением (5.12), которое обычно представляет собой поток мощности в условиях сбалансированной нагрузки.
(5.12) P0 (t) = B12sinδ12, при B12 = 3V1V2ω0L12,
, где В 1 и В 2 — напряжения на клеммах инвертора, ω 0 — номинальная частота L 12 — индуктивность линии между DG-1 и DG-2.Подставляя (5.12) в (5.11), P 12 можно записать как:
(5.13) P12 (t) = B12sinδ12 + ∑k = 1,3,5 (Pcnkcos ((k + 1) ω1t) + Psnksin ((k + 1) ω1t)) + ∑k = 3,5 (Pcpkcos ((k − 1) ω1t) + Pspksin ((k − 1) ω1t)).
Поток мощности в соединительной линии P 12 , таким образом, представляет собой комбинацию мощности, обусловленной напряжением прямой последовательности основной частоты и основной частотой, а также гармоническими и несимметричными токами.
Аналогичное выражение получено для потока реактивной мощности в соединительных линиях, который задается как
(5.14) Q12 (t) = Q0 + ∑k = 1,3,5 (Qcnkcos ((k + 1) ω1t) + Qsnksin ((k + 1) ω1t)) + ∑k = 3,5 (Qcpkcos ((k− 1) ω1t) + Qspksin ((k − 1) ω1t)).
Мостовой выпрямитель, мостовой выпрямитель, диодный мостовой выпрямитель
При создании электронных схем обычно требуется постоянное напряжение, чтобы все работало должным образом. Мостовые выпрямители — это дискретные полупроводники, которые преобразуют переменный ток (AC) в постоянный (DC) и размещаются внутри цепей, чтобы обеспечить подачу правильной формы напряжения. Размещая выпрямительный диод в виде мостового выпрямителя в любых требуемых схемах, вы можете быть уверены, что все будет работать должным образом.
Мы предлагаем широкий ассортимент высококачественных мостовых выпрямителей от ведущих производителей отрасли, включая Vishay, SEMIKRON и HVCA, чтобы вы могли получить именно те компоненты, которые вам нужны.
Что такое выпрямитель?
Выпрямитель — это электрическое устройство, которое преобразует переменный ток в постоянный ток с помощью одного или нескольких диодов с P-N переходом. Есть несколько различных типов выпрямительных диодов, которые могут выполнять эту функцию, один из них — мостовой выпрямитель.
Выпрямление — одно из наиболее важных применений диодов с P-N переходом, преобразующее переменный ток в постоянный для работы в цепях.Диоды с P-N переходом пропускают электрический ток только в состоянии прямого смещения и блокируют ток в состоянии обратного смещения.
Благодаря этому свойству, когда электрический ток может двигаться только в одном направлении, он может действовать как выпрямитель в цепи. Вот почему на принципиальных схемах диоды обозначены стрелкой, обозначающей направление протекания тока.
Что такое мостовой выпрямитель?
Мостовые выпрямители — это диодные мостовые схемы, которые преобразуют переменный ток в постоянный ток с помощью четырех или более диодов, расположенных в конфигурации мостовой схемы.Это преобразование тока является основным требованием для большинства электронных устройств, и мостовые выпрямители являются популярным решением для этого.
Мостовые выпрямители относятся к тому же классу электроники, что и однополупериодные выпрямители и двухполупериодные выпрямители, и иногда их называют полнополупериодными выпрямителями, поскольку они позволяют выполнять двухполупериодное выпрямление. При использовании в схеме диодного выпрямителя выходная волна, генерируемая мостовым выпрямителем, имеет одинаковую полярность независимо от полярности на входе.
Если присмотреться к настройке мостовых выпрямителей, они работают с двухпроводным входом переменного тока и имеют в своей конструкции два диодных отвода. Обе эти области необходимо учитывать при проектировании схемы, особенно с учетом падения напряжения, поскольку вам может потребоваться рассмотреть возможность включения радиатора в вашу конструкцию.
