Импульсный однотактный блок питания схема: Мощный импульсный однотактный блок питания своими руками. Как сделать импульсный блок питания своими руками

Содержание

Схемы блоков питания и зарядных устройств, самодельные источники питания (Страница 19)


Конденсаторно-стабилитронный выпрямитель

Бестрансформаторные маломощные сетевые блоки питания с гасящий конденсатором получили широкое распространение в радиолюбительских конструкциях благодаря простоте своей кос-трукции, несмотря на такой серьезный недостаток, как наличие гальванической связи блока питания с сетью.

0 4189 0

Блок питания с гасящим конденсатором

Использование конденсаторов для понижения напряжения, подаваемого на нагрузку от осветительной сети, имеет давнюю историю. В 50-е годы радиолюбители широко применяли в бестрансформаторных источниках питания радиоприемников конденсаторы, которые включали последовательно в цепь …

0 4554 0

Блок питания Ступенька 5 — 9 — 12В на ток 1A

С появлением в продаже недорогих и надежных трехвыводных интегральных стабилизаторов напряжения, можно собрать простой блок питания на ряд наиболее часто применяемых напряжений. Блок питания состоит из понижающего …

2 4162 0

Источник питания с плавным изменением полярности +/- 12В

Особенность этого источника питания в том, что вращением ручки-регулятора можно не только изменять выходное напряжение, но и его полярность. Практически напряжение регулируется от + 12 до —12 В. Достигнуто это благодаря немного необычному включению …

0 4511 0

Миниатюрный импульсный блок питания на напряжение 5-12В

Предлагаемый блок предназначен для питания от сети малогабаритных радиоэлектронных устройств (карманных радиоприемников, диктофонов, часов и т.д.). выходное напряжение может быть выбрано в пределах от 5 до 12 В. Одно из достоинств блока …

0 5923 0

Стабилизатор тока для зарядки батареи 6В (142ЕН5А)

В устройстве, собранном по схеме ниже (оно предназначено для зарядки 6-вольтовой батареи), транзистор VT1 выполняет функции нижнего плеча делителя (совместно с резистором Rl), управляющего работой микросхемы DA1 таким образом, что зарядный ток …

0 3772 0

Простой импульсный блок питания на микросеме KA3842 (UC3842, TL3842, GL3842, KIA3842)

Любой разработчик может столкнуться с проблемой создания простого и надежного источника питания для конструируемого им устройства. В настоящее время существуют достаточно простые схемные решения и соответствующая им элементная база, позволяющие создавать импульсные источники …

4 7424 3

Импульсный источник питания на 40 Вт

Электрическая схема однотактного импульсного преобразователя приведена ниже. Он работает на частоте примерно 50 кГц. В момент включения питания конденсаторы СЗ…С5 заряжаются через резистор R2. При этом кратковременный импульс напряжения с этого резистора через диод VD5 и…

0 3595 0

Экономичный импульсный блок питания на 2×25В 3,5А

Мощность блока питания — около 180 Вт, выходное напряжение 2×25 В при токе нагрузки 3,5 А. Размах пульсаций при токе нагрузки 3,5 А не превышает 10% для частоты пульсаций 100 Гц и 2% — для частоты 27 кГц. Выходное сопротивление не превышает 0,6 Ом. Габариты блока …

2 8084 10

Блок питания на ТВК-110 ЛМ 5-25В/1А

Блок питания обеспечивает двуполярное выходное напряжение, которое можно изменять от 5 до 25 В Максимальный ток нагрузки может достигать 1 А. При превышении этого тока или коротком замыкании по выходу срабатывает устройство …

0 4542 0


Радиодетали, электронные блоки и игрушки из китая:

Импульсный источник тока схема

Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.

Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.

Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.

Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.

Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение

За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.

Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

Разберем все эти части подробнее.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Сетевой выпрямитель напряжения: самая популярная конструкция

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.

Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.

Импульсный трансформатор: принцип работы одного импульса в 2 такта

Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.

Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.

Его энергия расходуется:

  1. вначале на намагничивание сердечника магнитопровода;
  2. затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.

По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.

Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.

Однотактная схема импульсного блока питания: состав и принцип работы

На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.

Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.

В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.

При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.

Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.

Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.

Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.

Двухтактная схема импульсного блока питания: 3 варианта исполнения

Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.

Простейший вариант исполнения двухполупериодной методики показан на картинке.

Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.

Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.

Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.

Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.

Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.

Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.

В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:

  • уменьшенного падения напряжения на прямом включении;
  • и повышенного быстродействия во время обработки высокочастотных импульсов.

3 схемы силовых каскадов двухтактных ИБП

По порядку сложности их исполнения генераторы выполняют по:

  • полумостовому;
  • мостовому;
  • или пушпульному принципу построения выходного каскада.

Полумостовая схема импульсного блока питания: обзор

Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.

К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.

Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.

Мостовая схема импульсного блока питания: краткое пояснение

Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).

Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.

Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.

Пушпульная схема: важные особенности

Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.

Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.

Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.

К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.

Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.

Выходной выпрямитель: самое популярное устройство

Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.

Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.

Схема стабилизации напряжения: как работает

Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.

С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.

Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.

В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.

Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.

Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.

Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.

Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.

Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.

Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.

Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.

Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.

Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение

За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.

Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

Разберем все эти части подробнее.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Сетевой выпрямитель напряжения: самая популярная конструкция

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.

Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.

Импульсный трансформатор: принцип работы одного импульса в 2 такта

Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.

Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.

Его энергия расходуется:

  1. вначале на намагничивание сердечника магнитопровода;
  2. затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.

По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.

Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.

Однотактная схема импульсного блока питания: состав и принцип работы

На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.

Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.

В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.

При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.

Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.

Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.

Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.

Двухтактная схема импульсного блока питания: 3 варианта исполнения

Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.

Простейший вариант исполнения двухполупериодной методики показан на картинке.

Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.

Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.

Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.

Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.

Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.

Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.

В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:

  • уменьшенного падения напряжения на прямом включении;
  • и повышенного быстродействия во время обработки высокочастотных импульсов.

3 схемы силовых каскадов двухтактных ИБП

По порядку сложности их исполнения генераторы выполняют по:

  • полумостовому;
  • мостовому;
  • или пушпульному принципу построения выходного каскада.

Полумостовая схема импульсного блока питания: обзор

Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.

К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.

Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.

Мостовая схема импульсного блока питания: краткое пояснение

Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).

Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.

Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.

Пушпульная схема: важные особенности

Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.

Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.

Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.

К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.

Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.

Выходной выпрямитель: самое популярное устройство

Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.

Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.

Схема стабилизации напряжения: как работает

Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.

С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.

Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.

В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.

Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.

Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.

Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.

Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.

Импульсный блок питания светодиодов представляет собой выпрямитель с фильтром и понижающий преобразователь с обратной связью по току. Для построения источников тока для мощных светодиодов часто используются микросхемы ШИМ-контроллеры Supertex HV9910B, HV9961. Стандартные схемы включения этих микросхем мало отличаются, при некоторых условиях они взаимозаменяемы. HV9961 более дорогая, т.к. обеспечивает контроль среднего тока светодиодов, а не пикового. Есть другие отличия, о которых можно прочесть на сайте производителя, документ AN-H64. Я взял HV9961, говорят, она более живуча.
Расчет, изготовление и тестирование источника на микросхеме HV9961 под катом.

Мне нужен был блок, питающий током 750 мА 10 СИДов Cree XM-L. Оценим выходное напряжение блока: Vout = 10 * Vled при 750 мА = 29 В. Пусть пульсации тока будут меньше +-15% (я не знаю, как их величина влияет на работу светодиодов). Имелся корпус G1022BF, что накладывает ограничения на размер платы блока питания. Таким образом, исходные данные:
напряжение питания: 220 В, 50 Гц;
выходное напряжение: 30 В;
выходной ток: 750 мА;
пульсации тока: менее +-15%;
размер платы: менее 100х60 мм.

За основу берем стандартную схему включения:

Это понижающий преобразователь, для простоты ток измеряется в цепи истока переключающего транзистора и усредняется. На контакт Vin можно подавать высокое напряжение, которое питает встроенный регулятор напряжения 7,5 В, вывод регулятора – Vdd. PWMD и LD служат для плавной регулировки тока светодиодов. Резистор Rt задает частоту переключения (точнее, время паузы), Rcs – ток на СИДах. При питании от сети 220 нужно добавить выпрямитель и фильтр.

1. Частота переключения. Частота переключения в схеме не фиксированная, задается только время паузы. Для номинальных напряжений на входе (310 В после выпрямителя) и выходе коэффициент заполнения . С другой стороны, , где tu – время проводимости, tn – время паузы, f – частота переключения. Сопротивление резистора Rt определяется из выражения . Возьмем Rt = 330 кОм, это соответствует времени паузы 13,5 мкс и номинальной частоте 73 кГц. Чем выше частота, тем меньшего размера будет катушка и тем больше потери на переключение на транзисторе.

2. Регулировка тока. Токозадающий резистор. Rcs = 0.272 В / Iled = 0,363 Ом. Я решил взять Rcs = 0,33 Ом, т.е. 3 резистора по 1 Ом в параллель, что соответствует току 824 мА и сделать плавную регулировку тока с помощью вывода LD микросхемы. В описании сказано, что регулировка тока осуществляется, когда на выводе LD напряжение от 0 до 1,5 В. Подключаем делитель напряжения к напряжению 7,5 В. Необходимые сопротивления несложно посчитать, результат показан на окончательной схеме.
Можно проверить, сколько мощности выделяется на токозадающих резисторах: 824 Ма*272 мВ = 224 мВт, на каждом резисторе 75 мВт.2 = 1,62 мГн. Индуктивность получилась немного меньше, значит пульсации побольше +-15%, что меня устроило.
Теперь надо посчитать индукцию при максимальном токе и убедиться, что сердечник не насыщается. По формуле 8 из [2] и данным из программы (Al = 200 нГн, mui = 71) для тока 1 А (с запасом) получаем индукцию 183 мТл, что меньше 300 мТл и, значит, насыщения нет.
В итоге изготавливаем дроссель на сердечнике КВ10 М2500НМС1 с прокладками 0,3 мм с 90 витками эмальпроводом с внешним диаметром 0,7 мм. Желательно залить клеем или лаком после изготовления.

4. Транзистор. Транзистор должен с запасом выдерживать максимальное входное напряжение 310 В. Выберем транзистор с максимальным напряжением сток-исток 500 В. Максимальный среднеквадратичный ток через транзистор Iout*sqrt(Vout/Vin) = 240 мА. Ток небольшой, его выдержит любой мощный полевик. Главный параметр для выбора – емкость или заряд затвора. Производитель микросхемы рекомендует заряд менее 25 нКл. Я взял IRF830A с максимальным зарядом затвора 24 нКл. Мощность, выделяющуюся на полевике, посчитать непросто, но радиатор явно не помешает.

5. Диод. Для диода те же требования по напряжению, что и для транзистора. Средний ток через диод Iout*(1 – Vout/Vin) = 680 мА. Выбираем SF28 600 В, 2 А. Падение напряжения на нем 1,5 В, значит будет выделяться мощность 1,5 В* 0,68 А = 1 Вт. Я решил использовать диод без радиатора. Для диода еще важным считается параметр время обратного восстановления, от него зависят потери на переключение, но расчет их довольно сложный и я его не проводил.

6. Входной конденсатор. Емкость выбирается исходя из условия, что минимальное напряжение после входного фильтра должно быть больше 2*Vout. В AN-h58 есть формула для расчета:

Для частоты 50 Гц, Vdc = 60 В и КПД 90% получаем С1>6,5 мкФ. Был выбран конденсатор 47 мкФ, 400 В исходя из габаритов и доступности. Параллельно установлен пленочный 0,47 мкФ 450 В для уменьшения ESR.
Замечание от sanmigel:

если внимательно почитать документацию на 9910 то можно увидеть что условие Vout +5

  • 15 мая 2011, 18:11
  • magnum16
  • Обратноходовой блок питания на UC3842

    Приветствую, Самоделкины!
    Из этой статьи вы узнаете, как Роман, автор YouTube канала «Open Frime TV», своими руками собрал обратноходовой блок питания на микросхеме UC3842, а также вместе разберемся во всех тонкостях схемы.

    Свой путь в освоении блоков питания автор начал с двухтактных схем, так как они более просты в понимании, а в однотактных всегда пугал зазор и прочая ерунда. Ну вот автор достиг момента понимания и теперь готов поделиться им с нами. Итак, давайте начинать.
    А начнем мы с самого начала, т.е. непосредственно с принципа работы обратно ходового преобразователя. На первый взгляд тут нет ничего сложного, всего 1 транзистор, схема управления и трансформатор.

    Но если присмотреться повнимательнее, то можно заметить, что направление обмоток у трансформатора разное и вообще это не трансформатор вовсе, а дроссель, в котором присутствует тот самый зазор, о котором было упомянуто выше, о нем поговорим позже.


    Принцип работы данного блока питания состоит в следующем: когда открывается транзистор и пропускает напряжение на обмотку, дроссель накапливает энергию.

    Во вторичной цепи ток не течет, так как диод включен в обратном направлении, этот момент называется прямым ходом. В следующий момент времени транзистор закрывается и ток через первичную обмотку уже не протекает, но за счет того, что дроссель накопил энергию, он начинает отдавать ее в нагрузку. Это происходит потому, что напряжение самоиндукции имеет другой знак полярности и диод оказывается включенным в прямом направлении.

    Теперь настало время поговорить о том, зачем собственно тут необходим зазор. Дело в том, что у феррита очень большая индуктивность и если зазора не будет, то на обратном ходу он не передаст всю энергию в нагрузку, и когда произойдет следующее открытие транзистора, дроссель войдет в насыщение и станет просто куском металла, а транзистор в таком случае будет работать в режиме короткого замыкания.

    Теперь давайте рассмотрим непосредственно схему нашего будущего устройства.

    Как вы могли заметить — это достаточно популярная схема на микросхеме UC3842.

    В данной схеме нет ничего нового – в ней все стандартно. Скорее всего такая схема не раз попадалась вам в интернете, так как эта схема самая устойчивая, так как мы идем в обход внутреннего усилителя ошибки (tl431) на выходе блока.

    Также на схеме отсутствуют номиналы некоторых элементов, это связано с тем, что их необходимо рассчитать конкретно под ваши нужды и условия.

    Но пугаться не стоит, в этом нет ничего сложного, весь расчет легкий и производится в полуавтоматическом режиме, поэтому справится даже новичок.
    На рисунке ниже красным цветом выделены элементы (R2, R3 и C1), расчет которых осуществляется в программе Старичка, подробности дальше перед намоткой трансформатора.

    Резистор R4 рассчитывается под определенную частоту, также специальной компьютерной программой. Она присутствует в пакете программ к данной схеме, скачать можно ЗДЕСЬ или в описании под оригинальным видеороликом автора, ссылка «ИСТОЧНИК» в конце статьи.


    Для данной самоделки подойдут следующие микросхемы: UC3842, UC3843, UC3844 и UC3845. Отличие состоит в том, что у микросхем UC3844 и UC3845 частота генератора делится на 2, а у UC3842 и UC3843 нет, поэтому максимальное значение импульса у двух первых микросхем — 50%, а у двух следующих — 100%.

    Также потребуется произвести расчет резистора, ограничивающего ток оптопары, таким образом, чтобы при номинальном напряжении на выходе через оптопару протекал ток равный 10мА.


    Данный блок питания срывается в релейный режим работы если нагрузка на выходе отсутствует, поэтому необходимо установить нагрузочный резистор. При номинальном напряжении данный резистор должен рассеивать 1Вт.

    И последнее у нас — это грубая настройка переменного резистора.

    Данный переменный резистор вместе с постоянным создают делитель напряжения, и при номинальном напряжении в точки деления должно быть напряжение равное 2,5В.


    Непосредственно перед установкой в плату переменный резистор необходимо выкрутить на примерно нужное сопротивление, делая это с помощью мультиметра.

    Ну вот, собственно, и весь расчет. Теперь переходим к печатной плате.

    Как видим, здесь автор постарался минимизировать все, как только можно, и в итоге остался доволен результатом, хоть и разводка получилась не идеальная.

    В данном примере применен трансформатор ETD29, но если у вас в наличии имеется другой трансформатор, то просто измените размер трансформатора, а дальше скопируйте трассировку платы автора.

    После того, как плата была нарисована, автор сделал сначала, так сказать, макет широко известным методом ЛУТ.


    На этом макете он все протестировал, а потом уже заказал плату в китайской компании. И вот спустя месяц такие платки в итоге имеем:

    Теперь приступаем непосредственно к запаиванию всех деталей и компонентов на свои места. Начнем, пожалуй, с рассыпухи.

    Теперь у нас впереди намоточные работы. Сперва начнем с малого — входной дроссель. Для него подойдет ферритовое кольцо проницаемость 2000-2200. На этом кольце мотаем 2 по 10 витков проводом 0,5мм.


    Далее выходной дроссель. Его индуктивность должна быть не очень большой, чтобы не создавать лишних резонансных колебаний. Мотать выходной дроссель можно как на кольце из порошкового железа, так и на ферритовом стержне. Автор решил мотать на вот таком колечке с проницаемостью 52.

    Вся намотка состоит из 10 витков проводом 0,8 мм. Ну а теперь нам предстоит самая сложная часть сегодняшней самоделки — это намотка силового трансформатора-дросселя.

    Тут в первую очередь необходимо определиться с напряжением и током, тут есть некоторые ограничения, такие как, максимальный ток не должен превышать 3А без охлаждения и 4А с охлаждением, так как для большего тока диодам Шоттки необходим радиатор большей площади.


    Отсюда вытекает и ограничение выходной мощности, к примеру, при напряжении в 12В максимальная мощность не может превышать 48Вт, а при напряжении в 24В мощность уже может достигать 100Вт.

    Для расчета трансформаторов автор рекомендует воспользоваться программой Старичка. Ниже представлен интерфейс данной программы.

    В нужные поля водим все необходимые параметры и получаем на выходе данные для намотки, а также необходимый зазор сердечника.

    Также помимо этого, программа посчитала нам сопротивление резистора R2 и минимальное значение ёмкости входного конденсатора C1.
    Как видим, напряжение для самозапита автор выбрал 20В, так это самое подходящее значение.

    Также автор замечает, что еще одним плюсом данной программы является то, что она может посчитать нам параметры снаббера, что, согласитесь, очень удобно.

    Итак, приступаем к намотке трансформатора. Для того чтобы облегчить себе задачу и в процессе намотки не сбиться, все обмотки мотаем в одну сторону. Начало и конец изображены на печатной плате.
    Первичную обмотку делим на 2 части, сначала половина первички, затем вторичка и еще слой первички. Таким образом уменьшается индуктивность рассеивания и увеличивается потокосцепление.

