Диодный мост что такое: Что такое диодный мост, как его проверить

Содержание

Что такое диодный мост, как его проверить

Диодный мост — электрическое устройство, предназначенное для преобразования («выпрямления») переменного тока в пульсирующий (постоянный).

Диодный мост или, как его ещё называют, выпрямитель нужен для преобразования переменного тока в постоянный. Его используют везде, где нужно получить питание постоянным напряжением независимо от мощности прибора, потребляемого тока или величины напряжения.

Устройство

Для выпрямления однофазного напряжения используют схему Гретца из четырёх диодов. Если в схеме стоит трансформатор с отводом от средней точки используют схему из двух диодов.

Мостом называется именно включение четырёх диодов.

Диодный мост может быть выполнен в одном корпусе, а может быть из дискретных диодов, то есть отдельных. Входом диодного моста называют точки подключения переменного напряжения, а выходом — точки с которых снимают постоянное.

Переменное напряжение подают в точки, в которых соединены анод с катодом диодов.

На выходе получают плюс и минус, при этом с точки соединения катодов снимают положительный полюс, т.е. плюс питания, а точка соединения анодов является минусом.

На приведенном рисунке изображена схема диодного моста, где мест подключения переменного напряжения обозначены «AC ~», а выход постоянного «+» и «-«.

Некоторые новички наивно предполагают, исходя из принципа обратимости электрических машин, что подав постоянку на мост на оставшихся контактах они получат переменку. Это не так, это не электрическая машина и здесь нужен преобразователь.

На современных диодных мостах контакты помечены также: вход переменки «AC» или «~», а выход по стоянки «+» и «-«. Совместим схему с изображением реального моста, чтобы разобраться, как это выглядит на практике.

Где устанавливают

Диодный мост обычно установлен на входе цепи питания, если выпрямляется сетевое напряжение 220В, такое решение применяется в импульсных блоках питания, в том числе компьютерного блока питания, устройство которого было рассмотрено в одной, из ранее выложенных на сайте (смотрите — Как устроен компьютерный блок питания) . Либо во вторичной обмотке трансформатора, такое включение применяется в обычных блоках питания, например маломощной магнитолы для дома или старого телевизора.

В современных блоках питания чаще используются импульсные схемы, в них диодный мост выпрямляет именно сетевое напряжение, а трансформатором управляют полупроводниковые ключи (транзисторы).

Будьте осторожны:

Если диодный мост стоит на входе по линии 220В, то на его выходе пульсирующее или сглаженное (если есть фильтрующий конденсатор) постоянное по знаку напряжение амплитудой в 310В. В любом случае выпрямленное напряжение увеличивается, относительно переменного.

Тоже касается и остаточного заряда фильтрующих электролитических конденсаторов, они могут биться током, даже когда питание на плату блока питания не подаётся. Их нужно предварительно разряжать лампой накаливания или резистором.

Не стоит разряжать емкость закорачиванием железным инструментом: вас может ударить током, вы можете повредить конденсаторы или дорожки платы.

Приступим к проверке диодного моста

Я буду рассуждать на примере типовой ситуации. Есть нерабочее устройство и его нужно отремонтировать.

Вы решили отремонтировать устройство, при разборке увидели на плате перегоревший предохранитель, защитный резистор или дорожку на печатной плате.

После замены сгоревшего элемента и восстановления дорожки не спешите включать. Начинающие электронщики любят делать «жучки» вместо предохранителя, тогда, тем более, нельзя включать плату.

Если предохранитель вышел из строя не случайно, а из-за проблем на плате блока питания вы получите повторное перегорание предохранителя. А если вместо него поставили жучек, то это включение сопроводить зрелищный фейерверк, возможное повреждение провода или розетки, выбитые пробки и автоматы.

Если пробит диодный мост, то после предохранителя на плате будет КЗ. Чтобы проверить диодный мост на пробой без мультиметра пользуйтесь проверенным способом: подключайте сомнительные блоки пиатния, через лампу накаливания на 40-100 Вт 220В. Она выполнит роль ограничителя тока и плата не повредится, и предохранитель не перегорит. Лампу подключают в разрыв одного из питающих кабелей 220В.

Если диодный мост пробит — лампа засветится в полный накал.

Это достаточно приблизительный способ диагностики диодного моста без мультиметра. Лампа может засветиться и при исправном мосте, если КЗ находится в схеме после него. Проверить диодный мост на обрыв без мультиметра можно и с помощью индикаторной отвёртки, на его выходе, как уже было сказано, должно быть высокое напряжение, если он установлен на линии 220В, неоновый индикатор в отвёртке должен засветиться.

Проверка диодного моста мультиметром

Любую деталь в электрической схеме нужно выпаивать перед её проверкой и прозвонкой. Можно, конечно, проверить и на плате, но есть вероятность получить ложные результаты измерений.

Также если вы будете прозванивать мост со стороны дорожек и контактных площадок на плате, есть вероятность отсутствия электрического контакта при визуально нормальной пайке.

В тоже время, если диодный мост собран на плате из отдельных диодов, его зачастую удобно проверять, не выпаивая из плат, с её лицевой стороны. В таком случае вы получаете удобный доступ к металлическим ножкам диода.

Вам понадобится любой цифровой мультиметр, например самый дешёвый и распространенный типа dt-830. Включите режим прозвонки диодов, вы его можете найти по пиктограмме с условным его обозначением.

Часто этот режим совмещён с режимом звуковой прозвонки. Любая прозвонка и большинство омметров состоит из пары щупов, один из которых является плюсом, а второй — минусом. На мультиметра чаще всего красный щуп принимается за плюс, а чёрный за минус.

Как известно — диод проводит ток в одну сторону. При этом протекание тока возможно только при подключении положительного щупа (плюса) к аноду, а отрицательного к катоду. Тогда при проверке мультиметром в этом режиме силового кремниевого диода на дисплее отображаются цифры в диапазоне 500…700.

Это количество милливольт, которое падает на pn-переходе. Если вы увидели эти значения — диод уже наполовину исправен. Если цифры большие или у левой стороны экрана появилась единица и больше ничего — диод в обрыве. Если сработала звуковая прозвонка или на экране около 0 — диод пробит.

Теперь нужно определить, не проходит ли ток в обратном направлении. Для этого меняем щупы местами, на экране либо должно быть значение много больше 1000, порядка 1500, либо единица у левой стороны экрана — так обозначается большое значение, выходящее за пределы измерений. Если значения маленькие — диод неисправен, он пробит.

Если оба замера совпали с описанными — с диодом все в порядке.

Таким образом проверяют диодный мост из отдельных диодов.

У диодов Шоттки падение напряжения от 0.3В, то есть при проверке на экране мультиметра высветится цифра порядка 300-500.

Если поменять щупы местами – красный на катод, а черный на анод, на экране будет либо единица, либо значение более 1000 (порядка 1500). Такие измерения говорят о том, что диод исправен, если в одном из направлений измерения отличаются, значит, диод неисправен. Например, сработала прозвонка – диод пробит, в обоих направлениях высокие значения (как при обратном включении) – диод оборван.

Проверка диодного моста в корпусе мультиметром

Я начал статью с описания точек, куда подключается переменка и откуда снимается постоянка неспроста. Это поможет при его проверке, давайте разберемся!

Сразу оговорюсь, что черный щуп вставлен в разъём «COM» на мультиметре.

Ставим черный щуп мультиметра на контакт, помеченный как «+», а красным попеременно касаемся контактов «~» к которым подключают переменное напряжение по очереди. В обоих случаях на экране вы должны увидеть падение напряжения на прямовключенном pn-переходе, т.е. цифры около 600, если диод исправен. Поменяв щупы местами, если выпрямитель исправен, вы увидите большие значения или единицу.

На некоторых мультиметрах вместо единицы используют символы 0L.

Проверяем вторую пару диодов. Для этого красный щуп ставим на вывод «-» диодного моста, а красным по очереди касаемся выводов «~», вы должны увидеть на экране мультиметра значения прямого падения — около 600 при касании любого из контактов со знаком «~» (AC). Меняем щупы местами — на экране больше значения или бесконечность. Если что-то отличается, то диодный мост нужно заменить.

Быстрая проверка диодного моста

Иногда возникает необходимость экспресс проверки диодного моста, это можно сделать тремя касаниями щупов мультиметра к мосту. Можно проводить её не выпаивая мост из платы.

Первое положение щупов: ставим оба щупа между выводами для подключения переменного напряжения (на вход) «~». Если диодный мост пробит — сработает прозвонка, а если её нет, то на экране мультиметра значения устремятся к нулю.

Второе положение щупов: красный щуп ставим на вывод со знаком «-«, а черный на вывод со знаком «+», если диоды исправны — на экране мультиметра будут цифры в двое больше прямого падения на диоде, то есть 1200-1400 мВ. Если на экране около 600 — значит один диод пробит, и вы видите падение напряжения на одном оставшемся.

На рисунке ниже вы видите, как течет ток при такой проверке подумайте, почему получаются такие результаты.

Однако если один из диодов в обрыве ток потечет по уцелевшей ветви и на экране будут условно-исправные значения.