Каковы преимущества мостовых выпрямителей?
Когда вы работаете с высоким напряжением, вам нужны компоненты, которые могут противостоять ему. Мостовые выпрямители имеют высокое пиковое обратное напряжение (PIV), что делает их подходящими для этих приложений.
При необходимости мостовые выпрямители могут быть сконструированы с трансформаторами. Если вам не нужно повышать или понижать напряжение, вы даже можете отключить трансформатор от мостового выпрямителя. Это может устранить ненужные компоненты и снизить затраты.
Вы также можете приобрести дискретные полупроводники, такие как мостовые выпрямители, в качестве доступного средства для создания прототипов схемотехники, чтобы все работало должным образом.
Какие недостатки мостовых выпрямителей?
Использование компонентов мостового выпрямителя может быть более дорогостоящим по сравнению с другими выпрямителями, поскольку в их конструкции используются четыре диода.
Когда требуется выпрямить только небольшое напряжение, использование мостового выпрямителя может оказаться неэффективным использованием компонентов, поскольку другие формы выпрямителя могут дать такой же эффект.
Поскольку мостовые выпрямители представляют собой дискретные полупроводники, вам может потребоваться приобрести дополнительные устройства для вашей схемы, чтобы обеспечить полную функциональность для предполагаемого использования.
Для чего используются мостовые выпрямители?
Обычно вы найдете мостовые выпрямители в источниках питания, чтобы обеспечить необходимое напряжение постоянного тока для работы электронных компонентов или устройств.Их можно найти в разнообразной бытовой технике и бытовой технике, что гарантирует их правильное функционирование.
Любители электроники также считают, что мостовой выпрямитель — популярный элемент схемы при создании собственных устройств или схем.
Помимо выпрямления тока в цепях, мостовые выпрямители также используются: У меня есть все необходимое для создания схем, которые вы проектируете.Allied Electronics является дистрибьютором высококачественных электрических компонентов и электромеханической продукции в Северной Америке уже более 90 лет, обеспечивая наших клиентов тем, что им нужно, в любое время.
Если у вас есть какие-либо вопросы, посетите наш центр консультаций экспертов или свяжитесь с одним из наших офисов продаж для получения более конкретных вопросов.
Мы также можем предоставить вам ценовое предложение, если вы планируете оптовый заказ компонентов, которое мы затем обсудим с вами, чтобы вы были максимально удовлетворены.
Диоды | Клуб электроники
Диоды | Клуб электроникиСигнал | Выпрямитель | Мостовой выпрямитель | Стабилитрон
Смотрите также: светодиоды | Блоки питания
Диоды позволяют электричеству течь только в одном направлении. Стрелка символа схемы показывает направление, в котором может течь ток. Диоды — электрическая версия вентиль и первые диоды на самом деле назывались вентилями.
Типы диодов
Обычные диоды можно разделить на два типа:
Дополнительно есть:
Подключение и пайка
Диоды должны быть подключены правильно, на схеме может быть указано a или + для анода и k или — для катода (да, это действительно k, а не c, для катода!).Катод отмечен линией, нарисованной на корпусе. Диоды обозначены своим кодом мелким шрифтом, вам может потребоваться ручная линза, чтобы прочитать его.
Сигнальные диоды могут быть повреждены нагреванием при пайке, но риск невелик, если только вы используете германиевый диод (коды начинаются OA …), и в этом случае вы должны использовать радиатор (например, зажим «крокодил»), прикрепленный к проводу между соединением и корпусом диода.
Выпрямительные диоды достаточно прочные, и при их пайке не требуется специальных мер предосторожности.
Испытательные диоды
Вы можете использовать мультиметр или простой тестер. проект (батарея, резистор и светодиод), чтобы проверить, что диод проводит только в одном направлении.
Лампу можно использовать для проверки выпрямительного диода, но НЕ используйте лампу для проверки сигнальный диод, потому что большой ток, пропускаемый лампой, разрушит диод.