    В последнюю очередь приступаем к намотке обмотки самозапита, так как она не столь важна. Пример намотки трансформатора сейчас перед вами:

    И вот практически все готово, осталось только подобрать зазор или же купить трансформатор с готовым зазором, собственно так и сделал автор.

    Если все же пришлось подбирать зазор, то под рукой должен быть хоть какой-нибудь прибор измеряющий индуктивность, например, мультиметр с функцией измерения индуктивности.
    Если получившаяся индуктивность совпадает с расчетной (примерно), то наш трансформатор намотан правильно и можно устанавливать его на плату.


    А в конце как всегда произведем парочку тестов.


    Загорелся светодиод, блок питания запустился. Напряжение на выходе составляет чуть больше 12В, но с помощью подстроечного резистора можно выставить более точное значение.

    С тестом нагрузки в виде лампы накаливания наш самодельный блок питания справляется на ура, а это значит, что у нас получилось отличное устройство.

    На этом все. Благодарю за внимание. До новых встреч!

    Видео:


    Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

    Простая схема импульсного блока питания

    Как работает простой и мощный импульсный блок питания

    В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

    Конструктивные особенности и принцип работы

    Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

    1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
    2. Импульсный принцип.

    Рассмотрим, чем отличаются эти два варианта.

    БП на основе силового трансформатора

    Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

    Упрощенная структурная схема аналогового БП

    Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

    Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

    Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

    Понижающий трансформатор ОСО-0,25 220/12

    Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

    Импульсные устройства

    Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

    Рисунок 3. Структурная схема импульсного блока питания

    Рассмотрим алгоритм работы такого источника:

    • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
    • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
    • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
    • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

    В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

    Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

    Как работает инвертор?

    ВЧ модуляцию, можно сделать тремя способами:

    • частотно-импульсным;
    • фазо-импульсным;
    • широтно-импульсным.

    На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

    Структурная схема ШИМ-контролера и осциллограммы основных сигналов

    Алгоритм работы устройства следующий:

    Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

    Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

    Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

    В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

    Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

    Сильные и слабые стороны импульсных источников

    Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

    • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
    • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
    • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
    • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
    • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

    К недостаткам импульсной технологии следует отнести:

    Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

    Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

    Сфера применения

    Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

    • различные виды зарядных устройств; Зарядки и внешние БП
    • внешние блоки питания;
    • электронный балласт для осветительных приборов;
    • БП мониторов, телевизоров и другого электронного оборудования.
    Импульсный модуль питания монитора

    Собираем импульсный БП своими руками

    Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

    Принципиальная схема импульсного БП

    Обозначения:

    • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
    • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
    • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
    • Транзистор VT1 – KT872A.
    • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
    • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
    • Предохранитель FU1 – 0.25А.

    Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

    Простая схема импульсного блока питания

    Импульсные источники питания (ИИП) обычно являются достаточно сложными устройствами, из-за чего начинающие радиолюбители стремятся их избегать. Тем не менее, благодаря распространению специализированных интегральных ШИМ-контроллеров, есть возможность конструировать достаточно простые для понимания и повторения конструкции, обладающие высокими показателями мощности и КПД. Предлагаемый блок питания имеет пиковую мощность около 100 Вт и построен по топологии flyback (обратноходовой преобразователь), а управляющим элементом является микросхема CR6842S (совместимые по выводам аналоги: SG6842J, LD7552 и OB2269).

    Внимание! В некоторых случаях для отладки схемы может понадобится осциллограф!

    Технические характеристики

    Размеры блока: 107х57х30 мм (размеры готового блока с Алиэкспресс, возможны отклонения).
    Выходное напряжение: версии на 24 В (3-4 А) и на 12 В (6-8 А).
    Мощность: 100 Вт.
    Уровень пульсаций: не более 200 мВ.

    На Али легко найти множество вариантов готовых блоков по этой схеме, например, по запросам вида «Artillery power supply 24V 3A», «Блок питания XK-2412-24», «Eyewink 24V switching power supply» и тому подобным. На радиолюбительских порталах данную модель уже окрестили «народной», ввиду простоты и надёжности. Схемотехнически варианты 12В и 24В различаются незначительно и имеют идентичную топологию.

    Обратите внимание! В данной модели БП у китайцев весьма высок процент брака, поэтому при покупке готового изделия перед включением желательно тщательно проверять целостность и полярность всех элементов. В моём случае, например, диод VD2 имел неверную полряность, из-за чего уже после трёх включений блок сгорел и мне пришлось менять контроллер и ключевой транзистор.

    Подробно методология проектирования ИИП вообще, и конкретно этой топологии в частности, тут рассматриваться не будет, ввиду слишком большого объёма информации — см. отдельные статьи.

    Далее подробно разберём назначение элементов в схеме.


    Импульсный блок питания мощностью 100Вт на контроллере CR6842S.

    Назначение элементов входной цепи

    Рассматривать схему блока будем слева-направо:

    F1Обычный плавкий предохранитель.
    5D-9Терморезистор, ограничивает бросок тока при включении блока питания в сеть. При комнатной температуре имеет небольшое сопротивление, ограничивающее броски тока, при протекании тока разогревается, что вызывает снижение сопротивления, поэтому в дальнейшем не влияет на работу устройства.
    C1Входной конденсатор, для подавления несимметричной помехи. Ёмкость допустимо немного увеличить, желательно чтобы он был помехоподавляющим конденсатором типа X2 или имел большой (10-20 раз) запас по рабочему напряжению. Для надёжного подавления помех должен иметь низкие ESR И ESL.
    L1Синфазный фильтр, для подавления симметричной помехи. Состоит из двух катушек индуктивности с одинаковым числом витков, намотанных на общем сердечнике и включенных синфазно.
    KBP307Выпрямительный диодный мост.
    R5, R9Цепочка, необходимая для запуска CR6842. Через неё осуществляется первичный заряд конденсатора C4 до 16.5В. Цепь должна обеспечивать ток запуска не менее 30 мкА (максимум, согласно даташиту) во всём диапазоне входных напряжений. Также, в процессе работы посредством этой цепочки осуществляется контроль входного напряжения и компенсация напряжения при котором закрывается ключ — увеличение тока, втекающего в третий пин, вызывает понижение порогового напряжения закрытия ключа.
    R10Времязадающий резистор для ШИМ. Увеличение номинала данного резистора уменьшит частоту переключения. Номинал должен лежать в пределах 16-36 кОм.
    C2Сглаживающий конденсатор.
    R3, C7, VD2Снабберная цепь, защищающая ключевой транзистор от обратных выбросов с первичной обмотки трансформатора. R3 желательно использовать мощностью не менее 1Вт.
    C3Конденсатор, шунтирующий межобмоточную ёмкость. В идеале должен быть Y-типа, либо же должен иметь большой запас (15-20 раз) по рабочему напряжению. Служит для уменьшения помех. Номинал зависит от параметров трансформатора, делать слишком большим нежелательно.
    R6, VD1, C4Данная цепь, запитываясь от вспомогательной обмотки трансформатора образует цепь питания контроллера. Также данная цепь влияет на цикл работы ключа. Работает это следующим образом: для корректной работы напряжение на седьмом выводе контроллера должно находиться в пределах 12.5 — 16.5 В. Напряжение 16.5В на этом выводе является порогом, при котором происходит открытие ключевого транзистора и энергия начинает запасаться в сердечнике трансформатора (в это время микросхема питается от C4). При понижении ниже 12.5В микросхема отключается, таким образом конденсатор C4 должен обеспечивать питание контроллера пока из вспомогательной обмотки не поступает энергии, поэтому его номинала должно быть достаточно чтобы удерживать напряжение выше 12.5В пока ключ открыт. Нижний предел номинала C4 следует рассчитывать исходя из потребления контроллера около 5 мА. От времени заряда данного конденсатора до 16.5В зависит время закрытого ключа и определяется оно током, который может отдать вспомогательная обмотка, при этом ток ограничивается резистором R6. Кроме всего прочего, посредством данной цепи в контроллере предусмотрена защита от перенапряжения в случае выхода из строя цепей обратной связи — при превышении напряжения выше 25В контроллер отключится и не начнёт работать пока питание с седьмого пина не будет снято.
    R13Ограничивает ток заряда затвора ключевого транзистора, а также обеспечивает его плавное открытие.
    VD3Защита затвора транзистора.
    R8Подтяжка затвора к земле, выполняет несколько функций. Например, в случае отключения контроллера и повреждения внутренней подтяжки данный резистор обеспечит быстрый разряд затвора транзистора. Также, при корректной разводке платы обеспечит более короткий путь тока разряда затвора на землю, что должно положительно сказаться на помехозащищённости.
    BT1Ключевой транзистор. Устанавливается на радиатор через изолирующую прокладку.
    R7, C6Цепь служит для сглаживания колебаний напряжения на токоизмерительном резисторе.
    R1Токоизмерительный резистор. Когда напряжение на нём превышает 0.8В контроллер закрывает ключевой транзистор, таким образом регулируется время открытого ключа. Кроме того, как уже говорилось выше, напряжение при котором будет закрыт транзистор также зависит от входного напряжения.
    C8Фильтрующий конденсатор оптопары обратной связи. Допустимо немного увеличить номинал.
    PC817Опторазвязка цепи обратной связи. Если транзистор оптопары закроется это вызовет повышение напряжения на втором выводе контроллера. Если напряжение на втором выводе будет превышать 5.2В дольше 56 мс, это вызовет закрытие ключевого транзистора. Таким образом реализована защита от перегрузки и короткого замыкания.

    В данной схеме 5-й вывод контроллера не используется. Однако, согласно даташиту на контроллер, на него можно повесить NTC-термистор, который обеспечит отключение контроллера в случае перегрева. Стабилизированный выходной ток данного вывода — 70 мкА. Напряжение срабатывания температурной защиты 1.05В (защита включится при достижении сопротивления 15 кОм). Рекомендуемый номинал термистора 26 кОм (при 27°C).

    Параметры импульсного трансформатора

    Поскольку импульсный трансформатор это один из самых сложных в проектировании элементов импульсного блока, расчёт трансформатора для каждой конкретной топологии блока требует отдельной статьи, поэтому подробного описания методологии тут не будет, тем не менее для повторения описываемой конструкции следует указать основные параметры используемого трансформатора.

    Следует помнить, что одно из важнейших правил при проектировании — соответствие габаритной мощности трансформатора и выходной мощности блока питания, поэтому первым делом, в любом случае, выбирайте подходящие вашей задаче сердечники.

    Чаще всего данная конструкция поставляется с трансформаторами, выполненными на сердечниках типа EE25 или EE16, либо аналогичных. Собрать достаточно информации по количеству витков в данной модели ИИП не удалось, поскольку в разных модификациях, несмотря на схожие схемы, используются различные сердечники.

    Увеличение разницы в количестве витков ведёт к уменьшению потерь на переключение ключевого транзистора, но повышает требования к его нагрузочной способности по максимальному напряжению сток-исток (VDS).

    Для примера, будем ориентироваться на стандартные сердечники типа EE25 и значение максимальной индукции Bmax = 300 мТ. В этом случае соотношение витков первой-второй-третьей обмотки будет равно 90:15:12.

    Следует помнить, что указанное соотношение витков не является оптимальным и возможно потребуется корректировка соотношений по результатам испытаний.

    Первичную обмотку следует наматывать проводником не тоньше 0.3мм в диаметре. Вторичную обмотку желательно выполнять сдвоенным проводом диаметром 1мм. Через вспомогательную третью обмотку течёт малый ток, поэтому провода диаметром 0.2мм будет вполне достаточно.

    Описание элементов выходной цепи

    Далее кратко рассмотрим выходную цепь источника питания. Она, в общем-то, совершенно стандартна, от сотен других отличается минимально. Интересна может быть лишь цепочка обратной связи на TL431, но её мы тут подробно рассматривать не будем, потому что про цепи обратной связи есть отдельная статья.

    VD4Сдвоенный выпрямительный диод. В идеале подбирать с запасом по напряжениютоку и с минимальным падением. Устанавливается на радиатор через изолирующую прокладку.
    R2, C12Снабберная цепь для облегчения режима работы диода. R2 желательно использовать мощностью не менее 1Вт.
    C13, L2, C14Выходной фильтр.
    C20Керамический конденсатор, шунтирующий выходной конденсатор C14 по ВЧ.
    R17Нагрузочный резистор, обеспечивающий нагрузку для холостого хода. Также через него разряжаются выходные конденсаторы в случае запуска и последующего отключения без нагрузки.
    R16Токоограничивающий резистор для светодиода.
    C9, R20, R18, R19, TLE431, PC817Цепь обратной связи на прецизионном источнике питания. Резисторы задают режим работы TLE431, а PC817 обеспечивает гальваническую развязку.

    Что можно улучшить

    Вышеописанная схема обычно поставляется в готовом виде, но, если собирать схему самому, ничто не мешает немного улучшить конструкцию. Модифицировать можно как входные, так и выходные цепи.

    Если в ваших розетках земляной провод имеет соединение с качественной землёй (а не просто ни к чему не подключен, как это часто бывает), можно добавить два дополнительных Y-конденсатора, соединённых каждый со своим сетевым проводом и землёй, между L1 и входным конденсатором C1. Это обеспечит симметрирование потенциалов сетевых проводов относительно корпуса и лучшее подавление синфазной составляющей помехи. Вместе с входным конденсатором два дополнительных конденсатора образуют т.н. «защитный треугольник».

    После L1 также стоит добавить ещё один конденсатор X-типа, с той же ёмкостью что у C1.

    Для защиты от импульсных бросков напряжения большой амплитуды целесообразно параллельно входу подключать варистор (например 14D471K). Также, если у вас есть земля, для защиты в случае аварии на линии электроснабжения, при которой вместо фазы и нуля фаза попадаётся на оба провода, желательно составить защитный треугольник из таких же варисторов.


    Защитный треугольник на варисторах.

    При повышении напряжения выше рабочего, варистор снижает своё сопротивление и ток течёт через него. Однако, ввиду относительно низкого быстродействия варисторов, они не способны шунтировать скачки напряжения с быстро нарастающим фронтом, поэтому для дополнительной фильтрации быстрых скачков напряжения желательно параллельно входу подключать также двунаправленный TVS-супрессор (например, 1.5KE400CA).

    Опять же, при наличии земляного провода, желательно добавить на выход блока ещё два Y-конденсатора небольшой ёмкости, включенных по схеме «защитного треугольника» параллельно с C14.

    Для быстрой разрядки конденсаторов при отключении устройства параллельно входным цепям целесообразно добавить мегаомный резистор.

    Каждый электролитический конденсатор желательно зашунтировать по ВЧ керамикой малой ёмкости, расположенной максимально близко к выводам конденсатора.

    Ограничительный TVS-диод будет не лишним поставить также и на выход — для защиты нагрузки от возможных перенапряжений в случае проблем с блоком. Для 24В версии подойдёт, например 1.5KE24A.

    Простая схема импульсного блока питания

    Представляю самый простой миниатюрный импульсный блок питания, который может быть успешно повторён начинающим радиолюбителем. Он отличается надежностью, работает в широком диапазоне питающих напряжений, имеет компактные размеры.

    Блок питания обладает относительно небольшой мощностью, в пределах 2-х ватт, зато он буквально неубиваемый, не боится даже долговремнных коротких замыканий.

    Схема проще даже самых простых импульсных источников питания, к которым относятся зарядные устройства для мобильных телефонов.

    Блок питания представляет собой маломощный импульсный источник питания автогенераторного типа, собранный всего на одном транзисторе. Автогенератор запитывается от сети через токоограничительный резистор R1 и однополупериодный выпрямитель в виде диода VD1.

    Импульсный трансформатор имеет три обмотки, коллекторная или первичная, базовая обмотка и вторичная.

    Важным моментом является намотка трансформатора, и на печатной плате и на схеме указаны начала обмоток, так что проблем возникнуть не должно. Расчетов не делал, а количество витков обмоток позаимствованы от трансформатора для зарядки сотовых телефонов, так как схематика почти та же, количество обмоток тоже. Первой мотается первичная обмотка, которая состоит из 200 витков, диаметр провода от 0,08 до 0,1 мм, затем ставиться изоляция и таким же проводом мотается базовая обмотка, которая содержит от 5 до 10 витков. Поверх мотаем выходную обмотку, количество ее витков зависит от того, какое напряжение вам нужно, по моим скромным подсчетам получается около 1 вольта на один виток.

    Сердечник для трансформатора можно найти в нерабочих блоках питания от мобильных телефонов, светодиодных драйверов и прочих маломощных источников питания, которые как правило построены именно на базе однотактных схем, в состав которых входит нужный трансформатор.

    Один момент — блок однотактный и между половинками сердечника должен быть немагнитный зазор, такой зазор имеется у сердечников с зарядных устройств сотовых телефонов. Зазор относительно небольшой (пол миллиметра хватит сполна). Если не находите трансформаторов с зазором, его можно сделать искусственным образом, подложив между половинками сердечника один слой офисной бумаги.

    Готовый трансформатор собирают обратно, половинки сердечника стягиваются скажем скотчем либо намертво склеиваются суперклеем.

    Схема не имеет стабилизации выходного напряжения и узлов защиты от коротких замыканий, но как не странно ей не страшны никакие короткие замыкания. При коротких замыканиях естественно повышается ток в первичной цепи, но он ограничивается ранее упомянутым резистором, и все лишнее рассеивается на резисторе в виде тепла, так что блок можно смело замыкать, даже долговременно. Такое решение снижает КПД источника питания в целом, но зато делает его буквально неубиваемым, в отличии от тех же самых зарядок для мобильных телефонов.

    Резистор указанного номинала ограничивает входной ток на уровне 14, 5 мА, по закону ома, зная напряжение в сети легко можно рассчитать мощность, которая составляет в районе 3,3 ватт, это мощность на входе, с учетом кпд преобразователя выходная мощность будет процентов на 20-30 меньше этого. Увеличить мощность можно, для этого достаточно снизить сопротивление указанного резистора.

    Силовой транзистор — это маломощный высоковольтный биполярный транзистор обратной проводимости, подойдут ключи типа MJE13001, 13003, 13005, более мощные ставить нет смысла, первого варианта вполне хватает.

    На выходе схемы установлен выпрямитель на базе импульсного диода, для снижения потерь советую использовать диод шоттки, рассчитанный на ток 1А. Далее фильтрующий конденсатор, светодиодный индикатор включения и пара резисторов.