Третье положение щупов — красный щуп на вывод со знаком «-«, а черный на вывод со знаком «+», тогда на экране мультиметра будут такие же результаты как при проверке диода подключенного в обратном направлении (бесконечность). Если сработала прозвонка или на экране маленькие значения (от нуля до сотен) – значит, мост пробит.

Такая проверка эффективна, но не даст такой достоверности как описанная в предыдущем пункте статьи. Если устройство все равно не работает и на выходе диодного моста отсутствует напряжение, то выпаяйте мост и повторно проверьте его. 

Проверка другими средствами

Если у вас нет мультиметра, но у вас есть советский тестер или, как его еще называют «цешка» или какой-нибудь Омметр с пределом измерения до десятка кОм можно использовать и эти стрелочные приборы.

Логика проверки такая же самая, только в прямом включении стрелка будет указывать низкие сопротивления, а в обратном включении диода — высокое.

Если у вас и этого нет — вам поможет любая батарейка или несколько батареек с выходным напряжением больше пары вольт и лампочка накаливания (можно и светодиодом и кроной, батарейкой на 9В). Взгляните на картинку, и вам все станет ясно.

Заключение

Проверка диодного моста — базовый навык для тех, кто занимается ремонтом радиоэлектронной аппаратуры и электроприборов и для тех, кто хочет этому научиться. Для этого нужен минимальный набор инструментов, но хорошие понимание не только способа проверки, а и самой логики работы моста.

Использование мультиметра, цешки или прозвонки не меняет конечного результата при правильном проведении измерений. Однако на моей практике случалось так, что прибор показывал исправность диодного моста, а в реальности он не работал.

Возможно он «пробивался» под большим напряжением, чем на клеммах прибора, которым я проводил проверку. Поэтому самым точным способом «посмотреть» процессы, происходящие в схеме — это осциллограф.

В автоэлектрике, например по одной только осциллограмме напряжения в линии можно определить исправность диодного моста генератора, причем специалист может даже определить, что конкретно произошло — пробой или обрыв.

Ранее ЭлектроВести писали, что компания AE Solar начала свою деятельность в Германии в 2003 году со строительства солнечных электростанций. С 2009 года компания производит солнечные батареи в Китае. Теперь же она начинает производство в Грузии. В одном из интервью директор по продажам компании Вальдемар Хартманн отвечает на вопросы о продуктах и рыночной стратегии компании.

По материалам: electrik.info.

Что такое диодный мост: схема и принцип работы

Смотрите также обзоры и статьи:

Таким мостом называется электроустройство миниатюрного размера, используемое в электросхемах и светодиодном оборудовании для трансформирования электротока, а именно его изменение из переменного значения в постоянное. Также оно выпрямляет ток в схеме. Важная часть двухполупериодного элемента питания, так и называемая — выпрямителем.

Большинство предприятий, производств и просто жителей городов и сел страны активно приобретают светодиодные лампы и ленты в качестве выгодной замены привычных источников света с нитями накаливания и даже галогеновых или люминесцентных ламп. Ведь LED лампы в 9 раз более экономны, чем накаливания и на 30-40% меньше затрачивают на аналогичную выработку яркости, чем другие «экономки». Современные источники света на экономных кристаллах не имеют в своем содержании вредных испарений, соединений, металлов и кислот, а значит, не загрязняют почву и не требуют специальной утилизации. Светодиоды, которые, как и обычные диоды, преобразуют ток, но только в светящийся эффект, не вырабатывают лучей в инфракрасном и ультрафиолетовом спектре.

Во многом по конструкции светодиодная лампа не отличается от своих предшественников. В ней представлены два стандартных типа цоколя, штырьковый и резной, которые отличаются принципом действия. Резной или вкручивающийся цоколь подходит для использования в аналогичных патронах с напряжением 220 вольт (переменный ток). Каждая лампа имеет встроенный стабилизатор для регулирования напряжения в постоянное значение. Резные цоколи – привычные Е14, Е27 и Е40, где цифровое значение указывает на расстояние между контактами цоколя.

Штырьковый цоколь характерен для большинства ламп, работающих от низких значений напряжения, и выглядит как два металлических или керамических столбика со шляпкой на конце или без нее. К таким цоколям можно отнести светодиодные лампы MR16, G4,G9.GU10 и другие. Некоторые модели можно использовать для основного освещения, однако большинство ламп штырькового типа предназначены для точечной или акцентной вспомогательной подсветки витрин, ступеней дома, салона автомобиля, номерных знаков, приборной панели и т.п.

И самое главное – в основе всех этих современных источников света – все тот же диодный мост из светодиодов, который мы рассмотрим ниже.

Схема диодного моста

Наиболее примитивным способом, т. е. схемой подключения диодов, является комплекс из четырех последовательно соединенных полупроводников, которые создают нечто наподобие ромба. Далее по схеме мост подключается к разным по полярности источникам, снимая при этом переменное напряжение, преобразовывая его в постоянное значение.
 
По разновидностям и от того, какая схема подключения, разделяют два основных вида:

  • Однофазный диод,
  • Трехфазный.

Чтобы разыскать диод в электросхеме, необходимо обратить внимание, на то, что обычно его обозначение выглядит так:

А тот самый примитивный мост, состоящий из четырех диодов, в соединенном состоянии передается таким рисунком:

Однако на многих общих схемах обозначения диодного моста можно встретить и такой, более простой:

Или же, наоборот, детализированный:

Главное во всех схемах – правила, по которым необходимо этот элемент подключать к напряжению. Правильно это нужно делать так:

Выпрямитель Ларионова – еще одна распространенная схема подключения. Это трехфазный диод, пропускающий полуволны поочередно. На чертеже это демонстрируется как:

Техническая схема предполагает полупроводниковый диод-выпрямитель и его разновидности, в числе которых диод Шоттки. Выпрямитель из данных сборок крайне отличается от остальных. Так, он применим в блоках питания импульсного типа, ведь кристалл Шоттки имеет невысокую барьерную силу, малое время на обратное восстановление. Используется зачастую в схемах, где катод и анод – общий. В графике это представлено таким образом:

Устройство диодного моста

Для того, чтобы самостоятельная сборка состоялась успешно, необходимо выбрать диодный мост, подходящий по основным параметрам. К главным показателям таких устройств можно отнести важнейших два:

  • Обратное напряжение;
  • Ток в максимальном значении обратный.

То есть при выборе разновидности моста с рабочим напряжением от обычной сети, а именно 220 вольт,
Номинальная сила напряжения у приобретаемого продукта должна быть не меньше 400 вольт, а сила тока в выпрямленном состоянии – не меньше 3 ампер. Стоит обращать внимание и на мощности пикового тока (максимальная концентрация в один момент) и обратного напряжения. В данном случае, например, пик – около 50 ампера, а обратка по напряжению – 600-1000 ватт, смотря какую модель моста вы выбрали.

Само устройство моста подразумевает наличие корпуса, форма которого может отличаться в зависимости от схемы подключения диодов. Так, могут быть прямоугольные и квадратные модели, и даже в один ряд в виде прямой платы. В квадратном корпусе можно встретить выводы, размещенные по углам устройства. Также устройство моста требует алюминиевых плат или специальных радиаторов для отвода излишков тепла, которое неизбежно возникает во время прохождения такого количества напряжения и силы тока через небольшие элементы микросхемы. Поэтому все мосты имеют отдельные крепежные элементы.

Рекомендуем выбирать модели, в которых диоды умещены в один корпус. Это позволяет:

  • Мосту не перегреваться и поддерживать нормальный эксплуатационный режим без сбоев;
  • Диоды, размещенные в одном устройстве, изготавливаются на заводе в одной партии, поэтому с большей вероятностью будут иметь схожие параметры, что благоприятно скажется на всей работе прибора;
  • Экономия пространства на плате за счет плотного размещения внутри одного бокса.
Принцип работы диодного моста

Отрицательная волна в диодном мосте не уменьшается, а трансформируется в положительную.

Это происходит из-за того, что он как бы «подчиняет» себе нестабильный переменный ток, который меняет свое направление по несколько раз в одночасье, образуя то положительные в амплитуде, то отрицательные полуволны. 

При подаче нагрузки через генератор, диодный мост все выравнивает, ведь поочередно в игру вступают то первые два полупроводника, то последующие два. То есть происходит соприкосновение двух полупроводников разной проводимости или p-n-переход, называемый также электронно-дырочным, поскольку в нем участвуют и электроны, и дырки.

Как собрать диодный мост

Поскольку найти сегодня старые постперестроечного периода подобные выпрямители довольно непросто, то детально рассматривать схему сборки и пайки советского образца не будем. Только стоит упомянуть, что выглядит схема для пайки четырех последовательно подключенных диодов так:

Собрать современный мост даже проще: если представить его в виде ромба, то на северном угле будет вход с переменным значением, как и на южном. Западный угол уйдет под выход с отрицательным значением, а восточный – с положительным.

Чем отличаются диодные мосты

Они отличаются в первую очередь такими существенными показателями как:

  • Форма корпуса;
  • Схема расположения выводов.