Падение напряжения в прямом направлении
Электричество потребляет немного энергии, проталкиваясь через диод, как человек. толкая дверь пружиной.Это означает, что есть небольшое прямое падение напряжения через проводящий диод. Для большинства диодов, сделанных из кремния, оно составляет около 0,7 В.
Прямое падение напряжения на диоде почти постоянно, независимо от тока, протекающего через диода, поэтому они имеют очень крутую характеристику (вольт-амперный график).
обратное напряжение
При подаче обратного напряжения проводит не идеальный диод, а настоящие диоды утечка очень крошечного тока (обычно несколько мкА).Это можно игнорировать в большинстве схем. потому что он будет намного меньше, чем ток, текущий в прямом направлении. Однако все диоды имеют максимальное обратное напряжение (обычно 50 В или более), и если при превышении этого значения диод выйдет из строя и будет пропускать большой ток в обратном направлении, это называется пробой .
Диоды сигнальные (малоточные)
Сигнальные диоды обычно используются для обработки информации (электрических сигналов) в цепях, поэтому они требуются только для пропускания небольших токов до 100 мА.
Сигнальные диоды общего назначения, такие как 1N4148, изготовлены из кремния и имеют прямое падение напряжения 0,7 В.
Rapid Electronics: 1N4148
Германиевые диоды , такие как OA90, имеют меньшее прямое падение напряжения 0,2 В, что делает Их можно использовать в радиосхемах в качестве детекторов, выделяющих звуковой сигнал из слабого радиосигнала. Сейчас они используются редко, и их может быть трудно найти.
Для общего использования, где величина прямого падения напряжения менее важна, кремниевые диоды лучше, потому что они менее легко повреждаются теплом при пайке, имеют меньшее сопротивление при проводке и имеют очень низкие токи утечки при приложении обратного напряжения.
Защитные диоды для реле
Сигнальные диоды также используются для защиты транзисторов и микросхем от кратковременного высокого напряжения, возникающего при обмотке реле. выключен. На схеме показано, как защитный диод подключен к катушке реле «в обратном направлении».
Зачем нужен защитный диод?
Ток, протекающий через катушку, создает магнитное поле, которое внезапно схлопывается. при отключении тока. Внезапный коллапс магнитного поля вызывает кратковременное высокое напряжение на катушке, которое может повредить транзисторы и микросхемы.Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку. (и диод), поэтому магнитное поле исчезает быстро, а не мгновенно. Это предотвращает индуцированное напряжение становится достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.
Выпрямительные диоды (большой ток)
Выпрямительные диоды используются в источниках питания для преобразования переменного тока (AC). к постоянному току (DC) этот процесс называется выпрямлением. Они также используются в других схемах, где через диод должен проходить большой ток.
Все выпрямительные диоды изготовлены из кремния и поэтому имеют прямое падение напряжения 0,7 В. В таблице указаны максимальный ток и максимальное обратное напряжение для некоторых популярных выпрямительных диодов. 1N4001 подходит для большинства цепей низкого напряжения с током менее 1 А.
Rapid Electronics: 1N4001
Диод | Максимум Ток | Максимум Обратный Напряжение |
1N4001 | 1A | 50V |
1N4002 | 1403 | 9034|
1N5401 | 3A | 100V |
1N5408 | 3A | 1000V |
Книг по комплектующим:
Мостовые выпрямители
Есть несколько способов подключения диодов, чтобы выпрямитель преобразовывал переменный ток в постоянный.Мостовой выпрямитель — один из них, и он доступен в специальных пакетах, содержащих четыре необходимых диода. Мостовые выпрямители рассчитаны на максимальный ток и максимальное обратное напряжение. У них есть четыре вывода или клеммы: два выхода постоянного тока помечены + и -, два входа переменного тока помечены .