    О недостатках схемы:

    • Ограничительный резистор на входе снижает кпд, не на много, но снижает, взамен он гарантирует безопасную работу блока;
    • Ограниченная выходная мощности — для того, чтобы на этой основе построить блок питания скажем ватт на 10-20, нужно снизит его сопротивление и увеличит мощност, чтобы нагрев не выходил за рамки, а это неудобно и увеличивает размеры блока питания в целом.

    Но с другой стороны, схожие схемы применяются там, где нужна мощность в пределах 3-5 ватт, например в моем случае блок предназначен для питания небольшого кулера, поэтому мощность ограничена в пределах 2-х ватт.

    Области применения — их очень много, так, как блок имеет гальваническую развязку от сети, следовательно, он безопасен и его выходное напряжение никак не связано с сетью. Отличный вариант для запитки светодиодов, вентиляторов охлаждения, питания каких-то маломощных схем и многое другое.

    Схема импульсного блока питания

    Схема импульсного блока питания — 4 рабочие схемы

    Схема импульсного блока питания, но не одна, а сразу четыре. В этом материале будет представлено вам несколько схем импульсных источников питания, выполненных на популярной и надежной микросхеме IR2153. Все эти проекты были разработаны известным пользователем Nem0. Поэтому я здесь буду писать от его имени. Показанные здесь все схематические решения были пару лет назад лично автором собраны и протестированы.

    Но вот сейчас, в середине 2018 года, автор решил вновь предложить их вам для повторения, схемы абсолютно рабочие. В данной статье к сожалению не каждая схема имеет для наглядности фото уже готового прибора, но это пока все, что есть.

    В общем начнем пока с так называемого «высоковольтного» блока питания:

    Схема традиционная, которую использует Nem0 в большинстве своих конструкций импульсников. Драйвер получает питание напрямую от электросети через сопротивление. Это в свою очередь способствует уменьшению рассеиваемой на этом сопротивлении мощности, сравнительно с подачей напряжения от цепи 310v. Схема импульсного блока питания располагает функцией плавного включения напряжения, что существенно ограничивает пусковой ток. Модуль плавного пуска запитывается через конденсатор С2 понижающий сетевое напряжение 230v.

    В блоке питания предусмотрена эффективная защита предотвращения короткого замыкания и пиковой нагрузки во вторичном силовом тракте. Роль датчика тока выполняет постоянный резистор R11, а регулировку тока срабатывания защиты выполняется с помощью подстроечника R10. Во время отсечки тока защитой, начинает светится светодиод, сигнализирующий о том, что защита сработала. Выходное двух полярное выпрямленное напряжение составляет +/-70v.

    Трансформатор выполнен с одной первичной обмоткой, состоящей из пятидесяти витков, а 4 вторичные обмотки, содержат по двадцать три витка. Диаметр медной жилы и магнитопровод трансформатора расчитываются в зависимости от заданной мощности определенного блока питания.

    Теперь рассмотрим следующий блок питания:

    Эта версия блока питания во много схожа с описанной выше схемой, хотя в ней имеется существенное отличие. Дело в том, что здесь напряжение питания на драйвер поступает от специальной обмотки трансформатора, через балластный резистор. Все остальные компоненты в конструкции практически одинаковы.

    Мощность на выходе этого источника питания обусловлено как характеристикой трансформатора и параметрами микросхемы IR2153, но и ресурсом диодов в выпрямителе. В данной схеме были задействованы диоды КД213А, у которых обратное максимальное напряжение 200v и прямой максимальный ток 10А. Для обеспечения корректной работы диодов при больших токах, их нужно устанавливать на радиатор.

    Отдельного внимания заслуживает дроссель Т2. Наматывают его на совместном кольцевом магнитопроводе, в случае необходимости можно использовать другой сердечник. Намотка делается эмаль-проводом с сечением рассчитанным согласно току в нагрузке. Также и мощность импульсного трансформатора определяется в зависимости от того, какую выходную мощность вы хотите получить. Очень удобно делать расчеты трансформаторов с помощью специальных компьютерных калькуляторов.

    Теперь третья схема импульсного блока питания на мощных полевых транзисторах IRFP460:

    Этот вариант схемы уже имеет конкретную разницу относительно предыдущих моделей. Главные отличия, это система защиты от КЗ и перегруза здесь собрана с использованием трансформатора по току. И есть еще одна разница, это наличие в схеме пары предвыходных транзисторов BD140. Именно эти транзисторы дают возможность отрезать большую входную емкость мощных полевых ключей, относительно выхода драйвера.

    Есть еще маленькое отличие, это гасящий напряжение резистор, относящейся к модулю плавного включения, установлен он в цепи 230v. В предыдущей схеме он расположен в силовом тракте +310v. Кроме этого в схеме имеется ограничитель перенапряжения, служащий для гашения остаточного импульса трансформатора. Во всем остальном никаких различий между приведенными выше схемами у этой больше нет.

    Четвертая схема импульсника:

    В этой схеме все упрощено до придела, здесь нет защиты от короткого замыкания, но собственно она не особо и нужна. В этом варианте блока питания, ток на выходе вторичной цепи 260v уменьшается на сопротивлении R6. Резистор R1 обрезает пиковый ток при пуске, а также сглаживает сетевые искажения.

    Как сделать импульсный блок питания своими руками?

    Если нет желания устанавливать громоздкий трансформатор или создавать намотку, можно своими руками собрать блок питания импульсного типа, который требует трансформатора всего с несколькими витками.

    При этом, потребуется небольшое количество деталей, а работу можно выполнить за 1 час. В данном случае, основой для блока питания используется микросхема IR2151.

    Для работы понадобятся следующие материалы и детали:

    1. PTC термистор любого типа.
    2. Пара конденсаторов, которые выбираются с расчетом 1мкф. на 1 Вт. При создании конструкции подбираем конденсаторы так, чтобы они вытянули 220 Вт.
    3. Диодная сборка типа «вертикалка».
    4. Драйвера типа IR2152, IR2153, IR2153D.
    5. Полевые транзисторы типа IRF740, IRF840. Можно выбрать и другие, если у них хороший показатель сопротивления.
    6. Трансформатор можно взять из старых компьютерных системных блоков.
    7. Диоды, устанавливаемые на выходе, рекомендуется брать из семейства HER.

    Кроме этого, понадобятся следующие инструменты:

    1. Паяльник и расходные материалы.
    2. Отвертка и плоскогубцы.
    3. Пинцет.

    Также, не стоит забывать и о необходимости хорошего освещения на месте работы.

    Пошаговая инструкция

    Сборка проводится согласно составленной схеме цепи. Микросхема была подобрана согласно особенностям цепи.

    Сборка проводится следующим образом:

    1. На входе устанавливаем PTC термистор и диодные мосты.
    2. Затем, устанавливается пара конденсаторов.
    3. Драйвера необходимы для регулирования работы затворов полевых транзисторов. При наличии у драйверов индекс D в конце маркировки устанавливать диод FR107 не нужно.
    4. Полевые транзисторы устанавливаются без закорачивания фланцев. При проведении крепления к радиатору, используют специальные изоляционные прокладки и шайбы.
    5. Трансформаторы устанавливаются с закороченными выводами.
    6. На выходе диоды.

    Проверка

    Для того, чтобы правильно собрать блок питания, нужно внимательно отнестись к установке полярных элементов, а также следует быть осторожным при работе с сетевым напряжением. После отключения блока от источника питания, в цепи не должно оставаться опасного напряжения. При правильной сборке, последующая наладка не проводится.

    Проверить правильность работы блока питания можно следующим образом:

    1. Включаем в цепь, на выходе лампочка, к примеру,12 Вольт. При первом кратковременном пуске, лампочка должна гореть. Кроме этого, следует обратить внимание на то, что все элементы не должны нагреваться. Если что-то греется, значит, схема собрана неправильно.
    2. При втором пуске замеряем значение тока при помощи тестера. Даем проработать блоку достаточное количество времени для того, чтобы убедиться в отсутствии нагревающихся элементов.

    Кроме этого, нелишним будет проверка всех элементов при помощи тестера на наличие высокого тока после выключения питания.

    Рекомендации по сборке:

    1. Как ранее было отмечено, работа импульсного блока питания основана на обратной связи. Рассматриваемая схема не требует специальной организации обратной связи и различных фильтров по питанию.
    2. Особое внимание следует уделить выбору полевых транзисторов. В данном случае, рекомендуются полевые транзисторы IR, которые славятся устойчивостью к тепловому разрешению. Согласно данным производителя, они могут стабильно работать до 150 градусов Цельсия. Однако, в этой схеме они не сильно нагреваются, что можно назвать весьма важной особенностью.
    3. Если нагрев транзисторов происходит постоянно, следует устанавливать активное охлаждение. Как правило, оно представлено вентилятором.

    Достоинства и недостатки

    Импульсный преобразователь имеет следующие достоинства:

    1. Высокий показатель коэффициента стабилизации позволяет обеспечить условия питания, которые не будут вредить чувствительной электронике.
    2. Рассматриваемые конструкции обладают высоким показателем КПД. Современные варианты исполнения имеют этот показатель на уровне 98%. Это связано с тем, что потери снижены до минимума, о чем говорит малый нагрев блока.
    3. Большой диапазон входного напряжения – одно из качеств, из-за которого распространилась подобная конструкция. При этом, КПД не зависит от входных показателей тока. Именно невосприимчивость к показателю напряжения тока позволяет продлить срок службы электроники, так как в отечественной сети электроснабжения прыжки показателя напряжения частое явление.
    4. Частота входящего тока оказывает влияние на работу только входных элементов конструкции.
    5. Малые габариты и вес, также обуславливают популярность из-за распространения портативного и переносного оборудования. Ведь при использовании линейного блока вес и габариты увеличиваются в несколько раз.
    6. Организация дистанционного управления.
    7. Меньшая стоимость.

    Есть и недостатки:

    1. Наличие импульсных помех.
    2. Необходимость включения в цепь компенсаторов коэффициента мощности.
    3. Сложность самостоятельного регулирования.
    4. Меньшая надежность из-за усложнения цепи.
    5. Тяжелые последствия при выходе одного или нескольких элементов цепи.

    Устройство и особенности работы

    При рассмотрении особенностей работы импульсного блока, можно отметить следующие:

    1. Сначала происходит выпрямление входного напряжения.
    2. Выпрямленное напряжение в зависимости от предназначения и особенностей всей конструкции, перенаправляется в виде прямоугольного импульса высокой частоты и подается на установленный трансформатор или фильтр, работающий с низкими частотами.
    3. Трансформаторы имеют небольшие размеры и вес при использовании импульсного блока по причине того, что повышение частоты позволяет повысить эффективность их работы, а также уменьшить толщину сердечника. Кроме этого, при изготовлении сердечника может использоваться ферромагнитный материал. При низкой частоте, можно использовать только электротехническую сталь.
    4. Стабилизация напряжения происходит при помощи отрицательной обратной связи. Благодаря использованию данного метода, напряжение, подаваемое к потребителю, остается неизменным, несмотря на колебание входящего напряжения, и создаваемой нагрузки.

    Обратная связь может быть организована следующим образом:

    1. При гальванической развязке, используется оптрон или выход обмотки трансформатора.
    2. Если не нужно создавать развязку, используется резисторный делитель напряжения.

    Подобными способами выдерживается выходное напряжение с нужными параметрами.

    Стандартные блоки импульсного питания, который может использоваться, к примеру, для регулирования выходного напряжения при питании светодиодной лампы, состоит из следующих элементов:

    1. Часть входная, высоковольтная. Она, как правило, представлена генератором импульсов. Ширина импульса – основной показатель, оказывающий влияние на выходной ток: чем шире показатель, тем больше напряжение, и наоборот. Импульсный трансформатор стоит на разделе входной и выходной части, проводит выделение импульса.
    2. На выходной части стоит PTC термистор. Он изготавливается из полупроводника, имеет положительный показатель коэффициента температуры. Данная особенность означает, что при повышении температуры элемента выше определенного значения, значительно поднимается показатель сопротивления. Используется в качестве защитного механизма ключа.
    3. Низковольтная часть. С низковольтной обмотки проводится снятие импульса, выпрямление происходит при помощи диода, а конденсатор выступает в качестве фильтрующего элемента. Диодная сборка может провести выпрямление тока до значения 10А. Следует учитывать, что конденсаторы могут быть рассчитаны на различную нагрузку. Конденсатор проводит снятие оставшихся пиков импульса.
    4. Драйвера проводят гашение возникающего сопротивления в цепи питания. Драйвера во время работы проводят поочередное открытие затворов установленных транзисторов. Работа происходит с определенной частотой
    5. Полевые транзисторы выбирают с учетом показателей сопротивления и максимального напряжения при открытом состоянии. При минимальном значении, сопротивления значительно повышается КПД и уменьшается нагрев во время работы.
    6. Трансформатор типовой для понижения.

    С учетом выбранной схемы, можно приступать к созданию блока питания рассматриваемого типа.

    МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ

    Всем привет! После сборки усилителя на ТДА7294, сделал еще и инвертор, чтобы можно было питать от 12 В, то есть автомобильный вариант. После того как все сделал в плане УНЧ, был поставлен вопрос: чем теперь его питать? Даже для тех же тестов, или чтобы просто послушать? Думал обойдется все АТХ БП, но при попытке «навалить», БП надежно уходит в защиту, а переделывать как-то не очень хочется. И тут осенила мысль сделать свой, без всяких «прибамбасов» БП (кроме защиты разумеется). Начал с поиска схем, присматривался к относительно не сложным для меня схем. В итоге остановился на этой:

    Схема ИБП для УМЗЧ

    Нагрузку держит отлично, но замена некоторых деталей на более мощные позволит выжать из неё 400 Вт и более. Микросхема IR2153 — самотактируемый драйвер, который разрабатывался специально для работы в балластах энергосберегающих ламп. Она имеет очень малое потребление тока и может питаться через ограничительный резистор.

    Сборка устройства

    Начнем с травления платы (травление, зачистка, сверление). Архив с ПП скачайте тут.

    Сначала прикупил некоторые отсутствующие детали (транзисторы, ирка, и мощные резисторы).

    Кстати, сетевой фильтр полностью снял с БП от проигрывателя дисков:

    Далее внимательно распаиваем детали на плате согласно схеме и ПП.

    Теперь самое интересное в ИИП — трансформатор, хотя ничего сложного тут нету, просто надо понять, как его правильно мотать, и всего то. Для начала нужно знать, чего и сколько наматывать, для этого есть множество программ, однако самая распространённая и пользующаяся популярностью у радиолюбителей это – ExcellentIT. В ней мы и будем рассчитывать наш трансформатор.

    Как видим, получилось у нас 49 витков первичная обмотка, и две обмотки по 6 витков (вторичная). Будем мотать!

    Изготовление трансформатора

    Так как у нас кольцо, скорее всего грани его будут под углом 90 градусов, и если провод мотать прямо на кольцо, возможно повреждение лаковой изоляции, и как следствие межвитковое КЗ и тому подобное. Дабы исключить этот момент, грани можно аккуратно спилить напильником, или же обмотать Х/Б изолентой. После этого можно мотать первичку.

    После того как намотали, еще раз заматываем изолентой кольцо с первичной обмоткой.

    Затем сверху мотаем вторичную обмотку, правда тут чуть сложней.

    Как видно в программе, вторичная обмотка имеет 6+6 витков, и 6 жил. То есть, нам нужно намотать две обмотки по 6 витков 6 жилами провода 0,63 (можно выбрать, предварительно написав в поле с желаемым диаметром провода). Или еще проще, нужно намотать 1 обмотку, 6 витков 6 жилами, а потом еще раз такую же. Что бы сделать этот процесс проще, можно, и даже нужно мотать в две шины (шина-6 жил одной обмотки), так мы избегаем перекоса по напряжению (хотя он может быть, но маленький, и часто не критичный).

    По желанию, вторичную обмотку можно изолировать, но не обязательно. Теперь после этого припаиваем трансформатор первичной обмоткой к плате, вторичную к выпрямителю, а выпрямитель у меня использован однополярный со средней точкой.

    Расход меди конечно больше, но меньше потерей (соответственно меньше нагрева), и можно использовать всего одну диодную сборку с БП АТХ отслуживший свой срок, или просто нерабочий. Первое включение обязательно проводим с включённой в разрыв питания от сети лампочкой, в моем случае просто вытащил предохранитель, и в его гнездо отлично вставляется вилка от лампы.

    Если лампа вспыхнула и погасла, это нормально, так как зарядился сетевой конденсатор, но у меня данного явления не было, либо из-за термистора, или из-за того, что я временно поставил конденсатор всего на 82 мкФ, а может все месте обеспечивает плавный пуск. В итоге если никаких неполадок нету, можно включать в сеть ИИП. У меня при нагрузке 5-10 А, ниже 12 В не просаживалось, то что нужно для питания авто усилителей!

    Примечания и советы

    1. Если мощность всего около 200 Вт, то резистор, задающий порог защиты R10, должен быть 0,33 Ом 5 Вт. Если он будет в обрыве, или сгорит, сгорят все транзисторы, а также микросхема.
    2. Сетевой конденсатор выбирается из расчета: 1-1,5 мкФ на 1 Вт мощности блока.
    3. В данной схеме частота преобразования примерно 63 кГц, и в ходе эксплуатации, наверное, лучше для кольца марки 2000НМ, частоту уменьшить до 40-50 кГц, так как предельная частота, на которой кольцо работает без нагрева – 70-75 кГц. Не стоит гнаться за большой частотой, для данной схемы, и кольца марки 2000НМ, будет оптимально 40-50 кГц. Слишком большая частота приведет к коммутационным потерям на транзисторах и значительных потерях на трансформаторе, что вызовет его значительный нагрев.
    4. Если у вас на холостом ходу при правильной сборке греется трансформатор и ключи, попробуйте снизить емкость конденсатора снаббера С10 с 1 нФ до 100-220 пкФ. Ключи нужно изолировать от радиатора. Вместо R1 можно использовать термистор с БП АТХ.

    Вот конечные фото проекта блока питания:

    Всем удачи! Специально для Радиосхем — с вами был Alex Sky.

    Обсудить статью МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ

    Импульсный блок питания УМЗЧ мощностью 800Вт (ЛА7, ЛА8, ТМ2, КП707В2)

    Сейчас изготовление усилителей НЧ достаточно популярно среди радиолюбителей и являются очень неплохим и компактным вариантом питания для схемы УМЗЧ.