Выводы могут быть в один ряд, с углов и даже снизу корпуса. Также различия составляют такие критерии как мощность напряжения (400-1000 ватт), сила тока обратного и на максимальных значениях.

Как проверить исправность диодного моста

Несмотря на цену и надежность, любая модель моста такого типа неизбежно сталкивается с таким понятием как остаточная пульсация, которая в любом случае остается. Поэтому рекомендуем проверять исправность устройства с помощью мультиметра, а именно вольтаж, омметраж и показатели в ваттах. Подавайте на диод напряжение не больше 3 вольт.

ПОДХОДЯЩИЕ ТОВАРЫ

Поделиться в соцсетях

Каталог продукции — Полупроводниковые приборы, микросхемы, радиолампы — Диодные мосты

Каталог продукции

Обновлен: 21. 05.2021 в 14:30

  • Aвтоматика, Робототехника, Микрокомпьютеры
  • Акустические компоненты
  • Блоки питания, батарейки, аккумуляторы
  • Датчики
  • Двигатели, вентиляторы
  • Измерительные приборы и модули
  • Инструмент, оборудование, оснастка
    • Аксессуары для пайки
    • Антистатические принадлежности
    • Бокорезы, ножницы, резаки
    • Дрели, фрезеры, бормашины
    • Жала для паяльников и станций
    • Инструмент для зачистки изоляции
    • Инструмент для обжима
    • Лупы, микроскопы
    • Нагреватели инфракрасные
    • Ножи, скальпели
    • Отвёртки
    • Отсосы для припоя
    • Паяльники газовые и горелки
    • Паяльники электрические
    • Паяльные станции и ванны, сварочные автоматы
    • Пинцеты, зажимы
    • Плоскогубцы, круглогубцы
    • Подставки для паяльников и штативы
    • Принадлежности для паяльников и станций
    • Прочий инструмент и оснастка
    • Сверла, фрезы, боры
    • Термоклеевые пистолеты
    • Тиски, станины
    • Штангенциркули, линейки
  • Источники света и индикация
  • Кабель, провод, шнуры
  • Коммутация, реле
  • Конструктивные элементы, корпуса, крепеж
  • Материалы и расходники
  • Пассивные элементы
  • Полупроводниковые приборы, микросхемы, радиолампы
  • Разъёмы, клеммы, соединители, наконечники
  • Текстолит, платы
  • Товары бытового назначения
  • Трансформаторы, сердечники, магниты
Информация обновлена 21. 05.2021 в 14:30

Вид:

Сортировка:

По наличиюпо алфавитупо цене

Кол-во на странице: 244860120

Страницы:

[1]2345

Страницы:

[1]2345

Диодный мост генератора как проверить и заменить

  Автомобильный генератор – важнейшая часть автомашины, обеспечивающая электричеством все основные и вспомогательные узлы транспортного средства. Диодный мост генератора его основная составляющая, важность которой практически невозможно переоценить.

Что такое диодный мост генератора и зачем он нужен?

Диодный мост генератора

 Диодным мостом называется деталь, устанавливаемая на выходе генератора. Запчасть необходима для того, чтобы преобразовывать переменный ток.

 Конструктивно деталь представляет собой диодную сборку (схема очень проста три отрицательных, три положительных, три дополнительных), установленную последовательно. Она пропускает ток только в одну сторону, не выпускает обратно.
 Надо сказать, что диодный мост генератора цена невелика, но от его исправности зависит работоспособность автомобиля.
 Причины выхода из строя выпрямляющего моста.
Замена диодного моста генератора имеет некоторые сложности. Первоначально нужно выяснить причину, по которой он вышел из строя.

Основные проблемы могут быть в следующем:

  • Перегрев в следствии плохого охлаждения.
  • Чрезмерная тряска, вибрация на бездорожье.
  • Запуск от «прикуривателя» или перепутанные клеммы аккумулятора.
  • Физическое повреждение или коррозия.

Диодный мост генератора неисправности проверка

Основные признаки неисправности диодного моста генератора.

Задуматься о ремонте узла нужно если присутствует:

  •  Низкое напряжение при работающем двигателе на выходе (меньше 13,5 вольт).
  • Аккумулятор быстро разряжается (не заряжается вовсе).
  •  Бортовой компьютер показывает ошибку по электрической сети, вольтметр выдает крайне низкие значения.
  • Гудящий звук от агрегата.
Как проверить состояние диодного моста?

 Перед диагностикой деталь должна быть отсоединена от других элементов. Для качественной проверки работоспособности изделия необходимо иметь на руках автомобильный тестер способный работать в режиме омметра, либо контрольную лампу (не более 5 Ватт, напряжение 12 Вольт). Естественно, что с помощью тестера проверка выйдет быстрее, точнее, но с помощью контрольного провода можно обнаружить неисправность.

 Заменить и купить данную деталь генератора лучше всего в нашей компании. Всегда имеется большое количество различных запасных частей, присутствуют необходимые сертификаты качества, действует длительная гарантия.

Мы выполняем ремонт за 1 час!

Звоните нам по телефону +7 (495) 645-60-46, и Вы быстро почините свой автомобиль.

 

 

 

 

Технические характеристики выпрямительных диодных столбов и мостов

Выпрямительные диодные мосты и столбы применяются в различных электротехнических приборах, радиоэлектронных приборах и устройствах, предназначенных для выпрямления переменного тока с промышленной и звуковой частотой при высоких напряжениях до 15000 В.
Давайте выясним, что такое диодный столб и что такое диодный мост и в чём их отличия.

Выпрямительные диодные столбы — это полупроводниковые приборы, схема которых имеет несколько последовательно соединённых выпрямительных диодов, собранных в единую конструкцию и имеющую два внешних вывода.
Последовательное соединение полупроводников в диодном столбе позволяет увеличить максимально допустимое обратное напряжение на приборе (пропорционально количеству диодов внутри столба), однако в такое же количество раз увеличивается и параметр падения прямого напряжения на диоде при заданном прямом токе через него. Поэтому, главной областью применения диодных столбов являются высоковольтные выпрямители, предназначенные для преобразования напряжений, превышающих значения в несколько киловольт.
Несколько выпрямительных столбов, соединённых в соответствии с той или иной схемой включения и помещённых в один корпус, представляют собой выпрямительный блок, осуществляющий преобразование переменного тока в постоянный.

Выпрямительные диодные мосты – устройства, которые осуществляют двухполупериодное преобразование переменного тока в пульсирующий постоянный ток и имеют в одном корпусе по четыре, или восемь диодов, соединённых между собой по мостовой схеме включения.

На приведённой схеме диоды VD1-VD4, соединённые по мостовой схеме, подключены к источнику переменного напряжения. В качестве нагрузки выступает резистор Rн.
При прохождении положительной полуволны (синий цвет на диаграмме) к аноду диода VD2 приложено положительное напряжение, к катоду VD3 — отрицательное, что вызывает их открытие и прохождение тока через данные диоды в нагрузку. В этот момент диоды VD1 и VD4 заперты и не пропускают ток, так как напряжение положительной полуволны для них является обратным.
При прохождении отрицательной полуволны начинают пропускать ток диоды VD1 и VD4, так как к их анодам приложено положительное напряжение относительно катодов, а диоды VD2 и VD3 оказываются запертыми. При этом ток Iн протекающий через нагрузку Rн, что в случае положительной полуволны, что в случае отрицательной является постоянным по направлению.

Выпрямительные диодные мосты являются основными компонентами в блоках питания и других электронных устройствах широкого назначения.

Частотный диапазон выпрямительных мостов невелик, предельная частота в большинстве случаев не превышает 50 кГц (хотя есть и исключения — диодные мосты 2Ц301 позволяют работать с частотами до 500кгЦ), а мощность определяется в соответствии с максимально допустимым прямым током.
В соответствии с этой характеристикой принята следующая классификация:
— Слаботочные диодные столбы и мосты, они используются в цепях с током не более 0,3 А.
Такие устройства, как правило, выполнены в пластмассовом корпусе и имеют малый вес и небольшие габариты.
— Устройства, рассчитанные на среднюю мощность, могут работать с током в диапазоне 0,3-10 А.

Условные обозначения электрических параметров, характеризующих свойства
выпрямительных диодных столбов и мостов:

Диод  Uоб/Uимп
  кВ/кВ
 Iпр
 мА
 Uпр/Iпр
  В /мА
 Io/Iом
мкA/мкА
Tвос(Uо/Iпр)
мкс( В/мА)
Fмах
 КГц
Кор-
пус
2Ц101А  0. 7/   10  8.3/50  10/100    20  15
2Ц102А
2Ц102Б
2Ц102В
 0.8/
 1.0/
 1.2/
 100
 100
 100
 1.5/100
 1.5/100
 1.5/100
 50/150
 50/150
 50/150
    1
  1
  1
 16
 16
 16
КЦ103А   2.0/   10   10/50  10/80 2  (500/20) 100  15
1Ц104АИ  1.0/2.0   10    8/50 150/5000    10   2
КЦ105А
КЦ105Б
КЦ105В
КЦ105Г
КЦ105Д
    /2
    /4
    /6
    /7
    /8.5
 100
 100
 100
  75
  50
 3.5/100
 3.5/100
 7.0/100
 7.0/75
 7.0/50
100/200
100/200
100/200
100/200
100/200
3  ( 30/1000
3  ( 30/1000
3  ( 30/1000
3  ( 30/1000
3  ( 30/1000
  1
  1
  1
  1
  1
 79
 79
 79
 79
 79
КЦ106А
КЦ106Б
КЦ106В
КЦ106Г
КЦ106Д
   4/
   6/
   8/
  10/
   2/
  10
  10
  10
  10
  10
  25/10
  25/10
  25/10
  25/10
  25/10
 10/30
 10/30
 10/30
 10/30
 10/30
3.5(500/20 )
3.5(500/20 )
3.5(500/20 )
3.5(500/20 )
3.5(500/20 )
 20
 20
 20
 20
 20
 15
 15
 15
 15
 15
2Ц108А
2Ц108Б
2Ц108В
    /2
    /4
    /6
 100
 100
 100
   6/180
   6/180
   6/180
150/1000
150/1000
150/1000
0.9( 30/1000
0.9( 30/1000
0.9( 30/1000
 50
 50
 50
 17
 17
 17
КЦ109А     /6  300    7/300  10/ 1.5(300/6000    80
2Ц110А
2Ц110Б
    /10
    /15
 100
 100
  10/100
  12/100
100/500
100/500
    1
  1
 17
 17
КЦ111А    3/    1   12/1 0.1/0.5    20  59
2Ц112А    2/   10   10/10  10/50 0.3( 50/20)    49
2Ц113А1  1.6/  0.5    8/0.5 0.05/1.5    20  50
КЦ114А
2Ц114Б
   4/
   6/
  50
  50
  22/50
  22/50
 10/100
 10/100
2.5(500/20)
2.5(500/20)
 10
 10
 15
 15
2Ц116А    5/5  100   24/100   5/100 2  ( 50/20)    51
КЦ117А
КЦ117Б
    /10
    /12
1300?
3000?
  35/10
  35/10
  1/10
  1/10
0.3( 50/20)
0.3( 50/20)
   15
 15
КЦ118А
КЦ118Б
   7/
  10/
   2
   2
  24/100
  24/100
 35/10
 35/10
0.3( )
0.3( )
   15
 15
2Ц119А
2Ц119Б
  10/10
  10/10
 100
 100
  22/100
  25/100
  1/50
  1/50
2.5(50 /20)
1.5(50 /20)
 20
 20
 51
 51
КЦ122А
КЦ122Б
КЦ122В
  14/14
  12/12
  10/10
   3
   3
   3
  21/5
  21/5
  21/5
0.5/
  1/
  1/
   16
 16
 16
 97
 97
 97
КЦ123А1
КЦ123Б1
КЦ123В1
КЦ123Г1
КЦ123Д1
КЦ123Е1
КЦ123Ж1
КЦ123И1
КЦ123К1
КЦ123Л1
КЦ123С1
КЦ123Т1
КЦ123У1
    /12
    /12
    /12
    /10
    /8
    /6
    /4
    /2
    /8
    /8
    /8
    /8
    /8
   5
   2
   2
   2
   2
   2
   2
   2
   2
   2
   2
   2
   5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
  30/5
0.1/10
0.2/12
0.4/12
0.4/10
0.4/8
0.4/6
0.4/4
0.4/2
0.1/8
0.2/8
0.1/10
0.2/10
0.4/10
0.25(50/20)
0.25(50/20)
0.40(50/20)
0.40(50/20)
0.40(50/20)
0.40(50/20)
0.40(50/20)
0.40(50/20)
0.25(50/20)
0.25(50/20)
0.15(50/20)
0.15(50/20)
0.15(50/20)
   
КЦ124А
КЦ124Б
   6/6.3
   4/4.2
 300
 300
  10/
  10/
 50/
 50/
1.5( )
1.5( )
 20
 20
 
КЦ125А
КЦ125Б
КЦ125В
  10/10.5
   8/8.4
   6/6.3
 100
 100
 100
  15/
  15/
  15/
 50/
 50/
 50/
1.5( )
1.5( )
1.5( )
 20
 20
 20
 
КЦ126А
КЦ126Б
КЦ126В
   6/6.3
   4/4.2
   2/2.1
 100
 100
 100
  10/
  10/
  10/
 50/
 50/
 50/
1.5( )
1.5( )
1.5( )
 20
 20
 20
 
КЦ127А
КЦ127Б
КЦ127В
КЦ127Г
КЦ127Д
  10/10.5
   8/8.4
   6/6.3
   4/4.2
   2/2.1
  30
  30
  30
  30
  30
  15/
  15/
  15/
  15/
  15/
 50/
 50/
 50/
 50/
 50/
1.5( )
1.5( )
1.5( )
1.5( )
1.5( )
 20
 20
 20
 20
 20
 
КЦ128А
КЦ128Б
КЦ128В
   6/6.3
   4/4.2
   2/2.1
  30
  30
  30
   5/
   5/
   5/
 50/
 50/
 50/
1.5( )
1.5( )
1.5( )
 20
 20
 20
 
КЦ129А
КЦ129Б
  15/15.7
  10/10.5
  30
  30
  15/
  15/
 50/
 50/
1.5( )
1.5( )
 20
 20
 
КЦ201А
КЦ201Б
КЦ201В
КЦ201Г
КЦ201Д
КЦ201Е
    /2
    /4
    /6
    /8
    /10
    /15
 500
 500
 500
 500
 500
 500
   3/500
   3/500
   6/500
   6/500
   6/500
  10/500
100/250
100/250
100/250
100/250
100/250
100/250
    1
  1
  1
  1
  1
  1
 18
 18
 18
 18
 18
 18
КЦ202А
КЦ202Б
КЦ202В
КЦ202Г
КЦ202Д
КЦ202Е
    /2
    /4
    /6
    /8
    /10
    /15
 500
 500
 500
 500
 500
 500
   3/500
   3/500
   6/500
   6/500
   6/500
  10/500
100/250
100/250
100/250
100/250
100/250
100/250
    1
  1
  1
  1
  1
  1
 18
 18
 18
 18
 18
 18
2Ц203А
2Ц203Б
2Ц203В
    /6
    /8
    /10
1000
1000
1000
   8/1000
   8/1000
   8/1000
100/500
100/500
100/500
    1
  1
  1
 18
 18
 18
2Ц204А     /6  1000   11/1000  10/ 0.22(/1000)  50  
2Ц301А
2Ц301Б
2Ц301В
0.075/.075
0.050/.075
0.030/.075
 200
 200
 200
   1/50
   1/50
   1/50
0.002/
0.002/
0.002/
0.4 (20/5 )
0.4 (20/5 )
0.4 (20/5 )
500
500
500
 14
 14
 14
КЦ303А
КЦ303Б
КЦ303В
КЦ303Г
КЦ303Д
КЦ303Е
КЦ303Ж
КЦ303И
КЦ303К
КЦ303Л
КЦ303М
КЦ303Н
    /0.1
    /0.2
    /0.3
    /0.4
    /0.5
    /0.6
    /0.1
    /0.2
    /0.3
    /0.4
    /0.5
    /0.6
1000
1000
1000
1000
1000
1000
2000
2000
2000
2000
2000
2000
2.5/1000
2.5/1000
2.5/1000
2.5/1000
2.5/1000
2.5/1000
3.0/2000
3.0/2000
3.0/2000
3.0/2000
3.0/2000
3.0/2000
500/
500/
500/
500/
500/
500/
500/
500/
500/
500/
500/
500/
     
КЦ401А
КЦ401Б
КЦ401В
КЦ401Г
КЦ401Д
 0.5/
 0.5/
 0.5/
 0.5/
 0.5/
 400
 250
 200
 500
 400
        1
  1
  1
  1
  1
 
КЦ402А
КЦ402Б
КЦ402В
КЦ402Г
КЦ402Д
КЦ402Е
КЦ402Ж
КЦ402И
 0.6/
 0.5/
 0.4/
 0.3/
 0.2/
 0.1/
 0.6/
 0.5/
1000
1000
1000
1000
1000
1000
 600
 600
        5
  5
  5
  5
  5
  5
  5
  5
 
КЦ403А
КЦ403Б
КЦ403В
КЦ403Г
КЦ403Д
КЦ403Е
КЦ403Ж
КЦ403И
 0.6/
 0.5/
 0.4/
 0.3/
 0.2/
 0.1/
 0.6/
 0.5/
1000
1000
1000
1000
1000
1000
 600
 600
        5
  5
  5
  5
  5
  5
  5
  5
 
КЦ404А
КЦ404Б
КЦ404В
КЦ404Г
КЦ404Д
КЦ404Е
КЦ404Ж
КЦ404И
 0.6/
 0.5/
 0.4/
 0.3/
 0.2/
 0.1/
 0.6/
 0.5/
1000
1000
1000
1000
1000
1000
 600
 600
        5
  5
  5
  5
  5
  5
  5
  5
 
КЦ405А
КЦ405Б
КЦ405В
КЦ405Г
КЦ405Д
КЦ405Е
КЦ405Ж
КЦ405И
 0.6/
 0.5/
 0.4/
 0.3/
 0.2/
 0.1/
 0.6/
 0.5/
1000
1000
1000
1000
1000
1000
 600
 600
        5
  5
  5
  5
  5
  5
  5
  5
 
КЦ407А  0.3/0.4  500     5.0(200/50)  20  60
КЦ409А
КЦ409Б
КЦ409В
КЦ409Г
КЦ409Д
КЦ409Е
КЦ409Ж
КЦ409И
 0.6/
 0.5/
 0.4/
 0.3/
 0.2/
 0.1/
 0.2/
 0.1/
3000
3000
3000
3000
3000
3000
6000
6000
        1
  1
  1
  1
  1
  1
  1
  1
 
КЦ410А
КЦ410Б
КЦ410Б
КЦ412А
КЦ412Б
КЦ412Б
0.05/
 0.1/
 0.2/
0.05/
 0.1/
 0.2/
3000
3000
3000
1000
1000
1000
         61
 61
 61
 61
 61
 61

Что такое мостиковые диоды? | Полупроводник

Мостовой диод — это диодный модуль, который образует мостовое соединение от 4 до 6 диодов в одном корпусе, и он используется для выпрямления переменного тока в постоянный или пульсирующий ток.

Для однофазного переменного тока

Для трехфазного переменного тока

Как использовать мостовые диоды… Двухполупериодное выпрямление


  • Входное напряжение: AC
  • Выходное напряжение: пульсирующее / постоянное

Мостовой диод инвертирует сторону отрицательного напряжения для входа переменного тока и выдает пульсирующий ток.
Выходная сторона сглажена конденсатором, который позволяет выводить постоянное напряжение.
Существует множество мостовых диодов, предназначенных для выпрямления промышленных частот 50/60 Гц, и обычные выпрямительные диоды могут использоваться в качестве типа диода.
Когда эти диоды используются для выпрямления высоких частот, например, вторичного выпрямления на импульсных источниках питания, тогда в качестве мостовых диодов используются диоды с быстрым восстановлением или диоды с барьером Шоттки.

Значение сертификации мостовых диодов UL

Может быть прикреплен непосредственно к шасси (заземлению), не проходя через изоляционный лист

Пример обозначения каталога
  • следующий «Что такое диоды TVS?»
  • Список продукции «Мостовые диоды»

Диодный мост — Выпрямители — Основы Электроника

Выпрямители

2 входа переменного тока, преобразованных в 2 выхода постоянного тока.

Диодный мост — это конфигурация из четырех (или более) диодов в конфигурации мостовой схемы, которая обеспечивает одинаковую полярность вывода для любой полярности входа.

При использовании в наиболее распространенном применении для преобразования входа переменного тока (AC) в выход постоянного тока (DC) он известен как мостовой выпрямитель. Мостовой выпрямитель обеспечивает двухполупериодное выпрямление от двухпроводного входа переменного тока, что приводит к снижению стоимости и веса по сравнению с выпрямителем с трехпроводным входом от трансформатора с вторичной обмоткой с центральным отводом.

Существенной особенностью диодного моста является то, что полярность выхода одинакова независимо от полярности на входе. Схема диодного моста была изобретена польским электротехником Каролем Поллаком и запатентована в декабре 1895 года в Великобритании и в январе 1896 года в Германии. В 1897 году немецкий физик Лео Грец независимо изобрел и опубликовал аналогичную схему. Сегодня эту трассу по-прежнему называют цепью Гретца или мостом Гретца.

До появления интегральных схем мостовой выпрямитель строился из «дискретных компонентов», т.е.е., отдельные диоды. Примерно с 1950 года один четырехконтактный компонент, содержащий четыре диода, соединенных в мостовую конфигурацию, стал стандартным коммерческим компонентом и теперь доступен с различными номинальными значениями напряжения и тока.

Диоды также используются в мостовых топологиях вместе с конденсаторами в качестве умножителей напряжения.

Текущий поток

Согласно традиционной модели протекания тока (первоначально созданной Бенджамином Франклином и до сих пор используемой большинством инженеров), ток течет через электрические проводники от положительного полюса к отрицательному (определяемого как «положительный поток»).На самом деле свободные электроны в проводнике почти всегда текут от отрицательного полюса к положительному. Однако в подавляющем большинстве приложений фактическое направление тока не имеет значения. Поэтому в нижеследующем обсуждении традиционная модель сохраняется.

Основная характеристика диода заключается в том, что ток может проходить через него только в одном направлении, которое определяется как прямое направление. Диодный мост использует диоды в качестве последовательных компонентов, чтобы позволить току проходить в прямом направлении во время положительной части цикла переменного тока, и в качестве шунтирующих компонентов для перенаправления тока, протекающего в обратном направлении во время отрицательной части цикла переменного тока, на противоположные рельсы.

Выпрямитель

На диаграммах ниже, когда вход, подключенный к левому углу ромба, является положительным, а вход, подключенным к правому углу, является отрицательным, ток течет от верхней клеммы питания вправо по красному (положительному) пути к выходу. и возвращается к нижней клемме питания по синему (отрицательному) пути.

Когда вход, подключенный к левому углу, является отрицательным, а вход, подключенным к правому углу, является положительным, ток течет от нижней клеммы питания вправо по красному (положительному) пути к выходу и возвращается к верхней клемме питания через синий (отрицательный) путь.

В каждом случае верхний правый вывод остается положительным, а нижний правый вывод — отрицательным. Поскольку это верно независимо от того, является ли вход переменным или постоянным током, эта схема не только выдает выход постоянного тока из входа переменного тока, но также может обеспечивать то, что иногда называют «защитой от обратной полярности». То есть, он обеспечивает нормальное функционирование оборудования с питанием от постоянного тока, когда батареи установлены в обратном направлении или когда провода (провода) от источника питания постоянного тока перевернуты, и защищает оборудование от возможных повреждений, вызванных обратной полярностью.

Альтернативой двухполупериодным выпрямителям с диодным мостом являются трансформатор с центральным отводом и двухдиодный выпрямитель, а также выпрямитель с удвоением напряжения, использующий два диода и два конденсатора в мостовой топологии.

Что такое диодный мост? (с иллюстрациями)

Диодный мост представляет собой сборку из четырех диодов, соединенных между собой таким образом, что источник питания переменного тока, подаваемый на две из четырех точек моста, будет производить постоянный ток (DC) на выходе на оставшихся двух.Таким образом, диодный мост представляет собой электрический компонент для сглаживания или выпрямления источника питания переменного тока для получения выходного сигнала постоянного тока. Очень хороший пример этой сборки в действии — зарядное устройство для мобильного телефона переменного тока, которое при подключении к розетке переменного тока подает постоянный ток для зарядки телефона.

Чтобы понять принцип работы диодного моста, необходимо знать основные различия между питанием постоянного и переменного тока, а также принципы работы диодов.Большинство людей хорошо знакомы с использованием батареек в бытовой технике, игрушках, фотоаппаратах и ​​телефонах. Аккумулятор является хорошим примером источника питания постоянного тока с заданной полярностью, то есть с заданными положительным и отрицательным полюсами, которые никогда не меняются. Источник питания переменного тока, встречающийся в бытовой розетке, имеет переменную полярность, которая меняет полярность примерно от 50 до 60 раз в секунду.

При использовании источника питания переменного тока для управления устройством постоянного тока эту переменную или реверсивную полярность переменного тока необходимо сглаживать или выпрямлять для получения стабильной, неизменной полярности, которая характерна для источника питания постоянного тока.Без этого исправления электропитание переменного тока могло бы повредить или разрушить прибор. В большинстве приложений это сглаживание достигается с помощью мостового выпрямителя или диодного моста.

Диоды — это электронные компоненты, которые пропускают электрический ток только в одном направлении.Когда четыре диода соединены между собой в конфигурации выпрямления, они эффективно отключают половину переменного цикла переменного тока и оставляют половину для прохождения через мост. Мощность, которая может проходить через диодный мост, не является особенно плавным постоянным током, но, по крайней мере, демонстрирует стабильную полярность или положительно-отрицательное соотношение. Это известно как полуволновое выпрямление, поскольку половина цикла переменного тока удаляется или блокируется. Чтобы сгладить оставшиеся пульсации переменного тока из источника питания, конденсаторы могут быть вставлены через положительный и отрицательный выходы.

Диодные мосты используются для выработки постоянного тока в самых разных приложениях, от крошечных источников питания на электронных платах до огромных промышленных образцов, способных питать большие электромагниты постоянного тока и двигатели.Все, что меняется в этих приложениях, — это физический размер сборки; основная конструкция моста осталась прежней. Хотя есть и другие способы получения постоянного тока из источников переменного тока, диодный мост остается самым дешевым и удобным методом.

Идея дизайна

: Мост выпрямителя

Маститый двухполупериодный выпрямительный мост (рис.1) это обычная, знакомая схема для преобразования входного переменного напряжения в выходное постоянное. Напряжение. Это также полезно для перевода входного постоянного тока произвольной полярности. в выход постоянного тока известной полярности, как это обычно требуется в электронном телефоны или другие телефонные устройства, и имеет приложение для защиты от реверс батареи в цепях с батарейным питанием.

Рис.1

Недостатком классического четырехдиодного выпрямительного моста является неизбежный прямое падение напряжения (V f ) двух диодов при протекании тока.С обычными кремниевыми диодами это обычно может составлять 1,5 В или более. Результатом этого является потеря энергии и снижение эффективности источника питания. приложений, или потеря рабочего напряжения в телефонии или с питанием от батареи Приложения.

В частности, в телефонных приложениях устройство может иметь для него доступно всего 4 В при наихудших условиях петлевого тока и длина строки. Поскольку большинство интегральных схем, телефонных или иных, решительно недружелюбно относится к реверсам питания, это обычная практика для электроника с питанием от сети должна быть окружена двухполупериодным выпрямительным мостом в чтобы гарантировать полярность питания.Но только с 4 вольтами линии напряжение, падение на 1,5 вольта в выпрямителе оставит только 2,5 вольт для электроника!

Аналогичным образом, в цепях с батарейным питанием часто случается, что потеря эффективность, вызванная последовательными диодами для защиты от случайного заряда батареи разворот недопустим.

Схема на рис.2 устраняет этот недостаток заменой диодов. с МОП-транзисторами. Четыре полевых МОП-транзистора соединены таким образом, чтобы проводить в противостоящие пары.Какая пара проводит ток, зависит от полярности приложенное напряжение. Проводящая пара предназначена для регулирования приложенного напряжения до соответствующие выходные клеммы, чтобы всегда поддерживать одинаковую полярность при выход. Другими словами, схема выпрямляется.

Рис.2

Интересно, что если посмотреть на собственные диоды сток-исток корпуса полевые МОП-транзисторы, игнорируя сами полевые МОП-транзисторы, они образуют обычные конфигурация выпрямительного моста.Действительно, когда напряжение подается впервые, схема действует так же, как и обычный выпрямительный мост, в том, что передний падение напряжения двух диодов (2V f ) появляется между входом и выход. Но как только приложенное напряжение превышает порог включения двух МОП-транзисторы (или, точнее, сумма порога N-канала и P-канала порог), соответствующая пара полевых МОП-транзисторов включается, эффективно обходя пара диодов, которая проводит. Падение напряжения моста теперь является функцией сопротивления сток-исток (R DS (on) ), что, с современными полевыми МОП-транзисторами, чертовски хорошо! В приложениях телефонной линии падение напряжения в диапазоне милливольт может быть легко достигнуто.Также с низкопороговые полевые МОП-транзисторы, достигающие в наши дни пороговых значений в диапазоне 1 вольт, возможно построить мост, в котором включение MOSFET происходит вскоре после диод загорается при нарастании приложенного напряжения.

Ограничение схемы, как показано, состоит в том, что приложенное напряжение не может превышают номинальное напряжение затвор-исток (V GS ) полевых МОП-транзисторов. Обычно это 20 вольт. Для приложений с более высоким напряжением можно поставьте резистор последовательно с каждым затвором и используйте стабилитрон между затвором и источник каждого полевого МОП-транзистора, чтобы ограничить V GS , испытываемый любым отдельный МОП-транзистор, как показано на рис.3. С таким положением основное ограничение на применяемые напряжение тогда становится номинальным значением пробоя сток-исток (BV DS ) МОП-транзисторы.

Фиг.3

Одно предостережение относительно мостовой схемы на полевых транзисторах: не используйте ее в качестве выпрямителя перед конденсаторный источник питания! В обычном выпрямительном мосту диоды предотвратить обратный ток от входного конденсатора источника питания, поскольку подаваемое напряжение падает ниже напряжения на конденсаторе.В этой конструкции полевые МОП-транзисторы действуют как переключатели, а не как односторонние клапаны для протекания тока. Они неважно, в какую сторону течет ток, следовательно, входной конденсатор питания источник питания будет разряжаться почти до нуля вольт с каждым полупериодом приложенного Электропитание переменного тока! Это ограничивает применение источников питания для этой схемы до конструкции с индуктивным или резистивным входом.

Однако можно было бы использовать эту схему с поляризованным конденсатором. в приложениях коррекции коэффициента мощности.Коррекция индуктивной мощности Фактор обычно требует неполяризованного конденсатора непосредственно через переменный ток. линия. Поместив мостовую схему на полевых транзисторах перед конденсатором, вместо него можно использовать поляризованный конденсатор, что может быть выгодно с точки зрения размер и стоимость. Я не пробовал это конкретное приложение, поэтому не могу ручаюсь за это, но если идея удалась, пожалуйста, дайте мне знать.


Чтобы отправить свой отзыв и комментарии об этой дизайнерской идее, щелкните здесь.

LT4320 Контроллер идеального диодного моста снижает рассеиваемую мощность и повышает эффективность

Рис. 1. Типичный двухполупериодный диодный мост.

Двухполупериодные диодные мосты используются во многих электронных системах ( Рис. 1 ). При типичном напряжении в сети переменного тока падение напряжения на диодах мало влияет на выпрямленное выходное напряжение и рассеиваемую мощность на диодах. Однако диоды в низковольтных выпрямительных устройствах с высокой мощностью рассеивают значительную мощность, а собственные диодные падения значительно сокращают рабочее напряжение.Например, рассеиваемая мощность диодного моста в Рис.1 составляет:

P = 2 × 0,6 В × I L (1)

Где:

I L = Линейный ток в амперах

P = Рассеиваемая мощность в ваттах

0,6 В = Типичное падение напряжения для одного проводящего выпрямительного диода

При I L = 1 рассеиваемая мощность составляет 1,2 Вт, при 10 А — 12 Вт, а при 100 А — 120 Вт.Высокая рассеиваемая мощность диода может потребовать теплоотвода для поддержания температуры диода в пределах надежности. Радиаторы увеличивают затраты на сборку, занимают площадь на плате, увеличивают вес и препятствуют потоку охлаждающего воздуха. Кроме того, нагрев диодов может повлиять на соседние цепи, для чего может потребоваться вентилятор, который добавляет шум и снижает энергоэффективность и надежность. Следовательно, тепло, рассеиваемое диодным мостом большой мощности, влияет на стоимость и эффективность преобразования энергии.

Влияние 1.Падение 2 В на двух проводящих диодах зависит от входного напряжения. Например, падение составляет всего 0,7% от входного 170 В (пиковое напряжение для 120 В переменного тока). Однако в процентах от входного напряжения это составляет 10% от входного напряжения 12 В и 13,3% от входного напряжения 9 В.

Рис. 2. Контроллер с идеальным диодным мостом LT4320 экономит электроэнергию и напряжение.

Одним из решений для уменьшения потерь мощности в диодах является использование LT4320 (, рис. 2, ), который управляет мостом из четырех N-канальных полевых МОП-транзисторов. LT4320 работает с входами от 9 В до 72 В постоянного тока или 12 В / 24 В переменного тока.По сравнению с мощным четырехдиодным мостом низкого напряжения, деталь:

• Уменьшает рассеиваемую мощность

• Увеличивает доступное напряжение

• Уменьшает размер блока питания

• Повышает энергоэффективность

• Устраняет необходимость в громоздких радиаторах

• Обеспечивает дополнительный запас за счет экономии двух падений напряжения на диодах

По сравнению с традиционной альтернативой диодному мосту, мост MOSFET обеспечивает компактную и энергоэффективную конструкцию выпрямителя.

Контроллер LT4320 плавно включает два соответствующих полевых МОП-транзистора, оставляя два других выключенными, чтобы предотвратить обратные токи. Выбор полевых МОП-транзисторов обеспечивает гибкость конструкции для уровней мощности от одного до тысяч ватт. На рис. 3 сравнивается повышение температуры диодных мостов и мостов MOSFET на аналогичных печатных платах.

Рис. 3. Диодный мост и мост MOSFET: рост температуры платы в зависимости от тока нагрузки. Вход постоянного тока на той же плате.

Интегрированная подкачка заряда упрощает конструкцию полностью N-канальных полевых МОП-транзисторов, упрощая спецификацию материалов (BOM) по сравнению со схемой, использующей смесь полевых МОП-транзисторов с N- и P-каналами.N-канальные полевые МОП-транзисторы меньше, экономичнее и предлагают более широкий выбор характеристик, чем их собратья с P-каналом. Встроенный насос заряда LT4320 обеспечивает подтягивающий ток не менее 425 мкА для включения затвора N-канального полевого МОП-транзистора на верхней стороне. Сильный подтягивающий ток обеспечивает выпрямление для высокочастотных входов и приложений с большой мощностью, использующих полевые МОП-транзисторы с большим зарядом затвора.

Существует две версии контроллера моста выпрямителя MOSFET; LT4320 предназначен для выпрямления от постоянного тока до 60 Гц, а LT4320-1 — для постоянного тока до 600 Гц.LT4320, предназначенный для промышленного диапазона температур от −40 o C до 85 90 243 o C, предлагается в компактном 8-выводном корпусе DFN размером 3 x 3 мм и 12-выводном корпусе MSOP с увеличенным расстоянием между выводами высокого напряжения. Чрезвычайно простое и компактное решение, оно предлагает как свинцовые, так и бессвинцовые корпуса, в зависимости от конечного применения и возможностей сборки платы.

Выбор MOSFET

Хорошей отправной точкой является уменьшение рассеиваемой мощности моста MOSFET до 1/10 от эквивалентного диодного выпрямительного моста, что дает падение на 70 мВ.(Обратите внимание, что можно спроектировать меньшее падение напряжения для еще меньшего рассеивания мощности.) Для приложения 24 Вт, 12 В постоянного тока I AVG = 2 A, поэтому выберите R DS (ON) как:

Где:

I AVG = Средний выходной ток нагрузки в амперах

При вычислении входной мощности переменного тока 3 × I AVG предполагает, что продолжительность проводимости тока занимает 1/3 периода переменного тока. Для работы 24 В переменного тока I AVG = 1 A, поэтому выберите R DS (ON) как:

Выберите максимально допустимое напряжение сток-исток, В DSS , чтобы оно было выше максимального входного напряжения.Убедитесь, что полевой МОП-транзистор может выдерживать непрерывный ток 3 × I AVG для покрытия ожидаемых пиковых токов во время выпрямления переменного тока. То есть выберите I D ≥ 3 A. Форма сигнала 24 В переменного тока может достигать пикового значения 34 В, поэтому выберите полевой МОП-транзистор с V DSS >> 34 В. Хороший выбор V DSS — 60 В при 24 В переменного тока. заявление.

Другие соображения

Выберите самый низкий доступный общий заряд затвора, Q G , и, соответственно, самый низкий C ISS , C OSS и C RSS .Выбор более низкой емкости затвора при соблюдении требований R DS (ON) ускоряет время отклика для полного улучшения, регулирования, выключения и короткого замыкания входа. V GS (th) (порог затвора) должен быть минимум 2 В или выше. Пороговое напряжение затвора ниже 2 В не рекомендуется, поскольку требуется слишком много времени для разрядки затвора ниже порогового значения и прекращения прохождения тока во время горячего подключения или короткого замыкания на входе.

Поместите керамический конденсатор 1 мкФ и электролитический конденсатор минимум 10 мкФ между выводами OUTP и OUTN, поместив керамический конденсатор на 1 мкФ как можно ближе к LT4320.

Потребляемая мощность в нисходящем направлении и допуск пульсаций напряжения определяют необходимую дополнительную емкость между OUTP и OUTN. Обычное значение для C LOAD — от сотен до тысяч микрофарад. Хорошей отправной точкой является выбор C ЗАГРУЗИТЬ , чтобы:

Где:

V RIPPLE = Максимально допустимое напряжение пульсации на выходе

Freq = частота входного источника переменного тока

Например, в приложении 60 Гц, 24 В переменного тока, где ток нагрузки составляет 1 А, а допустимая пульсация составляет 15 В, выберите

.

Выберите C LOAD , чтобы выпрямленное выходное напряжение OUTP-OUTN находилось в пределах указанного LT4320 / LT4320-1 диапазона напряжения OUTP.

Приложения

Приложения LT4320 включают выпрямление до 50 В переменного тока или 72 В постоянного тока, устройства PoE PD с дополнительными входами 24 В переменного тока / 12 В постоянного тока, такие как камеры видеонаблюдения и точки беспроводного доступа (WAP), а также распределение электроэнергии по воздуху с частотой 400 Гц.

Мостовой выпрямитель — Javatpoint

Мостовой выпрямитель — это схема, состоящая из четырех отдельных диодов с p-n переходом, переменного источника питания и нагрузочного резистора.Четыре диода в мостовых выпрямителях образуют замкнутый контур, который называется мостом. Основное преимущество схемы мостового выпрямителя заключается в том, что она не требует центрального ленточного трансформатора, уменьшающего ее размер.

Одинарная обмотка подключена ко входу одной стороны моста. Нагрузочный резистор на другой стороне моста, как показано ниже:

Форма выходного сигнала аналогична двухполупериодному выпрямителю. Работа четырех диодов зависит от положительной и отрицательной половин применяемого входного цикла.

Давайте подробно обсудим устройство и работу мостового выпрямителя.

Строительство

Схема мостового выпрямителя включает четыре диода. Назовем эти четыре диода D1, D2, D3 и D4. Эти четыре диода расположены последовательными парами. Только два диода из четырех диодов с проводимостью находятся в каждом полупериоде. Диод D1 и D2 мостового выпрямителя во время положительного полупериода соединены прямым смещением. Точно так же диоды D3 и D4 во время отрицательного полупериода включаются с прямым смещением.

Давайте сначала обсудим состояние диода p-n-перехода при прямом и обратном смещении.

Смещение вперед

Состояние прямого смещения диода позволяет легко протекать току через его выводы. Это связано с наличием узкой области истощения. Чем сужается область, тем легче она допускает перемещение носителей заряда из p-области в n-область.

Полярность диода при его подключении к переменному входу показана ниже:

Показывает, что положительный вывод переменного источника подключен к положительному выводу диода.Аналогичным образом отрицательный вывод подключается к отрицательному выводу диода. Он определяется как состояние прямого смещения диода.

Ток увеличивается с повышением уровня напряжения, когда диод работает в прямом смещении. Текущий поток зависит от большинства носителей.

Обратное смещение

Состояние обратного смещения диода вызывает протекание тока в обратном направлении. Имеет широкую область истощения.

Полярность диода при его подключении к переменному источнику показана ниже:

Показывает, что положительный конец переменного источника подключен к отрицательной стороне диода.Точно так же отрицательный конец переменного источника подключается к положительной стороне диода. Он определяется как состояние обратного смещения диода.

Текущий поток зависит от неосновных носителей. Диод в случае обратного смещения обычно ведет себя как разомкнутый переключатель.

рабочий

Здесь мы обсудим работу мостового выпрямителя отдельно во время положительного и отрицательного полупериода.

Положительный полупериод

Диоды D1 и D2 смещаются в прямом направлении во время положительной половины и проходят последовательно.Но диоды D3 и D4 становятся смещенными в обратном направлении. Это связано с полярностью диода, подключенного к переменному источнику питания. Положительное напряжение подается на положительный конец обоих диодов, а отрицательный конец — на отрицательный вывод диода, что делает их смещенными в прямом направлении. Эти два диода проводят и соответствуют результирующей форме выходного сигнала, как показано ниже:

Отрицательный полупериод

Диоды D3 и D4 смещаются в прямом направлении в течение отрицательной половины входного цикла и проводят последовательно.Но диоды D1 и D2 становятся смещенными в обратном направлении и не проводят ток. Проводимость диодов D3 и D4 дает результирующую форму выходного сигнала, как показано ниже:

Аналогичным образом, после каждой положительной половины и отрицательной половины цикла ввода получается результирующий вывод, как показано ниже:

Анализ выпрямителя невесты

Обсудим параметры мостового выпрямителя.

1. Пиковое обратное напряжение

PIV (пиковое обратное напряжение) мостового выпрямителя: Вм .

2. Средние и пиковые токи в диоде

Прямое сопротивление между резистором и диодом принимается равным RF и RL.

Ток, протекающий через два диода:

Поскольку два диода проводят последовательно, прямое сопротивление составляет 2RF.

3. Идеальный пиковый ток нагрузки

Прямое сопротивление идеального диода считается нулевым. Следовательно, идеальный пиковый ток нагрузки определяется как:

Идеальный пиковый ток нагрузки такой же, как для полуволнового выпрямителя и двухполупериодного выпрямителя.

4. Выходной постоянный ток

Его можно рассчитать как:

Подставляя значение Im в приведенное выше уравнение, получаем:

5. Действующее значение текущего

Среднеквадратичное значение может быть представлено как:

Подставляя значение Im в приведенное выше уравнение, получаем:

6. Выходное напряжение постоянного тока

Выходное напряжение постоянного тока может быть представлено как:

7.Эффективность выпрямления

КПД = мощность постоянного тока, подаваемая на нагрузку / мощность переменного тока на входе от трансформатора.

Максимальная эффективность мостового выпрямителя в два раза выше, чем у полуволнового выпрямителя. Он равен 81,2%.

8. Коэффициент пульсации

Коэффициент пульсаций мостового выпрямителя можно представить как:

Может выражаться в виде напряжения или тока.

9.Постановление

Процентное регулирование можно представить как:

Типы мостовых выпрямителей

Существует четыре типа мостовых выпрямителей, а именно:

1. Однофазные мостовые выпрямители

Однофазный мостовой выпрямитель состоит из четырех диодов, как показано ниже:

Однофазные выпрямители используются для обеспечения малых уровней мощности. В качестве входа требуется однофазный источник переменного тока.

2. Трехфазные мостовые выпрямители

Трехфазный мостовой выпрямитель состоит из шести диодов, как показано ниже:

Трехфазные выпрямители используются для обеспечения больших уровней мощности. В качестве входа требуется трехфазный переменный источник питания.

3. Неуправляемый мостовой выпрямитель

Мы знаем, что диоды однонаправленные. Это означает, что диод с p-n переходом может проводить ток в одном направлении. Конфигурация четырех диодов неуправляемого мостового выпрямителя фиксирована.Не допускает изменения мощности. Следовательно, обычное применение такого выпрямителя — обеспечить постоянный или постоянный источник питания.

4. Управляемый мостовой выпрямитель

В конфигурации управляемого мостового выпрямителя вместо диодов используются твердотельные устройства. К твердотельным устройствам относятся MOSFET, SCR и т. Д., Которые обеспечивают переменную мощность на выходе при нагрузке. Выходная мощность может быть изменена путем включения этих твердотельных устройств на разных этапах.

Применение мостового выпрямителя

Применения мостового выпрямителя следующие:

  • Цепи питания
    Более низкая стоимость мостовых выпрямителей по сравнению с центральными ленточными выпрямителями является предпочтительной в качестве источника питания для схем.
  • Сварка
    Большая часть сварки выполняется с помощью аппаратов, вырабатывающих дугу постоянного тока. Выпрямитель — это устройство, которое используется для преобразования дуги переменного тока в дугу постоянного тока. Это осуществляется подачей поляризованного напряжения. Возникающая дуга постоянного тока более плавная по сравнению с другими выпрямителями. Следовательно, в процессе сварки используются мостовые выпрямители.
  • Модулирующие радиосигналы
    Мостовые выпрямители в модулирующих радиосигналах используются для определения амплитуды этого конкретного модулированного сигнала.

Преимущества мостового выпрямителя

Преимущества мостового выпрямителя следующие:

  • Не требуется центральный ленточный трансформатор
    Мостовой выпрямитель не требует центрального ленточного трансформатора, такого как полуволновые и двухполупериодные схемы выпрямителя. Это уменьшает размер выпрямительной схемы.
  • за вычетом затрат
    Одна вторичная обмотка, необходимая для мостового выпрямителя, стоит меньше по сравнению с другими трансформаторами.
  • Преобразование напряжения
    Мостовые выпрямители могут преобразовывать переменное высокое напряжение в низкое постоянное напряжение. Выходное напряжение — это не просто постоянный ток, а пульсирующий постоянный ток.
  • Высшее TUF
    Мостовые выпрямители имеют более высокий коэффициент использования трансформатора, чем центральные ленточные трансформаторы.
  • Двойное выпрямление
    Процент выпрямления мостового выпрямителя вдвое больше, чем у однополупериодного выпрямителя.

Недостатки мостового выпрямителя

Мостовой выпрямитель имеет только один существенный недостаток. Для его конструкции требуется четыре диода. Это усложняет схему выпрямителя. Это также увеличивает падение напряжения в цепи выпрямителя. Другими недостатками, которые могут возникнуть из-за наличия четырех диодов, являются повышенные потери и более низкий КПД.

Центральный ленточный выпрямитель и мостовой выпрямитель

Центральный ленточный выпрямитель — это тип двухполупериодного выпрямителя.Его функция и работа аналогичны двухполупериодному выпрямителю. Давайте обсудим общие различия между центральным ленточным выпрямителем и мостовым выпрямителем.

Для центрального ленточного выпрямителя
Категория Мостовой выпрямитель Центральный ленточный выпрямитель
Строительство Для мостового выпрямителя требуются четыре диода, питание мгновенного действия и нагрузочный резистор. требуются два диода, центральный ленточный трансформатор и нагрузочный резистор.
Трансформатор Не требует трансформатора. Требуется центральная лента или трансформатор вторичной обмотки.
Коэффициент использования трансформатора 0,810 0,672
Размер Меньше, чем центральный ленточный трансформатор из-за отсутствия трансформатора. Размер больше, чем у мостового выпрямителя.
Приложения Сварка и др. Питание светодиодов, двигателей и т. Д.

Схема мостового выпрямителя

— основы электроники

В этом уроке мы поговорим о выпрямителях! Мы изучим основы их работы, а затем построим схему мостового выпрямителя из четырех диодов, которые можно будет использовать в ваших проектах для преобразования переменного тока в постоянный.

В предыдущем уроке мы говорили о диодах и о том, как они работают, чтобы контролировать направление, в котором ток может течь в цепи. Затем мы основывались на этих знаниях, чтобы создать схему зарядного устройства USB, которая может использоваться для питания стандартных USB-устройств путем преобразования 120 В переменного тока (или 220 В переменного тока) в регулируемое 5 В постоянного тока.

Давайте сделаем еще один шаг и расскажем о различных типах выпрямителей и о том, как их можно использовать в своих проектах.

Что такое мостовой выпрямитель?

Согласно определению из учебника, «диодный мост» состоит из четырех диодов в схеме моста , которая обеспечивает одинаковую полярность выхода для любой полярности входа.Другими словами, гребневой выпрямитель преобразует переменный ток (AC) в постоянный (DC). Мостовые выпрямители обычно используются в источниках питания для преобразования электричества из сетевой розетки в электричество постоянного тока, которое может использоваться устройствами бытовой электроники, такими как стереосистема, компьютер или телевизор.

Конечно, это не так-то просто для начинающих. Мы немного разберем это, чтобы действительно понять, что здесь происходит, но прежде, чем мы это сделаем, давайте рассмотрим основные типы выпрямительных схем.

Типы мостовых выпрямителей

Мостовые выпрямители можно разделить на несколько различных типов на основе некоторых простых критериев, но мы рассмотрим основные категории: однофазные выпрямители, трехфазные выпрямители, управляемые выпрямители и неуправляемые выпрямители. Некоторые из этих категорий можно объединить. Например, у вас может быть неуправляемый однофазный выпрямитель.

Однофазные и трехфазные выпрямители

По мере продвижения нашего руководства по мостовым выпрямительным схемам мы можем разбить большинство выпрямителей на две категории: однофазные и трехфазные.Решение о том, какую схему использовать, так же просто, как определить источник питания. Если вы работаете с однофазными входами (большую часть времени), вы будете использовать однофазный выпрямитель. Во многих промышленных средах обычно используются трехфазные источники питания, и вам необходимо использовать трехфазный выпрямитель.

Независимо от фазы мостовой выпрямитель может быть управляемым или неуправляемым.

Неуправляемые мостовые выпрямители

Неуправляемые мостовые выпрямители — наиболее распространенный тип, который вы найдете в электронике и источниках питания.Они основаны исключительно на диодах и не используют никаких дополнительных компонентов для регулирования напряжения или тока. Эти типы цепей обычно встречаются в фиксированных источниках питания. Проще говоря, входное напряжение не контролируется, поскольку оно проходит на выходную сторону. Если в цепь поступает 12 В, выпрямленное напряжение ~ 12 В выходит из цепи.

Управляемые мостовые выпрямители

В управляемых мостовых выпрямителях диоды заменяются твердотельными компонентами, такими как кремниевые управляемые выпрямители (SCR) или тиристоры.Эти устройства могут изменять выходное напряжение. Это может быть очень удобно для использования в регулируемых источниках питания, которые необходимо адаптировать к различным нагрузкам.

Схема и схема мостового выпрямителя

Создание полезной схемы мостового выпрямителя — это несложно, если вы знаете основы. Чтобы получить все преимущества мостового выпрямителя, вам потребуется добавить несколько дополнительных компонентов. Мы настоятельно рекомендуем ознакомиться с нашим руководством по схеме зарядного устройства USB, поскольку оно охватывает все основы работы этой законченной схемы.

Как работают мостовые выпрямители

Как я уже упоминал в начале этого руководства по мостовым выпрямителям, мы собираемся объяснить, как они на самом деле работают. То, что должен делать каждый любитель электроники. Как упоминалось в видео, вы можете купить мостовые выпрямители, но вы должны хотя бы один раз сделать свои собственные, потому что это фантастическая возможность для обучения!

Чтобы объяснить, как работают мостовые выпрямители, мы сосредоточимся на однофазных выпрямителях, чтобы упростить задачу.Однофазный мостовой выпрямитель работает за счет подключения четырех диодов к нагрузке.

В положительном полупериоде переменного тока диоды D3 и D4 смещены в прямом направлении (ток течет), целые диоды D1 и D2 смещены в обратном направлении (ток заблокирован). В отрицательном полупериоде D1 и D2 становятся смещенными в прямом направлении, а D3 и D4 становятся смещенными в обратном направлении, как раз наоборот.

Это означает, что ток в нагрузке всегда течет в одном и том же направлении. Если вы все еще не знаете, как это работает, помните, что диоды пропускают ток только в одном направлении.

СВЯЗАННЫЙ: Как работают диоды

Итак, мостовой выпрямитель сам по себе не действительно преобразует переменный ток, как мы выяснили в демонстрационной схеме зарядного устройства USB. Он только преобразует переменный ток в импульс волны постоянного тока (или колебания постоянного тока). Требуются конденсаторы для очистки импульса и создания сигнала, более похожего на постоянный ток. Также отличной идеей является включение в схему регулятора напряжения, чтобы навести порядок и поддерживать стабильное напряжение, даже если входное напряжение дрейфует вверх или вниз из-за колебаний в сети.

Добавить комментарий

Ваш адрес email не будет опубликован.