На схеме показана работа мостового выпрямителя при преобразовании переменного тока в постоянный. Обратите внимание, как проводят чередующиеся пары диодов.
Rapid Electronics: мостовые выпрямители
Мостовые выпрямители различных типов
Обратите внимание, что у некоторых есть отверстие в центре для крепления к радиатору
Фотографии © Rapid Electronics
Стабилитроны
Стабилитроныиспользуются для поддержания постоянного напряжения.Они рассчитаны на «поломку» в надежных и неразрушающим способом, чтобы их можно было использовать в обратном порядке для поддержания фиксированного напряжения на их выводах.
Стабилитроныможно отличить от обычных диодов по их коду и напряжению пробоя. которые напечатаны на них. Коды стабилитронов начинаются BZX … или BZY … Их напряжение пробоя обычно печатается с буквой V вместо десятичной точки, поэтому 4V7 означает, например, 4,7 В.
a = анод, k = катод
Rapid Electronics: стабилитроны
На схеме показано, как подключен стабилитрон с последовательно включенным резистором для ограничения тока.
Стабилитроныимеют номинальное напряжение пробоя и максимальную мощность . Минимальное доступное напряжение пробоя составляет 2,4 В. Широко доступны номинальные мощности 400 мВт и 1,3 Вт.
Для получения дополнительной информации см. Страницу источников питания.
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому.На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google.Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.
electronicsclub.info © Джон Хьюс 2021 г.
На что следует обратить внимание при выборе правильного диода…
Полупроводниковые диоды — это широко используемые компоненты во многих конструкциях электронных схем. Различные типы диодов оптимизированы для обеспечения различных характеристик, используемых в схемах. Важная функция диодов — выпрямление.
Цепи однополупериодного выпрямителя используются для выпрямления мощности, демодуляции сигнала и обнаружения пиков, в то время как двухдиодные схемы обеспечивают двухполупериодное выпрямление при использовании с трансформатором с центральным отводом.Сегодня схема двухдиодного выпрямителя встречается не так часто, как четырехдиодные мостовые выпрямители, которые могут быть построены с трансформатором или без него, что значительно снижает стоимость схемы.
Рисунок 1. Схема однополупериодного выпрямителя. Рисунок 2. Схема двухдиодного (с центральным ответвлением) двухполупериодного выпрямителя. Рисунок 3. Схема двухполупериодного мостового выпрямителя.При этом следует учитывать три диода для схем выпрямителя:
1) Напряжение включения
Типичное прямое или прямое напряжение включения кремниевого диода равно 0.7 В, в то время как у германиевого диода около 0,2-0,3 В. Уменьшение прямого падения напряжения увеличивает чувствительность диодного выпрямителя, что актуально в определенных приложениях, таких как обнаружение сигнала.
2) Номинальный ток диода
Величина тока нагрузки, протекающего через диод, определяет желаемый номинальный постоянный ток. Например, если нагрузка потребляет ток 1 А, тогда будет достаточно диода 1N1007 (номинал 1 А) (хотя и без запаса прочности!). Однако, если ток нагрузки превышает 1 А, тогда требуется диод с более высоким номинальным током.Ток нагрузки не должен превышать номинал диода постоянного тока. То же самое можно сказать и о токе питания. Если в конструкции требуется источник питания на 3 А, диод должен выдерживать ток 3 А. Ток питания никогда не должен превышать номинальный ток диода, даже если он кратковременный.
3) Пиковое обратное напряжение
Диоды должны выдерживать максимальное обратное напряжение на них. Когда конденсатор сглаживает выходной сигнал, значение напряжения представляет собой пик формы входного сигнала, который в √2 раз больше среднеквадратичного напряжения.
Полупериодный выпрямительный диод PIVНа другой половине волнового цикла пиковое значение напряжения еще в √2 раза больше среднеквадратичного напряжения. Сумма двух значений — это максимальное обратное напряжение на диоде. Таким образом, номинальное значение PIV-диода должно быть как минимум в 2 x √2 раза больше входного среднеквадратичного напряжения для цепей полуволнового выпрямителя и как минимум в четыре раза превышать пиковое напряжение трансформатора для цепей двухдиодного полнополупериодного выпрямителя с учетом возможных переходных процессов.
Двухдиодные (с центральным отводом) полнополупериодные выпрямительные диоды PIVВ мостовых выпрямителях для того же выходного напряжения требуются диоды с половиной PIV-рейтинга выпрямителя с центральным отводом.
Мостовые полнополупериодные выпрямительные диоды PIVРассмотрение этих трех важных спецификаций гарантирует, что диод будет работать как выпрямитель, не повредив его или остальную часть проекта, в котором он находится.
Схема мостового выпрямителя— Основы электроники
В этом учебник, он будет посвящен выпрямителям! Мы изучим основы их работы, а затем построим схему мостового выпрямителя из четырех диодов, которые можно будет использовать в ваших проектах для преобразования переменного тока в постоянный.
В предыдущем уроке мы говорили о диодах и о том, как они работают, чтобы контролировать направление, в котором ток может течь в цепи. Затем мы опирались на эти знания, чтобы создать схему зарядного устройства USB, которая может использоваться для питания стандартных USB-устройств путем преобразования 120 В переменного тока (или 220 В переменного тока) в регулируемое напряжение 5 В постоянного тока.
Давайте сделаем еще один шаг и расскажем о различных типах выпрямителей и о том, как их можно использовать в своих проектах.
Что такое мостовой выпрямитель?
Согласно определению из учебника, «диодный мост» состоит из четырех диодов в конфигурации мостовой схемы , которая обеспечивает одинаковую полярность выхода для любой полярности входа.Другими словами, гребневой выпрямитель преобразует переменный ток (AC) в постоянный (DC). Мостовые выпрямители обычно используются в источниках питания для преобразования сетевого электричества из настенной розетки в электричество постоянного тока, которое может использоваться устройствами бытовой электроники, такими как стереосистема, компьютер или телевизор.
Конечно, это не так-то просто для начинающих. Мы немного разберем это, чтобы действительно понять, что здесь происходит, но прежде, чем мы это сделаем, давайте рассмотрим основные типы выпрямительных схем.
Типы мостовых выпрямителей
Мостовые выпрямители можно разделить на несколько различных типов на основе некоторых простых критериев, но мы рассмотрим основные категории: однофазные выпрямители, трехфазные выпрямители, управляемые выпрямители и неуправляемые выпрямители. Некоторые из этих категорий можно объединить. Например, у вас может быть неуправляемый однофазный выпрямитель.
Однофазные и трехфазные выпрямители
По мере продвижения нашего руководства по мостовым выпрямительным схемам, мы можем разбить большинство выпрямителей на две категории: однофазные и трехфазные.Решение о том, какую схему использовать, так же просто, как определить источник питания. Если вы работаете с однофазными входами (большую часть времени), вы будете использовать однофазный выпрямитель. Во многих промышленных средах обычно используются трехфазные источники питания, и вам необходимо использовать трехфазный выпрямитель.
Независимо от фазы мостовой выпрямитель может быть управляемым или неуправляемым.
Неуправляемые мостовые выпрямители
Неуправляемые мостовые выпрямители — наиболее распространенный тип, который вы найдете в электронике и источниках питания.Они основаны исключительно на диодах и не используют никаких дополнительных компонентов для регулирования напряжения или тока. Эти типы цепей обычно встречаются в фиксированных источниках питания. Проще говоря, входное напряжение не контролируется, поскольку оно проходит на выходную сторону. Если в цепь поступает 12 В, выпрямленное напряжение ~ 12 В выходит из цепи.
Управляемые мостовые выпрямители
В управляемых мостовых выпрямителях диоды заменяются твердотельными компонентами, такими как кремниевые управляемые выпрямители (SCR) или тиристоры.Эти устройства могут изменять выходное напряжение. Это может быть очень удобно для использования в регулируемых источниках питания, которые необходимо адаптировать к различным нагрузкам.
Схема и схема мостового выпрямителя
Создание полезной схемы мостового выпрямителя — это несложно, если вы знаете основы. Чтобы получить все преимущества мостового выпрямителя, вам потребуется добавить несколько дополнительных компонентов. Мы настоятельно рекомендуем ознакомиться с нашим учебным пособием по схеме зарядного устройства USB, поскольку оно охватывает все основы работы этой законченной схемы.
Как работают мостовые выпрямители
Как я уже упоминал в начале этого руководства по мостовым выпрямителям, мы собираемся объяснить, как они на самом деле работают. То, что должен делать каждый любитель электроники. Как упоминалось в видео, вы можете купить мостовые выпрямители, но вам следует хотя бы один раз сделать свои собственные, потому что это фантастическая возможность для обучения!
Чтобы объяснить, как работают мостовые выпрямители, мы сосредоточимся на однофазных выпрямителях, чтобы упростить задачу.Однофазный мостовой выпрямитель работает за счет подключения четырех диодов к нагрузке.
В положительном полупериоде переменного тока диоды D3 и D4 смещены в прямом направлении (ток течет), целые диоды D1 и D2 смещены в обратном направлении (ток заблокирован). В отрицательном полупериоде D1 и D2 становятся смещенными в прямом направлении, а D3 и D4 становятся смещенными в обратном направлении, как раз наоборот.
Это означает, что ток в нагрузке всегда течет в одном и том же направлении. Если вы все еще не знаете, как это работает, помните, что диоды пропускают ток только в одном направлении.
СВЯЗАННО: Как работают диоды
Итак, мостовой выпрямитель сам по себе не действительно преобразует переменный ток, как мы выяснили в демонстрационной схеме зарядного устройства USB. Он только преобразует переменный ток в импульс волны постоянного тока (или колебания постоянного тока). Требуются конденсаторы для очистки импульса и создания сигнала, более похожего на постоянный ток. Также неплохо включить в схему стабилизатор напряжения, чтобы навести порядок и поддерживать стабильное напряжение, даже если входное напряжение дрейфует вверх или вниз из-за колебаний в сети.
Итак, теперь вы знаете, как схема мостового выпрямителя может преобразовывать переменный ток в постоянный, всего лишь немного тщательно спланировав дизайн вашей схемы!
— Пример выпрямителя с диодным мостом
Полоса частот от 2 до 150 кГц используется для большинства приложений преобразования мощности, связанных с электросетью, таких как источники бесперебойного питания (ИБП), приводы с широтно-импульсной модуляцией (ШИМ), активные преобразователи питания (AIC), импульсные источники питания (SMPS), твердотельные балласты, драйверы светодиодов, которые загрязняют бытовые и промышленные распределительные сети.С другой стороны, одна и та же полоса частот используется для систем связи по линиям электропередач (PLC) и распределительным линиям связи (DLC), а также для большинства активных емкостных, индуктивных и даже резистивных датчиков. Несущая частота большинства этих датчиков находится в этом диапазоне. По существу, требования к кондуктивному излучению, а также к кондуктивной помехоустойчивости должны быть установлены для однофазных, симметричных и трехфазных приложений, а также для заземляющих конструкций с использованием цепей связи и развязки с определенным импедансом источник / нагрузка.Сеть связи и развязки должна быть независимой от типа распределительной сети: TN-S, TN-C, TT, IT. Помехи в этом диапазоне могут возникать в несимметричном, асимметричном или дифференциальном режиме и могут влиять на такие системы, как измерители мощности, устройства обнаружения остаточного тока (УЗО), активные датчики и многие другие системы телеметрии. Было опубликовано несколько международных стандартов (IS) [3–15], но ни один из них не предлагает (пока) однозначного решения для требуемых сетей связи и развязки.