    Импульсные источники питания широко используются в современной радиоэлектронной аппаратуре. Чаще стали применять их и радиолюбители, о чем свидетельствует возросшее число публикаций в радиотехнической литературе, в частности в журнале «Радио».

    Однако в большинстве случаев описываются относительно маломощные конструкции. Автор публикуемой статьи предлагает вниманию читателей импульсный блок питания мощностью 800 Вт. От описанных ранее он отличается применением в преобразователе полевых транзисторов и трансформатора с первичной обмоткой со средним выводом. Первое обеспечивает более высокий КПД и пониженный уровень высокочастотных помех, а второе — вдвое меньший ток через ключевые транзисторы и исключает необходимость в развязывающем трансформаторе в цепях их затворов.

    Основы

    Недостаток такого схемного решения — высокое напряжение на половинах первичной обмотки, что требует применения транзисторов с соответствующим допустимым напряжением. Правда, в отличие от мостового преобразователя, в данном случае достаточно двух транзисторов вместо четырех, что упрощает конструкцию и повышает КПД устройства.

    В импульсных блоках питания (ИБП) используют одно- и двухтактные высокочастотные преобразователи. КПД первых ниже, чем вторых, поэтому однотактные ИБП мощностью более 40…60 Вт конструировать нецелесообразно. Двухтактные преобразователи позволяют получать значительно большую выходную мощность при высоком КПД.

    Они делятся на несколько групп, характеризующихся способом возбуждения выходных ключевых транзисторов и схемой включения их в цепь первичной обмотки трансформатора преобразователя. Если говорить о способе возбуждения, то можно выделить две группы: с самовозбуждением и внешним возбуждением. Первые пользуются меньшей популярностью из-за трудностей в налаживании.

    При конструировании мощных (более 200 Вт) ИБП сложность их изготовления неоправданно возрастает, поэтому для таких источников питания они малопригодны. Преобразователи с внешним возбуждением хорошо подходят для создания ИБП повышенной мощности и порой почти не требуют налаживания.

    Что касается подключения ключевых транзисторов к трансформатору, то здесь различают три схемы: так называемую полумостовую (рис. 1, а), мостовую (рис. 1, б) и с первичной обмоткой, имеющей отвод от середины (рис. 1, в). На сегодняшний день наибольшее распространение получил полумостовой преобразователь [1]. Для него необходимы два транзистора с относительно невысоким значением напряжения Uкэmax. Как видно из рис. 1, а, конденсаторы С1 и С2 образуют делитель напряжения, к которому подключена первичная (I) обмотка трансформатора Т2. При открывании ключевого транзистора амплитуда импульса напряжения на обмотке достигает значения Uпит/2 — Uкэнac.

    Рис. 1. Подключение выходных транзисторов к трансофрматору импульсного блока питания.

    Мостовой преобразователь [2] аналогичен полумостовому, но в нем конденсаторы заменены транзисторами VT3 и VT4 (рис. 1, б), которые открываются парами по диагонали. Этот преобразователь имеет несколько более высокий КПД за счет увеличения напряжения, подаваемого на первичную обмотку трансформатора, а следовательно, уменьшения тока, протекающего через транзисторы VT1-VT4. Амплитуда напряжения на первичной обмотке трансформатора в этом случае достигает значения Uпит — 2Uкэнас.

    Особняком стоит преобразователь по схеме на рис. 1, в, отличающийся наибольшим КПД. Достигается это за счет уменьшения тока первичной обмотки и, как следствие, уменьшения рассеиваемой мощности в ключевых транзисторах, что чрезвычайно важно для мощных ИБП. Амплитуда напряжения импульсов в половине первичной обмотки возрастает до значения Uпит — Uкэнас. Следует также отметить, что в отличие от остальных преобразователей [1, 2] для него не нужен входной развязывающий трансформатор.

    В устройстве по схеме на рис. 1, в необходимо использовать транзисторы с высоким значением Uкэmах. Поскольку конец верхней (по схеме) половины первичной обмотки соединен с началом нижней, при протекании тока в первой из них (открыт VT1) во второй создается напряжение, равное (по модулю) амплитуде напряжения на первой, но противоположное по знаку относительно Uпит. Иными словами, напряжение на коллекторе закрытого транзистора VT2 достигает 2Uпит. поэтому его Uкэmах должно быть больше 2Uпит.

    В предлагаемом ИБП применен двухтактный преобразователь с трансформатором, первичная обмотка которого имеет средний вывод. Он имеет высокий КПД, низкий уровень пульсации и слабо излучает помехи в окружающее пространство. Автор использует его для питания двухканального умощненного варианта УМЗЧ, описанного в [3]. Входное напряжение ИБП — 180…240 В, номинальное выходное напряжение (при входном 220 В) — 2х50 В, максимальная мощность нагрузки — 800 Вт, рабочая частота преобразователя — 90 кГц.

    Принципиальная схема

    Принципиальная схема ИБП изображена на рис. 2. Как видно, это преобразователь с внешним возбуждением без стабилизации выходного напряжения. На входе устройства включен высокочастотный фильтр C1 L1 C2, предотвращающий попадание помех в сеть. Пройдя его, сетевое напряжение выпрямляется диодным мостом VD1-VD4, пульсации сглаживаются конденсатором С3. Выпрямленное постоянное напряжение (около 310В) используется для питания высокочастотного преобразователя.


    Рис. 2. Схема мощного импульсного блока питания на 800 Ватт.


    Устройство управления преобразователем выполнено на микросхемах DD1-DD3. Питается оно от отдельного стабилизированного источника, состоящего из понижающего трансформатора Т1, выпрямителя VD5 и стабилизатора напряжения на транзисторах VT1, VT2 и стабилитроне VD6. На элементах DD1.1, DD1.2 собран задающий генератор, вырабатывающий импульсы с частотой следования около 360 кГц. Далее следует делитель частоты на 4, выполненный на триггерах микросхемы DD2.

    С помощью элементов DD3.1, DD3.2 создаются дополнительные паузы между импульсами. Паузой является не что иное, как уровень логического 0 на выходах этих элементов, появляющийся при наличии уровня 1 на выходах элемента DD1.2 и триггеров DD2.1 и DD2.2 (смотрите рис. 3). Напряжение низкого уровня на выходе DD3.1 (DD3.2) блокирует DD1.3 (DD1.4) в «закрытом» состоянии (на выходе — уровень логической 1).

    Рис. 3. Эпюры уровней на выводах микросхем.

    Длительность паузы равна 1/3 от длительности импульса (рис. 3 — эпюры напряжений на выводах 1 DD3.1 и 13 DD3.2), чего вполне достаточно для закрывания ключевого транзистора. С выходов элементов DD1.3 и DD1.4 окончательно сформированные импульсы поступают на транзисторные ключи (VT5, VT6), которые через резисторы R10, R11 управляют затворами мощных полевых транзисторов VT9, VT10.

    Импульсы с прямого и инверсного выходов триггера DD2.2 поступают на входы устройства, выполненного на транзисторах VT3, VT4, VT7, VT8. Открываясь поочередно, VT3 и VT7,VT4 и VT8 создают условия для быстрой разрядки входных емкостей ключевых транзисторов VT9, VT10, т. е. их быстрого закрывания.

    Причем, как видно из рис. 3 (эпюры напряжений на выводах 12 и 13 DD2.2), VT7 и VT8 открываются сразу же после окончания импульса, поэтому при любой выходной мощности каждый из транзисторов VT9, VT10 всегда успевает надежно закрыться до открывания второго.

    Если бы это условие не выполнялось, через них, а следовательно, через первичную обмотку трансформатора Т2 протекал бы сквозной ток, который не только уменьшает надежность и КПД ИБП, но и создает всплески напряжения, амплитуда которых порой превышает напряжение питания преобразователя.

    В цепи затворов транзисторов VT9 и VT10 включены резисторы относительно большого сопротивления R10 и R11. Вместе с емкостью затворов они образуют фильтры нижних частот, уменьшающие уровень гармоник при открывании ключей. С этой же целью введены элементы VD9—VD12, R16, R17, С12.С13.

    В стоковые цепи транзисторов VT9, VT10 включена первичная обмотка трансформатора Т2. Выпрямители выходного напряжения выполнены по мостовой схеме на диодах VD13—VD20, что несколько уменьшает КПД устройства, но значительно (более чем в пять раз) снижает уровень пульсации на выходе ИБП.

    Важно отметить, что форма колебаний, почти прямоугольная при максимальной нагрузке, плавно переходит в близкую к синусоидальной при уменьшении мощности до 10…20 Вт, что положительно сказывается на уровне шумов УМЗЧ при малой громкости.

    Выпрямленное напряжение обмотки IV трансформатора Т2 используют для питания вентиляторов (см. далее).

    Конструкция и детали

    В устройстве применены конденсаторы К73-17 (С1, С2, С4), К50-17 (СЗ), МБМ (С12, С13), К73-16 (С14-С21, С24, С25), К50-35 (С5-С7), КМ (остальные). Вместо указанных на схеме допустимо применение микросхем серий К176, К564. Диоды Д246 (VD1—VD4) заменимы на любые другие, рассчитанные на прямой ток не менее 5 А и обратное напряжение не менее 350 В (КД202К, КД202М, КД202Р, КД206Б, Д247Б), или диодный выпрямительный мост с такими же параметрами, диоды КД2997А (VD13-VD20) — на КД2997Б, КД2999Б, стабилитрон Д810 (VD6) — на Д814В.

    В качестве VT1 можно использовать любые транзисторы серий КТ817, КТ819, в качестве VT2—VT4 и VT5, VT6 — соответственно любые из серий КТ315, КТ503, КТ3102 и КТ361, КТ502, КТ3107, на месте VT9, VT10 — КП707В1, КП707Е1. Транзисторы КТ3102Ж (VT7, VT8) заменять не рекомендуется.

    Трансформатор Т1 -ТС-10-1 или любой другой с напряжением вторичной обмотки 11… 13 В при токе нагрузки не менее 150 мА. Катушку L1 сетевого фильтра наматывают на ферритовом (М2000НМ1) кольце типоразмера К31Х18,5х7 проводом ПЭВ-1 1,0 (2х25 витков), трансформатор Т2 — на трех склеенных вместе кольцах из феррита той же марки, но типоразмера К45х28х12. Обмотка I содержит 2х42 витка провода ПЭВ-2 1,0 (наматывают в два провода), обмотки II и III — по 7 витков (в пять проводов ПЭВ-2 0,8), обмотка IV — 2 витка ПЭВ-2 0,8.

    Между обмотками прокладывают три слоя изоляции из фторопластовой ленты. Магнитопроводы дросселей L2, L3 — ферритовые (1500НМЗ) стержни диаметром 6 и длиной 25 мм (подстроечники от броневых сердечников Б48). Обмотки содержат по 12 витков провода ПЭВ-1 1,5.

    Транзисторы VT9, VT10 устанавливают на теплоотводах с вентиляторами, применяемых для охлаждения микропроцессоров Pentium (подойдут аналогичные узлы и от процессоров 486). Диоды VD13—VD20 закрепляют на теплоотводах с площадью поверхности около 200 см2. Для охлаждения транзисторов выходного каскада УМЗЧ на задней стенке устанавливают вентилятор от компьютерного блока питания или любой другой с напряжением питания 12В.


    Рис. 4. Подключение экрана к БП.


    При монтаже ИБП следует стремиться к тому, чтобы все соединения были возможно короче, а в силовой части использовать провод возможно большего сечения. ИБП желательно заключить в металлический экран и соединить его с выводом 0 В выхода источника, как показано на рис. 4. Общий провод силовой части с экраном соединяться не должен. Поскольку ИБП не оснащен устройством защиты от короткого замыкания и перегрузки, в цепи питания УМЗЧ необходимо включить предохранители на 10 А.

    Налаживание

    В налаживании описанный ИБП практически не нуждается. Важно только правильно сфазировать половины первичной обмотки трансформатора Т2. При исправных деталях и отсутствии ошибок в монтаже блок начинает работать сразу после включения в сеть. Если необходимо, частоту преобразователя подстраивают подбором резистора R3. Для повышения надежности ИБП желательно эксплуатировать его с УМЗЧ, в котором предусмотрена сквозная продувка вентилятором.

    Автор: А. Колганов, г. Калуга.

    Литература:

    1. Жучков В., Зубов О., Радутный И. Блок питания УМЗЧ. — Радио, 1987, N 1, с. 35-37.
    2. Цветаев С. Мощный блок питания. журнал Радио, 1990, №9, с.59-62.
    3. Брагин Г. Усилитель мощности 3Ч. журнал Радио, 1987, №4, с.28-30.

    Сайт Кравченко К.В.

    Импульсные источники питания.

    <<< Назад   Титульный   Глава 2 >>>

    Сайт Кравченко К.В.: www.kkbweb.narod.ru

    E-mail: [email protected]

     

    Казалось бы, что еще надо? Проще не придумаешь! Трансформатор, мостовой выпрямитель и фильтр – все просто и понятно. Так нет, напридумывали всяких импульсных блоков питания, ломай себе голову! Каждая уважающая себя фирма лепит свои блоки, по своим схемам, а бедный владелец думай как хочешь – самому ремонтировать сильно сложно и непонятно, а в мастерской сдерут три шкуры!

     

    Так вот, я хочу сказать, что ничего особо сложного в импульсных блоках питания нет. Да, ИБП сложнее, чем обычные блоки питания. Но это потому, что к функциям ИБП относятся не только получение питающих напряжений, но и стабилизация их величин, а также защита самого ИБП и каскадов, которые от него питаются, от различных неприятностей.

    Если вы немного знаете радиотехнику, знаете, как работает обычный блок питания, то эта статья для вас. Ну, начнем!

    Первоначальное распространение ИБП получили преимущественно в телевизионных приемниках, в дальнейшем — в видеомагнитофонах и другой видеоаппаратуре, что объясняется в основном двумя причинами. Во-первых, чувствительность ТВ и ВМ к создаваемым импульсным БП помехам значительно ниже, чем, например, аппаратуры звуковоспроизведения, особенно высококачественного. Во-вторых, ТВ и ВМ  отличаются относительным постоянством и сравнительно небольшой величиной (10…80 Вт) мощности, потребляемой в нагрузке. Колебания этой мощности в ТВ обусловлены изменениями яркости экрана при смене сюжетов и составляет не более 20 Вт (приблизительно 30 % максимальной потребляемой мощности). Для ВМ колебания мощности, потребляемой в нагрузке возникают, в основном, только при переключении режимов работы ЛПМ и составляют не более нескольких единиц Ватт. Для примера, в стереофоническом усилителе с выходной мощностью 2 х 20 Вт колебания мощности достигают 70-80 Вт (приблизительно 70-80 % максимальной потребляемой мощности). Поэтому для этого класса радиоаппаратуры ИБП получаются более дорогостоящими из-за необходимости использования мощных двухтактных схем преобразователей (конверторов), более сложных стабилизаторов, фильтров и т.д.

    В связи с этим, конструкторы как более ранних, так и современных моделей ТВ и ВМ. как правило, придерживаются хорошо зарекомендовавших себя с точки зрения надежности, экономичности и простоты принципов построения импульсных блоков питания. Основные усилия направляются, в первую очередь, на совершенствование и микроминиатюризацию элементной базы; повышение надежности ИБП (в том числе путем введения различных защит) и расширение рабочего диапазона питающего их напряжения сети.

    Сердце импульсных источников питания — автогенератор

    Несмотря на большое разнообразие схем ИБП принцип работы большинства их одинаков. Выпрямленное напряжение сети питает однотактный автогенератор, нагрузкой которого является импульсный трансформатор со вторичными выпрямителями, от которых питаются все потребители. Автогенератор выполнен по схеме с глубокой индуктивной положительной обратной связью. Транзистор автогенератора работает в ключевом режиме. Когда транзистор открыт, происходит накопление энергии в импульсном трансформаторе, когда закрыт – энергия отдается в нагрузку.

    На рис. 1 показана схема собственно автогенератора. Работает он так:

    в начальный момент транзистор (ключ) VT1 закрыт. При подаче питания через R1 начинает течь небольшой ток, создающий напряжение смещения на базе ключа Uбэ, достаточное для того, чтобы вызвать небольшой ток коллектора ключа Iк, и, соответственно, через коллекторную обмотку трансформатора Iтр (см. рис.1а,б,в). По законам физики, изменение тока в обмотке I вызовет появление ЭДС индукции, которая препятствует изменению тока в обмотке и вызывает напряжения взаимоиндукции в обмотках обратной связи II и в выходной обмотке III. Обмотки включены таким образом, что на верхнем выводе обмотки III будет «минус», а на верхнем выводе обмотки II «плюс». Диод D1 будет заперт и не будет мешать, а с обмотки II «плюс» окажется приложен к базе ключа и вызовет появление дополнительного напряжения, что в свою очередь вызовет увеличение тока коллектора ключа. А увеличение тока коллектора и обмотки I вызовет увеличение напряжения на базе и так далее, то есть, произойдет лавинообразное нарастание тока коллектора. Это нарастание будет происходить, пока транзистор не войдет в режим насыщения. Это такой режим, когда транзистор физически не может пропустить больший ток. Нарастание тока прекращается. Напряжение взаимоиндукции становится равным нулю так как изменения тока через обмотку I больше не происходит, то есть на обмотках II и III напряжение исчезает. Вызвавшее такой ток коллектора напряжение на базе резко уменьшается. И ток коллектора становится небольшим. Но ток в обмотке I из-за инерционности индуктивности обмотки мгновенно уменьшиться не может. В обмотке накопилась энергия и, чтобы ток стал равным нулю, нужно эту энергию израсходовать. Ток обмотки начинает плавно уменьшаться. Так как нарастание тока и его убывание процессы противоположные, то произойдет переполюсовка ЭДС индукции, которая теперь будет направлена противоположно ЭДС при нарастании тока обмотки. При этом на обмотке возникнет импульс напряжения, который приложен «плюсом» к коллектору транзистора, а «минусом» — к «плюсу» источника питания. В результате между коллектором и эмиттером ключа возникнет импульс напряжения 500-600 В. Появление ЭДС индукции вызовет появление напряжений взаимоиндукции в обмотках II и III также другой полярности. При этом напряжение «минус» с обмотки обратной связи II надежно закроет ключ, а напряжение «плюс» с обмотки III откроет диод D1 и начнет заряжаться конденсатор C2 (см. рис.1г). Чем больше ток заряда, то есть чем быстрее израсходуется энергия трансформатора, тем быстрее процесс повторится.

    Сложно? Сначала, может быть, да. Вникните, почитайте школьный учебник про свойства индуктивности. Разберитесь. Остальное будет проще!

    Продолжим. Итак, сердцем импульсного блока питания является автогенератор. Причем, любого. Обязательными элементами его являются импульсный трансформатор и транзистор – ключ. Вторичных обмоток у трансформатора может быть несколько – это не имеет значения. Обязательной является обмотка обратной связи.

    Подавляющее большинство ИБП выполняется по схеме, где функции генерации, управления и стабилизации напряжений вторичных источников питания совмещены. Объединение несколько функций в одном устройстве упрощает схему устройства, уменьшает потери, облегчает режим работы выходного транзистора, уменьшает габариты. Кроме того, все эти функции взаимосвязаны, поэтому их реализация труда не представляет. У таких ИБП система стабилизации перенесена из вторичных обмоток трансформатора в первичную обмотку, где значения токов уменьшены на коэффициент, равный коэффициенту трансформации. Выпрямительные диоды сетевого напряжения также перенесены в сторону первичной цепи, вследствие чего через диоды будут протекать токи, тоже уменьшенные в коэффициент трансформации раз. При этом силовой трансформатор, работающий на частоте 50 Гц, исключается, а вместо него вводится импульсный трансформатор, работающий на частоте до 100 кГц с ферритовым магнитопроводом и имеющий в несколько раз меньшие габаритные размеры и массу. Кроме того, уменьшаются габариты фильтров вторичных выпрямителей, так как при частоте 30-100 кГц для получения хорошей фильтрации нужны существенно меньшие емкости фильтров и можно обойтись без дросселей. Поэтому при тех же параметрах блока питания габариты ИБП в десятки раз меньше габаритов обычного 50 – герцового блока питания.

    Функциональная схема ИБП

    Разбирая упрощенную функциональную схему ИБП, представленную на рис.2, кое в чем повторюсь

    . Ее основными функциональными узлами являются сетевой выпрямитель Р со сглаживающим емкостным фильтром Сф, ключевой преобразователь напряжения (автогенератор) с импульсным трансформатором, устройство управления (контроллер) с цепью обратной связи и вторичный выпрямитель импульсных напряжений VD1, С1.

     Рис 2

    Напряжение сети 220 В поступает на выпрямитель Р со сглаживающим емкостным фильтром Сф. С конденсатора фильтра Сф выпрямленное напряжение через обмотку W1 трансформатора Т поступает на коллектор транзистора VT, выполняющего функций ключевого преобразователя постоянного напряжения в импульсное с частотой повторения 15-100 кГц. Ключевой преобразователь представляет собой импульсный генератор, работающий в режиме самовозбуждения. На рис. 3 приведены временные диаграммы преобразователя. В течение времени ∆Т, когда транзистор открыт, через первичную обмотку W1 трансформатора протекает линейно нарастающий ток Iк. В сердечнике трансформатора запасается энергия магнитного поля.

     Когда транзистор закрывается, на верхнем по схеме выводе вторичной обмотки трансформатора W2 появляется положительный потенциал и накопленная энергия передается в нагрузку через диод VD1. В стационарном режиме напряжение на выходе

     где n == W1/W2 — коэффициент трансформации.

    Изменяя ∆Т, т. е. время, в течение которого открыт транзистор преобразователя, можно регулировать выходное напряжение. Размахи импульсов тока через транзистор и диод зависят от индуктивности первичной обмотки трансформатора. При оптимальном ее значении максимальный ток через первичную обмотку вдвое превышает средний ток через нее. При этом ток через диод прекращается в момент открывания транзистора.

     Рис. 3

    Изменять ∆Т можно разными способами. Наиболее подходящий способ регулирования величины выходного напряжения – широтно-импульсная модуляция. Принцип ШИМ заключается в регулировании времени, в течение которого ключевой транзистор открыт, при этом происходит регулировка количества накопленной трансформатором энергии. Основные достоинства ШИМ – постоянство периода повторений Т и простота реализации. Поэтому ШИМ применяют практически во всех конструкциях ИБП. По этой причине другие способы регулировки мы рассматривать не будем.

    Более подробная функциональная схема приведена на рис. 4.

     Рис 4

    Рассмотрим случай, когда в установившемся режиме ток нагрузки увеличился. Это означает, что энергия, запасенная трансформатором будет расходоваться быстрее, чем обычно, т.е. время закрытого состояния ключа уменьшится. А для увеличения накопленной энергии нужно увеличить время открытого состояния ключа, чтобы в трансформаторе накопилось больше энергии. В результате общее время Т = const. Аналогично при уменьшении тока нагрузки.

    Устройство управления  ключевым транзистором называется контроллером (ударение на второе «о»), в данном случае – ШИМ-контроллером. Вообще под ШИМ-контроллером подразумевают все устройство управления, включая элементы запуска и защиты, так как они являются неотъемлемой частью схемы ИБП и используют часто одни и те же элементы схемы.

    Схема любого импульсного блока питания состоит из следующих узлов: схемы запуска, схемы управления, схемы управления ключевым транзистором (исполнительное устройство) и схем защиты, которых в устройстве может быть несколько. Разберем по порядку свойства каждого узла.

     

    Схемы запуска.

    Необходимость схемы запуска вызвана тем, что при включении ИБП самовозбуждение автогенератора невозможно, так как разряженные конденсаторы фильтров импульсных выпрямителей представляют собой короткое замыкание для импульсов, снимаемых с вторичных обмоток трансформатора. Пусковые токи могут достигать 50… 100 А, что создает аварийный режим работы для автогенератора.

    Устройство запуска обеспечивает принудительное включение и выключение автогенератора в течение нескольких циклов, за время действия которых происходит заряд конденсаторов фильтров импульсных выпрямителей. Одновременно это исключает возможность возникновения аварийной ситуации, так как автогенератор плавно, постепенно выходит на номинальный режим.

    В импортных схемах наибольшее распространение нашли схемы подачи начального открывающего смещения на ключ. В момент подачи питания через резисторы Rсм от «+» сетевого выпрямителя на базу ключа подается начальное смещение, достаточное для создания начального тока через ключ. За счет обмотки обратной связи происходит нарастание тока через ключ до насыщения, при этом диоды вторичных выпрямителей заперты и не мешают процессу. Как только ключ входит в режим насыщения, нарастание тока прекращается, напряжение на базе ключа становится равным начальному, коллекторный ток ключа резко уменьшается, что приводит к изменению полярности на обмотках трансформатора, в том числе появляется минус на выводе обмотки обратной связи, подключенной к базе ключа, ключ закрывается, диоды импульсных выпрямителей открываются и энергия, накопленная трансформатором, через диоды переходит в разряженные конденсаторы фильтров импульсных выпрямителей. Так как конденсаторы представляют собой в этот момент короткое замыкание, то энергия трансформатора убывает очень быстро. После нескольких циклов заряда конденсаторов автогенератор переходит в нормальный режим и больше схема запуска не используется. Во многих импортных ИБП цепь запуска не отключается, что иногда приводит к выходу из строя ключа при неисправности одного из вторичных выпрямителей, если не применяется схема защиты от короткого замыкания.

    В отечественных телевизорах применяются несколько схем запуска ИБП. Одна из них – генератор, собранный на однопереходном транзисторе КТ117. В течение некоторого времени, задаваемого схемой и достаточного для надежного запуска автогенератора, генератор на КТ117 генерирует импульсы, которые подаются на базу ключа как начальное смещение и вызывают запуск цикла работы автогенератора. Если неисправность отсутствует, то конденсаторы фильтров заряжаются и автогенератор входит в нормальный режим. Иначе схема запуска отключится и ИБП не запустится.

     

    Схемы управления.

    На схемы управления возлагается функция отслеживания уровня выходного напряжения, выработка сигнала ошибки и, часто, непосредственного управления ключом. Обычно схема управления представляет собой схему сравнения реального выходного напряжения и образцового, выработанный сигнал ошибки подается на исполнительную схему, управляющую непосредственно ключевым транзистором (см. рис. 5).

     Рис. 5

    Несмотря на кажущуюся сложность функциональной схемы устройства управления сама схема не сложна и работа ее для понимания труда не представляет.

    Схема управления питается от одной из обмоток трансформатора, поэтому напряжение питания на ней всегда соответствует напряжению на других обмотках, т.е. реальному. Пока автогенератор не вошел в нормальный режим, напряжение питания мало и транзистор закрыт. По мере увеличения напряжения питания на стабилитроне появляется образцовое напряжение и затем транзистор начинает открываться. В рабочем режиме на выходе присутствует положительное напряжение, которое подается на исполнительную схему. Понятно, что при изменении реального напряжения напряжение, подаваемое на исполнительное устройство, также будет изменяться, изменяя условия работы исполнительного устройства. Исполнительное устройство представляет собой либо ключевую схему, срабатывающую при достижении импульсом тока коллектора силового ключа определенной величины, либо схему, шунтирующую переход база-эмиттер того же силового ключа при достижении определенного уровня напряжения на базе.

     Рис. 6

    На рис. 6 приведены эпюры, поясняющие работу устройства управления при ШИМ-модуляции. По ним видно, как изменение реального напряжения и вместе с ним сигнала ошибки влияет на ширину импульса, вырабатываемого ключевым транзистором. Меандр Uзг – работа автогенератора без управления. При работе с управлением напряжение ошибки Uош воздействует на исполнительное устройство совместно с напряжением обратной связи Uп, меняя порог его срабатывания. В результате при изменении тока нагрузки изменяется ширина импульсов, вырабатываемых ключевым транзистором.

    Схемы защиты.

    Сложность того или иного ИБП зависит, в основном, от примененных схем защиты. В дешевых моделях ИБП используются простейшие виды защит. Вообще защитные устройства можно разделить на следующие типы по функциям: защитные устройства всего ИБП, сетевого выпрямителя, от большого напряжения сети, от малого напряжения сети, от перегрузки (короткого замыкания), от холостого хода и так далее. По сложности исполнения их можно разделить на простые (предохранители, защитные резисторы), среднего уровня сложности и большой сложности. В ИБП может быть применено сразу несколько типов защит, различной степени сложности. Однако, несмотря на то, что встраивание сложных защит мотивируется благими целями, увеличение сложности устройств в результате оборачивается уменьшением их надежности, так как увеличивается число элементов схем, ухудшением ремонтопригодности и, значит, увеличением стоимости ремонта. А так как защиты встраиваются непосредственно в ИБП, то и выход из строя элементов защиты также приводят к выходу из строя и элементы самого ИБП.

    Простейшим защитным элементом является предохранитель. В любом устройстве он ставится на входе питания сетевым напряжением. Предохранитель является инерционным элементом, поэтому он не защищает ни ключевой транзистор ИБП, ни его элементы. Назначение предохранителя – защита диодов выпрямителя при пробое ключа или конденсатора сетевого фильтра, а также размагничивающего устройства при неисправности позистора.

    Следующий защитный элемент – защитный резистор, который выполняет две функции. Первая – ограничивает мгновенный ток через схему, на входе которой он стоит. И вторая – выполняет функции предохранителя. Как и предохранитель защитный резистор – инерционный элемент. Он перегорает по факту превышения среднего тока через него. Если защитный резистор стоит в сетевой части ИБП, то он защищает сетевой выпрямитель при пробитом ключе или конденсаторе сетевого фильтра, если он стоит перед выпрямительными диодами вторичных выпрямителей, то защищает весь ИБП от перегрузки.

    Часто во вторичных выпрямителях применяют защитные диоды. На схемах они обозначаются как стабилитроны, но это не так. Когда на защитном диоде напряжение меньше порога срабатывания, он не потребляет тока и не мешает работе. При появлении на таком «стабилитроне» напряжения, на которое он рассчитан (например, R2M, который ставится для защиты выходного каскада строчной развертки, рассчитан на 150 В), «стабилитрон» пробивается, становится коротким замыканием для ИБП, который выключается. ИБП, в котором применяются такие «стабилитроны», должны иметь защиту от перегрузок. А напряжение на защитном диоде может повыситься из-за резких скачков сетевого напряжения, мощной импульсной помехи в сети, неисправности самого ИБП. Таким образом, защитный диод защищает устройства, стоящие в данной цепи питания, например, выходной каскад строчной развертки. Защитный диод не восстанавливается и после срабатывания подлежит замене, но ни в коем случае не на обычный стабилитрон!

    Остальные устройства защиты представляют собой схемы, состоящие из нескольких элементов и интегрированы со схемой ИБП. Такие устройства могут быть с внутренним управлением, отслеживающие состояние ИБП и управляющие им и с внешним управлением, следящими за состоянием цепей вторичных источников питания и даже исправность всего устройства в целом, например, телевизора. Чем больше применено таких защитных устройств, тем сложнее ремонт. Иногда приходится изобретать способы запуска ИБП, выключенного каким-либо защитным устройством, отключать защиту, прибегать к различным уловкам, чтобы найти неисправность.

     

    Ну что? Очень сложно? Если вы хоть что-то поняли, переходите во вторую главу статьи, где мы разберем конкретные схемы ИБП.

     

    Начало документа

    <<< Назад   Титульный   Глава 2 >>>

    ККВ        Страница создана 17.02.2004 г.

    © 2002-2003г. Кравченко Кирилл Васильевич (ККВ)

    Источники питания, стабилизаторы, преобразователи напряжения, схемы, Любительская радоэлектроника

     

    Источники  питания, стабилизаторы  и преобразователи  напряжения.

     

      Простейшие схемы источников питания 

    — стабилизаторы напряжения, источники стабильного тока, зарядные устройства и другие схемы.

       Импульсный источник питания мощностью  до 20 Вт. источник питания выполнен по схеме однотактного импульсного высокочастотного преобразователя и имеет меньшие габариты, чем  аналогичные, работающие  с понижающим трансформатором, на частоте 50 Гц.

       Импульсный источник питания мощностью до 40 Вт представляет собой однотактный импульсный преобразователь напряжения, работающий на частоте, примерно, 50 кГц.

       Импульсный преобразователь напряжения  c  12 В  на  220 В  —  позволяет подключать нагрузку мощностью до 100 Вт, рабочая частота преобразования около 20 кГц.

       Импульсный  источник  питания  мощностью до 60 Вт. диапазон входных напряжений  180-230 В, рабочая частота преобразователя около 20 кГц.

       Простой лабораторный источник питания применено двухступенчатое преобразование выпрямленного напряжения: ШИМ преобразование в промежуточное напряжение и последующая линейная стабилизация. 

       Преобразователь постоянного напряжения КР1446ПН1Е Микросхема КР1446ПН1Е представляет собой импульсный повышающий регулятор напряжения для питания низковольтных нагрузок.

       Блок питания для переносной телерадиоаппаратуры источник питания выполнен по схеме двухтактного импульсного высокочастотного преобразователя, выходная мощность 20 Вт,  КПД при номинальной мощности  не менее 85%, частота преобразования  68 кГц. 

       Питание радиоаппаратуры от бортовой сети автомобиля. Подключать радиоаппаратуру непосредственно к аккумулятору нежелательно, так как его напряжение может меняться от 10 до 15 В, а переносная аппаратура питается меньшим напряжением.

      Блок питания на 4В с автоматическим зарядным устройством  —  предназначен для питания от сети 220 В напряжением 4 В маломощной нагрузки (током не более 100 мА) и заряда трех аккумуляторов типа НКГЦ-0,45 или НКГЦ-0,5 с автоматическим выключением режима заряда.

       Современные методы повышения качества источников питания. Если не принять специальных мер, форма тока, потребляемого импульсным источником питания (импульсным преобразователем) от сети , будет далека от синусоидальной и представляет собой последовательность коротких импульсов с частотой повторения 100 Гц значительной амплитуды, в 5…10 раз превышающей его среднее значение.

      Импульсные блоки питания телевизоров и их ремонт. Справочное пособие  (djvu)

       Программа для расчета  импульсного источника питания.  Программа “Converter” позволяет рассчитать двухтактный полумостовой преобразователь импульсного источника питания с самовозбуждением. 

       Расчет трансформатора двухтактного импульсного источника питания. Справочное пособие  (pdf)

       Программа для расчета трансформатора  «Transformer 3.0.0.3» —  предназначена для расчёта импульсных трансформаторов двухтактных импульсных источников питания с задающим генератором.  Скачать   

       Миниатюрный блок питания 5-12 В. Блок питания предназначен для питания от сети малогабаритных радиоэлектронных устройств.

      Звуковой сигнализатор перегрузки блока питания  Звуковая сигнализация позволяет пользователю быстро среагировать на аварийную ситуацию, если при экспериментах с различной аппаратурой возникла перегрузка источника питания.

       Блок питания с гасящим конденсатором Использование конденсаторов для подачи пониженного напряжения в нагрузку от осветительной сети, имеет давнюю историю. Это позволяло устранить гасящий резистор, являющийся источником тепла и нагрева всей конструкции.

      Регулируемый двухполярный источник питания  В лаборатории радиолюбителя, как правило, есть регулируемый стабилизированный блок питания. Добавив к нему несложную приставку, можно получить двух-полярный источник питания.

       Мощные блоки питания.  Стабилизатор напряжения  разрабатывался для питания мощного усилителя НЧ. Он имеет выходное напряжение 27 В, ток нагрузки до 3 А. Блок питания двухполярный, выполнен на комплементарных транзисторах КТ825 и КТ827

       Плавный пуск  блоков питания.  При включени блока питания   в сети возникает помеха, вызванная пусковыми токами трансформаторов, токами заряда конденсаторов и стартом  питаемых устройств.  Для таких блоков питания и предлагается это устройство плавного пуска

      Ремонт блока питания.  Ремонт блоков питания от роутеров и другой техники Asus и D-Link за 10 минут

      Экономичный стабилизатор с малым падением напряжения.   Несложный стабилизатор компенсационного типа для слаботочных узлов, собранный на дискретных элементах.  Его собственный ток потребления составляет приблизительно 1 мА

      Преобразователь напряжения 3-12 вольт. Ремонт усилителя воспроизведена плейера иностранного производства часто бывает затруднителен из-за использования в нем низковольтной микросхемы, аналог которой найти очень трудно Поэтому приходится делать новую конструкцию на транзисторах или микросхемах отечественного производства.

     

      Радиоэлектроника — Автоэлектроника, зарядные устройства, аккумуляторы, системы зажигания, охранные устройства, схемы.

     

     

     

    6 Простая схема импульсного источника питания

    Вы когда-нибудь задумывались, что означает «переключатель» в импульсном источнике питания? Если быть точным, что такое «включение» и «выключение»?

    Как следует из названия, импульсный источник питания использует электронные переключающие устройства (такие как транзисторы, полевые транзисторы, тиристоры и т. Д.) Для непрерывного включения и выключения электронных переключающих устройств через цепь управления. Что произошло дальше? Затем позвольте электронному коммутационному устройству импульсным образом модулировать входное напряжение для реализации преобразования постоянного / переменного тока, постоянного / постоянного напряжения, а также регулируемого выходного напряжения и автоматической стабилизации напряжения.

    После того, как вы поймете основное определение импульсного источника питания, вы, возможно, захотите дополнительно изучить его применение и углубить свое понимание. Поэтому в этом блоге мы познакомим вас с 6 простыми схемами проектирования импульсных цепей питания.

    Конечно, если у вас возникнут какие-либо вопросы по принципиальной схеме, оставьте свои вопросы в комментариях, и мы дадим вам восторженные и профессиональные ответы.

    Видео об основах импульсных источников питания

    Каталог

    I Что такое импульсный источник питания

    Импульсный источник питания (SMPS), также известный как импульсный источник питания и импульсный преобразователь, представляет собой высокочастотное устройство преобразования электрической энергии и тип источника питания.Его функция состоит в том, чтобы преобразовать уровень напряжения в напряжение или ток, требуемый пользователем, с помощью различных архитектурных форм.

    Имя

    Импульсный источник питания

    Природа

    Использовать современные технологии силовой электроники

    Метод

    Широтно-импульсная модуляция

    Характеристики

    Небольшой размер, легкий вес и высокая эффективность

    II 6 Схемы импульсных источников питания

    2.1 Простая схема импульсного источника питания

    Эта схема несложна и может нормально работать без особых требований. В основном обращайте внимание на следующие моменты:

    1. Отрегулируйте C3 и R5 так, чтобы частота колебаний составляла 30–45 кГц;
    2. Требуется стабилизация выходного напряжения;
    3. Выходной ток может достигать 500 мА.
    4. Эффективная мощность 8 Вт, КПД 87%.

    2.2 Импульсная цепь питания 24 В

    Импульсный источник питания

    24 В — это импульсный источник питания с высокочастотным инвертором. Трубка переключателя управляется схемой для проведения высокоскоростного прохода и отсечки, преобразования постоянного тока в высокочастотный переменный ток и подачи его на трансформатор для преобразования, тем самым генерируя требуемый один или несколько наборов напряжений.

    Принцип работы импульсного источника питания 24 В:

    1. Входная мощность переменного тока выпрямляется и преобразуется в постоянный ток;
    2. Управляйте переключающей трубкой с помощью высокочастотного сигнала ШИМ (широтно-импульсной модуляции) и добавляйте этот постоянный ток к первичной обмотке переключающего трансформатора;
    3. Во вторичной обмотке коммутирующего трансформатора индуцируется высокочастотное напряжение, которое выпрямляется, фильтруется и подается на нагрузку;
    4. Выходная часть возвращается в схему управления через определенную цепь для управления рабочим циклом ШИМ для достижения цели стабильного выхода.

    2.3 Несимметричная прямая импульсная цепь питания

    Типовая схема несимметричного импульсного источника питания прямого включения показана на рисунке ниже. Эта схема аналогична по форме несимметричной схеме обратного хода, но условия работы другие:

    Когда переключающая трубка VT1 включена, VD2 также включен. В это время сеть передает энергию нагрузке, а катушка индуктивности L фильтра накапливает энергию;

    Когда переключатель VT1 выключен, катушка индуктивности L продолжает отдавать энергию нагрузке через диод свободного хода VD3.

    Также в цепи присутствует прижимная катушка и диод VD2. Диод может ограничивать максимальное напряжение на переключающей трубке VT1 в два раза выше напряжения источника питания. Чтобы соответствовать условию сброса магнитного сердечника, то есть время установления магнитного потока и время сброса должны быть одинаковыми, поэтому коэффициент заполнения импульса в цепи не может превышать 50%.

    Поскольку эта схема передает энергию нагрузке через трансформатор, когда трубка переключателя VT1 включена, диапазон выходной мощности велик, и она может выходить мощностью 50-200 Вт.Однако практических применений этой схемы немного. Причина в том, что используемый в этой схеме трансформатор имеет сложную конструкцию и большой объем.

    2,4 Двухтактная импульсная схема питания

    Типовая схема двухтактного импульсного источника питания показана на рисунке ниже. Это двусторонняя схема преобразования, и магнитный сердечник высокочастотного трансформатора работает по обе стороны от петли гистерезиса. В схеме используются две коммутационные лампы VT1 и VT2.Две переключающие лампы включаются и выключаются поочередно под управлением прямоугольного сигнала внешнего возбуждения. Напряжение прямоугольной формы получается во вторичной группе трансформатора T, которое выпрямляется и фильтруется до необходимого постоянного напряжения.

    Преимущество этой схемы состоит в том, что две переключающие лампы легко управлять, а главный недостаток состоит в том, что выдерживаемое напряжение переключающих трубок должно в два раза превышать пиковое напряжение схемы. Выходная мощность схемы относительно велика, обычно в пределах 100-500 Вт.

    2,5 Схема развязки обратной связи по мощности

    В импульсном источнике питания схема развязки обратной связи по мощности состоит из оптопары, такой как PC817, и шунтирующего стабилизатора TL431, и ее типичное применение показано на следующем рисунке. Когда выходное напряжение колеблется, дискретизированное напряжение, полученное после резистивного делителя, сравнивается с опорным напряжением запрещенной зоны 2,5 В в TL431, и на катоде формируется напряжение ошибки. Впоследствии рабочий ток светодиода в оптическом соединительном устройстве изменяется соответствующим образом.Таким образом, текущий размер клеммы управления TOPSwitch может быть изменен с помощью оптического соединительного устройства, а затем может быть отрегулирован выходной коэффициент заполнения, так что Uo может оставаться неизменным для достижения цели стабилизации напряжения.

    Роль и выбор основных компонентов в цепи обратной связи: Основная роль R1R4R5 заключается в работе с TL431 и устройством оптической связи. Среди них R1 — токоограничивающий резистор оптопары, а R4 и R5 — резисторы делителя напряжения TL431, которые обеспечивают необходимый рабочий ток для полной защиты TL431.

    2,6 Инверторно-выпрямительная цепь

    Схема использует микросхему генератора UC3842 в качестве ядра для формирования схемы инвертора и выпрямителя. UC3842 — это высокопроизводительная микросхема широтно-импульсного модулятора с несимметричным выходным током. Источник питания переменного тока 220 В подается через фильтр синфазных помех L1, который может лучше подавлять высокочастотные помехи от электросети и излучение самого источника питания. Напряжение переменного тока фильтруется схемой мостового выпрямителя и конденсатором C4, чтобы получить нестабильное постоянное напряжение около 280 В, которое служит схемой инвертора, состоящей из колеблющегося кристалла U1, переключающей трубки Q1, переключающего трансформатора T1 и других компонентов.

    III Заключение

    Выше представлены 6 простых схем импульсных источников питания, которые мы подготовили для вас. Что я не понимаю или сомневаюсь в процессе просмотра? Если да, не стесняйтесь оставлять свои мысли в области комментариев.

    Несимметричные контроллеры с фиксированной частотой, ШИМ, режимом напряжения

    % PDF-1.4 % 1 0 объект > эндобдж 6 0 obj / Title (MC34060A — Односторонние контроллеры с фиксированной частотой, ШИМ, режимом напряжения) >> эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > поток BroadVision, Inc.2020-09-30T12: 21: 34 + 02: 002011-03-09T15: 56: 36-07: 002020-09-30T12: 21: 34 + 02: 00application / pdf

  • MC34060A — фиксированная частота, ШИМ, режим напряжения одиночный Завершенные контроллеры
  • ОН Полупроводник
  • MC34060A — недорогой аппарат с фиксированной частотой и шириной импульса. схема управления модуляцией, предназначенная в первую очередь для несимметричных SWITCHMODE управление питанием. MC34060A рекомендован к коммерческой эксплуатации. диапазон температур от 0 ° до + 70 ° C, указан MC33060A в автомобильном температурном диапазоне от −40 ° до + 85 ° C.
  • Acrobat Distiller 9.4.2 (Windows) uuid: 92198c3a-622d-4f96-a51b-d2f069665c65uid: d00f9026-2bc0-4720-b944-4b3816ea1d2d Распечатать конечный поток эндобдж 5 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > эндобдж 29 0 объект > эндобдж 30 0 объект > эндобдж 31 0 объект > поток HWnFȯd # B.[!} p ~ (0ckS? bfe}> !! ۍ Jul 贻 S, UIF5euϹCYJc7

    TL494 Datasheet, Pinout, Application Circuits

    IC TL494 — это универсальная ИС с ШИМ-управлением, которую можно разными способами применять в электронных схемах. В статьях мы подробно обсуждаем основные функции ИС, а также способы ее использования в практических схемах.

    Общее описание

    ИС TL494 специально разработана для схем применения однокристальной широтно-импульсной модуляции. Устройство в основном создано для схемы управления источниками питания, размеры которых можно эффективно рассчитать с помощью этой ИС.

    Устройство поставляется со встроенным переменным генератором, ступенью регулятора запаздывания (DTC), триггером для импульсного управления, прецизионным регулятором 5 В, двумя усилителями ошибки и некоторыми схемами выходного буфера.

    Усилители ошибок имеют диапазон синфазных напряжений от -0,3 В до VCC-2 В.

    Компаратор управления мертвым временем настроен на фиксированное значение смещения для обеспечения постоянного мертвого времени приблизительно 5%.

    Функцию встроенного генератора можно обойти, подключив вывод RT № 14 ИС к опорному выводу № 14 и подав внешний пилообразный сигнал на вывод № 5 CT.Эта возможность также позволяет синхронно управлять множеством микросхем TL494, имеющих разные шины питания.

    Выходные транзисторы внутри микросхемы с плавающими выходами устроены так, чтобы обеспечивать выход с общим эмиттером или эмиттерно-повторителем.

    Устройство позволяет пользователю получать либо двухтактное, либо несимметричное колебание на своих выходных контактах путем соответствующей настройки контакта № 13, который является контактом функции управления выходом.

    Внутренняя схема не позволяет любому из выходов генерировать двойной импульс, в то время как ИС подключена к двухтактной функции.

    Назначение и конфигурация контактов

    Следующая диаграмма и пояснения предоставляют нам основную информацию о функции контактов для IC TL494.

    • Контакты №1 и №2 (1 IN + и 1IN-): это неинвертирующие и инвертирующие входы усилителя ошибки (операционный усилитель 1).
    • Контакт №16, Контакт №15 (1 IN + и 1IN-): Как указано выше, это неинвертирующие и инвертирующие входы усилителя ошибки (операционный усилитель 2).
    • Контакт № 8 и Контакт № 11 (C1, C2): это выходы 1 и 2 ИС, которые соединяются с коллекторами соответствующих внутренних транзисторов.
    • Контакт № 5 (CT): Этот контакт необходимо подключить к внешнему конденсатору для установки частоты генератора.
    • Контакт № 6 (RT): Этот контакт необходимо подключить к внешнему резистору для установки частоты генератора.
    • Контакт № 4 (DTC): Это вход внутреннего операционного усилителя, который контролирует работу ИС в режиме мертвого времени.
    • Контакт № 9 и Контакт № 10 (E1 и E2): это выходы ИС, которые соединяются с выводами эмиттера внутреннего транзистора.
    • Контакт № 3 (обратная связь): как следует из названия, этот вход , вход , используется для интеграции с выходным сигналом выборки для желаемого автоматического управления системой.
    • Контакт № 7 (Земля): Этот контакт является контактом заземления ИС, который необходимо подключить к 0 В источника питания.
    • Контакт № 12 (VCC): Это контакт положительного питания ИС.
    • Контакт № 13 (O / P CNTRL): Этот контакт может быть настроен для включения вывода IC в двухтактном или несимметричном режиме.
    • Контакт № 14 (REF): Этот вывод выхода обеспечивает постоянный выход 5 В, который можно использовать для фиксации опорного напряжения для операционных усилителей ошибки в режиме компаратора.

    Абсолютные максимальные характеристики

    • (VCC) Максимальное напряжение питания, которое не должно превышать = 41 В
    • (VI) Максимальное напряжение на входных контактах, которое не должно превышать = VCC + 0,3 В
    • (VO) Максимальное выходное напряжение на коллекторе внутренний транзистор = 41 В
    • (IO) Максимальный ток на коллекторе внутреннего транзистора = 250 мА
    • Максимальный нагрев пайки вывода IC на 1.6 мм (1/16 дюйма) от корпуса ИС, но не более 10 секунд при 260 ° C
    • Tstg Диапазон температур хранения = –65/150 ° C

    Рекомендуемые условия эксплуатации

    Следующие данные дают вам рекомендуемые напряжения и токи, которые могут использоваться для работы ИС в безопасных и эффективных условиях:

    • Питание VCC: от 7 В до 40 В
    • VI Напряжение на входе усилителя: от -0,3 В до VCC — 2 В
    • VO Напряжение коллектора транзистора = 40 , Ток коллектора для каждого транзистора = 200 мА
    • Ток на контакте обратной связи: 0.3 мА
    • fOSC Диапазон частот генератора: от 1 кГц до 300 кГц
    • CT Значение конденсатора синхронизации генератора CT: от 0,47 нФ до 10000 нФ
    • RT Значение резистора синхронизации генератора RT: от 1,8 кОм до 500 кОм.

    Схема внутренней компоновки

    Как использовать IC TL494

    В следующих параграфах мы узнаем о важных функциях IC TL494 и о том, как использовать ее в схемах ШИМ.

    Обзор: Микросхема TL494 спроектирована таким образом, что она не только имеет важные схемы, необходимые для управления импульсным источником питания, но также решает несколько фундаментальных проблем и сводит к минимуму необходимость в дополнительных схемах, необходимых в общей структуре. .

    TL494 — это схема управления с фиксированной частотой и широтно-импульсной модуляцией (ШИМ).

    Функция модуляции выходных импульсов достигается, когда внутренний генератор сравнивает свою пилообразную форму волны через синхронизирующий конденсатор (CT) с обеими парами управляющих сигналов.

    Выходной каскад переключается в период, когда пилообразное напряжение выше, чем сигналы управления напряжением.

    По мере увеличения управляющего сигнала время, когда входной сигнал пилы выше, уменьшается; следовательно, длина выходного импульса уменьшается.

    Триггер управления импульсом поочередно направляет модулированный импульс на каждый из двух выходных транзисторов.

    Регулятор опорного напряжения 5 В

    TL494 создает внутреннее опорное напряжение 5 В, которое подается на вывод REF.

    Это внутреннее задание помогает выработать стабильное постоянное задание, которое действует как предварительный регулятор для обеспечения стабильного питания. Затем это задание надежно используется для питания различных внутренних каскадов ИС, таких как управление логическим выходом, импульсное управление триггером, генератор, компаратор управления мертвым временем и компаратор ШИМ.

    Генератор

    Генератор генерирует положительную пилообразную форму волны для мертвого времени и компараторов PWM, чтобы эти каскады могли анализировать различные управляющие входные сигналы.

    Это RT и CT, которые отвечают за определение частоты генератора и, таким образом, могут быть запрограммированы извне.

    Пилообразный сигнал, генерируемый генератором, заряжает внешний синхронизирующий конденсатор CT постоянным током, определяемым дополняющим резистором RT.

    Это приводит к созданию кривой напряжения с линейным нарастанием. Каждый раз, когда напряжение на трансформаторе тока достигает 3 В, генератор быстро его разряжает, что впоследствии перезапускает цикл зарядки. Ток для этого цикла зарядки рассчитывается по формуле:

    Icharge = 3 V / RT ————— (1)

    Период пилообразной формы волны определяется по формуле:

    T = 3 В x CT / Icharge ———- (2)

    Таким образом, частота генератора определяется по формуле:

    f OSC = 1 / RT x CT —— ———- (3)

    Однако эта частота генератора будет совместима с выходной частотой, если выход настроен как несимметричный.При настройке в двухтактном режиме выходная частота будет 1/2 от частоты генератора.

    Следовательно, для несимметричного выхода можно использовать приведенное выше уравнение № 3.

    Для двухтактного приложения формула будет:

    f = 1 / 2RT x CT —————— (4)

    Контроль запаздывания

    Установка выводов мертвого времени регулирует минимальное мертвое время ( периодов отключения между двумя выходами ).

    В этой функции, когда напряжение на выводе DTC превышает линейное напряжение генератора, заставляет выходной компаратор отключать транзисторы Q1 и Q2.

    IC имеет внутренне установленный уровень смещения 110 мВ, что гарантирует минимальное мертвое время около 3%, когда вывод DTC соединен с линией заземления.

    Время простоя можно увеличить, подав внешнее напряжение на контакт № 4 DTC. Это позволяет иметь линейный контроль над функцией мертвого времени от 3% по умолчанию до максимум 100%, через переменный вход от 0 до 3,3 В.

    Если используется полный диапазон управления, выход может IC может регулироваться внешним напряжением, не нарушая конфигурации усилителя ошибки.

    Функция мертвого времени может использоваться в ситуациях, когда необходимо дополнительное управление рабочим циклом выходного сигнала.

    Но для правильного функционирования необходимо обеспечить, чтобы этот вход был либо подключен к уровню напряжения, либо заземлен и никогда не должен оставаться плавающим.

    Усилители ошибки

    Два усилителя ошибки ИС имеют высокий коэффициент усиления и смещены через шину питания ИС ИС. Это включает диапазон синфазного входного сигнала от -0.От 3 В до VI — 2 В.

    Оба усилителя ошибки внутренне настроены на работу как несимметричные усилители с однополярным питанием, в которых каждый выход имеет только активную высокую способность. Благодаря этой возможности усилители могут активироваться независимо для удовлетворения сужающейся потребности в ШИМ.

    Поскольку выходы двух усилителей ошибки связаны как логические элементы ИЛИ с входным узлом компаратора ШИМ, преобладает усилитель, который может работать с минимальным выходным импульсом.

    Выходы усилителей смещены с помощью слаботочного стока, так что выход IC обеспечивает максимальную ШИМ, когда усилители ошибок находятся в нефункциональном режиме.

    Вход управления выходом

    Этот вывод IC может быть настроен так, чтобы позволить выходу IC работать либо в несимметричном режиме, когда оба выхода колеблются вместе параллельно, или в двухтактном режиме, генерируя поочередно колеблющиеся выходные сигналы.

    Вывод управления выходом работает асинхронно, что позволяет ему напрямую управлять выходом ИС, не влияя на каскад внутреннего генератора или каскад управления импульсами триггера.

    Этот вывод обычно конфигурируется с фиксированным параметром в соответствии со спецификациями приложения.Например, если выходы IC предназначены для работы в параллельном или несимметричном режиме, вывод управления выходом постоянно соединен с линией заземления. Из-за этого каскад импульсного управления внутри ИС отключается, и альтернативный триггер останавливается на выходных контактах.

    Кроме того, в этом режиме импульсы, поступающие на управление мертвой выдержкой и компаратор ШИМ, передаются вместе обоими выходными транзисторами, позволяя выходу включаться / выключаться параллельно.

    Для получения двухтактной выходной операции вывод управления выводом должен быть просто подключен к опорному выводу + 5В (REF) ИС.В этом состоянии каждый из выходных транзисторов попеременно включается через каскад триггера управления импульсами.

    Выходные транзисторы

    Как видно на второй схеме сверху, микросхема состоит из двух выходных транзисторов, которые имеют незафиксированные выводы эмиттера и коллектора.

    Обе эти плавающие клеммы рассчитаны на прием (прием) или истечение (выдачу) тока до 200 мА.

    Точка насыщения транзисторов меньше 1.3 В в режиме с общим эмиттером и менее 2,5 В в режиме с общим коллектором.

    Они имеют внутреннюю защиту от короткого замыкания и перегрузки по току.

    Цепи приложений

    Как объяснялось выше, TL494 — это в первую очередь ИС контроллера ШИМ, поэтому основные схемы приложений в основном основаны на ШИМ.

    Ниже обсуждается пара примеров схем, которые можно модифицировать различными способами в соответствии с индивидуальными требованиями.

    Солнечное зарядное устройство с использованием TL494

    На следующем рисунке показано, как можно эффективно настроить TL494 для создания импульсного импульсного источника питания 5 В / 10 А.

    В этой конфигурации выход работает в параллельном режиме, и поэтому мы видим, что вывод № 13 управления выходом подключен к земле.

    Здесь также очень эффективно используются два усилителя ошибки. Один усилитель ошибки управляет обратной связью по напряжению через R8 / R9 и поддерживает постоянный выход на желаемом уровне (5 В)

    Второй усилитель ошибки используется для управления максимальным током через R13.

    Инвертор TL494

    Вот классическая схема инвертора, построенная на IC TL494.В этом примере выход настроен для работы в двухтактном режиме, и поэтому вывод управления выводом здесь подключен к опорному сигналу + 5 В, который достигается с вывода № 14. Первый из контактов также настроен точно так, как описано в вышеприведенной таблице данных.

    Заключение

    Микросхема TL494 — это ИС управления ШИМ с высокоточным выходом и средствами управления обратной связью, обеспечивающими идеальное импульсное управление для любого желаемого применения схемы ШИМ.

    Он во многом похож на SG3525 и может использоваться как эффективная замена ему, хотя номера контактов могут быть разными и не совсем совместимыми.

    Если у вас есть какие-либо вопросы относительно этой микросхемы, не стесняйтесь задавать их в комментариях ниже, я буду рад помочь!

    Ссылка: техническое описание TL494

    Часто задаваемые вопросы: широтно-импульсная модуляция (ШИМ)

    Какова цель широтно-импульсной модуляции (ШИМ)?

    В импульсных преобразователях

    используется силовой полупроводниковый переключатель (обычно MOSFET) для управления магнитным элементом (трансформатором или катушкой индуктивности), выпрямленный выход которого создает постоянное напряжение.Обычно КПД превышает 90%, что примерно в два раза выше, чем у линейного регулятора.

    Импульсный преобразователь изменяет свой выходной постоянный ток в ответ на изменения нагрузки. Одним из широко используемых подходов является широтно-импульсная модуляция (ШИМ), которая управляет выходной мощностью переключателя питания, изменяя время его включения и выключения. Отношение времени включения к времени периода переключения — это рабочий цикл. Рис. 1 показывает три различных варианта рабочего цикла ШИМ: 10%, 50% и 90%. Рабочий цикл и мощность редко имеют какое-либо отношение друг к другу.Вместо этого рабочий цикл регулируется для регулирования выходного напряжения.

    На рис. 2 показан упрощенный ШИМ-контроллер, используемый в импульсном преобразователе. Во время работы часть выходного постоянного напряжения возвращается в усилитель ошибки, который заставляет компаратор управлять временем включения и выключения ШИМ. Если отфильтрованный выходной сигнал силового полевого МОП-транзистора изменяется, обратная связь регулирует рабочий цикл, чтобы поддерживать выходное напряжение на желаемом уровне.

    Для генерации сигнала ШИМ усилитель ошибки принимает входной сигнал обратной связи и стабильное опорное напряжение для создания выходного сигнала, соответствующего разнице двух входов.Компаратор сравнивает выходное напряжение усилителя ошибки с линейным нарастанием (пилообразной кривой) генератора, создавая модулированную ширину импульса. Выход компаратора подается на логическую схему переключения, выход которой поступает на выходной драйвер для внешнего силового полевого МОП-транзистора. Логика переключения обеспечивает возможность включения или отключения сигнала ШИМ, подаваемого на силовой полевой МОП-транзистор.

    Почему схема ШИМ нуждается в компенсации крутизны?

    Рабочие циклы ШИМ выше 50% требуют компенсационного линейного изменения, называемого компенсацией наклона, чтобы избежать нестабильности.Более высокие рабочие циклы требуют еще большей компенсации крутизны. То есть, если переключатель PWM включен более чем на 50% периода переключения, необходимо использовать компенсацию крутизны для поддержания стабильности системы. При традиционной компенсации крутизны переключающий преобразователь может стать нестабильным для рабочих циклов, приближающихся к 100%, поэтому необходимо использовать специальную компенсацию крутизны. На рисунке 3 показан ШИМ-контроллер, который использует компенсацию наклона.

    Схема блокировки пониженного напряжения (UVLO) устанавливает рабочий диапазон входного постоянного напряжения ШИМ-контроллера.Есть два порога UVLO. При превышении порога включения UVLO включается ШИМ-контроллер. Если входное напряжение постоянного тока падает ниже порога отключения UVLO, ШИМ-контроллер выключается.

    Контроллеры

    PWM могут иметь несимметричные или сдвоенные выходы. Типы с двумя выходами предназначены для двухтактных, мостовых или синхронных выпрямительных МОП-транзисторов. В этих конфигурациях контроллер ШИМ должен либо точно установить мертвое время двух выходов, либо предотвратить их перекрытие. Если оба выхода могут быть включены одновременно, это приведет к увеличению рассеиваемой мощности и электромагнитных помех.Некоторые контроллеры PWM включают специальные схемы для управления мертвым временем или перекрытием.

    Большинство микросхем ШИМ-контроллеров обеспечивают токоограничивающую защиту, измеряя выходной ток. Если вход считывания тока превышает определенный порог, он завершает текущий цикл (поцикловое ограничение тока).

    Компоновка схемы имеет решающее значение при использовании резистора считывания тока, который должен быть типа с низкой индуктивностью. Найдите его и конденсатор фильтра считывания тока очень близко и подключите непосредственно к выводу PWM IC.Кроме того, все чувствительные к шуму соединения заземления малой мощности должны быть соединены вместе рядом с заземлением ИС, а одно соединение должно быть выполнено с заземлением питания (точка заземления сенсорного резистора).

    В большинстве микросхем ШИМ-контроллеров частоту генератора задает один внешний резистор или конденсатор. Чтобы установить желаемую частоту генератора, используйте уравнение в таблице данных контроллера для расчета номинала резистора.

    Некоторые преобразователи ШИМ включают возможность синхронизации генератора с внешними часами с частотой, которая либо выше, либо ниже частоты внутреннего генератора.Если синхронизация не требуется, подключите вывод синхронизации к земле, чтобы предотвратить шумовые помехи.

    Функция плавного пуска позволяет преобразователю мощности постепенно достигать начальной установившейся рабочей точки, тем самым снижая пусковые напряжения и скачки напряжения. В большинстве ИС с ШИМ внешний конденсатор устанавливает время плавного пуска.

    Высокоскоростной широтно-импульсный модулятор

    MCP1631 и MCP1631V компании

    Microchip Technology — это высокоскоростные аналоговые ШИМ.. В сочетании с микроконтроллером MCP1631 / MCP1631V может управлять рабочим циклом энергосистемы, обеспечивая регулирование выходного напряжения или тока. Микроконтроллер можно использовать для регулировки выходного напряжения или тока, частоты переключения и максимального рабочего цикла, обеспечивая при этом дополнительные функции, делающие систему питания более интеллектуальной, надежной и адаптируемой.

    MCP1631 (управление в режиме тока) и MCP1631V (управление в режиме напряжения) содержит ШИМ, драйвер MOSFET, усилитель считывания тока, усилитель считывания напряжения и компаратор перенапряжения.Эти ИС работают с входным напряжением от 3,0 В до 5,5 В. Дополнительные функции включают отключение, блокировку пониженного напряжения (UVLO) и защиту от перегрева.

    Для приложений, которые работают от входа высокого напряжения, MCP1631HV и MCP1631VHV могут работать напрямую от входа от + 3,5 В до + 16 В. Для этих приложений доступен дополнительный регулируемый выход с низким падением напряжения + 5 В или + 3,3 В, который может обеспечивать ток до 250 мА для питания микроконтроллера и вспомогательных цепей

    Внутренний ШИМ MCP1631 / MCP1631V состоит из усилителя ошибки, высокоскоростного компаратора и защелки.Выход усилителя сравнивается либо с MCP1631 CS (вход датчика первичного тока), либо с MCP1631V VRAMP (вход линейного изменения напряжения) высокоскоростного компаратора. Когда сигнал CS или VRAMP достигает уровня выходного сигнала усилителя ошибки, цикл включения завершается, и внешний переключатель блокируется до начала следующего цикла.

    Среди типичных приложений для MCP1631 / MCP1631V можно назвать зарядные устройства с программируемым переключателем, способные заряжать различные химические соединения, такие как литий-ионные, никель-металлогидридные, никель-кадмиевые и свинцово-кислотные, сконфигурированные как одиночные или множественные элементы.Комбинируя с небольшим микроконтроллером, можно также разработать интеллектуальные конструкции светодиодного освещения и программируемые источники напряжения и тока топологии SEPIC.

    Входы MCP1631 / MCP1631V могут быть подключены к контактам ввода / вывода микроконтроллера для гибкости проектирования. Дополнительные функции, интегрированные в MCP1631HV / MCP1631VHV, обеспечивают формирование сигнала и функции защиты для зарядных устройств или источников постоянного тока.

    Контроллер повышения тока в режиме

    Показано на Рисунок 3 — это Texas Instruments TPS40210 и TPS40211 с широким входным напряжением (4.От 5 В до 52 В), несинхронные регуляторы повышения. Они подходят для топологий, где требуется N-канальный полевой транзистор с заземленным источником, включая повышающий, обратный, SEPIC и различные приложения для светодиодных драйверов.

    Особенности устройства включают программируемый плавный пуск, защиту от перегрузки по току с автоматическим повторным запуском и программируемую частоту генератора. Управление в текущем режиме обеспечивает улучшенную переходную характеристику и упрощенную компенсацию контура. Основное различие между этими двумя частями — это опорное напряжение, до которого усилитель ошибки регулирует вывод FB.

    Резистор и конденсатор, подключенные к выводу RC, определяют частоту генератора. Конденсатор заряжается примерно до VVDD / 20 током, протекающим через резистор, а затем разряжается внутренним транзистором TPS40210. Вы можете синхронизировать TPS40210 и TPS40211 с внешними часами, частота которых должна быть выше, чем частота свободного хода преобразователя.

    Контроллеры tps40210 и TPS40211 являются контроллерами режима тока и используют резистор, включенный последовательно с силовым полевым транзистором на клеммах источника, для измерения тока как для управления режимом тока, так и для защиты от перегрузки по току.Резистор считывания тока служит как ограничителем тока, так и датчиком управления режимом тока, поэтому его следует выбирать на основе как стабильности (ограничение управления в режиме тока), так и ограничения тока (ограничение устройства).

    Стандартный повышающий преобразователь не имеет метода ограничения тока от входа к выходу в случае короткого замыкания на выходе. Если требуется защита от такого типа событий, необходимо использовать некоторую вторичную схему защиты.

    Характеристикой режима управления пиковым током является состояние, при котором контур управления током становится нестабильным.Контур напряжения поддерживает регулирование, но пульсирующее напряжение на выходе увеличивается. и колеблется на половине частоты переключения.

    Для исправления этого состояния необходимо применить компенсирующую рампу от генератора к сигналу, идущему на широтно-импульсный модулятор. В TPS40210 / 11 пилообразный сигнал генератора применяется в фиксированной величине к широтно-импульсному модулятору. Чтобы преобразователь не перешел в субгармоническую нестабильность, крутизна сигнала линейного нарастания компенсации должна составлять не менее половины спада сигнала линейного нарастания тока.Поскольку компенсационная рампа является фиксированной, она накладывает ограничение на выбор резистора считывания тока. Наклон компенсации крутизны должен быть не менее половины, а предпочтительно равным крутизне спада формы сигнала измерения тока, наблюдаемой на широтно-импульсном модуляторе.Максимальное значение устанавливается на резистор измерения тока при работе в непрерывном режиме с коэффициентом заполнения 50% или больше.

    В целях проектирования следует применить некоторый запас к фактическому значению резистора считывания тока.В качестве отправной точки фактический выбранный резистор должен быть на 80% или меньше, чем номинал резистора, который делает линейную кривую компенсации крутизны равной половине крутизны спада тока.

    Синхронный понижающий ШИМ-контроллер постоянного тока

    ADP1828 — это универсальный синхронный понижающий контроллер напряжения с ШИМ-режимом. Он управляет N-канальным силовым каскадом для регулирования выходного напряжения от 0,6 В до 85% входного напряжения и рассчитан на работу с большими МОП-транзисторами для стабилизаторов точки нагрузки.ADP1828 идеально подходит для широкого спектра приложений с высоким энергопотреблением, таких как питание ввода-вывода DSP и ядра процессора, а также универсальное питание в телекоммуникациях, медицинской визуализации, ПК, играх и промышленных приложениях.

    Показано на рис. 4 , ADP1828 работает при входных напряжениях смещения от 3 до 18 В с внутренним LDO, который генерирует выход 5 В для входных напряжений смещения более 5,5 В. Цепи управления, драйверы затворов и Внешний повышающий конденсатор работает от выхода LDO для входа между 5.5 В и 18 В. PV питает привод затвора полевого МОП-транзистора нижнего уровня (DL), а IN питает внутреннюю схему управления. Подключите PV к PGND с конденсатором 1 мкФ или более, а от IN к GND с конденсатором 0,1 мкФ или более. Обойдите вход питания в PGND с помощью конденсатора подходящей емкости.

    Частота коммутации также может быть синхронизирована с внешними часами до двухкратной номинальной частоты генератора. Выход часов можно использовать для синхронизации дополнительных ADP1828 (или контроллеров ADP1829), что устраняет необходимость во внешнем источнике синхронизации.

    ADP1828 включает в себя защиту плавного пуска для ограничения любого пускового тока от входного источника питания во время запуска, защиту от обратного тока во время плавного пуска для предварительно заряженного выхода, а также регулируемую схему ограничения тока без потерь с использованием внешнего датчика MOSFET RDS (ON). . Для приложений, требующих упорядочивания источников питания, ADP1828 предоставляет отслеживающий вход, который позволяет отслеживать выходное напряжение во время запуска, выключения и отказов. Дополнительные функции контроля и управления включают тепловую перегрузку, блокировку при пониженном напряжении и исправное энергопотребление.

    ADP1828 работает в диапазоне температур перехода от -40 ° C до + 125 ° C и доступен в 20-выводном корпусе QSOP

    Дифференциальный сигнал по сравнению с несимметричными входами

    Основные отличия и когда использовать эти
    Опубликовано 17 апреля 2019 г.

    Один из наиболее часто задаваемых вопросов — это разница между несимметричными и дифференциальными входами сигналов и в каких приложениях их следует учитывать.

    Дифференциальные сигналы

    Схема входного сигнала, в которой SIGNAL LO и SIGNAL HI электрически плавают относительно АНАЛОГОВОГО ЗАЗЕМЛЕНИЯ. Например, аналогово-цифровая карта с дифференциальным входом будет иметь один вывод HI (+) и один вывод LOW (-) для каждого входа.

    Также будет контакт LLGND (LOW LEVEL GROUND), который можно использовать, если требуется заземление. Это позволяет измерять разность напряжений между двумя сигналами, привязанными к одной и той же земле, и обеспечивает превосходное подавление синфазных помех.

    Где использовать входы дифференциальных сигналов?

    При наличии электромагнитных помех (EMI) или радиочастотных помех (RFI) на ОБЕИХ сигнальных проводах может возникать напряжение.
    Усилитель дифференциального входа будет отклонять НАПРЯЖЕНИЕ ОБЩЕГО РЕЖИМА при условии, что напряжение синфазного сигнала плюс входной сигнал не превышает спецификации CMR устройства. Воздействие на несимметричный вход обычно представляет собой колебание напряжения между высоким уровнем сигнала и землей сигнала.

    Несимметричные входы

    Один вход сигналов не имеет диапазона общего режима, потому что есть только ОДИН провод низкого уровня, который используется всеми входами.

    Например, если у вас есть плата A / D с 16 несимметричными входами, будет 16 линий HIGH (+) и одна линия LOW (-) (иногда называемая LLGND). На некоторых картах может быть несколько линий LOW, чтобы обеспечить дополнительные места для заземления, однако эти линии связаны вместе и в основном являются одним и тем же.

    Когда использовать несимметричные или дифференциальные сигналы?

    Дифференциальные входы обеспечивают более стабильные показания при наличии электромагнитных или радиопомех, поэтому их рекомендуется использовать всякий раз, когда обычно возникают проблемы с шумом. Это особенно верно при измерении входов термопар, тензодатчиков и датчиков давления мостового типа, поскольку они выдают очень слабые сигналы, которые очень подвержены шуму. Несимметричные входы дешевле и обеспечивают вдвое большее количество входов для разъема проводки того же размера, поскольку для них требуется только один аналоговый вход HIGH (+) на канал и один LLGND (-), общий для всех входов.Для дифференциальных сигналов требуются входные сигналы HIGH и LOW для каждого канала и один общий общий LLGND. Несимметричные входы экономят место на разъемах, сокращают расходы и упрощают установку.

    Техническое обучение Техническое обучение Общий источник питания

    — обзор

    5.2.2 Отказ по общей причине (CCF)

    В то время как простые модели избыточности предполагают, что отказы являются как случайными, так и независимыми, при моделировании отказов по общей причине (CCF) учитываются отказы, которые связаны между собой из-за некоторой зависимости и, следовательно, происходят одновременно или по крайней мере, в пределах достаточно короткого интервала, чтобы восприниматься как одновременное.

    Два примера:

    (a)

    Наличие водяного пара в газе, вызывающее заклинивание двух клапанов из-за обледенения.В этом случае интервал между двумя отказами может составлять порядка дней. Однако, если интервал между контрольными испытаниями для этого неактивного отказа составляет два месяца, то два отказа будут, по сути, одновременными.

    (b)

    Выпрямительные диоды несоответствующего номинала на идентичных сдвоенных печатных платах выходят из строя одновременно из-за переходного процесса напряжения.

    Обычно причины возникают по следующим причинам:

    (a)

    Требования: неполные или противоречивые

    (b)

    Конструкция: стандартные источники питания, программное обеспечение, ЭМС, шум

    (c)

    Производство: недостатки компонентов, связанных с партиями

    (d)

    Техническое обслуживание / эксплуатация: проблемы, связанные с деятельностью человека или испытательного оборудования

    (e)

    Окружающая среда: температурные циклы, электрические помехи и т. Д.

    Защита от CCF включает в себя конструктивные и эксплуатационные особенности, которые формируют критерии оценки, приведенные в Приложении 3.

    CCF часто доминируют в ненадежности резервных систем в силу подавления функции случайного совпадающего отказа резервной защиты. Рассмотрим дублированную систему на рисунке 5.2. Интенсивность отказов резервного элемента (другими словами, совпадающие отказы) можно рассчитать по формуле, приведенной в таблице 5.1, а именно 2λ 2 MDT.Типичные показатели частоты отказов 10 на миллион часов (10 −5 на час) и время простоя 24 часа приводят к частоте отказов 2 × 10 −10 × 24 = 0,0048 на миллион часов. Однако, если только один отказ из 20 имеет такую ​​природу, что влияет на оба канала и, таким образом, нарушает избыточность, необходимо добавить последовательный элемент, показанный как λ 2 на рисунке 5.3, частота отказов которого составляет 5% × 10 −5 = 0,5 на миллион часов, что на два порядка чаще. 5%, используемые в этом примере, известны как коэффициент БЕТА.Эффект состоит в том, чтобы заглушить избыточную часть прогноза, и поэтому важно включить CCF в модели надежности. Такая чувствительность сбоя системы к CCF делает акцент на достоверности оценки CCF и, таким образом, оправдывает усилия по улучшению моделей.

    Рисунок 5.3. Блок-схема надежности, показывающая CCF.

    На рисунке 5.3 (λ 1 ) — это частота отказов одного резервного блока, а (λ 2 ) — это скорость CCF, такая, что (λ 2 ) = β (λ 1 ) для Модель BETA, которая предполагает, что фиксированная доля отказов возникает по общей причине.Вклад в BETA разделен на группы по конструктивным и эксплуатационным характеристикам, которые, как считается, влияют на степень CCF. Таким образом, множитель БЕТА складывается путем сложения вкладов каждого из ряда факторов в каждой группе. Эта модель частичного бета-тестирования (как она известна) включает следующие группы факторов, которые представляют защиту от CCF:

    Сходство (Разнесение между резервными единицами снижает CCF)

    Разделение (Физическое расстояние и препятствия уменьшают CCF)

    Сложность (более простое оборудование менее подвержено CCF)

    Анализ (FMEA и анализ полевых данных помогут снизить CCF)

    Процедуры (контроль модификаций и технического обслуживания может снизить CCF)

    Обучение (разработчики и специалисты по обслуживанию могут помочь уменьшить CCF, понимая основные причины)

    Контроль (контроль окружающей среды может снизить восприимчивость к CCF, e.g., защита дублированных инструментов от атмосферных воздействий)

    Испытания (Экологические испытания могут удалить особенности конструкции, подверженные CCF, например, испытание на электромагнитное излучение)

    Предполагается, что модель Partial BETA состоит из количество частичных βs, каждое из которых обусловлено различными группами причин CCF. Затем β оценивается путем анализа и оценки каждого из факторов (например, разнообразия, разделения).

    Модель BETAPLUS была разработана на основе метода частичной бета-версии, потому что:

    Она объективна и обеспечивает максимальную прослеживаемость при оценке BETA.Другими словами, выбор результатов контрольного списка при оценке дизайна может быть записан и пересмотрен.

    Любой пользователь модели может разработать контрольные списки для дальнейшего учета любых значимых причинных факторов отказа, которые могут быть восприняты.

    Можно откалибровать модель по фактической частоте отказов, хотя и с очень ограниченными данными.

    Существует достоверная взаимосвязь между контрольными списками и анализируемыми функциями системы.Таким образом, этот метод, вероятно, будет приемлемым для неспециалистов.

    Метод аддитивной оценки позволяет отдельно взвешивать частичные составляющие β.

    Метод β подтверждает прямую связь между (λ 2 ) и (λ 1 ), как показано на рисунке 5.3.

    Он допускает предполагаемую «нелинейность» между значением β и оценкой в ​​диапазоне β.

    Модель BETAPLUS включает следующие усовершенствования:

    (a) Категории факторов

    Принимая во внимание, что существующие методы полагаются на единственное субъективное суждение о количестве баллов в каждой категории, метод BETAPLUS предоставляет ответы на конкретные вопросы проектирования и эксплуатации в каждой категории.

    (b) Подсчет баллов

    Максимальный балл по каждому вопросу был взвешен путем калибровки результатов оценок с известными полевыми оперативными данными.

    (c) Учет охвата диагностикой

    Поскольку CCF не является одновременным, увеличение частоты автотестов или контрольных испытаний снизит β, поскольку сбои могут произойти не в один и тот же момент.

    (d) Разделение контрольных списков в соответствии с эффектом диагностики

    Два столбца используются для оценок контрольного списка. Столбец (A) содержит баллы для тех функций защиты от CCF, которые воспринимаются как улучшенные за счет увеличения частоты диагностики.Столбец (B), однако, содержит баллы для тех функций, которые, как считается, не улучшаются за счет повышения частоты диагностики. В некоторых случаях оценка была разделена между двумя столбцами, где считается, что затронуты некоторые, но не все аспекты функции (см. Приложение 3).

    (e) Создание модели

    Модель позволяет изменять оценку в зависимости от частоты и охвата диагностического теста. Баллы в столбце (A) изменяются путем умножения на коэффициент (C), полученный из соображений, связанных с диагностикой.Этот балл (C) основан на частоте диагностики и охвате. (C) находится в диапазоне 1–3. Коэффициент «S», используемый для получения BETA, затем оценивается из RAW SCORE:

    S = RAWSCORE = (∑A × C) + ∑B

    (f) Нелинейность

    В настоящее время нет данных CCF для обоснования отступая от предположения, что по мере уменьшения (т. е. улучшения) БЕТА последовательных улучшений становится пропорционально труднее достичь. Таким образом, предполагается, что отношение коэффициента BETA к RAW SCORE [(ΣA × C) + ΣB] является экспоненциальным, и эта нелинейность отражается в уравнении, которое переводит исходную оценку в коэффициент BETA.

    (g) Тип оборудования

    Оценка была разработана отдельно для программируемого и непрограммируемого оборудования, чтобы отразить несколько разные критерии, применимые к каждому типу оборудования.

    (h) Калибровка

    Модель откалибрована по полевым данным.

    Критерии оценки были разработаны для охвата каждой из категорий (т.е. разделение, разнообразие, сложность, оценка, процедуры, компетентность, экологический контроль и экологический тест).Вопросы были собраны так, чтобы отразить вероятные особенности, защищающие от CCF. Затем оценки были скорректированы с учетом относительного вклада в CCF в каждой области, как показано в данных автора. Значения оценок были взвешены для калибровки модели по данным.

    При ответе на каждый вопрос (в Приложении 3) может быть выставлен балл меньше максимального 100%. Например, в первом вопросе, если суждение таково, что только 50% кабелей разделены, тогда 50% максимальных оценок (15 и 52) могут быть введены в каждый из столбцов (A) и (B) (7). .5 и 26).

    Контрольные списки представлены в двух формах (перечислены в Приложении 3), поскольку вопросы, применимые к программируемому оборудованию, будут немного отличаться от вопросов, необходимых для непрограммируемых элементов (например, полевых устройств и контрольно-измерительных приборов).

    Заголовки (расширенные баллами в Приложении 3):

    (1)

    Разделение / сегрегация

    (2)

    Разнообразие

    (3) Сложность / Дизайн / Применение / Зрелость / Опыт

    (4)

    Оценка / анализ и обратная связь данных

    (5)

    Процедуры / человеческий интерфейс

    (6)

    Компетентность / Обучение / Культура безопасности

    (7)

    Экологический контроль

    (8)

    Экологические испытания

    интервал (Оценка диагностического фактора)

    Чтобы установить оценку (C), необходимо учитывать влияние частоты диагностики.Охват диагностикой, выраженный в процентах, представляет собой оценку доли отказов, которые будут обнаружены контрольным или автоматическим тестом. Это можно оценить путем суждения или, более формально, путем применения FMEA на уровне компонентов, чтобы решить, будет ли каждый отказ обнаружен диагностикой.

    Экспоненциальная модель используется для отражения возрастающих трудностей в дальнейшем сокращении БЕТА по мере увеличения оценки. Это отражено в следующем уравнении, которое разработано в Smith D J, 2000, «Развитие использования данных о частоте отказов»:

    ß = 0.3exp (−3,4S / 2624)

    Однако базовая модель BETA применяется к простому резервированию «один из двух». Другими словами, с парой избыточных элементов «главным событием» является отказ обоих элементов. Однако по мере увеличения числа систем, за которые проголосовали (другими словами, N> 2), доля отказов по общей причине меняется, и значение β необходимо изменять. Причину этого можно понять, рассмотрев два крайних случая:

    1 из 6

    В этом случае для работы требуется только один из шести элементов, и можно допустить до пяти сбоев.Таким образом, в случае отказа по общей причине необходимо, чтобы еще пять отказов были спровоцированы общей причиной. Это менее вероятно, чем случай «один из двух», и β будет меньше (см. Таблицы ниже).

    5 из 6.

    В этом случае для работы требуются пять из шести элементов, и можно допустить только один отказ. Таким образом, в случае отказа по общей причине есть пять элементов, к которым могут относиться отказы по общей причине. Это более вероятно, чем случай «один из двух», и β будет больше (см. Таблицы ниже).

    Эта область вызывает много споров. Эмпирических данных нет, и модели являются предметом предположений, основанных на мнениях различных авторов. Между различными предложениями нет большого соответствия. Таким образом, это очень противоречивая и неопределенная область. Первоначальные предложения были взяты из статьи SINTEF (в 2006 г.), которые были факторами MooN, которые изначально использовались в пакете Technis BETAPLUS версии 3.0. Документ SINTEF был пересмотрен (в 2010 г.) и снова в 2013 г. Рекомендации IEC 61508 (2010 г.) аналогичны, но не идентичны (Таблица 5.10). Значения SINTEF (2013) показаны в Таблице 5.11. Компромисс BETAPLUS (теперь версия 4.0) показан в Приложении 3.

    Таблица 5.10. Коэффициент BETA (MooN) IEC 61508.

    M = 1 M = 2 M = 3 M = 4
    N = 2 1
    N = 3 0,5 1,5
    N = 4 0,3 0.6 1,75
    N = 5 0,2 ​​ 0,4 0,8 2

    Таблица 5.11. Фактор BETA (MooN) SINTEF (2013).

    M = 1 M = 2 M = 3 M = 4
    N = 2 1
    N = 3 0,5 2
    N = 4 0.3 1,1 2,8
    N = 5 0,2 ​​ 0,8 1,6 3,6

    OpAmp_BJT — Примеры — База знаний AWR

    Где найти этот пример

    Выберите в меню Справка> Открыть примеры … и введите либо имя примера, указанное выше, либо одно из ключевых слов ниже.

    Или в Версии 14 или выше вы можете открыть проект прямо с этой страницы, используя эту кнопку.Обязательно выберите Включить управляемую справку , прежде чем нажимать эту кнопку.

    Открыть пример установки

    Замечания по проектированию

    Этот проект необходимо сохранить в папке с разрешением на запись для моделирования с извлечением.

    Перед симуляцией выберите File> Save Project As … и сохраните в другой папке.

    Операционный усилитель проекта

    Этот проект демонстрирует способность Analog Office выполнять полную характеристику высокочастотного операционного усилителя в Generic BiCMOS PDK.Проект можно охарактеризовать как автоматизированный генератор электронных таблиц, в котором многие важные показатели качества усилителя определяются по колебаниям температуры, источника питания, технологических углов и нагрузочного конденсатора. Проект подчеркивает мощь среды проектирования, управляемой измерениями, где изменения в конструкции можно быстро изменить одним щелчком мыши.

    Обзор

    Операционный усилитель состоит из нескольких каскадов, указанных на принципиальной схеме:

    1. Входной каскад — классическая схема усиления пары дифференциальных транзисторов, управляющая согласованными резистивными нагрузками и смещенная источником тока

    2. Напряжение , устройство сдвига уровня — дифференциальные эмиттерные повторители, которые приводят в действие диодные и резистивные устройства сдвига уровня в дифференциально-несимметричный преобразователь

    3. Дифференциально-несимметричный преобразователь — как следует из названия, эта схема преобразует дифференциальное напряжение через переключатель уровня в несимметричный сигнал

    4.Общий эмиттер , каскад усиления с нагрузкой источника тока PMOS. Этот каскад управляется выходом преобразователя и генерирует большую часть усиления усилителя

    .

    5. Эмиттерный повторитель , выходной каскад со смещением источника тока NPN — этот каскад буферизует высокоомный узел каскада усиления от выходной нагрузки

    6. Сеть смещения — эта схема устанавливает все источники тока в усилителе.

    Проект состоит из четырех испытательных стендов, по одному для измерения характеристик постоянного, переменного тока, SRR и переходных характеристик.Усилитель также рассчитан на работу в углах положительного напряжения источника питания от 3,7 до 4,3 В и в диапазоне нагрузочных конденсаторов 0–1 пФ. Соответственно, блоки развертки параметров включены во все испытательные стенды для источника питания и нагрузочного конденсатора. На испытательных стендах также определяются температура и угол поворота технологического процесса. В этот проект включены следующие измерения:

    Измерения

    Рабочие условия постоянного тока, включая мощность, выходное напряжение и входное напряжение смещения, показаны на графиках , выходное напряжение постоянного тока и мощность постоянного тока .

    Коэффициенты производительности переменного тока, включая коэффициент усиления и фазы малого сигнала в разомкнутом и замкнутом контуре, а также положительное / отрицательное соотношение источника питания, показаны на графиках с заголовком Усиление разомкнутого и замкнутого контура и коэффициенты подавления фазы и .

    Переходное превышение единичного шага во временной области, а также перегрузочные характеристики положительного и отрицательного импульса большого сигнала показаны на графиках с заголовком LS Step Resp и SS Step Resp .

    В проекте также показана подробная схема операционного усилителя в 2 и 3D , а также межкомпонентная сеть, используемая для извлечения RLCK .

    Демо

    Цель этой демонстрации — продемонстрировать зрителю возможности среды, основанной на измерениях AWR, для автоматизированного и всестороннего определения характеристик усилителя в нескольких конфигурациях испытательного стенда. Дизайнеры, использующие другие системы EDA, неохотно вносят улучшения в свою конструкцию в конце цикла из-за трудоемких переделок, необходимых для повторной проверки конструкции после изменения.Повторное использование и эффективность среды AWR позволяет легко вносить изменения в конструкцию и быстро изменять ее характеристики. Действуйте следующим образом:

    — После запуска проекта просмотрите схему и различные испытательные стенды / графики, чтобы показать разнообразие включенных конфигураций и измерений. Откройте форму Output Equations , чтобы показать, как некоторые измерения могут быть построены на основе математических выражений результатов моделирования. Вы также можете показать компоновку в 2 и 3D, а также извлеченный вид сети.

    � Затем щелкните значок Analyze , чтобы начать процесс определения характеристик. Этот процесс займет около 2 минут.

    � На этом этапе вы можете заморозить графики, а затем перейти к принципиальной схеме и изменить параметр конструкции (подойдет любой параметр конденсатора, резистора или транзистора). Сделайте изменение незначительным, чтобы не вызвать неисправности цепи. Одним щелчком по значку Analyze обновляются все измерения.

    � Теперь перейдите к одному из испытательных стендов, измените параметр и заново выполните анализ .Это продемонстрирует, как (например, электронная таблица Excel) повторно оцениваются только те измерения, которые зависят от измененного параметра. Диапазон напряжения питания в блоке развертки «VccDC» на испытательном стенде постоянного тока является хорошим выбором. Измените его с «3,7, 4,3» на «3,5, 4,0» и обратите внимание, что выполняется только моделирование постоянного тока и обновляются только измерения постоянного тока.

    Добыча

    Обратите внимание, что Extract Блоки в тестовых стендах отключены. Extrac t можно включить, щелкнув правой кнопкой мыши блок Extract и выбрав Toggle Enable .В представлении макета выберите только извлекаемые сети iNets. Если выбраны другие элементы, такие как конденсаторы и транзисторы, механизм извлечения выдаст ошибки. После того, как желаемые сети iNets выбраны, щелкните правой кнопкой мыши любой выбранный iNet и выберите Element Properties и перейдите к Model Options в диалоговом окне. Отметьте опцию Enable и Имя группы : EM_Extract. Во время следующего запуска моделирования iNets будут извлечены для выбранных паразитов.RLCK или подмножество можно выбрать, дважды щелкнув блок EXTRACT и выбрав вкладку NET-AN Options . Здесь доступны все варианты RLCK и подмножеств. Моделирование каждого iNet в проекте фактически вызовет проблемы сходимости в этом конкретном проекте. Таким образом, требуется выбрать только критически важные iNets.

    Схема — SRRTestBnch

    Схема расположения — Generic_Opamp

    График — усиление и фаза разомкнутого и замкнутого контура

    График — Коэффициенты отклонения предложения

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован.