Как определить на конденсаторе плюс и минус: Определение полярности электролитического конденсатора по внешнему виду

Содержание

Как определить полярность, не имея приборов

Как определить полярность неизвестного вам источника питания? Давайте предположим, что вам  в руки попался какой-нибудь блок питания постоянного напряжения, батарейка или аккумулятор. Но… на нем не обозначено, где плюс, а где минус. Да, дело быстро решается мультиметром, но что делать, если у вас его нет под рукой? Спокойно. Есть три проверенных рабочих способа.

Определяем полярность с помощью воды


Думаю, это самый простой способ определения полярности. Первым делом наливаем водичку в какую-нибудь емкость. Желательно не металлическую. От источника питания с неизвестными клеммами отводим два провода, отпускаем их в нашу водичку и смотрим внимательно на контакты. На минусовом выводе начнут выделяться пузырьки водорода. Начинается электролиз воды.

Как определить полярность с помощью сырого картофеля


Берем сырую картофелину и разрезаем ее пополам.

Втыкаем в нее два наших провода от неизвестного источника постоянного тока и  ждем 5-10 мин.

Около плюсового вывода на картошке образуется светло-зеленый цвет.

 [quads id=1]

Как определить полярность с помощью компьютерного вентилятора


Берем вентилятор от компьютера. Он имеет два вывода, а иногда даже три. Третий может быть желтый провод – датчик оборотов. Но его мы все равно использовать не будем. Нас волнуют только два провода – это красный и черный. Если на красном проводе будет плюс, а на черном –  минус, то вентилятор у нас будет вращаться

Если же не угадали, то лопасти будут стоять на месте.

Вентилятор используем, если известно, что напряжение источника питания от 3 и до 20 Вольт. Подавать на вентилятор напряжение более 20 Вольт чревато для него летальным исходом.

Если не понятно по картинкам, смотрите видео про полярность:

Как проверить конденсатор самым простым, дешевым мультиметром

Как проверить обычным мультиметром исправность конденсатора?

Итак, у вас есть проблема — нужно проверить исправность конденсатора, но подходящего измерительного прибора с функцией измерения емкости под рукой нет. Что же делать? Бежать в магазин и купить нужный мультиметр? Если вы будете постоянно иметь дело с измерением емкости и проверкой конденсаторов, такой шаг будет более чем оправдан, но для разовой, простой проверки подойдет и обычный, самый простой прибор.

Так что давайте узнаем, как можно проверить работоспособность конденсатора с помощью данного измерительного прибора, который вообще не имеет функции измерения емкости конденсаторов. Единственный недостаток этого способа — измерение емкости конденсатора таким способом просто невозможно.

Так что же нужно делать?

Начнем проверку. Представим, что вы уже разобрали прибор или устройство на котором нужно проверить конденсаторы, или же они и вовсе отпаяны. С последними работать будет даже проще. Но если конденсаторы нужно только проверить, лучше не выпаивать их с устройства. Особенно если сомневаетесь, что получится их выпаять и припаять на место.

  • Итак, включаем мультиметр в режим измерения сопротивления. При этом выставляем самый высокий предел.

  • Неважно, выпаян конденсатор или находится на плате — главное подключить щупы к выводам конденсатора. Но некоторые радиолюбители советуют отпаять хотя бы одну ножку конденсатора, чтобы устранить «паразитные помехи» прочих компонентов сети.

  • Теперь наблюдаем за показаниями. На экране устройства вы увидите, что сопротивление конденсатора постепенно возрастает. Если это так — конденсатор исправен.

 

Как это работает?

Когда конденсатор набирает заряд его сопротивление, соответственно, растет. Если вы наблюдаете рост сопротивления, значит, конденсатор заряжается. При измерении сопротивления мультиметры подают через щупы определенное, фиксированное напряжение. Именно оно и заряжает конденсатор. Если сопротивление остается постоянным — конденсатор пробит и не набирает заряд.

Для такой вот проверки конденсатора годиться любая модель, которая может измерять сопротивление. Это может быть как универсальный цифровой прибор, так и простой, аналоговый измеритель. Но вот снимать данные простым, аналоговым инструментом интереснее.

  • Аналоговый мультиметр должен быть включен в режим измерения сопротивления. Можно выбрать средний диапазон.
  • Как и в случае с цифровым, дотроньтесь щупами к контактам конденсатора.
  • Наблюдайте за стрелкой. Она будет до определенного момента ползти вверх, а потом падать назад. Если это происходит, значит, конденсатор заряжается и разряжается.
Как видите, все достаточно просто!

Стоит заметить, что мультиметры не смогут измерить емкость конденсатора. Хотя в большинстве случаев достаточно просто проверить работоспособность компонента.

Поделиться в соцсетях

Как правильно заменить конденсатор — ООО «УК Энерготехсервис»

В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.

Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

  • Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.
  • В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться.
    А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса).

На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма.

Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали.

Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить.

А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить.

А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие.

В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

 Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть.

Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов.

Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) моральную и материальную поддержку.

Замена конденсаторов на материнской плате: основы пайки — Александр Павлов

Реклама

Ремонт и настройка компьютера Вызов на дом. Решаем любую задачу. Профессиональная настройка. Бесплатная диагностика и консультация.

Всех приветствую! Сегодня я покажу вам основы замены конденсаторов на материнской плате. Будет производиться замена вышедшего из строя конденсатора.

Освоив данный метод пайки, вы легко сможете ремонтировать материнские платы, блоки питания и видеокарты.

Итак, для пайки нам понадобятся следующие инструменты:

  • ремонтируемая деталь (например, материнка),
  • пальник или термофен,
  • припой,
  • флюс,
  • оплётка,
  • плоскогубцы,
  • конденсатор,
  • обезжириватель,
  • кисточка.

Полный набор

Вздутие конденсаторов вызывает повышенное напряжение, высокая температура или заводской брак.

Как подобрать нужный конденсатор

На каждом конденсаторе имеется маркировка. Там указано 4 параметра:

  • напряжение в вольтах,
  • емкость в микрофарадах,
  • рабочая температура,
  • маркировка полярности.

Что касается маркировки полярностей на конденсаторе, то минус отмечается серой или золотой полосой. На ремонтируемой детали (в моем случае это материнская плата) полярность обозначается в виде двухцветного круга, рассеченного пополам.

Закрашенная часть круга — это минус. Конденсатор ставится на плату минус к минусу, плюс к плюсу.

Единственное исключение – это платы фирмы Asus. У них маркировка полярности сделана наоборот, т.е. закрашенный полукруг у них — это плюс.
Именно на материнской плате Asus мы сегодня и будем проводить замену конденсаторов.

Нам нужно определить, какие конденсаторы вздулись или полопались. Мне пришлось ломать «кондер» для демонстрации ???? Истинно вздутые конденсаторы выглядят немного иначе, но, надеюсь, что суть вам ясна.

Также мы должны найти этот конденсатор на обратной стороне платы.

Итак, мы с вами определили конденсатор под замену с обеих сторон материнки. Теперь можно приступать к пайке.

Отпаиваем старый конденсатор

Не забываем о технике безопасности и подкладываем под плату силиконовый коврик.

На ножки целевого конденсатора наносим флюс для того, чтобы пайка получилась качественной.

Для того что бы выпаять старый конденсатор было проще, желательно нагреть место пайки термофеном. Выставляем температуру на 300-320 градусов на паяльной станции.

И прогреваем место пайки на расстоянии 4-5 см.

Далее подготавливаем паяльник – для этого смачиваем жало флюсом и накладываем припой, делая каплю «жидкой пайки» на конце жала.

Должно получиться вот так.

Это нужно для того, чтобы старый (заводской) припой смешался с новым. Это упростит пайку.
Не забываем выставить температуру 300-320 градусов. Это температура плавления припоя.

  • На заготовленные ножки конденсатора прикладываем паяльник так, чтобы капля полностью покрыла ножку.

Стараемся вытащить конденсатор с другой стороны. Ни в коем случае не тянем его руками, так как можно сильно обжечься.

Можно поставить материнку вот так

После того, как вы выпаяли старый конденсатор, нужно убрать припой из отверстий на плате.
Это можно сделать оловоотсосом или же оплёткой. По мне так проще второй вариант.

Положите оплетку поверх отверстий и ведите жалом, пока не увидите, что медные усики забрали весь припой на себя.
Для большей эффективности сквозь оплётку проткните отверстия, но не прикладывайте чрезмерных усилий, так как можно повредить текстолит.

Ставим новый конденсатор

И вот финишная прямая.
Вставляем новый конденсатор в выпаянное нами отверстие.

Не забывайте про полярность на плате и конденсаторе (в особенности, что касается плат Asus).

  1. С обратной стороны у нас должно получиться вот так.

Наносим флюс по самый верх этих ножек и, проводя каплей «жидкой пайки» снизу вверх по ножке, запаиваем деталь. Припой сам сольётся по ножке и встанет на плату. Если конденсатор не шатается, значит, у вас всё получилось.

По окончании работ обязательно снимите остатки флюса обезжиривателем.
Дело в том, что оставленный флюс начнет разрушать текстолит на плате.

Ножки нужно будет обрезать, но прямо под корень их не рубите, так как конденсатор просто выпадет, и вся работа пойдет насмарку.

Вот и всё. Материнская плата снова работает, компьютер включается, а вы прокачали свой скил!
Финальный результат выглядит так.

Те самые ножки

Лицевая сторона. Все готово!

Всем пока! 

Проверка и замена пускового конденсатора

Для чего нужен пусковой конденсатор?

  • Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.
  • Поэтому их ещё называют фазосдвигающими.
  • Место установки — между линией питания и пусковой обмоткой электродвигателя. 
  • Условное обозначение конденсаторов на схемах
  • Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С  и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

  1. Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).
  2. Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.
  3. Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:
  • 400 В — 10000 часов
  • 450 В —  5000 часов
  • 500 В —  1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

  •    
  • Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)
  • К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).
  • После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.
  • Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ=С1+С2+…Сп

  1. То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.
  2. Такая замена абсолютно равноценна одному конденсатору большей ёмкости.
  3. Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый. 

  • Самые доступные конденсаторы такого типа CBB65.
  • Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.
  • Наиболее распространённые конденсаторы   этого типа CBB60, CBB61.
  • Клеммы для удобства соединения сдвоенные или счетверённые.

Замена электролитического конденсатора ⋆ diodov.net

При выполнении ремонта или модернизации электронного устройства часто требуется замена электролитического конденсатора вышедшего из строя.

Однако аналога со стопроцентным совпадением может не оказаться в наличие, но имеются другие накопители, имеющие некоторые отличия от оригинала.

В этой статье мы рассмотрим, на какие параметры следует ориентироваться, чтобы правильно выполнить замену электролитического конденсатора для любой случая, при этом не нарушить режим работы электронного устройства.

Электролитический конденсатор характеризуется тремя основными параметрами: ориентируясь на которые, достаточно просто правильно подобрать замену. К этим параметрам относятся допустимое напряжение, емкость и температура.

Однако, прежде чем перейти к рассмотрению указанных параметров, следует не забывать, что данный накопитель энергии является полярным, поэтому необходимо соблюдать полярность. Положительный вывод паяем к плюсу, а отрицательный – к минусу.

Чтобы не спутать выводы вдоль всего корпуса со стороны отрицательного вывода наносится знак минус «-», более подробно о маркировке написано здесь.

Замена электролитического конденсатора – основные правила

Чаще всего ремонт блока питания любого электронного устройства заключается в замене вздутого или высохшего электролитического конденсатора.

При такой неисправности достаточно выпаять вышедший из строя конденсатор и заменить его новым.

Однако довольно редко имеется в наличие аналогичный электролитический конденсатор, но во многих случаях его можно заменить другим, имеющим несколько отличительные параметры.

В первую очередь следует ориентироваться на напряжение. При отсутствии подходящего номинала подойдет конденсатор с большим напряжением. Например, если на корпусе оригинального конденсатора написано 35 В, то подойдет аналог с напряжением 50 В, 63 В, 100 В и т.д. – в сторону увеличения. Нельзя выполнять замену на аналог с более низким напряжением: 25 В, 16 В или 9 В. Иначе он взорвется.

Получить требуемое напряжение можно путем последовательного соединения нескольких накопителей, о чем более подробно с примерами расчетов рассказано здесь.

Следующий параметр – емкость. Как правило, в преобладающем большинстве случаев, электролитические конденсаторы, особенно большой емкости, применяются для сглаживания пульсаций выпрямленного напряжения: чем большая емкость, тем лучше сглаживаются пульсации. Поэтому, в случае отсутствия накопителя такой же емкости, его можно заменить аналогом большей емкости.

Если отсутствуют электролитические конденсаторы нужной емкости и достаточно места на печатной плате устройства, то вместо одного накопителя можно впаять несколько параллельно соединенных. При этом емкости их будут складываться, о чем подробно с примерами расчетов рассказано здесь.

Урок 2.3 — Конденсаторы

Конденсатор встречается в наборах Мастер Кит (да и вообще в электронных устройствах) почти так же часто, как и резистор. Поэтому важно хотя бы в общих чертах представлять его основные характеристики и принцип работы.

Принцип работы конденсатора

В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Чем больше отношение площади пластин к толщине диэлектрика – тем выше ёмкость конденсатора.

Чтобы избежать физического увеличения размеров конденсатора до огромных размеров, конденсаторы изготавливают многослойными: например, сворачивают ленты пластин и диэлектриков в рулон.

Так как любой конденсатор имеет диэлектрик, то он не способен проводить постоянный ток, но он может сохранять электрический заряд, приложенный к его обкладкам, и в нужный момент отдавать его. Это важное свойство

Давайте договоримся: радиодеталь мы называем конденсатором, а его физическую величину – ёмкостью. То есть правильно сказать так: «конденсатор имеет ёмкость 1 мкФ», но некорректно сказать: «замени на плате вон ту ёмкость». Вас, конечно, поймут, но лучше соблюдать «правила хорошего тона».

Электрическая ёмкость конденсатора – это главный его параметрЧем больше ёмкость конденсатора, тем больший заряд он может сохранить. Электрическая ёмкость конденсатора измеряется в Фарадах, обозначается F.

1 Фарад — очень большая ёмкость (земной шар имеет ёмкость менее 1Ф), поэтому для обозначения ёмкости в радиолюбительской практике используются следующие основные размерные величины — префиксы: µ (микро), n (нано) и p (пико):• 1 микроФарад — 10-6 (одна миллионная часть), т.е.

1000000µF = 1F• 1 наноФарад — 10-9 (одна миллиардная часть), т.е. 1000nF = 1µF

• p (пико) — 10-12 (одна триллионная часть), т.е. 1000pF = 1nF

Как и Ом, Фарад – это фамилия физика. Поэтому, как культурные люди, пишем прописную букву «Ф»: 10 пФ, 33 нФ, 470 мкФ.

Номинальное напряжение конденсатораРасстояние между пластинами конденсатора (особенно конденсатора большой ёмкости) очень мало, и достигает единиц микрометра. Если приложить к обкладкам конденсатора слишком высокое напряжение, слой диэлектрика может быть нарушен.

Поэтому каждый конденсатор имеет такой параметр, как номинальное напряжение. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Но лучше, когда номинальное напряжение конденсатора несколько выше напряжения в схеме.

То есть, например, в схеме с напряжением 16В могут работать конденсаторы с номинальным напряжением 16В (в крайнем случае), 25В, 50В и выше. Но нельзя ставить в эту схему конденсатор с номинальным напряжением 10В.

Конденсатор может выйти из строя, причём часто это происходит с неприятным хлопком и выбросом едкого дыма.

Как правило, в радиолюбительских конструкциях для начинающих не используется напряжение питания выше 12В, а современные конденсаторы чаще всего имеют номинальное напряжение 16В и выше. Но помнить о номинальном напряжении конденсатора очень важно.

Типы конденсаторовО разнообразных конденсаторах можно написать много томов. Впрочем, это уже сделали некоторые другие авторы, поэтому я расскажу только самое необходимое: конденсаторы бывают неполярные и полярные (электролитические).

  • Неполярные конденсаторыНеполярные конденсаторы (в зависимости от типа диэлектрика подразделяются на бумажные, керамические, слюдяные…) могут устанавливаться в схему как угодно – в этом они похожи на резисторы.
  • Как правило, неполярные конденсаторы имеют относительно небольшую ёмкость: до 1 мкФ.

Маркировка неполярных конденсаторовНа корпус конденсатора нанесён код из трёх цифр. Первые две цифры определяют значение ёмкости в пикофарадах (пФ), а третья – количество нулей. Так, на изображённом ниже рисунке на конденсатор нанесён код 103. Определим его ёмкость:

10 пФ + (3 нуля) = 10000 пФ = 10 нФ = 0,01 мкФ.

Конденсаторы ёмкостью до 10 пФ маркируются по-особенному: символ «R» в их кодировке обозначает запятую. Теперь Вы можете определить ёмкость любого конденсатора. Приведённая ниже табличка поможет Вам проверить себя.

Код Номинал Код Номинал Код Номинал
1R0 1 пФ 101 100 пФ 332 3.3 нФ
2R2 2.2 пФ 121 120 пФ 362 3.6 нФ
3R3 3.3 пФ 151 150 пФ 472 4.7 нФ
4R7 4.7 пФ 181 180 пФ 562 5.6 нФ
5R1 5.1 пФ 201 200 пФ 682 6.8 нФ
5R6 5.6 пФ 221 220 пФ 752 7.5 нФ
6R8 6.8 пФ 241 240 пФ 822 8.2 нФ
7R5 7.5 пФ 271 270 пФ 912 9.1 нФ
8R2 8.2 пФ 301 300 пФ 103 10 нФ
100 10 пФ 331 330 пФ 153 15 нФ
120 12 пФ 361 360 пФ 223 22 нФ
150 15 пФ 391 390 пФ 333 33 нФ
160 16 пФ 431 430 пФ 473 47 нФ
180 18 пФ 471 470 пФ 683 68 нФ
200 20 пФ 511 510 пФ 104 0.1 мкФ
220 22 пФ 561 560 пФ 154 0.15 мкФ
240 24 пФ 621 620 пФ 224 0.22 мкФ
270 27 пФ 681 680 пФ 334 0.33 мкФ
300 30 пФ 751 750 пФ 474 0.47 мкФ
330 33 пФ 821 820 пФ 684 0.68 мкФ
360 36 пФ 911 910 пФ 105 1 мкФ
390 39 пФ 102 1 нФ 155 1.5 мкФ
430 43 пФ 122 1.2 нФ 225 2.2 мкФ
470 47 пФ 132 1.3 нФ 475 4.7 мкФ
510 51 пФ 152 1.5 нФ 106 10 мкФ
560 56 пФ 182 1.8 нФ
680 68 пФ 202 2 нФ
750 75 пФ 222 2.2 нФ
820 82 пФ 272 2.7 нФ
910 91 пФ 302 3 нФ

Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Например, вместо конденсатора 15 нФ набор может комплектоваться конденсатором 10 нФ или 22 нФ, и это не отразится на работе готовой конструкции. Керамические конденсаторы не имеют полярности и могут устанавливаться в любом положении выводов.

Некоторые мультиметры (кроме самых бюджетных) имеют функцию измерения ёмкости конденсаторов, и Вы можете воспользоваться этим способом.

Полярные (электролитические) конденсаторыЕсть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика. Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки.

Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора.

Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны.

На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате. Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу.

Также допустима замена конденсатора на аналогичный с бОльшим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.

Внешний вид электролитического конденсатора (правильно установленный на плату конденсатор)

Скачать урок в формате PDF

Как правильно заменить конденсатор на материнской плате

Всем привет, сегодня я покажу на своем примере, как можно быстро и правильно произвести замену вздутых конденсаторов на материнской плате компьютера своими руками.

Сразу предупрежу, замена конденсаторов своими руками требует определенных знаний и умений пользоваться таким инструментом как паяльник. В моем случае это китайская паяльная станция Lukey 702.

Моя паяльная станция

Если опыта в пользовании паяльника нет, то сто раз подумайте, прежде чем браться за замену конденсаторов.

На материнской плате компьютера, как правило, конденсаторы начинают выходить из строя через 3-4 года пользования им. Но бывают и исключения, в т.ч. брак. В современных реалиях это нормальное явление, поэтому будем менять их на новые.

Признаки неисправности конденсаторов в материнской плате компьютера

  1. При включении компьютер сначала включается, потом выключается. После трех-четырех раз включения он включается нормально, и грузится операционная система. После этого он работает без проблем, но только стоит его выключить и включить на следующий день, проблема опять повторяется.

    Эти признаки говорят о том, что возможно у вас высохли и вздулись конденсаторы на плате.

  2. Компьютер просто не включается. Возможно причиной не включения могут быть также конденсаторы, как на материнской плате, так и в блоке питания.
  3. При включении или работе компьютера часто появляется синий экран с указанием ошибки.

    Это также может быть причиной вздутия и неисправностей конденсаторов на материнской плате. Как правило это первичные признаки, когда конденсаторы только начинают вздуваться.

Начнем с внешнего осмотра, откройте боковую крышку системного блока и внимательно осмотрите материнскую плату.

Как правило визуально можно понять, что конденсаторы на материнской плате вздулись и требуют замены.

Вздутые конденсаторы на материнской платеЕще один пример вздутых конденсаторов

Постарайтесь осмотреть материнскую плату очень внимательно, т.к. если человек неопытен в данном вопросе, он не всегда с первого раза может выявить неисправный конденсатор. Далее, нам необходимо найти новые конденсаторы на замену.

Обычно есть два варианта, либо взять со старой материнской платы, либо купить в любом магазине радиодеталей, они совсем не дорогие.

Алгоритм простой, выпаиваете старые конденсаторы, смотрите номинал и покупаете новые, лучше взять с собой старые, чтобы показать продавцу (главное, необходимо помнить, что по вольтажу можно брать больше, но не меньше). Например, стояли 6.3 вольт 1500 мкф, на замену можно поставить 16 вольт 1500 мкф.

Конденсатор 6.3 В 1500 мкф

Опять же, если у вас или у ваших друзей есть старая материнская плата, можете выпаять и с нее. Ну вот, у нас все готово для перепайки, начнем замену конденсаторов на материнской плате своими руками.

Повторюсь, на всякий пожарный, замена конденсаторов на материнской плате своими руками требует определенных умений работы с паяльником, если же вы готовы, приступаем.

При замене конденсаторов нам потребуется следующее:

  • Паяльник
  • Канифоль
  • Припой
  • Зубочистки
  • Бензин очищенный (для удаления канифоли с платы)

Примерный набор для пайки конденсаторов

После того как мы выпаяли старый конденсатор, нужно прочистить отверстия для впаивания нового, иначе старый припой просто не даст его нормально вставить. Будем использовать для этого зубочистку или скрепку.

Аккуратно вставляем ее в отверстия и нагреваем паяльником с обратной стороны, чтобы вытолкнуть весь лишний припой.

Еще раз повторюсь, делать это нужно очень аккуратно, так как материнская плата многослойная и можно повредить дорожки внутри платы.

После прочистки отверстий вставляем конденсатор на место, обязательно соблюдая полярность.

Обычно, на материнской плате есть обозначения установки конденсаторов (закрашенная сторона это — минус), но лучше всего запомнить как был установлен старый.

Данное правило не относится к материнским платам ASUS, у них все наоборот. На самих конденсаторах также есть обозначения в виде полосы со знаком .

Полоса с минусом на конденсаторе

Конечная стадия нашего процесса, запаиваем конденсатор с обратной стороны платы. Затем обрезаем ножки конденсаторов.

Финальная стадия замены конденсаторов на материнской плате

Не забываем очистить плату от флюса или канифоли.

Ну вот и все, на этом наш ремонт завершен. Главное не бояться и аккуратно пробовать паять своими руками. Скажу вам по секрету, это очень увлекательный процесс.

Конденсаторы в БП?

Напряжение написанное на конденсаторе показывает по сути его запас прочности. Подадите более высокое — его пробьет. Вы просто увеличили «запас прочности» конденсаторам, и ничего более.

Если погуглите на тему блоков питания — ставить конденсаторы с запасом по напряжению рекомендуют практически все, единственное ограничение здесь — запас лучше делать разумным, т.к. конденсаторы бОльшего вольтажа, как правило, крупнее и дороже.

По поводу увеличения емкости — совет верен в отношении фильтров блоков питания, но не в остальных случаях (скажем, если вы значительно измените емкость конденсатора в кроссовере колонок, вы измените частоты среза и вероятно подпортите звук).

В традиционных трансформаторных блоках питания (с импульсными не знаком) конденсатор гасит пульсации, там с увеличением емкости увеличивается и подавление пульсаций, но при этом на старте значительно возрастает ток первичной зарядки конденсатора.

Сейчас вы подвергаете их определенному воздействию, которое немного выше номинальных показателей По идее, все должно работать и так, но я бы перестраховался Капитан, перелогиньтесь.

Китайцы в бп ставят 16В 1000мФ кондюки, потому что они дешевле, по сути если поставить на 25В 1000мФ ничего не случится, просто у конюков будет больше запас для пикового напряжения. К примеру стандартные 16В 1000мФ вздываются или взрываются иногда не только от пиковых напряжений, но и от температуры в бп. Я тоже ставлю вместо 16В кондюков 25В и бп живет еще дольше, чем до поломки.

Нравится 1 Комментировать

У каждой микросхемы есть определенный «запас прочности», иными словами- разность показателей, в пределах которых все составляющие схемы работают нормально (простой пример- лампочка «Ильича», расчитанная на 220-240В.).

Сейчас вы подвергаете их определенному воздействию, которое немного выше номинальных показателей (12.28 вместо 12 и 5.13 вместо 5, хотя разумеется, что блок питания не выдает ровно 5 и ровно 12в). Основная характеристика конденсатора- это емкость. В Вашем случае она не изменилась.

По идее, все должно работать и так, но я бы перестраховался и сходил в магазин радиодеталей…

На материнской плате можно ставить электролитические конденсаторы меньшей емкости. Проверено. Я ставил вместо 3300 mkf 1800/ А с напряжением осторожнее. Дело в том, что конденсатор на 25 вольт при разрядке дает 25 вольт.

Если заменить конденсатор на 6,3 в на конд. 25 в, то возможен выход из строя материнки при разряде конденсатора при выключении компьютера. Хороше, если есть защита типа стабилитрона, варикапа… А если нет…

Однозначно — выход из строя материнки.

Как проверить конденсатор мультиметром — варианты измерения емкости

Далеко не все знают, что такое конденсатор. Изделие представляет собой элемент, благодаря которому удается наладить эксплуатацию различных систем и устройств. Элемент используется в большинстве бытовых приборов, и в процессе эксплуатации нередко выходит из строя.

Чтобы понять и определить поломку любого из конденсаторов, требуется проверка работоспособности элемента. Наиболее распространенный способ проверки – использование электронного прибора – мультиметра. Визуально определять поломку конденсатора не рекомендуется, так как это практически ничего не даст.

Что такое конденсатор?

Прежде чем говорить о том, как проверить конденсатор мультиметром, стоит разобраться, что представляет собой элемент и какие виды подобных элементов в принципе существуют. Конденсатор – это особое устройство, внутри которого скапливается электричество в виде заряда. Конструкция конденсатора включает две металлические пластины. Они расположены параллельно друг другу. Между этими пластинами находится диэлектрик. Известно два вида подобных элементов:

  1. Полярные. У них есть два полюса: плюс и минус. Для работы конденсатор подключают к электронным схемам, при этом таким образом, чтобы была соблюдена полярность. Если неправильно подключить элемент, он может сломаться. Стоит заметить, что абсолютно все конденсаторы с полюсами являются электролитическими.
  2. Неполярные. Их подключение не зависит от полюса, что можно назвать существенным плюсом. В качестве диэлектрика выступает бумага, слюда, стекло или керамика. Отличаются также небольшой емкостью.

Вид конденсатора влияет на методику измерений. Поэтому очень важно сначала разобраться с тем, какой тип элемента придется измерять, а затем уже приступить непосредственно к работам.

Что делать с прибором?

Прежде всего, владелец устройства должен выполнить визуальный осмотр конденсатора для выявления возможных трещин или вздутия. Например, довольно часто причиной поломки становится деформация электролитов, из-за чего внутри корпуса увеличивается давление, которое приводит к вздутию оболочки.

Если в результате осмотра никаких видимых деформаций обнаружено не было, то придется воспользоваться мультиметром. Прибор довольно простой, и с его помощью определить поломку сможет практически каждый. Стоит заметить, что измерения мультиметра показывают емкость конденсатора, и уже от этого нужно отталкиваться.

Подключение к полярному конденсатору

Если в руках такой конденсатор, то важно учитывать полярность при подключении щупов мультиметра. Логично, что минусовой щуп нужно подключить к минусовому разъему, а плюсовой – к плюсовому.

Подключение к неполярному конденсатору

Если речь идет о проверке «неполярника», то здесь учитывать расположение полюсов при подключении мультиметра не нужно, так как их у элемента нет. Однако стоит обратить внимание на выставление отметки 2МОм на приборе, иначе устройство покажет неисправность элемента.

Проверка в режиме омметра

Перед проверкой конденсатора мультиметром стоит полностью разрядить конденсатор. Чтобы это сделать, потребуется замкнуть его выводы на каком-либо металлическом предмете.
Всего будет проверено 4 элемента. Далее последовательность действий представляет собой следующее:

  1. Установить определенный режим мультиметра, воспользовавшись переключателем в секторе измерения сопротивления. Данный режим также называют режимом омметра. Используя такой режим, можно определить наличие короткого замыкания или проблем с сопротивлением элемента.
  2. Проверить полярные конденсаторы, емкость которых составляет 5,6 мкФ и 3,3 мкФ соответственно. Чтобы это сделать, нужно сначала выставить на экране мультиметра 2МОм, после чего приложить к каждому выводу щуп прибора.
  3. Посмотреть результат на дисплее мультиметра. Расти сопротивление будет стремительно.

При этом стоит отметить, что показания будут скакать и плавать, отчего возникнет неуверенность в правильности проводимой проверки. Но объясняется подобное довольно просто. Дело в том, что щупы начинают мгновенно заряжать конденсатор, подключаясь к нему, и элемент тут же начинает впитывать заряд. Таким образом, чем дольше щупы будут на конденсаторе, тем больше заряда он накопит и тем выше станет сопротивление. Скорость прямо пропорциональна емкости элемента.

Если оставить мультиметр подключенным на час, то спустя это время показатель сопротивления дойдет до бесконечности, и экран покажет единицу. Однако это произойдет только в случае исправных элементов.

Проверка остальных двух, но на этот раз уже неполярных, конденсаторов производится точно таким же образом. Нужно прикоснуться щупами выводов конденсатора и дождаться результатов на экране прибора. Единица подтвердит исправность каждого элемента.

Проверка емкости мультиметром

Емкость – одна из основных характеристик, которую также нужно проверить, если хочется определить поломку. Ее проверка также поможет понять, в порядке элемент или нет. Однако далеко не каждый знает, как измерить емкость конденсатора мультиметром.

У данной процедуры есть несколько нюансов. Например, измерить емкость с помощью щупов, просто подключив их, не удастся. Для проведения проверки стоит также воспользоваться специальными разъемами, имеющимися у мультиметра. Они означают полярность подключения. Процедура выполняется следующим образом:

  1. Нужно настроить мультиметр, выставив подходящую отметку – большую из ближайших.
  2. Взять конденсатор и вставить ножки элемента в разъемы мультиметра. Соблюдать правильность вставки в полюса не нужно, только если конденсатор неполярный.
  3. Посмотреть показания прибора. Если мультиметр показал то же число, что и на корпусе конденсатора, поломки нет, и с элементом все в порядке.

Если же во время замеров емкость на дисплее будет отличаться от указанной на корпусе, то стоит иметь в виду, что элемент сломан, и его нужно как можно быстрее заменить. Таким образом, ответ на вопрос: «Как прозвонить конденсатор мультиметром?» довольно прост: при помощи щупов.

Проверка стрелочным прибором

Еще один возможный вариант проверки конденсатора – это проверка измерительным стрелочным прибором. Методика проверки здесь немного отличается, и представляет она такую последовательность:

  1. Прежде всего нужно настроить тестер, нажав на него кнопку «rx».
  2. После этого потребуется вставить щупы прибора в рабочие контакты прибора со стрелкой.
  3. Далее необходимо полностью разрядить конденсатор и прикоснуться щупами мультиметра к его контактам.

Затем останется только следить за результатами. Если конденсатор в порядке, то стрелка прибора сначала отклонится от своего положения, а потом медленно вернется обратно, так как элемент будет постепенно набирать заряд. Чем быстрее возвращается стрелка, тем больше емкость элемента.

Также, если стрелка прибора зависла в одном положении или, наоборот, не хочет возвращаться на место, элемент вышел из строя. Стоит заметить, что этот способ проще в плане визуального отслеживания, так как следить приходится только за стрелкой, а не за цифровыми обозначениями прибора.

Конденсатор для компрессора

Конденсаторы CBB65 двойной емкости пусковые и рабочие

Конденсаторы двойные серии CBB65 – металлизированные полипропиленовые пленочные конденсаторы в металлическом (Al/Zn) корпусе с тремя выводами.

Номинальная емкость конденсаторов составляет 15 мкФ – 100 мкФ (для компрессора) и 1,5 мкФ – 6,0 мкФ (для вентилятора) при напряжении 450 В переменного тока частотой 50/60 Гц.

Допустимое отклонение ёмкости ±5%. Диапазон рабочих температур -40°С…+70°С. Другие серии сдвоенных конденсаторов: CBB65A-1, CBB65A-2.

Обозначение выводов конденсатора двойной емкости:

  • С (Common Connection) – общий вывод
  • HERM (Hermetically Sealed Compressor) – подключение рабочей обмотки компрессора
  • FAN (Fan Condenser) – подключение двигателя вентилятора

Применяются в качестве пускового и рабочего конденсатора при запуске и работе электродвигателей (фазосдвигающие конденсаторы) внешних блоков кондиционеров, в частности устанавливаются в кондиционерах LG, компрессоров холодильников, HVAC системах отопления вентиляции и кондиционирования воздуха, в различных машинах и агрегатах промышленного типа.

Перед подключением следует удостовериться в отсутствии накопленного заряда в конденсаторе. Разряд рекомендуется осуществлять при помощи резистора. Подсоединение проводов к клеммам 6,35х0,8 мм конденсатора осуществляется с использованием изолированных или неизолированных наконечников типа “мама”.

Габаритные и установочные размеры являются ориентировочными и могут отличаться от заявленных в зависимости от производителя. Наша компания гарантирует качество и работу конденсаторов в течение 2 лет с момента их приобретения, предоставляются паспорта качества.

Окончательная цена на пусковые конденсаторы CBB65 двойные зависит от количества, сроков поставки и формы оплаты.

*Примечание: Размеры являются ориентировочными и могут отличаться от заявленных в зависимости от производителя. Точные размеры уточняйте у наших специалистов.

Маркировка конденсаторов двойной ёмкости серии CBB65:

Расшифровка маркировки конденсаторов CBB65:

Размеры пусковых конденсаторов сдвоенных серии CBB65*:

*Примечание: Размеры являются ориентировочными и могут отличаться от заявленных в зависимости от производителя. Точные размеры уточняйте у наших специалистов.

Обозначение выводов и подключение конденсатора двойной ёмкости серии CBB65:

Калькулятор расчета ёмкости конденсатора

Пусковые и рабочие конденсаторы для электродвигателей подбирают исходя из необходимой ёмкости и номинального напряжения. С помощью онлайн-калькулятора можно произвести расчет ёмкости пускового и рабочего конденсатора для трехфазных электродвигателей при соединении обмоток двигателя по схеме “звезда” или “треугольник” и его подключении в однофазную сеть.

Сравнительные характеристики пусковых конденсаторов:

Устройство и производство пусковых конденсаторов

На торцевой части алюминиевого цилиндрического корпуса размещены жесткие неполярные вывода-клемы. Крепление проводов с помощью наконечников типа “мама” или с применением пайки. Крепление самого конденсатора осуществляется непосредственно за корпус.

Конденсаторы CBB65 с тремя выводами называют сдвоенными или двойные конденсаторы. Выводы с обозначением HERM предназначены для подключения обмотки двигателя компрессора, FAN – подключение обмотки двигателя вентилятора, C – общий вывод.

В качестве диэлектрика используется полипропиленовая пленка, электрод – металлизированная пленка, полученная напылением в вакууме, пропитка осуществляется касторовым маслом.

На боковой поверхности корпуса приведены рабочие технические параметры конденсатора (номинальная ёмкость, допустимое отклонение ёмкости, номинальное напряжение, рабочая частота и др.), выполненные путем штамповки или нанесением краски.

Каждый этап производства пусковых конденсаторов проходит всестороний контроль качества, все процессы изготовления максимально автоматизированы. Производственные процессы при изготовлении конденсаторов:

  • Порезка: электрод (металлизированная пленка) и диэлектрик (полипропиленовая пленка) нарезаются на полосы заданной длины и ширины.
  • Вывода конденсатора присоединяются к электродам, которые разделяются диэлектриком и сворачиваются в рулон, образуя “конденсаторный элемент”.
  • Пропитка: процесс вытеснения воды из “конденсаторного элемента” под давлением или под вакуумом и заполнения пор диэлектрика.
  • Сборка: “конденсаторный элемент” помещается в корпус. Готовый продукт получается после нанесенния изолирующей оболочки на корпус конденсатора.
  • Осмотр изделия, тестирование (тренировка), нанесенние маркировки.

Техника безопасности при работе с конденсаторами

Для предотвращения случайного прикосновения к токоведущим частям, находящихся под напряжением, их следует изолировать с помощью кожуха или сетчатого ограждения.

Корпус конденсатора необходимо надежно закрепить – в процессе эксплуатации под воздействием вибраций и сотрясений возможно смещение конденсаторов и попадание их в другие рабочие части оборудования.

Перед тестированием конденсаторов и их первоначальным подключением в схему следует убедиться, что в конденсаторах отсутствует накопленный заряд.

Поскольку конденсатор сохраняет накопленный заряд длительное время, то после каждого отключения необходимо проводить его разряд. В качестве разрядного сопротивления рекомендуется использовать резистор. У некоторых конденсаторов конструктивно предусмотрено наличие встроенного разрядного резистора.


Пусковой и рабочий конденсаторы кондиционера

Мы продолжаем цикл статей из серии “Сделай сам”. Сегодня поговорим о конденсаторах.

Во-первых, давайте договоримся не путать элементы, присутствующие в любом кондиционере: конденсатор и конденсер. Конденсер – элемент замкнутой системы, по которой циркулирует хладагент, это, собственно, радиатор, т.е. змеевик с оребрением, предназначенный для лучшего охлаждения газообразного хладагента в наружном блоке любой холодильной системы (например, кондиционера). Часто конденсер называют конденсатором. По сути правильно, ведь в нем хладагент из газообразного состояния начинает конденсироваться в жидкое (если быть совсем точным, паровая смесь охлаждается и подготавливается к тому, чтобы превратиться в жидкость под большим давлением).

Конденсатор в электрической цепи выполняет, в общем, ту же функцию, но для электричества. Говоря простым языком, электричество собирается в конденсаторе, чтобы при необходимости быть использованным, но как бы в больших количествах, чем оно находится в сети питания 220 В.

Если в кондиционере не пускается компрессор (т.е. кондиционер может работать просто как вентилятор, не охлаждая, неработающий компрессор можно определить по отсутствию характерного шума-гудения наружного блока, хотя при этом внутренний блок, кажется, работает нормально, но не охлаждает), первым делом подозрение падает на отсутствие напряжения питания. Если после теста мы выясняем, что питание 220 В на подводящих клеммах есть, то следующим в очереди будет рабочий (пусковой) конденсатор. Как было сказано выше и как следует из названия, пусковой конденсатор конденсирует энергию и использует большую силу тока, чтобы запустить компрессор, т.к. запуск требует больших энергозатрат. Сначала разберём маркировку, параметры и условное обозначение конденсаторов на схеме.

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме ясно из рисунка, буквенное обозначение – С и порядковый номер на схеме.

Основные параметры конденсаторов

Ёмкость конденсатора – параметр, который обозначает, какую энергию способен накопить конденсатор, а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Используемые номиналы рабочих и пусковых конденсаторов 1 мкФ (μF) – 100 мкФ (μF), чаще всего в быту встречаются конденсаторы емкостью 35 мкФ (μF) – 75 мкФ (μF).

Номинальное напряжение конденсатора – суть напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры. Производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах, например:

  • 400 В – 10000 часов
  • 450 В – 5000 часов
  • 500 В – 1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку с помощью мультиметра:

– отключаем питание кондиционера,

– разряжаем конденсатор, путём закорачивания его выводов, например отверткой,

– снимаем клемму (любую),

– устанавливаем прибор на измерение ёмкости конденсаторов,

– соединяем щупы к выводам конденсатора,

– считываем значение ёмкости.

Щупы на приборе нужно установить в гнёзда для измерения конденсаторов, com – common, общий, туда вставляем один из щупов, второй в гнездо с графическим обозначением конденсатора или буквенным – Сx

Ручку переключателя режимов ставим в режим измерения ёмкости конденсаторов. На корпусе конденсатора считываем значение его ёмкости и ставим заведомо больший предел измерения на приборе, например, номинал 30 мкФ (μF), а мы на приборе ставим 200 мкФ (μF). На втором фото – прибор с автоматическим выбором предела измерений.

После подсоединения щупов к выводам конденсатора ждём показаний на экране, например, время измерения ёмкости 40 мкФ (μF) первым прибором – менее одной секунды, вторым – более одной минуты, так что следует ждать.

Если замеренный параметр не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс “+” и минус “-” и их можно подключить как угодно.

ВНИМАНИЕ! Запрещается применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе).

Для этих целей выпускаются неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным (НЕ ПОСЛЕДОВАТЕЛЬНЫМ. ) соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов: Собщ12+. Сп .То есть, если соединить два конденсатора по 35 мкФ (μF), получим общую ёмкость 70 мкФ (μF), напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.


море полезной информации о питании для автозвука

1. Главное — питание. С него надо начинать аудиосистему.

2. Лучшее питание должно быть у самого мощного усилителя — как правило у усилителя сабвуфера

3. Как выбрать толщину провода?
Очень просто — прочитайте 100500 статей про выбор толщины провода, закончите курсы «школоты автозвука», сделайте сложные расчеты на логарифмической линейке и обязательно закончите курс «теоретические основы электротехники» в каком-нибудь вузе.

 Ну или выбирайте так:

  • до 800 Ватт — 4Ga (25кв),
  • 800+ Вт — 2 Ga (35кв),
  • 1,5 кВт и больше — 0ga (50 кв)
Речь о суммарной мощности системы. Если вы выберете провод слишком толстый — ничего страшного, если слишком тонкий — будет потеря вольтажа от начала провода до конца. То есть под капотом будет 12.5 Вольт, на моноблоке 11.5 Вольт — это очень и очень … нехорошо, так как при этом вы не только рискуете спалить усилители, но и прогреваете провод. И чем он тоньше — тем сильнее будет прогреваться.

Для наглядности — если запитать усилитель тонкой проволокой — она накалится до красна. Если при этом она будет в силиконовой оплетке… ну вы поняли. 

4. Вольтметр должен стоять обязательно. В любом виде, но вы должны знать что происходит в системе на каких треках. Как минимум вы должны померить вольтаж после запуска аудиосистемы в двух местах:
 

  • под капотом
  • и на самом большом потребителе (как правило моноблоке) —
вольтаж должен быть одинаковый и не просаживаться ниже 12 Вольт.

5. Забудьте про конденсаторы (накопители).
Единственная польза от конденсатора — это вольтметр, если он на нем есть, если же нет — польза от конденсатора только продавцу конденсаторов. Конденсатор стоит не дешево — купите лучше провод потолще или дополнительный АКБ

6. Как выбрать дополнительный АКБ?

В идеале — он должен быть точно такой же как и под капотом, еще лучше — если они будут оба новые.

Если нет возможности поставить такой же — пусть они будут одного типа:

  • оба АГМ,
  • либо оба литий.
Вы можете поставить АГМ вместе с кислотой или даже АГМ вместе с литием — но АКБ с большим вольтажем будет постоянно находиться в состоянии разряда, пока общий вольтаж не выровняется. На практике — я использовал много раз АГМ и кислоту и ничего за год и больше эксплуатации не происходило.

7. Как подключать доп АКБ? Реле, переходники — на… все это — просто соедините плюс с плюсом и минус с минусом.

8. Помимо сильных потребителей — не забывайте про самый слабый — ГУ (магнитолу) — не запитывайте ее от прикуривателя или от рандомной проводки, на которой найдете плюс и минус.

Не ленитесь — тащите и плюс и минус от туда же, откуда взяли питание на усилки. Так будет ниже риск получить наводки и магнитола не будет выключаться, когда вы заводите автомобиль.

9. Генератор очень важен. Если опустить кучу теории — генератор нужно выбирать так — на каждый киловатт мощности нужен генератор 80 А + АКБ 69-70 Ач.

Это конечно идеальная картина и часто в системах потребляющих 4 кВт стоят штатные гены на 100А и пара АКБ.
Но если генератора будет не достаточно — АКБ будут постоянно разряжаться, пока играет музыка и в конце концов вольтаж начнет падать.

Короче, что бы не париться — люксовая приора с родным геной и родным не дохлым АКБ может иметь стабильную аудиосистему около 2 кВт. Еще проще — кикс тысячник и пару сабов в 1Ом = гена 115-120 А + АКБ 70 Ач. Играть будет 🙂

10. Никогда не покупайте алюминиевый провод. Даже объяснять не буду — просто не покупайте! Только медь!

11. Чем промышленный кабель отличается от брендовых автомобильных?

Во-первых сечением — он будет тоньше, но благодаря цене — выгоднее будет купить две протяжки промышленного, чем одну автомобильного и в итоге получить большее сечение за меньшие деньги.
Во-вторых — гибкостью — автомобильный будет более гибкий, с ним будет проще работать.
В третьих — презентабельностью.
В четвертых — лужением. Автомобильные луженые провода дольше не окисляются. На что это влияет? Ни на что 🙂

12. Предохранители. Выбрать предохранитель очень просто — прилагаю таблицу выбора предохранителей


13. Минус нужно тянуть от АКБ, не тащить одну протяжку плюса, а минус брать с кузова, а тащить ОБА провода от АКБ. Если система не мощная — можно и с кузова, но лучше делать все по уму, ведь если система не мощная, то и провода не дорогие, а значит не нужно экономить пять метров провода — лучше сразу сделать как надо.

Минус должен быть такого же или большего сечения чем плюс, не меньше!

14. Где располагать предохранители?

Предохранитель должен стоять на каждом плюсовом силовом проводе как можно ближе к плюсовой клемме АКБ.

Если АКБ два — то на проводе должно быть два предохранителя — возле каждой плюсовой клеммы.

Не ставьте преды возле усилителей — это бесполезно. Предохранитель в случае короткого замыкания (КЗ) должен обесточивать весь провод. Пример — произошло КЗ где то по центру кузова, предохранитель возле усилителя сгорел и усилитель и кусок провода от него до преда — обесточен, но весь остальной провод под напряжением! Если пред сгорает возле АКБ — провод по всей длине кузова обесточен!

15. Главное — питание. С него надо начинать аудиосистему.

Если рубрика полезная и вы хотите еще советы — подписывайтесь!

Электрическая емкость (страница 2)

1. К пластинам плоского конденсатора приложено напряжение U = 220 в.

Определить напряженность электрического поля Е между пластинами в средней его области, если расстояние между пластинами d=1 мм. Чему равна сила F, действующая в этой области поля на частицу с зарядом ?

Решение:
В средней области пространства между пластинами плоского конденсатора электрическое поле можно считать однородным. Линии напряженности электрического поля начинаются на поверхности положительно заряженной пластины и кончаются на поверхности отрицательно заряженной пластины. Эти линии перпендикулярны к пластинам. Поэтому расстояние между пластинами равно длине линии напряженности электрического поля. Следовательно, электрическое напряжение между пластинами, поделенное на расстояние между ними, равно напряженности электрического поля:

где расстояние d измерено в метрах. На частицу, обладающую электрическим зарядом , в этом поле действует сила

Единица измерения силы дж/м называется ньютоном (сокращенно н).

2. Напряжение между разомкнутыми зажимами генератора равно 115 в (рис. 1).
Определить потенциалы зажимов при: а) заземлении зажима «плюс»; б) заземлении зажима «минус».

Решение:
Электрическое напряжение U между зажимами «плюс» и «минус» генератора равно разности потенциалов этих зажимов: . В первом случае заземлен зажим «плюс», следовательно, . Подставив числовые значения, получим

откуда
Во втором случае заземлен зажим «минус», следовательно, . Подставив числовые значения, будем иметь

откуда

На основании решения задачи можно видеть, что определенной величиной является электрическое напряжение. Оно не изменяется при изменении потенциалов всех точек поля на одну и ту же величину одновременно. В то же время потенциалы в отдельных точках электрического поля могут изменяться в зависимости от заземления той или иной точки.

3. Определить необходимую толщину слоя слюды между пластинами плоского конденсатора, если его номинальное напряжение должно быть в 4 раза меньше пробивного напряжения . Пробивная напряженность слюды . Какой толщины потребуется электрокартон (для него ), если его применить вместо слюды?

Решение:
Пробивное напряжение

Принимая электрическое поле плоского конденсатора однородным, получим искомую толщину слоя слюды:

Так как пробивное напряжение равно 24 кв, то искомая толщина электрокартона

Отношение толщин связано с отношением напряженности следующим образом:

Следовательно, необходимые толщины диэлектрика обратно пропорциональны пробивным напряженностям.

4. Конденсатор емкостью С=1 мкф присоединен к сети с постоянным напряжением U=220 в.
Определить электрический заряд пластины, соединенной с положительным полюсом сети. Каким был бы электрический заряд, если бы напряжение сети было вдвое меньше?

Решение:
Электрический заряд

где вследствие подстановки емкости С, измеренной в микрофарадах, электрический заряд измерен в микрокулонах.
Емкость С конденсатора — постоянная величина, если диэлектрические свойства изолятора между пластинами не зависят от напряжения U, приложенного к пластинам конденсатора. Такая электрическая емкость называется линейной.
Когда конденсатор с линейной емкостью присоединяется к сети, имеющей вдвое меньшее напряжение, электрический заряд будет также вдвое меньше:

Поэтому правильный выбор емкости конденсатора обеспечивает необходимой величины заряд в случае включения конденсатора на номинальное напряжение.

5. Плоский конденсатор имеет емкость С = 20 пф.
Какими следует выбрать толщину диэлектрика из стекла и площадь пластин, если конденсатор должен работать при номинальном напряжении , имея четырехкратный запас прочности?

Решение:
Пробивное напряжение при четырехкратном запасе прочности в 4 раза больше номинального напряжения:

Искомая толщина стекла

Из формулы емкости плоского конденсатора

определяем площадь пластины. В этой формуле величины измерены:

Подставим в нее числовые значения:

При меньших значениях и больших значениях d площадь пластины конденсатора должна быть больше.

6. Емкость конденсатора переменной емкости можно плавно изменять от 10 до 200 пф.
Какие границы изменения емкости можно получить, если присоединить к этому конденсатору такой же второй конденсатор?

Решение:
Присоединение второго конденсатора может быть последовательным и параллельным. Если второй конденсатор присоединен параллельно первому, то их эквивалентная емкость равна сумме емкостей отдельных конденсаторов.
Наибольшая емкость составит:

Если второй конденсатор присоединить последовательно к первому, то обратная величина эквивалентной емкости будет равна сумме величин, обратных емкостям отдельных конденсаторов. Поэтому наименьшая емкость определится так:

откуда

Таким образом, емкость изменяется от 5 до 400 пф.
Последовательное присоединение второго конденсатора уменьшило минимальную емкость, а параллельное присоединение второго конденсатора увеличило максимальную емкость.
При последовательном соединении двух одинаковых конденсаторов схему можно включать на напряжение в два раза большее, чем при параллельном соединении.

Имеет ли значение размер конденсатора?

  • Имеет ли значение размер конденсатора?

    Мне сказали, что конденсатор на конденсаторном блоке может быть слишком большого размера. Итак, если номинальный ток конденсатора составляет 35-5 мфд 370, а у меня на грузовике только 40-4 440 В перем. Тока, могу ли я не поставить его на машину?

  • Нет.Как показывает практика, на рабочем конденсаторе можно увеличивать плюс-минус 10%, а 10% от 35 — это 3,5. Других стандартных размеров крышки в пределах 10% от 35 не существует, поэтому замены не производятся. Вы обнаружите, что вы не можете применить правило 10% к любому пределу ниже 50 mfd. Это также немного сложнее, чем эта простая математика. Вы должны измерить емкость заменяемого конденсатора и убедиться, что фактическая емкость находится в пределах 10% от номинала конденсатора, который он предназначен для замены.

    Вот причина правила 10%.Если конденсатор может варьироваться до 10% от своего собственного рейтинга до того, как он будет отклонен, то логически должно быть разрешено ограничение другого рейтинга, которое находится в пределах 10% от рейтинга другого ограничения, в качестве его замены. Если, например, у меня есть колпачок 60 mfd, который читает 57 mfd из коробки (в пределах спецификации), и колпачок 55 mfd, который читает 57 mfd вне коробки (также в пределах спецификации), то какая разница, какой из этим я пользуюсь? Фактическая емкость обоих составляет 57 мфд.

    Еще раз, для размеров крышек ниже 50 вы не сможете применить это правило.

    Номинальное напряжение должно быть равным или выше первоначального номинального напряжения. Это другая проблема, чем значения емкости.

    Последний раз редактировалось hvacrmedic; 25.06.2016 в 09:18.

  • Публикация нравится — 1 нравится, 0 не нравится

  • мой грузовик укомплектован только конденсаторами на 440 вольт, так как 440 можно использовать вместо 370 вольт,

  • Я не ношу двойную крышку.в моем грузовике только один номинал все 440 вольт, если возможно, их немного сложнее установить, но я работаю над многими другими двигателями, используемыми в молочном животноводстве. Это в целом облегчает мне задачу. Что касается установки конденсатора побольше, я знаю, что это делается сотни раз каждый день и, вероятно, в большинстве случаев работает нормально. Если вы измеряете силу тока через кап. вы, вероятно, не заметите никакой разницы. Однако в какой-то момент это будет иметь значение и повлияет на моторные характеристики.Двигатель вентилятора конденсатора переменного или переменного тока не считается нагрузкой с высоким пусковым моментом. Вот почему они не поставляются с пусковыми конденсаторами и потенциальными реле. Ну и стоят они дешево. На нагрузках, которые очень трудно запустить, таких как разгрузчики силосов и очистители коровников, номинал пускового конденсатора более критичен, есть величина емкости, которая даст двигателю максимальный пусковой крутящий момент.

  • Большинство сменных крышек с двойным пробегом теперь имеют двойное напряжение 440/370, или, по крайней мере, 1, которые я получаю через прилавок.Напряжение всегда можно повышать, но никогда не понижать.
    Настоящее «веселье начинается, когда« кто-то »заменяет Factory, скажем, 40×5 370V на 55×5 440V ??? Да, комп запустится.
    У некоторых размер крышки на компе указан, а у некоторых нет. Опять
    Пусть начинается самое интересное.

    Независимо от того, как долго вы этим занимаетесь,
    Вернитесь и перечитайте Основы. Вы узнаете кое-что.
    Почему это называется ДЕЙСТВИЕМ БОЖЬЕ, если ОНА Ничего общего с Ним не имеет?
    Воля дьявола была бы более подходящей ИМО.Просто говорю.
    ПСАЛМЫ, 18 и 25.
    Я устал от высокоэффективной пропаганды.


  • Я ношу большинство одинарных круглых и овальных, двойных круглых и овальных — все 440v.

  • Мне нравятся amrad turbo 200 и 200x, turbo mini, 5 лет гарантии как вариант обновления конденсатора.

  • Проверьте это,
    Я заменил 70×7,5 440 В на 5-тонную Bryant на прошлой неделе, которая все еще работала, но при запуске чертовски поднималась.
    Бег по прибытии, и это «известный» покупатель, поедающий пробки. Почему? Понятия не имею, напряжение в сети хорошее, а короткие циклы не проблема, но я заменил большинство заводских ограничений на 5 из 10 устройств.
    Выполнение нагрузочного теста крышки дало действительно сумасшедшие результаты. Пусковой ток
    был 2,3 ….. На 5-тонном, 230В, однофазном. Хммм ??
    Я сразу понял, что что-то не так.
    Кепка провалилась плохо, и я поставил удвоение, а, 70 + 7,5,2 сингла, чтобы заставить его работать.
    Я провожу тест под нагрузкой и получаю 83 на компе.
    Хммм ????? Может быть, проблема в том, что оригинал был Factory 70, но в тесте 83 …
    Заменен на 85×7,5×440, и все в порядке.
    Вы мне скажите, что.

    Независимо от того, как долго вы этим занимаетесь,
    Вернитесь и перечитайте Основы. Вы узнаете кое-что.
    Почему это называется ДЕЙСТВИЕМ БОЖЬЕ, если ОНА Ничего общего с Ним не имеет?
    Воля дьявола была бы более подходящей ИМО. Просто говорю.
    ПСАЛМЫ, 18 и 25.
    Я устал от высокоэффективной пропаганды.


  • Нагрузочный тест конденсатора показывает только текущее значение емкости в цепи.Он не сообщает вам, сколько нужно в цепи.

    Итак … если вы прочитаете 83, это была емкость в цепи. Он не говорил вам, что следует установить это значение или значение, близкое к нему.

    Вопросы?

    [Аватар, сделанный во время аварии на тренировке во Флориде. Все ушли.]
    2 Тим. 3: 16-17

    RSES CMS, Специалист по электротехнике HVAC
    Член IAEI

    Правила форума АОП:




  • 25.06.2016, 14:29 # 10
    У меня есть приложение Emerson на моем телефоне со сканирующим прибором, и я могу сразу сказать вам, если это свиток, каким должен быть колпачок.

    Отправлено с моего iPhone с помощью Tapatalk

    __________________________________________________ _______________________
    Опыт — это трудный учитель, потому что она сначала дает тест, а потом урок »~ Вернон Ло

    « Важно то, что вы узнаете после того, как узнаете все это ». ~ Джон Вуден

    « Когда учителя становимся неуязвимыми, мы все в беде »~ г-н Билл« Помните, что «профи» — это всего лишь имя, это не всегда образ мышления, настроенный делать все правильно »~ г-н.Счет

  • 25.06.2016, 14:43 # 11
    Дело в том, что ТБ, то есть ограничение OEM было 70×7.5
    я заменил на такой же, и после нагрузочного теста был представлен 83 на стороне компа.
    У большинства Scroll есть информация о пробеге сегодня на наклейке, но я просто собирался с информацией о заводской крышке.

    Независимо от того, как долго вы этим занимаетесь,
    Вернитесь и перечитайте Основы. Вы узнаете кое-что.
    Почему это называется ДЕЙСТВИЕМ БОЖЬЕ, если ОНА Ничего общего с Ним не имеет?
    Воля дьявола была бы более подходящей ИМО.Просто говорю.
    ПСАЛМЫ, 18 и 25.
    Я устал от высокоэффективной пропаганды.


  • 25.06.2016, 14:48 # 12
    Сообщение от mrkelly У большинства Scroll есть информация о пробеге сегодня на наклейке, но я просто собирался с информацией об OEM.
    Это интересно и полезно знать. Я был в 10-летнем отделении Amana в четверг, воткнул туда свой телефон и сделал снимок, но на нем не было информации о крышке. Я отсканировал штрих-код, и приложение все мне рассказало.

    Отправлено с моего iPhone с помощью Tapatalk

    __________________________________________________ _______________________
    Опыт — это трудный учитель, потому что она сначала дает тест, а потом урок »~ Закон Вернона

    « Важно то, что вы узнаете после того, как узнаете все.»~ Джон Вуден

    » Когда учителя становятся неспособными к обучению, мы все в беде «~ Г-н Билл» Помните, что «Профи» — это всего лишь имя, это не всегда образ мышления, настроенный делать все правильно «~ Г-н Билл

  • 25.06.2016, 14:49 # 13
    Хорошо, ребята из блока на крыше обнаружили, что показания обеих крышек конденсатора плохие на двойной крышке 5/5.Хорошо, но вот часть, которая мне показалась странной, это конденсатор на 370 В, но это устройство на 480 В и конд. вентиляторы тоже были 480в. Я поставил конденсаторы на 440 вольт. Итак, я понял, что технически на конденсаторе 277 Вольт, что хорошо, потому что я не вижу много конденсаторов с номиналом 600 В. Также не знаю, почему это не показалось мне странным много лет назад. Но тогда в системе 240 В «технически» вы можете использовать ограничение, допустимое для 170 В. Теория верна или есть какая-то разница ???
    Есть только один действительно правильный способ что-то сделать, но есть тысячи неправильных способов сделать это в разной степени.
    Итак, вопрос: если вы не сделаете это правильно, то насколько это будет неправильно ???

  • 25.06.2016, 14:51 # 14
    Я проверил колпачок на моем глюкометре и провожу тест под нагрузкой с коэффициентом 2456.
    Что-нибудь еще, что мы должны знать или делать, чтобы протестировать пробег?

    Независимо от того, как долго вы этим занимаетесь,
    Вернитесь и перечитайте Основы. Вы узнаете кое-что.
    Почему это называется ДЕЙСТВИЕМ БОЖЬЕ, если ОНА Ничего общего с Ним не имеет?
    Воля дьявола была бы более подходящей ИМО. Просто говорю.
    ПСАЛМЫ, 18 и 25.
    Я устал от высокоэффективной пропаганды.


  • 25.06.2016, 14:53 # 15

    Независимо от того, как долго вы этим занимаетесь,
    Вернитесь и перечитайте Основы.Вы узнаете что-нибудь.
    Почему это называется ДЕЙСТВИЕМ БОЖЬЕ, если ОНА Ничего общего с Ним не имеет?
    Воля дьявола была бы более подходящей ИМО. Просто говорю.
    ПСАЛМЫ, 18 и 25.
    Я устал от высокоэффективной пропаганды.


  • 25.06.2016, 15:03 # 16
    одинаковый размер / вольт — лучший способ.используя следующее более высокое напряжение нормально. более высокое значение mfd увеличит ток / л.с.; ниже уменьшит ток / л.с. оба вызовут перегрев. оставайтесь с номинальной стоимостью.

  • Публикация нравится — 1 нравится, 0 не нравится

  • 25.06.2016, 15:19 # 17
    Да, я давно «поигрался» с дробным конденсатором, двигатели нагнетателя поднимались и опускались на размер крышки и обратно, я мог бы «увеличить» размер и уменьшить мощность усилителя, но сегодня все по-другому, и вы увеличиваете размер и это увеличивает розыгрыш.
    Что меня «беспокоит», так это то, что я заменяю ограничение на запуск и вижу более высокий FLA на компьютере, потому что, возможно, он отключен, и это более старый Cond, и попытка найти правильный предел практически невозможна с ограниченным количеством ресурсов.
    Я бы хотел, чтобы был «способ» действительно определить, что требуется в полевых условиях, с помощью только нашего счетчика.

    Независимо от того, как долго вы этим занимаетесь,
    Вернитесь и перечитайте Основы. Вы узнаете кое-что.
    Почему это называется ДЕЙСТВИЕМ БОЖЬЕ, если ОНА Ничего общего с Ним не имеет?
    Воля дьявола была бы более подходящей ИМО. Просто говорю.
    ПСАЛМЫ, 18 и 25.
    Я устал от высокоэффективной пропаганды.


  • 25.06.2016, 15:30 # 18
    Для меня нет оправдания установке конденсатора неправильного размера.Оборудование ACE и TruValue даже оснащено конденсаторами, поэтому в воскресенье мы смогли получить нужный двойной конденсатор.

  • 25.06.2016, 15:38 # 19
    Сообщение от Mr Bill У меня есть приложение Emerson на моем телефоне со сканирующим прибором, и я могу сразу сказать вам, если это свиток, каким должен быть колпачок.

    Отправлено с моего iPhone с помощью Tapatalk

    Мало того … но приложение Emerson для Android иногда имеет два значения для конденсатора на одном и том же компрессоре. В зависимости от того, в каком конденсаторе он установлен.
    Так что я не уверен, что ОЧЕНЬ небольшое изменение в mfd — это такая плохая вещь ..
    «Если вы не можете описать то, что вы делаете, как процесс, вы не знаете, что делаете». ~ В. Эдвардс Деминг

    Все, кто странствует ..не потеряны.

    НЕ принимайте мою доброту за слабость.

    Ранняя пташка может получить червя .. но вторая мышь получит сыр.


  • 25.06.2016, 15:43 # 20
    Сообщение от madhat

    Для меня нет оправдания установке конденсатора неправильного размера.Оборудование ACE и TruValue даже оснащено конденсаторами, поэтому в воскресенье мы смогли получить нужный двойной конденсатор.

    У меня мало конденсатора, у меня на грузовике тонны разных крышек. Я даже не могу вспомнить, когда в последний раз мне приходилось гоняться за одним.

    Отправлено с моего iPhone с помощью Tapatalk

    __________________________________________________ _______________________
    Опыт — это трудный учитель, потому что она сначала дает тест, а потом урок »~ Закон Вернона

    « Важно то, что вы узнаете после того, как узнаете все.»~ Джон Вуден

    » Когда учителя становятся неспособными к обучению, мы все в беде «~ Г-н Билл» Помните, что «Профи» — это всего лишь имя, это не всегда образ мышления, настроенный делать все правильно «~ Г-н Билл

  • Как читать код конденсатора

    Просмотры сообщений: 19 236

    Загрузить: Руководство по электронике (которое мы даем нашим клиентам)

    Полезные ссылки:

    Как читать конденсатор:

    Конденсаторы — это элементы схемы, которые реагируют на быстро меняющиеся сигналы, а не на медленно меняющиеся или статические сигналы.Конденсаторы могут накапливать энергию сильных быстро меняющихся сигналов и возвращать эту энергию в схему по желанию. Чаще всего конденсаторы используются для поглощения шума, который по определению является быстро меняющимся сигналом, и отводят его от интересующего сигнала. Для улавливания разных типов шума необходимы конденсаторы разной емкости. Воспользуйтесь этими советами, чтобы научиться читать обозначения конденсаторов и определять номинал конденсатора.

    ШАГ 1

    Разберитесь в единицах измерения, используемых для конденсаторов. Базовая единица измерения емкости — Фарада (Ф). Это значение слишком велико для использования в цепи. Меньшие номиналы емкости используются в электронных схемах.

    • Считать мкФ как мкФ. 1 мкФ составляет 1 умножить на 10 до -6 Фарада в степени.
    • Считать пФ как пикоФарад. 1 пикофарад равен 1 умножению на 10 до -12 Фарада мощности.

    ШАГ 2

    Считайте значение непосредственно на конденсаторах большей емкости. Если поверхность корпуса достаточно большая, значение будет напечатано прямо на конденсаторе.Например, 47 мкФ означает 47 мкФ.

    ШАГ 3:

    Считайте емкость меньших по размеру конденсаторов как два или три числа. Обозначения мкФ или пФ не отображаются из-за малых размеров корпуса конденсатора.

    • Считайте двузначные числа в пикофарадах (пФ). Например, 47 будет читаться как 47 пФ.
    • Считайте трехзначные числа как значение базовой емкости в пикофарадах и множитель. Первые две цифры указывают значение базового конденсатора в пикофарадах.Третья цифра будет указывать множитель, который будет использоваться на базовом числе, чтобы найти фактическое значение конденсатора.
    • Используйте третью цифру от 0 до 5, чтобы поместить соответствующее количество нулей после базового значения. Третья цифра 8 означает умножение базового значения на 0,01. Третья цифра 9 означает умножение базового значения на 0,1. Например, 472 будет обозначать конденсатор 4700 пФ, а 479 — конденсатор 4,7 пФ.
    • цифра-символ-цифра. Некоторые конденсаторы малой емкости имеют коды типа 1n0.Цифры — это значения до и после десятичной точки, а символ указывает размер; поэтому в данном примере значение 1,0 нФ (нано-Фарад).

    ШАГ 4:

    Ищите буквенный код. Некоторые конденсаторы обозначаются трехзначным кодом, за которым следует буква. Эта буква обозначает допуск конденсатора, означающий, насколько близким фактическое значение конденсатора может быть ожидаемое к указанному значению конденсатора.Допуски указаны ниже.

    • Считать B как 0,10 процента.
    • Считайте C как 0,25 процента.
    • Считайте D как 0,5 процента.
    • Считайте E как 0,5 процента. Это дублирование кода D.
    • Считайте F как 1 процент.
    • Считайте G как 2 процента.
    • Считайте H как 3 процента.
    • Считайте J как 5 процентов.
    • Считайте K как 10 процентов.
    • Считайте M как 20 процентов.
    • Считайте N как 0,05 процента.
    • Считайте P как от плюс 100 процентов до минус 0 процентов.
    • Считайте Z как от плюс 80 процентов до минус 20 процентов.

    КОНДЕНСАТОР ЭЛЕКТРОЛИТИЧЕСКИЙ

    Электролитический конденсатор — это поляризованный конденсатор, в котором используется электролит для достижения большей емкости, чем у конденсаторов других типов.


    В случае сквозных конденсаторов значение емкости, а также максимальное номинальное напряжение указаны на корпусе. Конденсатор, на котором напечатано «4,7 мкФ 25 В», имеет номинальное значение емкости 4.7 мкФ и максимальное номинальное напряжение 25 В, которое никогда не должно превышаться.

    В случае электролитических конденсаторов SMD (поверхностного монтажа) существует два основных типа маркировки. В первой четко указано значение в микрофарадах и рабочее напряжение. Например, при таком подходе конденсатор 4,7 мкФ с рабочим напряжением 25 В будет иметь маркировку «4,7 25 В». В другой системе маркировки за буквой следуют три цифры. Буква представляет номинальное напряжение в соответствии с таблицей ниже.Первые два числа представляют значение в пикофарадах, а третье число — количество нулей, добавляемых к первым двум. Например, конденсатор 4,7 мкФ с номинальным напряжением 25 В будет иметь маркировку E476. Это соответствует 47000000 пФ = 47000 нФ = 47 мкФ.

    О конденсаторах:

    Страница не найдена | MIT

    Перейти к содержанию ↓
    • Образование
    • Исследовать
    • Инновации
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
    • Подробнее ↓
      • Прием + помощь
      • Студенческая жизнь
      • Новости
      • Выпускников
      • О MIT
    Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
    Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

    Предложения или отзывы?

    Принципы работы конденсаторов

    , работа и различные типы конденсаторов и их применение в схемах

    Конденсаторы — это слово, кажется, наводит на мысль о емкости , что, согласно словарю, означает «способность что-то удерживать».Это ровно то же самое, что конденсатор — он удерживает электрический заряд. Но что делает его общим компонентом почти во всех электронных схемах? Давайте разберемся с конденсаторами, чтобы понять, что они делают и как их можно использовать в этой статье.

    Что такое конденсатор?

    Конденсатор в самом примитивном виде состоит из двух проводящих пластин, разделенных диэлектрической средой. Термин «диэлектрик» — это просто причудливое слово для изолятора, который может быть поляризован, т.е.е. образуют отрицательные и положительные заряды на противоположных гранях. Когда напряжение подается на эти две пластины, ток течет через проводящие пластины. Одна сторона заряжается положительно (отсутствие электронов), а другая сторона заряжается отрицательно (избыточные электроны). Все мы знакомы с тем фактом, что в отличие от зарядов притягиваются, поэтому, поскольку пластины заряжены противоположно, заряды на пластинах притягиваются.

    Помните, что между пластинами находится изолятор , поэтому заряды не могут «течь», чтобы уравновесить друг друга, и (в идеале) застревают во взаимном притяжении и остаются на месте.Именно так конденсаторы выполняют свою основную функцию — удержание или накопление заряда.

    Символ конденсаторов

    Поскольку конденсаторы имеют две параллельные металлические пластины, как обсуждалось выше, их символ обозначает то же самое. По крайней мере,

    легко нарисовать

    На практике конденсаторы больше не представляют собой просто две пластины с зазором между ними, в случае алюминиевых электролитов две пластины имеют форму металлической фольги, свернутой с прокладкой между ними в трубке.

    Второй набор символов обозначает поляризованные конденсаторы, то есть те, которые имеют внутреннюю конструкцию, определяющую положительные и отрицательные клеммы. Случайное переключение этих клемм почти наверняка приведет к серьезному отказу (особенно для более крупных образцов), выбросу кусочков фольги и бумажных счетчиков из места отказа, и в большинстве случаев с очень неприятным запахом.

    Номинальная емкость и напряжение конденсатора

    Конденсаторы измеряются в фарадах ; он назван в честь известного британского электрохимика Майкла Фарадея.Единица емкости, заменяющая кулон на вольт. Кулон (произносится как «кулон») — это единица S.I. для заряда, а вольт, как мы знаем, — это единица измерения напряжения или разности потенциалов. Это делает Фарад количеством заряда, хранящегося на вольт разности потенциалов. Этот простой способ математического рассмотрения конденсатора поддается широкому диапазону интерпретаций, что проявляется во множестве смертельно сложных математических уравнений, таких как интегралы, показатели и векторы, которые мы, инженеры, будем использовать при работе с конденсаторами, что выходит за рамки простого Объем этой статьи.Тем не менее, мы рассмотрим небольшую интересную математику, которая поможет нам разрабатывать схемы с конденсаторами позже, в статье

    .

    Конечно, Фарад (один кулон на вольт) — очень большая единица для большинства практических целей (поскольку сам кулон представляет собой довольно большой заряд, как вы, возможно, уже знаете), поэтому большинство конденсаторов (за исключением очень больших) ) измеряются в микрофарадах, или одной миллионной (0,000001) фарада. Предположим, у вас есть конденсатор с показателем 25 В 10 мкФ (префикс «u» означает «микро», это искажение греческого символа «μ», означающего «микро») на пластиковой внешней крышке.Поскольку колпачок (короткий в мире электроники для конденсаторов) рассчитан на 10 мкФ, он может удерживать заряд в десять микрокулонов (то есть десять миллионных кулонов, 0,000010 C) на вольт напряжения на его выводах. Это означает, что при максимальном напряжении 25 В конденсатор может удерживать заряд 25 В x 10 мкФ, что составляет 0,000250 кулонов.

    Помните, я сказал «максимальное» напряжение. Максимальное напряжение, вероятно, является наиболее важным показателем для конденсатора. Он сообщает вам, какое напряжение конденсатор может выдержать на своих выводах, прежде чем он выйдет из строя ………!

    Работа конденсатора

    В основном то, что происходит внутри конденсатора, заключается в том, что изолятор между этими пластинами подвергается процессу, называемому «диэлектрическим пробоем», что означает, что изолятор больше не может изолировать, поскольку напряжение на изоляторе слишком велико, чтобы он мог оставаться изолятором. .Физика, лежащая в основе, несколько выходит за рамки, но все, что вам нужно знать, чтобы понять, почему это происходит, — это то, что ни один изолятор не является идеальным, то есть до определенного момента. Даже самый прочный мост разрушается при перегрузке. Здесь происходит то же самое. Чтобы уменьшить пробой, вы можете увеличить зазор между двумя пластинами, но это связано с компромиссом — уменьшенной емкостью, поскольку пластины расположены дальше друг от друга и заряды не притягиваются так сильно, как при сближении — во многом как как ведут себя магниты.

    Хорошее практическое правило — использовать конденсаторы, рассчитанные на напряжение на 50% выше, чем то, что может ожидать ваша схема. Это оставляет большой запас прочности. Например, если вам нужен конденсатор для развязки (не беспокойтесь, развязка будет объяснена позже в статье) шины питания 12 В, вы можете обойтись без конденсатора на 16 В, но рекомендуется использовать конденсатор на 25 В, поскольку он дает вам широкий запас прочности. Хорошо, вы узнали это !! Да, 25 В, конечно, не на 25% больше, чем 12 В, но 18 В не является стандартной емкостью конденсатора — вы не найдете конденсатора с таким номинальным напряжением.Ближайший — 25 В.

    Конденсаторы различных типов

    Причина диапазонов напряжения пробоя связана с материалом, используемым в качестве диэлектрика, который также является основой классификации конденсаторов:

    Алюминиевые электролитические конденсаторы

    Это, наверное, самые узнаваемые конденсаторы типа . Они поставляются в характерных металлических банках с пластиковой оболочкой, с четко указанными значениями напряжения и емкости и белой полосой для обозначения катода.Название происходит от того факта, что, как упоминалось выше, «пластины» изготовлены из алюминиевой фольги, подвергнутой химическому травлению. Процесс травления делает алюминий пористым (как губка) и значительно увеличивает площадь его поверхности, следовательно, увеличивается емкость. Диэлектрик представляет собой тонкий слой оксида алюминия. Эти конденсаторы заполнены маслом, которое действует как электролит, отсюда и название. Электролитические конденсаторы поляризованы из-за их внутренней конструкции. Они имеют большую емкость по сравнению с другими членами семейства конденсаторов, но при гораздо более низком напряжении.Вы можете ожидать увидеть электролиты от 0,1 мкФ до таких монстров, как 100 мФ, и с номинальным напряжением от нескольких вольт до примерно 500 В. Однако их внутреннее сопротивление обычно велико.

    БОКОВОЕ ПРИМЕЧАНИЕ: Внутреннее сопротивление в конденсаторах обусловлено материалами, из которых изготовлен колпачок, например, сопротивлением алюминиевой фольги или сопротивлением выводов.

    Керамические конденсаторы

    Это колпачки с керамическим диэлектриком.Поскольку предел пробоя для керамического диэлектрика довольно высок, вы можете ожидать увидеть керамические колпачки с сумасшедшими пробивными напряжениями, такими как 10 кВ. Однако емкость обычно бывает низкой, в диапазоне от пикофарад (0,000000000001F) до нескольких десятков микрофарад. Как правило, они намного меньше, чем конденсаторов других типов , как показано на рисунке. У них также очень маленькое внутреннее сопротивление.

    Идентификация керамических конденсаторов

    Значение керамической емкости на керамическом конденсаторе не указывается напрямую.0 равно 0.

    Номинальное напряжение конденсатора можно найти, используя строку под этим кодом. Если линия есть, то значение напряжения составляет 50/100 В, если линии нет, то это 500 В.

    Ниже приведены наиболее часто используемые значения конденсаторов вместе с их преобразованием в Пико Фарад, Нано Фарад и микрофарад.

    Код

    пикофарад (пФ)

    нанофарад (нФ)

    Микрофарад (мкФ)

    100

    10

    0.01

    0,00001

    150

    15

    0,015

    0,000015

    220

    22

    0,022

    0.000022

    330

    33

    0,033

    0,000033

    470

    47

    0,047

    0.000047

    331

    330

    0,33

    0,00033

    821

    820

    0,82

    0.00082

    102

    1000

    1.0

    0,001

    152

    1500

    1,5

    0,0015

    202

    2000

    2.0

    0,002

    502

    5000

    5,0

    0,005

    103

    10000

    10

    0.01

    683

    68000

    68

    0,068

    104

    100000

    100

    0,1

    154

    150000

    150

    0.15

    334

    330000

    330

    0,33

    684

    680000

    680

    0,68

    105

    1000000

    1000

    1.0

    335

    3300000

    3300

    3,3

    Пленочные конденсаторы

    Как следует из названия, диэлектрик в этих конденсаторах представляет собой пластиковую пленку, часто знакомую пластику, такую ​​как майлар и полиэстер. Они имеют те же свойства, что и керамические колпачки, имеют высокое напряжение пробоя (из-за поведения пластиковых полимеров) и низкую емкость.Единственная разница в том, что они, как правило, немного больше, хотя внешне выглядят как керамические колпачки. Внутреннее сопротивление сопоставимо с керамическими колпачками.

    Танталовые и ниобиевые конденсаторы

    Эти колпачки технически подпадают под категорию электролитических конденсаторов. Здесь электролит представляет собой твердый материал из оксидов тантала или ниобия. У них очень низкое внутреннее сопротивление для данной емкости, однако они менее устойчивы к перенапряжению по сравнению с другими типами (керамика лучше) и, как правило, капут без особого предупреждения и с большим количеством неприятного черного дыма.

    Конденсаторы специального назначения

    К ним относятся серебряно-слюдяные колпачки, конденсаторы с номиналом X и Y и т. Д. Конденсаторы с номиналом X и Y, например, созданы для фильтрации линии — более прочная конструкция и более высокие номинальные значения напряжения, а также низкие емкости, чтобы уменьшить ток, проходящий через них. при подаче напряжения переменного тока и для ограничения энергии, хранящейся в цоколе, при подаче напряжения постоянного тока.

    Суперконденсаторы и ультраконденсаторы

    Они выводят конденсаторы на совершенно новый уровень, значительно увеличивая их емкость, иногда до сотен Фарад! Это возможно благодаря какой-то умной химии.Суперконденсаторы и ультраконденсаторы ликвидируют разрыв между конденсаторами и химическими батареями. Однако они бывают с очень низким напряжением.

    И это почти все распространенные типы конденсаторов , которые вы обычно можете встретить в мире электроники.

    Принцип работы конденсаторов в цепях

    Первой полезной задачей было бы узнать, как рассчитать запасы энергии в конденсаторе, который определяется формулой

    E = 1 / 2CV 2

    Где E — запасенная энергия в джоулях, C — емкость в фарадах, а V — напряжение в вольтах.Обратите внимание, что это уравнение принимает форму многих других уравнений Ньютона для энергии, аккуратное пасхальное яйцо!

    Предположим, у вас есть крышка, рассчитанная на напряжение 50 В и емкость 1000 мкФ, запасенная энергия при полных 50 В будет:

    1/2 * 0,001000F * 50 В * 50 В

    Что составляет жалкие 1,25Дж накопленной энергии.

    Это выявляет главный недостаток конденсаторов как устройств накопления энергии — накопленная энергия для данного размера очень мала, батарея того же размера будет иметь, по крайней мере, в тысячу раз больше накопленной энергии! Однако у крышек гораздо более низкое внутреннее сопротивление, чем у химических батарей, что позволяет им быстро сбрасывать всю накопленную энергию.Замыкание батареи приведет к ее нагреву только из-за мощности, рассеиваемой внутренним сопротивлением, но короткое замыкание конденсатора вызовет лишь несколько искр, поскольку весь заряд сбрасывается сразу без повреждения конденсатора.

    Во-вторых, есть еще одна аккуратная формула, которая связывает напряжение, ток и емкость:

    I / C = dV / dt

    Где I — ток, подаваемый на конденсатор в амперах, C — емкость в фарадах, а dV / dt — скорость изменения напряжения на выводах конденсатора.Подумайте об этом с точки зрения единицы измерения — вольт в секунду для заданного тока и емкости. Не беспокойтесь о маленькой букве «d», это просто математический способ сказать «до предельного нуля».

    Допустим, у вас есть источник питания, который выдает постоянное напряжение 5 В при постоянном токе 1 мА, а затем, изменив уравнение, мы можем найти время, необходимое для зарядки конденсатора 100 мкФ до 5 В:

    dt = CdV / I

    dt = (0,000100F * 5 В) / 0,001A

    dt = 0,5 секунды

    Значит, конденсатор будет заряжаться до 5 В в 0.5 секунд. (Помните, что конденсатор может заряжаться только до максимального напряжения, подаваемого на него, и никогда больше, они не могут волшебным образом «создать» напряжение.)

    Такое предсказуемое поведение конденсатора делает его очень полезным для создания задержек по времени, например, с помощью небольшой дополнительной схемы. Вы можете изменить уравнение, чтобы получить время.

    А теперь о хорошем — реальных конденсаторных схемах!

    Поведение конденсатора в цепях

    Давайте начнем с простого — разные способы соединения конденсаторов.Это похоже на соединение двух резисторов — вы можете подключить их последовательно или параллельно.

    Параллельные конденсаторы

    На рисунке ниже показаны три конденсатора, подключенные параллельно, со всеми соответствующими положительными и отрицательными клеммами, соединенными вместе (при условии, что колпачки поляризованы). Общая емкость этого устройства — это просто сумма всех емкостей всех конденсаторов в цепи. Это имеет смысл, поскольку параллельное соединение пластин конденсатора увеличивает площадь поверхности, увеличивая емкость.

    Максимальное напряжение, которое может выдержать такая схема, — это напряжение наименьшего конденсатора, поскольку напряжение является общим для всех конденсаторов.

    Пример должен прояснить это. Предположим, у вас есть два конденсатора, один с номиналом 25 В 470 мкФ, а другой 35 В 1000 мкФ. Общая емкость будет 470 мкФ + 1000 мкФ = 1470 мкФ. Однако максимальное напряжение, которое вы можете подать на эту батарею (связку соединенных вместе конденсаторов, можно назвать «батареей» конденсаторов), будет всего 25 В.Если вы поместите что-то большее, чем это, на этом берегу, то полетят искры, так как вы превысите максимальное значение. напряжение конденсатора 25В.

    Последовательные конденсаторы

    Параллельное подключение конденсаторов особенно полезно, если вам нужна большая емкость, но у вас есть только небольшие значения. Параллельное соединение этих меньших значений значений в конечном итоге даст вам большее значение и выполнит свою работу, если вы помните о напряжении.

    Последовательное подключение конденсаторов немного сложнее.Емкость рассчитывается по формуле:

    1 / Cобщ. = 1 / C1 + 1 / C2 +… + 1 / Cn

    Где C1, C2… Cn — емкости каждого конденсатора, используемого в цепи.

    Напряжение, которое теперь может выдержать банк, представляет собой сумму всех номинальных напряжений.

    Если у вас есть конденсатор на 10 В 1 мкФ и конденсатор на 50 В 10 мкФ, то напряжение, которое банк может выдерживать последовательно, составит 10 В + 50 В = 60 В. Емкость составляет 0,9091 мкФ.

    Зависимость напряжения конденсатора от времени

    Что, если мы хотим зарядить конденсатор? Мы могли бы просто подключить его к источнику напряжения, как показано на рисунке ниже.Здесь может произойти следующее: в момент подключения источника напряжения, если предположить, что крышка полностью разряжена, заряды стремятся накапливаться на пластинах, что приводит к очень большому (теоретически бесконечному!) Всплеску тока, ограниченному только внутренним сопротивлением конденсатор. Это, конечно, нежелательно, если ваш источник питания представляет собой что-то вроде батареи. Разумной идеей было бы добавить резистор последовательно с конденсатором и источником напряжения для ограничения тока, как показано на рисунке, и вуаля! У вас есть что-то, что инженеры называют RC-цепью, «R» для резистора и «C» для конденсатора!

    Эта схема демонстрирует интересное поведение.Когда напряжение подается на сторону резистора, обозначенную «I», напряжение на конденсаторе медленно растет, поскольку ток ограничен. График выглядит примерно так:

    Более склонные к математике из моих зрителей распознали бы форму наклона — она ​​напоминает форму экспоненциальной функции!

    Помните, как я сказал, что заглавные буквы можно использовать для создания задержек по времени? Это один из способов сделать это без источника постоянного тока (который требует дополнительных схем).Поскольку время, необходимое для достижения определенного напряжения, предсказуемо, если мы знаем емкость, напряжение и сопротивление, мы можем создавать схемы с временной задержкой.

    Произведение сопротивления и емкости, RC, известно как постоянная времени цепи. Этот параметр становится полезным при фактическом определении времени для точного достижения заданного напряжения, как показано на графике ниже.

    Из графика видно, что конденсатор достигает 63% приложенного напряжения за одну постоянную времени и так далее.

    Это принцип, который использует всесезонный таймер 555, хотя расчетные уравнения немного отличаются.

    Еще одно интересное применение RC-цепей — фильтрация сигналов, то есть удаление из схемы электрического сигнала нежелательной частоты. RC-цепи требуется определенное время для зарядки и разрядки от источника. Если мы применим периодическую волну с периодом времени больше, чем RC, то такой же сигнал появится на выходе с очень небольшими искажениями.Однако при увеличении частоты сигнал продолжает менять полярность быстрее, чем цепь может заряжаться и разряжаться, и в конечном итоге после определенного момента сигнал исчезает, и все, что у вас остается, — это чистый постоянный ток! Это называется ослаблением сигнала. Как вы можете видеть, RC-схема действует как фильтр, который блокирует сигналы переменного тока (даже те, которые наложены на постоянный ток, т.е. имеющие смещение постоянного тока) за пределами определенной частоты. Этот вид фильтра называется фильтром нижних частот, то есть он пропускает низкие частоты, но не пропускает высокие частоты.

    Конденсаторы в цепях переменного тока

    Конденсаторы ведут себя интересным образом при включении в цепи переменного тока. С точки зрения сигнала, их можно рассматривать как частотно-зависимые резисторы. Как видно выше, RC-схема блокирует весь переменный ток от сигнала, но что происходит, когда конденсатор соединен последовательно с источником переменного напряжения? С точностью до наоборот!

    Поскольку конденсатор представляет собой всего лишь две металлические пластины, разделенные изолятором, он не пропускает через себя постоянный ток.Однако сигнал переменного тока имеет постоянно изменяющиеся напряжения, поэтому одна пластина видит изменяющееся напряжение и индуцирует противоположный заряд на другой пластине, как показано на рисунке:

    В целом это позволяет току «проходить» через конденсатор на относительно высоких частотах. Добавление резистора параллельно выходу создает фильтр высоких частот, то есть фильтр, который пропускает только высокие частоты и блокирует все сигналы постоянного тока.

    «Сопротивление переменного тока» или импеданс конденсатора определяется по формуле:

    XC = 1 / (2 * π * f * C)

    Где XC — емкостное реактивное сопротивление или импеданс, f — частота, а C — емкость.Вы можете использовать эту формулу для расчета виртуального «сопротивления» конденсатора в цепи переменного тока.

    Где на природе встречаются конденсаторы

    Ладно, теории хватило. Давайте рассмотрим различных вариантов использования конденсаторов .

    Первое место, где вы могли бы ожидать увидеть конденсаторы, — это всевозможные источники питания в качестве фильтров и для развязки. Они действуют как зарядные резервуары, обеспечивая быстрый ток, когда он нужен нагрузке.

    Вот два снимка осциллографа, которые показывают эффект отсутствия конденсатора на выводах источника питания.Как видите, наличие конденсаторов значительно снижает «шум» на шинах источника питания, тем самым защищая хрупкие детали от внезапных скачков напряжения.

    Их также называют «развязывающими» конденсаторами , поскольку они «развязывают» участки цепи, в которой они установлены, от источника питания. Иногда провода питания на печатной плате могут быть довольно длинными и иметь высокую индуктивность и сопротивление. Это может привести к тому, что они будут обеспечивать меньший ток, чем обычно.Наличие конденсатора на конце линии питания похоже на временную «батарею» меньшего размера на устройстве, обеспечивающую всплески тока, когда это необходимо, и зарядку, когда устройство потребляет малую мощность.

    Вы можете использовать формулу I / C = dV / dt для расчета емкости, необходимой для устранения «пульсаций» напряжения с клемм источника питания.

    Предположим, у вас есть источник питания , напряжение которого изменяется от 11,5 В до 12 В (пульсации) каждые 10 мс, что является обычным для устройств с питанием от сети из-за частоты 50 Гц, и вам необходимо надеть колпачок на клеммы, чтобы сгладить Напряжение.Если ток нагрузки в этом случае равен 1А, то мы можем переписать формулу таким образом, чтобы узнать емкость:

    (I * dt) / dV

    Где I — ток нагрузки, dt — период шума, а dV — напряжение пульсации. Подставляя значения, мы обнаруживаем, что нам нужна емкость 20000 мкФ. Может показаться, что это много, но вы можете обойтись гораздо меньшим. Полученное значение служит только ориентировочным.

    В реальной жизни вы можете встретить несколько типов и значений конденсаторов на трассах питания, это необходимо для уменьшения содержания шума на многих частотах и ​​получения максимально плавного напряжения.

    Еще одно применение конденсаторов — в сложных фильтрах, таких как этот:

    Но более простым фильтром был бы RC-фильтр , здесь описан один интересный фильтр.

    Плата микроконтроллера Arduino известна всем. Универсальный инструмент, но вы никогда не задумывались, почему аналоговые выходы выдают цифровой сигнал ШИМ? Это потому, что они были разработаны для использования с внешней сетью фильтрации для сглаживания напряжения ШИМ до истинно аналогового напряжения.Это можно сделать с помощью таких простых деталей, как резистор 1 кОм и конденсатор 10 мкФ. Попытайся!

    Другое использование, как упомянуто выше, — синхронизация. Простой генератор может быть построен с использованием логического элемента И-НЕ (попробуйте выяснить, почему логический элемент И не работает), резистора и конденсатора.

    Предполагая, что изначально на конденсаторе нет напряжения, входы И-НЕ (которые связаны вместе) видят на них напряжение, близкое к 0 В, и включают выход. Теперь крышка заряжается через резистор.Когда он достигает «высокого» порога затвора, выходной сигнал переключается на низкий уровень, и теперь колпачок разряжается. Этот цикл продолжает формировать выходной сигнал прямоугольной формы с частотой, зависящей от значений R и C.

    Наконец, еще одно интересное применение конденсаторов — накопление энергии. Конечно, конденсаторы не подходят для аккумуляторов, но для некоторых приложений, которые быстро нуждаются в энергии, лучше всего подходят конденсаторы.

    Устройства, такие как койлганы (больше можно найти в Интернете), нуждаются в большом импульсе тока для ускорения снаряда, поэтому для таких целей используются высоковольтные конденсаторы, часто с такими номиналами, как 450 В, 1500 мкФ, которые могут хранить значительные количества энергии.

    Заключение

    Так вот! Теперь вы знаете о конденсаторах значительно больше, чем то, с чего начинали. Теперь вы можете проектировать простые конденсаторные цепи. Помните, что есть еще много чего узнать, и не переключайте клеммы источника питания!

    Checking Caps

    Checking Caps

    Как проверить алюминиевые электролитические конденсаторы

    Введение

    Можно написать целую книгу по этой теме, но я собираюсь сосредоточиться на очень ограниченной ситуации — обслуживании обычных потребителей. электроника, включая усилители звука, приемники или видеооборудование.Принципы будут одинаковы для всех видов электроники. но в этих устройствах, как правило, используются конденсаторы аналогичного типа, которые слишком часто выбираются из-за цены, а не качества. Хотя у меня нет статистики, вышедшие из строя конденсаторы, похоже, являются причиной большого количества обращений в сервисный центр.

    Написав это, я понял, что конденсаторы можно понять на разных уровнях, от практического до чисто математический. Некоторые традиционные аналогии, такие как аналогия с «ведром воды», в лучшем случае вводят в заблуждение.Различные таблицы данных и приложения могут использовать немного другую терминологию. Силовые люди относятся к коэффициенту мощности. Люди говорят об эффективном переключении питания. последовательное сопротивление (ESR). Традиционные инженеры могут использовать тангенс угла потерь или фазовый угол. Производители испытательного оборудования обычно калибруют свои устанавливает коэффициент рассеяния (D). Хорошо, может быть, в наши дни вы не найдете так много циферблатов, но неудивительно, если людей смущает разные точки зрения и терминология.

    Следует помнить, что какая бы система единиц измерения ни использовалась, ее можно преобразовать в любую другую систему единиц. Там будет всегда должны быть два числа, которые описывают емкость и неизбежные внутренние потери. Последовательная емкость и коэффициент рассеяния наиболее распространены, но вы также найдете реактивное сопротивление и фазовый угол или несколько неясные G&B потери с точки зрения эффективных последовательностей сопротивление (ESR) стало обычным модным словом в последние годы, но это просто обычный термин сопротивления старых серийных моделей, Rs, который знакомы инженерам с начала 20 века.

    Я должен признать, что у меня есть некоторые давние убеждения относительно влияния различных проблем с конденсаторами на схемы. При написании этого Я построил несколько тестовых схем и установил различные заглушки из моей коллекции «дефектных» заглушек, снятых с оборудования за долгие годы. Иногда результаты были неожиданными, и я немного изменил свои взгляды; некоторые из моих советов могут теперь противоречить общепринятым мудрость.

    Взгляните на картину в целом

    Рассмотрим функцию конденсатора в цепи.Вам нужно знать, что ожидается от конденсатора, чтобы интерпретировать ваши измерения. и решите, достаточно ли исправна крышка или ее необходимо заменить. Конденсаторы фильтра в источниках питания, работающих от сети, обычно 50 или 60 Гц, будут иметь тенденцию к большим значениям, обычно 1000 мкФ или более на ампер выходного тока. С полноволновым мостом пульсации конденсатора будут вдвое превышать частоту сети, 100 или 120 Гц, поэтому высокочастотные потери конденсатора не важны.Колпачок действительно должен выдерживать пульсирующий ток; если потери слишком велики, может произойти внутренний нагрев, что приведет к еще большему старению конденсатора. быстро, что приводит к преждевременному выходу из строя. Отметим, что конденсаторы в бытовой технике, в отличие от промышленного, обычно выбирают чтобы свести к минимуму пульсации и не поддерживать высокие токовые нагрузки или нести высокие пульсации токов. К звуковому оборудованию предъявляются высокие требования на блоке питания обычно прерывистые. Наихудшей угрозой может быть плохая вентиляция; остерегайтесь заблокированных вентиляционных отверстий грязью или окружающим беспорядком.Другой причиной раннего выхода из строя является близость к резистору горячего питания или тепловое соединение с источником горячего питания. резистор из-за толстого следа на печатной плате, тонкая ошибка конструкции, которая случается чаще, чем можно было бы ожидать.

    Обратите внимание, что количество пульсаций будет определяться последовательной емкостью (Cs), которая будет определена в ближайшее время. Убытков не будет эффект, если они не катастрофически высоки, как и любой другой параметр конденсатора. Если вы хотите снизить пульсацию от обычного минимума частотного источника питания необходимо увеличить значение емкости.Дешевый конденсатор будет работать точно так же, как и дорогой, хотя дорогой может прослужить дольше благодаря лучшим уплотнениям и более качественной конструкции.

    Фильтры для переключения источников питания имеют больше проблем с током пульсаций и предназначены в основном для низкого ESR (Rs), чтобы сохранить внутреннее сопротивление. рассеиваемая мощность низкая. Внутреннее рассеяние мощности равняется теплу, а тепло — враг конденсаторов. При переключении питания значение емкости часто велико и в некоторой степени неактуально, потому что допустимое сопротивление Rs и номинальный ток пульсации диктовались компонентом выбор, а не значение емкости.Когда вы заменяете конденсатор в импульсном блоке питания, очень важно знать исходное ESR. спецификации и убедитесь, что заменяемая деталь не хуже при частоте эксплуатации . Обычная низкая частота Конденсатор фильтра, установленный в импульсном источнике питания, может немедленно выйти из строя, иногда резко, если он перегреется, а баллончик вентилируется или взорвется. Всегда надевайте защитные очки и не наклоняйтесь над проверяемыми цепями!

    Конденсаторы связи должны пропускать звуковые частоты до 20 кГц, а иногда и больше, в зависимости от применения.Они, как правило, используются в цепи с более высоким импедансом, поэтому потери обычно не являются проблемой. Что может быть проблемой, так это утечка постоянного тока, поскольку вся цель крышки муфты — изоляция постоянного тока. Обычно необходимо измерять утечку при рабочем напряжении; проверка омметром может доказать, что крышка плохая, но нельзя доказать, что крышка хорошая, потому что она не измеряет при достаточно высоком напряжении.

    Неполярный электролит, используемый в кроссоверах громкоговорителей, представляет собой особый случай.Поскольку они работают в цепи с низким сопротивлением как фильтроэлемент, важны потери. Если дизайнер озвучил динамик с конкретным конденсатором, замена его на другой тип может очень хорошо переделать звук.

    Шунтирующие конденсаторы должны работать с высокими частотами, поэтому алюминиевые электролиты не являются предпочтительным типом. Вы можете найти высокую производительность Твердый электролит (OSCON) или танталовые конденсаторы, но обычно используются керамические, а иногда и пластиковая пленка.Это все меньше подвержены старению и выходу из строя, но в любом случае их следует проверять в рамках полного обслуживания.

    Некоторые основные взаимосвязи конденсаторов

    Заранее приносим свои извинения за то, что подвергли вас некоторой теории и математике, но понимание этих отношений позволит вам намного опередить те, которые этого не делают.

    Есть два типа пассивных «компонентов», которые вы можете использовать для построения цепи: сопротивление и реактивное сопротивление.Реактивное сопротивление может быть емкостный или индуктивный. Что интересно в реактивном сопротивлении, так это то, что оно не может рассеивать мощность. Таким образом, чистые конденсаторы и чистые индукторы по определению не имеют потерь. К сожалению, их нет, кроме как на страницах учебников. Единственное, что Может рассеивать мощность — это сопротивление, и каждый реальный конденсатор и катушка индуктивности будут иметь небольшую резистивную составляющую. По крайней мере, мы надеюсь, что он маленький. Здесь мы подходим к фундаментальной концепции, лежащей в основе всей этой статьи: Отношение сопротивления к реактивному сопротивлению равно надежный индикатор состояния алюминиевого электролитического конденсатора.

    В большинстве случаев мы игнорируем недостатки реальных конденсаторов и рассматриваем их как чистые реактивные сопротивления. Не так при их тестировании, поскольку разница между хорошим и плохим конденсатором заключается в недостатках. Эти недостатки проявляются как сопротивление потерь, что приводит к двум различным способам их описания. Один из способов, называемый серийной моделью, помещает сопротивление последовательно с конденсатор. Другой способ — это параллельная модель, когда сопротивление размещается параллельно конденсатору.Обе модели используются для Анализ переменного тока, поэтому постарайтесь игнорировать тот факт, что постоянный ток может проходить через параллельную модель. Эти модели — просто удобный инструмент; они делают не отражает реальную «механику» внутри настоящего конденсатора. В частности, модели действительны только для одной частоты ; измените частоту и вам нужно откорректировать модель. Более сложные модели используются, если диэлектрическое поглощение и / или саморезонанс учитывается.

    Теперь рассмотрим значение емкости.Алюминиевые электролиты обычно имеют широкие допуски, обычно + 80% и -20%. В лучше крышки могут быть на уровне ± 20%. Это все еще широкий диапазон, и это означает, что вы можете не многому научиться на простой емкости. чтения, потому что вы не знаете, хорош ли конденсатор в тот день, когда он был изготовлен, или он потерял большое количество Емкость все еще остается в пределах спецификации, а на следующей неделе полностью выйдет из строя. У него также могут быть большие потери, которые не очевидно при простом измерении емкости.Нам нужно измерить резистивные потери, чтобы лучше понять конденсаторы исправны.

    Если вы внимательно прочитали второй абзац этого раздела, то заметили, что нас действительно интересует соотношение между сопротивлением и реактивное сопротивление, а не само сопротивление. Это число — коэффициент рассеяния.

    Измерители ESR

    стали довольно популярными, потому что они предлагают быстрый и простой высокочастотный внутрисхемный тест.Только ручная емкостная измерители и цифровые вольтметры с функцией измерения емкости также стали популярными по очевидным причинам низкой стоимости и удобства. Проблема Оба тестовых устройства дают вам только половину необходимой информации. Правильный емкостной мост или измеритель даст вам емкость и потери. Современные счетчики, в отличие от традиционных мостов, часто могут выражать емкость и потери в различных единиц, так как это всего лишь расчет процессора, но наиболее распространенными (и полезными) являются последовательная емкость и коэффициент рассеяния или параллельная емкость и коэффициент рассеяния.Как правило, вы будете использовать серийную модель для конденсаторов с малыми потерями.

    Из этих двух чисел вы можете определить последовательные или параллельные сопротивления и многое другое. Красота этих двоих числа это то, что вам редко приходится. Имея некоторый опыт, знание Cs&D сразу скажет вам, существует проблема или нет. Тем не менее, вот несколько формул для преобразования между двумя моделями и для получения СОЭ. Обратите внимание, что коэффициент рассеяния никогда не изменения между двумя моделями.В формулах ниже C будет в фарадах, R, X и Z в омах, D, коэффициент рассеяния, равен безразмерный и омега равен 2 * PI * F.

    Каталоги и спецификации конденсаторов

    Производители алюминиевых электролитов предлагают множество различных типов, большинство из которых обозначаются двух- или трехбуквенным кодом. Это Обычно печатается сбоку на корпусе конденсатора вместе с логотипом производителя.В качестве примера я вытащил конденсатор ниже из моего «запаса», чтобы идентифицировать и искать.

    Вы можете видеть небольшой прямоугольник, но на самом деле это не просто прямоугольник. Это стилизованный щит, используемый United Chemi-Con. по общему признанию, вы бы знали это, только если бы были знакомы с логотипами различных производителей конденсаторов. Также видно, что крышка четко напечатано «SXE», обозначение серии. Величина и напряжение очевидны, 330 мкФ при 35 В постоянного тока, а на задней части крышки находится максимальная температура (M) 105 ° C.Мы также обращаем внимание на размер корпуса, 10 x 20 мм, так как многие крышки бывают разных размеров. разные размеры или соотношения сторон, все с одинаковым значением, но каждый размер с разными характеристиками.

    Вооружившись этой информацией, мы можем найти серию в каталоге United Chemi-Con и посмотреть, что еще можно узнать. Мы открываем что это миниатюрный устойчивый к растворителям конденсатор с низким сопротивлением, подходящий для использования с высокочастотным импульсным источником питания. Естественно это может быть также используется для любых низкочастотных приложений.Просматривая различные таблицы, мы также обнаруживаем следующее:

    • Напряжение: 35 В постоянного тока (мы это знали) с возможностью перенапряжения 44 В (сюрприз!)
    • Диапазон температур: от -55 до 105 ° C
    • Допуск: ± 20% (это буква «M» на задней стороне крышки перед номинальной температурой)
    • Ток утечки: I = 0,01CV через 2 минуты (20 ° C), где I — мкА, C — мкФ, а V — номинальное напряжение (115,5 мкА)
    • Коэффициент рассеяния: 0.12 при 120 Гц и 20 ° C
    • Максимальное сопротивление: 0,13 Ом при 100 кГц и 20 ° C
    • Максимальное сопротивление в холодном состоянии: 0,34 Ом при 100 кГц и -10 ° C
    • Максимальный ток пульсации: 860 мА RMS при 105 ° C, 100 кГц
    • Срок службы: 2000 часов, номинальное напряжение при 105 ° C с коэффициентом рассеяния до 200% от указанного

    Разработчику схем доступна дополнительная информация, но ее более чем достаточно для наших целей.Мы также должны взять обратите внимание на некоторые общие тенденции в данных. Таблица коэффициента рассеяния рассчитана по номинальному напряжению. Чем выше номинальное напряжение, тем ниже коэффициент рассеяния. Это объясняет в целом плохую работу конденсаторов очень низкого напряжения. Также есть сумматор, который гласит: «Когда номинальная емкость превышает 1000 мкФ, прибавляйте 0,02 к вышеуказанным значениям на каждые 1000 мкФ». Таким образом, по мере увеличения емкости вверх, так же как и коэффициент рассеяния. Эти тенденции характерны для всех алюминиевых электролитов.Компания, кажется, определяет окончание срока службы как точка, в которой коэффициент рассеяния вдвое больше указанного в спецификации, поэтому учитывайте это при тестировании более старого оборудования.

    Обратите внимание, как потери растут с понижением температуры. Если оборудование должно работать на морозе, убедитесь, что работоспособность колпачков подходит к задаче. Старые колпачки могут нормально работать в тепле, но, поскольку с годами потери увеличивались, устройство может выйти из строя в холодном состоянии. Это еще одна причина не включать оборудование зимой сразу с грузовика.Другой — конденсация. Пусть все согреется до комнатная температура перед разворачиванием или включением питания!

    Срок службы под нагрузкой кажется очень коротким. Работаем полный рабочий день, 2000 часов — это всего 83 дня! Это должен быть намек на то, что конденсаторы не должны быть эксплуатируется в условиях, вызывающих высокие внутренние температуры. Работает при нормальной температуре окружающей среды, с низким током пульсаций до Чтобы предотвратить нагрев, можно ожидать, что эта же часть прослужит десятилетия с незначительной деградацией.

    Предупреждения об измерениях

    По возможности, мы хотим измерять конденсаторы в цепи. Хотя это может немного повлиять на результаты, мы обычно не Если вы ищете предельную точность, на самом деле нет ничего предельно точного в алюминиевых электролитах. Большая проблема — это любой компонент схемы, который шунтирует конденсатор и делает его хуже, чем он есть на самом деле. Мы можем избежать ошибок из полупроводников, просто поддерживая испытательное напряжение ниже, чем напряжение включения диода.Для кремниевых деталей это менее 0,7 пиковое напряжение, но на всякий случай допустим 0,5 или 1 вольт от пика до пика. Если вы работаете на очень старом оборудовании с германиевыми приборами, ваш срок службы будет тяжелее, потому что низкое напряжение включения и типичная утечка делают все внутрисхемные измерения ненадежными. Ты может потребоваться снять колпачки или другие компоненты, чтобы получить достоверное измерение.

    А как насчет крышек блока питания? Проблема с крышками блока питания заключается в том, что вся остальная цепь обычно подключается через их.Там обязательно будет какая-то резистивная нагрузка. К счастью, значительные потери обычно терпимы. Если низкая частота измерения показывают, что емкость примерно правильная, а коэффициент рассеяния (DF) менее 1 при 120 Гц, проблемы вероятны в другом месте.

    Хороший, плохой и уродливый; Сделаем несколько измерений!

    Мы начнем с измерения совершенно хорошего конденсатора серии Panasonic FC на почтенном General Radio Corp.1657 цифровой LCR мост, первый современный цифровой мост. Большая часть используемых здесь конденсаторов будет емкостью 47 мкФ, поэтому мы можем сравнить полученную информацию. с использованием различных параметров измерения. Первое измерение будет на частоте 120 Гц с использованием серийной модели (Cs), поскольку в таблице данных указывает допуск емкости при 120 Гц. Обратите внимание, что параметры теста обозначаются светодиодами под цифрами.

    Видим емкость 43.8 мкФ и коэффициент рассеяния (D) 0,0671. Емкость немного мала, но она всего -6,8%, ну в пределах опубликованной спецификации ± 20%. Коэффициент рассеивания низкий, что всегда желательно, но поскольку эти крышки рекламируются для их высокочастотных характеристик нам также необходимо обратить внимание на это. Таблица дает нам только полное сопротивление на частоте 100 кГц, игнорируя все вместе низкочастотные характеристики.

    Большинство мостов и измерителей не поднимаются на такую ​​высоту, хотя некоторые измерители ESR могут.Поскольку на этом мосту мы можем измерить частоту 1 кГц, давайте посмотреть, как это выглядит.

    Если мы вычислим Rs, которое равно ESR, из приведенных выше чисел, мы получим 0,872 Ом. Теперь это число не является постоянным с частота, но в таблице данных указано значение 0,8 Ом при 100 кГц, поэтому мы знаем, что у нас все в порядке. Я обычно прохожу через конденсаторы на плате, убедившись, что емкость примерно соответствует указанному значению, но обращая особое внимание на коэффициент рассеяния на частоте 1 кГц.Любой DF, превышающий примерно 0,4, заслуживает более внимательного изучения. Если колпачок используется как фильтр низких частот Я ожидаю, что измерение пеленгации на низкой частоте (120 Гц) будет меньше примерно 0,25. Не зацикливайтесь на потерях. Большинство схем будут работают нормально с большими потерями.

    Вот график реальных измеренных характеристик тех же конденсаторов в диапазоне от 20 до 20 000 Гц. Показаны и коэффициент рассеяния, и ESR. На шкале слева показаны значения в омах для ESR и безразмерные единицы для коэффициента рассеяния.Обратите внимание, что когда вы дойдете до 1 кГц, кривая ESR выровнялась и затем будет медленно уменьшаться по мере увеличения частоты. На некоторой частоте индуктивность станет равной проблема, и полное сопротивление конденсатора возрастет. ESR обычно остается низким, но конденсатор становится меньше. менее эффективен, потому что индуктивное реактивное сопротивление компенсирует емкостное реактивное сопротивление. При резонансе XL = XC, поэтому они вычитаются до ноль, оставив только СОЭ. Сдвиг фазы будет равен нулю, и у вас есть резистор! (на графике должно быть 4 декады, но цифры верны)

    Теперь перейдем к более сомнительной части.Это обычная крышка на 47 мкФ, которую можно найти во всех видах потребительских товаров. Это только рассчитаны на 10 В постоянного тока, и мой опыт показывает, что конденсаторы, рассчитанные на менее 16 В постоянного тока, показывают плохую производительность и имеют короткий срок службы. Вот 120 Гц Cs тест.

    На первый взгляд эти цифры выглядят неплохо. Если бы это ограничение было ограничением фильтра низких частот, оно, безусловно, сработало бы. Если вы посмотрите на графике коэффициента рассеяния, который немного появится, предел примерно соответствует тому, что, по их словам, должно быть.К сожалению, эти маленькие шапочки редко используются в источниках питания с частотой 120 Гц, но часто можно встретить их в качестве разделительных конденсаторов. Давай сделаем измерение на частоте 1 кГц.

    Сейчас дела обстоят не так хорошо. Коэффициент рассеяния 0,7 довольно высок. Если преобразовать его в последовательное сопротивление, мы получим 2,85 Ом. Параллельная модель составляет 26,87 мкФ параллельно с 7,82 Ом, что не так хорошо, как более качественный или более высокий конденсатор напряжения, и вероятно, повлияет на производительность схемы в некоторых приложениях .Хороший конденсатор будет иметь фазовый сдвиг между током и напряжение, приближающееся к 90 градусам, по крайней мере, на низких частотах. Это около 52 градусов. По мере увеличения частоты это ограничение все больше и больше похож на резистор. Это не всегда плохо, но не должно происходить на такой низкой частоте. Сейчас, это только мое мнение по этому поводу; Я не считаю это качественным конденсатором. Тем не менее, если колпачок используется как соединительный колпачок, и если значение хорошее, и если утечка низкая, он будет работать нормально и не является причиной проблемы.Если бы я нашел этот конденсатор в садовом разнообразном бытовом оборудовании, которое я обслуживал, могу ли я его заменить? Возможно нет. Если бы я нашел это в некоторых аудиооборудование высшего класса, в мгновение ока! Современные детали могут быть намного лучше, если вы сделаете правильный выбор.

    Зная только значение последовательной емкости, которую измеряют самые недорогие измерители, вы потеряетесь в темноте. Это значение 42,28 мкФ выглядели прекрасно, в пределах спецификации, но конденсатор был плохого качества из-за больших потерь.Зная только потерь, вы можете обнаружить некоторые неисправные конденсаторы, но не все. Измеритель СОЭ работает быстро, но вы должны понимать, почему он сообщает вам, что он делает. В случае параллельных конденсаторов один может отсутствовать полностью, но измеритель ESR покажет хорошее количество. Он также может сообщать высокое ESR для конденсатора, которое вполне приемлемо для частоты, на которой он работает. На мой взгляд, измеритель ESR все еще намного дороже , чем измеритель только для C, но вам действительно нужны оба числа, чтобы полностью понять и правильно устранить неполадки проблемы с конденсатором.

    Это сбивает с толку! Как провести линию на песке?

    Вопрос в размере 64 000 долларов заключается в том, какое значение использовать в качестве порогового значения. Если у вас есть техническое описание детали, в нем должны быть указаны некоторые ограничения. Если ты можешь получите техническое описание детали аналогичного класса, она должна служить полезной оценкой. Надеюсь, он укажет максимальное рассеивание коэффициент, обычно при 120 Гц. Вот диаграмма для универсального радиала общего назначения серии Rubycon YK, типичного для крышки самого общего назначения:

    Номинальное напряжение 6.3 10 16 25 35 50 63 100 160 200 250 350 400 450
    DF 0,26 0.22 0,18 0,16 0,14 0,12 0,10 0,08 0,20 0,20 0,20 0,20 0,20 0,20

    Внизу таблицы есть примечание: «Если номинальная емкость превышает 1000 мкФ, к tan θ нужно добавить 0.02 к указанное значение с увеличением на каждые 1000 мкФ. «

    Допустим, у вас есть конденсатор на 4700 мкФ, 50 вольт. Базовый коэффициент рассеяния составляет 0,12, а поскольку он больше 1000 мкФ, имеется сумматор 0,08, что дает 0,20 (я округлил значение до 5000 мкФ). Теперь коэффициент рассеяния в конце срока службы составляет 2X, поэтому ограничение может быть уменьшено. считается плохим, если коэффициент рассеяния превышает 0,40 при 120 Гц.

    Большие крышки блока питания

    Это становится немного длинноватым, но я был бы упущен, если бы не показал большую емкость блока питания.Вот Sprague «Powerlytic» 47000 мкФ. 50 В постоянного тока. Поскольку значение составляет 47000 мкФ, многие традиционные мосты вообще его не читают. Счетчики, такие как Digibridge, сделают это на более низких частотах, таких как 120 Гц, но сопротивление настолько низкое, что они не могут управлять им на 1 кГц.

    Коэффициент рассеяния этих больших фильтров источника питания может варьироваться в широком диапазоне, часто намного выше, чем у меньших конденсаторов. Измерено при 120 Гц , вы можете использовать ту же шкалу, что и выше, но умноженную на 3X.Гадюки не будет. Вам понадобится хорошее провода с низким сопротивлением и, возможно, 4-контактное соединение для получения точных измерений на крышках фильтров лучшего качества. Даже показанная компоновка с короткими толстыми выводами к 4-контактному соединению, вероятно, не подходит. Для больших крышек нужен формальный 4-выводной подключение прямо к наконечникам.

    Постоянный ток утечки
    Утечка постоянного тока

    — это явление, отдельное от стоимости и потерь.Если это вызывает беспокойство, вам обычно нужно измерять его отдельно, если вы не есть мост, который включает проверку на герметичность. Устойчивость к утечкам крышки часто не приводит к достаточным потерям, чтобы изменить Показания C и D, но дает большой ток, чтобы нарушить работу цепи. Большинство крышек, которые подходят для оценки стоимости и убытков, будут имеют допустимую утечку, за исключением высоковольтных крышек. С ними нельзя предполагать приемлемую утечку. Некоторая схема места чрезвычайно чувствительны к утечкам.Колпачок, изолирующий решетку трубки, является хорошим примером. Старая бумажная кепка Black Beauty может измерять идеально во всех отношениях, но иметь такую ​​большую утечку постоянного тока, что сдвигает смещение лампы, что приводит к серьезному искаженная форма волны. К счастью, хорошие дизайнеры не используют алюминиевый электролит в чувствительных местах, а бумажные / масляные колпачки не используются. редкость в наши дни. Вам почти всегда придется удалять конденсаторы из цепи для проверки на утечку, потому что вы этого не сделаете. хотите подвергнуть остальную цепь действующему напряжению.

    Для измерения утечки постоянного тока вам понадобится источник питания, который может достичь максимального номинального напряжения конденсатора. Подключите конденсатор к источнику питания через токоограничивающий / чувствительный резистор и измерьте напряжение на резисторе. Рассчитайте ток и сопротивление конденсатора (при желании) по закону Ома. Обязательно примите все необходимые меры предосторожности с высокими и колпачки низкого напряжения, поскольку они могут накапливать значительную энергию.Электропитание должно быть ограничено по току на случай короткого замыкания крышки. Я использую одноразовый чувствительный резистор 1/4 Вт и цифровой мультиметр, как описано ниже, а не измеритель тока в случае отказа.

    В качестве примера мы будем использовать колпачок United Chemi-con выше. Так как в спецификации 115 мкА, то резистор подбирать было бы удобно. таким образом, что 100 мкА дают падение напряжения 1 В постоянного тока. 10 кОм (1 / 100E-6) оплачивает счет. Так как типичный DVM имеет вход 10 МОм сопротивление, нам не нужно его корректировать.Колпачок и резистор соединены последовательно, и на них подается напряжение 35 В постоянного тока. Напряжение на резистор начинается с 35 В постоянного тока и падает по мере зарядки конденсатора. Официальное измерение не начинается, пока не будет установлен предел. полностью заряжен, но даже через 19 секунд напряжение на резисторе упало до 1 В постоянного тока, поэтому конденсатор находится в пределах допустимого диапазона. устойчивость к утечкам. Через несколько минут оно упало до 10 мВ, или 1 мкА, и продолжало падать.

    Пределы утечки обычно указываются с коэффициентом C * V.Обычная спецификация — 0,03CV или 4 мкА, в зависимости от того, что больше. С вы обычно используете uF и ищете uA, никаких преобразований не требуется. Просто умножьте емкость в мкФ на номинальную. умножить напряжение на множитель. Спецификации обычно не допускают повышенной утечки в течение срока службы крышки, в отличие от рассеивания коэффициент, который может увеличиваться вдвое.

    Предупреждение о высоком напряжении — Пользователи трубок — ЭТО ОЗНАЧАЕТ ВАС!

    Если высоковольтный конденсатор не проходит обычные испытания низкого напряжения, можете быть уверены, что он плохой.Если он проходит обычные испытания низкого напряжения, это не значит, что он однозначно хорош! Он может полностью выйти из строя при более высоких напряжениях, или ток утечки может внезапно превысить определенное напряжение, что приведет к ограничению почти как стабилитрон. Эти типы отказов не распространены в цепях низкого напряжения, но кажутся частыми при высоком напряжении. оборудование трубки напряжения.

    Небольшая утечка постоянного тока не так серьезна в цепях низкого напряжения, но рассмотрим устаревшую старую крышку четырехъядерного фильтра с утечкой 2 мА в каждый раздел.Не редкость ситуация со старым оборудованием. При 400 В постоянного тока это 0,8 Вт на секцию или всего 3,2 Вт для банка. Он быстро нагреется, и полный отказ не за горами.

    Если вы проверяете высоковольтные конденсаторы, очень важно проверить утечку постоянного тока при рабочем напряжении. Если крышки нагреваются, выключите устройство. вниз и узнайте, почему. Вероятно, существует проблема пульсации тока или проблема утечки постоянного тока, которую необходимо устранить, прежде чем устройство будет вернул в эксплуатацию.

    Высоковольтное оборудование часто имеет очень маленький запас прочности по номинальному напряжению конденсаторов, а оборудование, изначально предназначенное для Работа 115 В переменного тока может работать на границе при 120–125 В переменного тока. Блок питания, рассчитанный на 425 В постоянного тока на конденсаторе 450 В постоянного тока при 115 В переменного тока. будет иметь 462 В постоянного тока на этой крышке 450 В постоянного тока при 125 В переменного тока. Немного разгрузите источник, удалив какой-либо компонент ниже по потоку, и вы получите рецепт быстрой неудачи. Добавьте к этому годы работы при более высоких температурах, характерных для лампового оборудования, и это станет чудом для бедняков. конденсаторы живут столько, сколько живут.

    Современное испытательное оборудование не предназначено для проверки высокого напряжения, и некоторое старое служебное оборудование телевизионного класса на самом деле намного лучше. за задачу. Обсуждения этого оборудования часто возникают на форумах антикварных радио. Если вы работаете на трубном оборудовании, вам необходимо испытательное оборудование, которое работает при фактических рабочих напряжениях, или вам нужно быть очень консервативным и иногда просто заменять детали. для душевного спокойствия и уверенности в том, что покупатель не вернется с чем-то, что вы якобы «починили».

    Формовочные и риформинговые алюминиевые электролитические конденсаторы

    При изготовлении конденсаторов производитель подает напряжение на клеммы, чтобы сформировать оксидную пленку на пластинах, всегда более высокое напряжение, чем рассчитано на колпачок. Оксидная пленка полупостоянна, но если колпачок долгое время не использовался Со временем оксидная пленка может разрушиться. Это делает конденсатор уязвимым для короткого замыкания при первом включении питания.Таким образом совет медленно включать старое оборудование с помощью Variac. Это создает оксидную пленку до тех пор, пока она не сможет поддерживать полный рабочий режим. Напряжение. Когда в цепь устанавливается новый или долго не использовавшийся колпачок, и при первом включении он будет иметь значительный ток утечки. Этот ток падает довольно долго, пока не достигнет почти нуля. На самом деле процесс может занять от нескольких дней до нескольких недель, прежде чем соблюдается минимальный ток.

    Помните, что значительный ток утечки равен теплу, выделяемому внутри конденсатора.При включении старого оборудования не Предположим, что все в порядке только потому, что колпачки кратковременно поддерживают рабочее напряжение. Отказ может произойти, если крышка нагревается, потому что ток утечки все еще слишком велик. Возвращая к жизни старое оборудование, повышайте напряжение медленно и в несколько этапов. Часто выключайте питание и дайте крышкам отдохнуть и остыть внутри. Затем, через полчаса или более, снова включите немного выше напряжение. После того, как колпачки вовремя накопят некоторую общую мощность, у них будет больше шансов на выживание.Что сказал, что если они все еще не пройдут стандартные тесты, замена — единственное средство.

    После многих лет эксплуатации колпачки «отрегулируют» свои внутренние оксидные слои в соответствии с приложенным напряжением. Если напряжение увеличился по какой-то причине, скажем, из-за высокого состояния линии, ток утечки постоянного тока может значительно возрасти, возможно, инициируя отказ. Полностью спекуляция с моей стороны, но это может объяснить, почему замена конденсаторов в старом ламповом оборудовании так универсальна. рекомендуемые; новые колпачки могут выдерживать скачки напряжения намного лучше, чем старые, если они не были преобразованы до своих полных номиналов.

    Shaken Confidence

    Я столько раз измерял конденсатор и сразу подвергал сомнению его исправность, потому что значение было немного низким. Не вне спецификации, но всего на 5-10% меньше. Разумеется, производитель стремится к значению, указанному на крышке — или нет? Хотя у меня нет доказательств, я предполагаю, что они этого не делают. С автоматизированным оборудованием производитель, вероятно, сможет поддерживать допуски намного более строгие, чем необходимо, и вполне может стремиться к значению ниже номинального, но всегда выше минимального.Почему? Потому что экономия нескольких процентов на дорогих Протравленная алюминиевая фольга и разделительная бумага позволят сэкономить большие деньги при длительном производственном цикле. Требуется меньшая площадь поверхности для производят более низкую предельную стоимость, и я был бы удивлен, если бы некоторые производители не воспользовались этим преимуществом для деталей с большим объемом.

    Иногда можно встретить конденсаторы, размер которых значительно превышает номинальный. Допуск для многих крышек достигал + 80%, но они редко бывают такими высокими в новинку.Произошло то, что химические изменения с течением времени привели к тому, что ценность увеличивать. К сожалению, это признак того, что колпачки подошли к концу и их необходимо заменить. Интересно отметить, что для на данный момент эти конденсаторы, вероятно, лучше справляются с фильтрацией на частоте 120 Гц, чем новые заменители. Тем не менее, они тост, так что убери их оттуда. Я склонен видеть это увеличение стоимости с крышками старше 30 лет.

    Мой конденсатор просочился коричневой слизью на мою печатную плату!

    Эта жалоба часто появляется на форумах в Интернете и, вероятно, вызвала ненужную замену неисчислимых цифр. конденсаторов.Коричневая слизь обычно представляет собой просто клей, который любой разумный производитель брызгает на доску, чтобы удержать более крупную. конденсаторы на месте. Если они не использовали его, вибрация при транспортировке могла легко привести к выходу из строя или вырыванию проводов, что привело к DOA. Блок. Высокий конденсатор с маленьким основанием создает хорошее плечо рычага на выводах, и дополнительная поддержка всегда является хорошей идеей. Конденсатор производители скажут вам, что полное кольцо клея — плохая идея, потому что он улавливает все, что протекает, и предотвращает надлежащую вентиляцию конденсатора для сброса давления в случае выхода из строя.

    Поскольку всегда существуют сомнения относительно коричневого налета, позвольте мне указать, что алюминиевые электролитические конденсаторы не заполнены большими количества жидкости любого типа. Внутренняя бумага будет влажной, возможно, на ее внутренней стороне будет несколько капель конденсата. корпус, но электролита редко бывает достаточно, чтобы вытечь из корпуса и образовать гигантскую лужу на печатной плате. Тем не менее, серьезный отказ большой высоковольтной крышки, вызывающий ее взрывное выделение, может привести к образованию тонкой пленки электролита примерно на все в шасси.В алюминиевых электролитических конденсаторах используется оберточный бумажный разделитель, поэтому старый конденсатор вентилируется или имеет нарушение герметичности может привести к коричневому налету. Если осадок имеет слегка кристаллический вид или хотя бы частично растворяется в вода, это электролит. Обратите внимание, что он вызывает коррозию и со временем снимет паяльную маску с платы, а также почернеет медь. под. Очистите его как можно более полно и замените все близлежащие детали с корродированными проводами.

    Клей, который использовали некоторые производители, также со временем оказался коррозионным.Поиск на форумах в Интернете позволит выявить конкретные приемники и другую электронику, где это известная проблема. Он может разъедать радиальные выводы конденсатора и разъедать другие находящиеся поблизости составные части. Это большая работа, но при полной перестройке необходимо удалить как можно больше клея. Небольшой нож X-Acto с квадратный конец удобен для этого.

    Что это за штука с электролитом

    Производители, вероятно, не собираются сообщать вам подробности, но традиционный электролит, используемый в крышках 85C, был система гликоль / борат, в частности смесь этиленгликоля (да, антифриз) и пентабората аммония.Или использовали борную кислоты и барботирования аммиака через смесь. Характеристики этой смеси оставляют желать лучшего при низких температурах, а также дать низкий esr. Добавление большего количества воды снизит esr, но снизит надежность. Заставляет задуматься о дешевых крышках low esr, используемых в блоки питания компьютеров, которые, кажется, выходят из строя так часто. Крышки с более высокими эксплуатационными характеристиками используют более совершенные электролиты и добавки для достижения более широкий диапазон рабочих температур и низкий esr без потери надежности.Все электролиты токсичны, поэтому избегайте контакта с ними. отложения электролита из вентилируемых крышек; при подозрении на контакт тщательно промойте водой с мылом.

    Какие факторы влияют на срок службы электролитического конденсатора?
    • Температура
    • Рабочее напряжение
    • Целостность уплотнения
    • Состав конденсатора
    • Загрязнение
    • Производственный брак

    Все электролитические крышки в конечном итоге выйдут из строя из-за внутренних реакций, разрушающих диэлектрик.Ход этих реакций определяется перечисленными выше факторами и может быть очень медленным или очень быстрым. Начиная сверху, общее правило: срок службы конденсатора будет сокращаться на 50% на каждые 10 ° C повышения рабочей температуры. Крышки 105C должны служить дольше в большинстве случаев потому, что запас прочности выше. Тепло может исходить от внешних источников или генерироваться внутри из-за пульсаций тока. Обычно оба!

    В более ранних источниках упоминается степенной закон, согласно которому частота отказов крышки обратно пропорциональна рабочему напряжению, повышенному до некоторая сила, Н.Проблема в том, что N изменяется в огромном диапазоне, от 2 до 10, в зависимости от «рецепта» конденсатора. Информация по-прежнему полезен, потому что он говорит нам, что работа с напряжением, близким к номинальному напряжению конденсатора, хуже, чем допускать некоторый запас прочности. An Рабочее напряжение около 60% от номинального — хорошее начало, если позволяют габариты и другие факторы. Также избегайте заглавных букв с номиналы ниже 16 В постоянного тока, так как они имеют более высокую интенсивность отказов. Нет никаких недостатков в том, чтобы использовать современные крышки значительно ниже их максимального значения. уровень напряжения.

    Существует некоторая паранойя в отношении уплотнений конденсаторов, но обычно это второстепенная проблема. Они не шины и они обычно не подвергаются механическому воздействию, озону и ультрафиолетовому излучению. Подбираются уплотнительные материалы в колпачке любого качества для чрезвычайно долгий срок службы и совместимость с электролитом. Тем не менее, если вы потеряете уплотнение, вы потеряете конденсатор, так что покупайте качество.

    Существует множество «рецептов» конденсаторов, и они выходят из строя с разной скоростью.Единственный совет, который я могу предложить, — это покупать премиум детали с длительным сроком службы. Производители каталогизируют все перечисленные продукты со сроком службы в 2-3 раза превышающим срок службы стандартных деталей. Вы можете заплатить немного больше но деньги потрачены не зря.

    Загрязнение — это в основном проблема производства. Алюминиевый электролитический конденсатор с наименьшим количеством хлоридов (и определенным другие загрязнители) быстро разлагаются и могут выйти из строя в течение нескольких недель после изготовления. Один отпечаток пальца на внутренних материалах — это все занимает.Покупайте у известных и надежных поставщиков. Раньше возникала проблема с использованием хлорированных растворителей для очистки контура. доски. Если растворителю удастся пройти через уплотнения, срок службы крышки снизится. Большинство крышек теперь устойчивы к растворителям, но проверьте техническое описание. Старайтесь держать чистящие растворители подальше от электролитических крышек, особенно на конце уплотнения.

    Электролитические колпачки, как и большинство электронных компонентов, в определенной степени подвержены детской смертности.Они отображают обычный кривая «ванночки», где наблюдается начальная интенсивность отказов, за которой следует длительный безотказный срок службы, после чего интенсивность отказов возрастает за счет изнашиваемых механизмов. Эти первоначальные отказы в начале эксплуатации являются результатом дефектов фольги, бумаги или других материалов. подробностей, поэтому не думайте, что замена конденсаторов, которые доказали свою надежность, на новые, непроверенные детали, приведет к как-то гарантировать ноль сбоев.Не будет. Однако вы можете повысить свои шансы, купив «высококачественные» детали, которые должны иметь более низкую начальная частота отказов. На самом деле, любители и небольшие магазины имеют статистику на своей стороне, потому что количество используемых крышек довольно велико. небольшой. Большинству из нас никогда не достанется бракованный колпачок от новой продукции.

    Помните, что все вышесказанное является обобщением, взятым из литературы производителей. Это не близко к Абсолютно и ваш (и мой) опыт работы с небольшой выборкой деталей может не соответствовать «правилам».

    Мифы о замене старых конденсаторов

    Конденсаторы ухудшаются по мере старения как на полке, так и внутри работающего оборудования. Конденсатор, протестированный выше, был только частью NOS. несколько лет. У всей сумки большие потери, хотя я понятия не имею, являются ли цифры нормальными для этой части. Много неудач на старших оборудования из-за выхода из строя конденсаторов. По достижении определенного возраста имеет смысл производить замену конденсаторов оптом, когда оборудование в ремонте. Но подождите, это может быть Плохая идея!

    Как врач, обслуживающий персонал не должен «навредить». Из-за ненужной замены компонентов часто происходит разрыв контактных площадок печатной платы и следы. Он также загрязняет доску, если вы не будете осторожны при ее очистке. Это может сделать классическое оборудование еще более нестандартным. оригинал. Хуже всего то, что оригинальные конденсаторы могут быть лучшего качества, чем те, которые вы устанавливаете. Как нелогично Таким образом, было много серий конденсаторов Sprague и других производителей, которые были невероятно хорошими 30 лет назад и остаются такими до этот день.В качестве примера приведем бейсболку Sprague 30D, которой больше 30 лет.

    У него меньшие потери, чем у свежего и хорошо зарекомендовавшего себя Panasonic FC. Он довольно большой и может выдерживать гораздо больший пульсирующий ток. Он, вероятно, прослужит дольше и превзойдет несколько сменных крышек, если вы не найдете что-то аналогичного качества. Только дурак мог бы замените его новым колпачком. Многие старые крышки с эпоксидными торцевыми уплотнениями даже лучше.У меня есть испытательное оборудование, которое работает 50 лет старый и крышки не показывают признаков снижения производительности. Теперь вы наверняка найдете неисправные конденсаторы и должны их заменить. Ты будешь даже найти плохие Sprague 30D, но заменить детали, потому что они плохие, или потому что у них есть какие-то физические проблемы, или потому что они история неудач, не только потому, что они старые.

    Одно место, где я до рекомендую оптовую замену, — это когда инструмент содержит большое количество похожих колпачков и т. Д. чем немногие из них потерпели неудачу или показали высокую рассеиваемость.Похоже, это обычное дело для аудиоприемников 70-х и некоторого видеооборудования. В тех дела можно легко предсказать будущее, а будущее плохое; Идите вперед и предотвратите неприятности, вытащив их всех оттуда.

    Все хотят иметь эмпирическое правило, определяющее, когда следует повторно ставить кэп, и это непростая задача. Могу сказать по собственному опыту, что когда оборудование возрастает около 30 лет, поэтому следует ожидать некоторых случайных отказов крышки. Где-то между 30 и 40 годами у вас есть выбор — сделать Измерьте и замените при необходимости, или сделайте замену оптом по общему принципу.Многие кепки будут в добром здравии хорошо более 40 лет, но частота отказов будет быстро расти для других. Одним из факторов, который может оправдать оптовую замену, является что стареющие колпачки будут вызывать чрезмерную утечку постоянного тока. Поскольку они должны быть удалены для этого теста, имеет смысл заменить их, если это большие и дорогие бидоны для блоков питания.

    По прошествии 40 лет вы найдете FP и аналогичные многосекционные банки, обычно в трубном оборудовании.Они все еще могут работать в цепи, но обычно истекает срок их службы и будет плохо тестироваться. Мой опыт работы с многосекционными крышками с поворотным замком. возраст не был хорошим, и замена — это правило дня. Это также относится к бумажным / восковым колпачкам и даже к некоторым маркам старых серебряно-слюдяные колпачки, которые имеют тенденцию к утечке постоянного тока.

    Чем сложнее разобрать что-то для обслуживания, тем больше смысла будет просто заменить все, когда оно в отдельности!

    Вы должны работать на своем уровне комфорта.Никто не может с абсолютной уверенностью сказать, выйдет ли данный конденсатор из строя через час. или через год, хотя это было бы очень редко для конденсатора, измеренного близко к его номинальному значению, с низкими потерями и низкой утечкой постоянного тока на внезапно выйдет из строя независимо от возраста. Также обратите внимание, что новые электролитические конденсаторы имеют ненулевой коэффициент младенческой смертности из-за вопросы изготовления и загрязнения. Если ваш опыт включает в себя много оборудования с горячими высоковольтными трубками, вы, вероятно, будете больше консервативен, чем я.Если последствия отказа особенно серьезны, вы также будете более консервативны. Сервис — это уравновешивание; делайте то, что подходит для ситуации.

    Итог
    • Испытательные конденсаторы в том же частотном диапазоне, в котором они должны работать.
    • Подумайте, важны ли потери для рассматриваемой цепи.
    • У вас должна быть схема или хотя бы знать, в какой части схемы находятся заглушки.
    • Отклонить заглушки с завышенными потерями для заявки.
    • Отклонить крышки с чрезмерной утечкой постоянного тока для приложения.
    • Отклонить крышки с малой емкостью.
    • Отбраковать крышки с необычно высокой емкостью.
    • Отклонить колпачки с видимыми утечками, коррозией проводов, глубокими вмятинами или выпуклостями.
    • Отклонить колпачки, у которых аналогичные соседи потерпели неудачу.
    • Сохраняйте ограничения, независимо от возраста, которые не соответствуют вышеуказанным критериям.
    Дополнительные ресурсы
    Поставщики измерителей LCR

    Недавно на eBay появились различные импортные настольные и портативные измерители LCR. Если вы выполняете поиск по измерителю LCR и коэффициент рассеяния, вы увидите, как выглядят очень эффективные инструменты за 200 долларов и выше. Хотя на самом деле я не Если вы видели один, они кажутся гораздо более выгодными, чем то, что было доступно на сегодняшний день.

    Это не должно быть так сложно и дорого! Есть очень мало доступных портативных измерителей LCR, которые включают в себя фактор.Неизменно подойдут стендовые модели. Я не решаюсь рекомендовать старый General Radio 1657, который я использую, так как многим требуется обслуживание после всех этих лет. Тем не менее, если вы найдете хороший, это отличный инструмент для устранения неполадок. Старые механические мосты, такие как GR1650 обычно требует немного TLC, и они не покрывают большие ограничения стоимости, которые часто встречаются в аудиооборудовании. Они также довольно медленно работать. GR1617 действительно покрывает широкий диапазон и имеет встроенное смещение высокого напряжения, но они, как правило, продаются по довольно высокой цене. много.Еще они используют в своем блоке питания довольно редкую и дорогую лампу. Если вы обслуживаете трубное оборудование, GR1617 просто невозможно победить. У меня нет опыта работы с ними, но вы также можете поискать Motech MIC-4070D, Tonghui Th3821, B&K 830C. или 890C, GWInstek LCR814 или Agilent U1731C. Tenma, представленная ниже, также снизилась в цене и имеет D / Q и несколько тестов. частоты.

    Наконец, в разделе загрузок этого сайта есть простой мостик своими руками.Он сделает все, что вам нужно, кроме утечки, а с хорошо укомплектованным мусорным ящиком вы можете построить его всего за несколько долларов.

    Довольно хороший измеритель LCR с D / Q (иногда продается за 149 долларов) и очень хороший измеритель ESR
    Горячие прессы!

    Симпатичный тестер компонентов за 25 долларов недавно стал доступен из нескольких источников. Он основан на микропроцессоре Atmega и принесет вам и ценность, и потерю. Некоторые версии также могут тестировать транзисторы, и уровень версии может быстро меняться, так что сделайте ваш исследование перед покупкой.Вот хорошее место, чтобы начать читать.

    Список литературы
    • Различные руководства по мосту GR, включая 1608, 1615 и 1650
    • Техническое примечание
    • GR — Эквивалентное последовательное сопротивление (ESR) конденсаторов
    • Птицы, пчелы и конденсаторы, P.R.Mallory & Co. Inc., 1968
    • Ruby-Con, Nichicon, United Chemi-Con, Panasonic и другие спецификации производителей конденсаторов
    • Технический документ Sprague 62-4, Ускоренные испытания и прогнозируемый срок службы конденсатора
    • Технический доклад Sprague 62-7, Симпозиум по алюминиевым электролитическим конденсаторам
    • Технический документ Sprague TP-64-11, Химия разрушения алюминиевых электролитических конденсаторов
    • Технический документ Sprague TP-65-10, Новые высокоэффективные алюминиевые электролитические конденсаторы

    С.Хоффман
    последнее изменение 25 августа 2016 г.

    ДОМ

    Емкость

    Конденсатор — очень распространенный электрический компонент. Он используется для хранения электрической энергии. Термин «емкость» означает способность накапливать энергию в виде электрического заряда .

    Емкостный эффект имеет большое преимущество в электрических / электронных схемах. Например, управление переменным током, настройка радиоприемников, схем задержки времени, отделение переменного тока от постоянного тока, коррекция коэффициента мощности, люминесцентные лампы и запуск однофазных двигателей.

    Конденсатор состоит из двух проводящих поверхностей или пластин, расположенных очень близко друг к другу, но разделенных изолятором, называемым диэлектриком. См. Рисунок 1. Также показаны условные обозначения конденсаторов.

    Рисунок 1


    Единицей измерения емкости является фарад (Ф), который может быть определен как:

    .

    Один Фарад — это величина емкости, которая будет хранить заряд в один кулон при приложении ЭДС в один вольт.

    Отсюда:
    Заряд = Емкость x Напряжение

    Q = емкость (фарады) x напряжение (вольт)

    Q = C x U

    Q = накопленный заряд в конденсаторе, выражается в кулонах. Ранее мы узнали, что кулоны равны току (амперам), умноженному на
    . время (секунды) или Q = I x t.

    C = Емкость измеряется в Фарадах. Следует помнить, что единица измерения в 1 фарад представляет собой очень большой заряд. Фактические значения конденсаторов будут в микрофарадах, нанофарадах или пикофарадах, где:

    1 1
    Один микрофарад = ———— или — или 10-6 фарад
    1 000 000 106

    1 1
    Одна нанофарада = —————— или — или 10-9 фарад
    1 000 000 000 109

    1 1
    Один пикофарад = ——————— или — или 10-12 фарад
    1 000 000 000 000 1012

    Если конденсатор был помечен значением 1000 пФ, он также мог быть помечен значением 1 нФ.Точно так же конденсатор на 0,001 мкФ мог иметь маркировку 1 НФ. Следовательно, можно видеть, что в нанофараде одна тысяча пикофарад, а также что в микрофараде 1 тысяча нанофарад.

    Приставка «микро» обычно обозначается греческой буквой µ. Например, 10 мкФ можно записать как 10 мкФ. Значение емкости обычно четко указано на корпусе конденсатора.


    См. Рис. 2. Когда переключатель замкнут, электроны на верхней пластине A притягиваются к положительному полюсу батареи.Это оставляет нехватку электронов на пластине A, которая, следовательно, заряжена положительно. В то же время электроны собираются на нижней пластине B, заставляя ее заряжаться отрицательно. Поскольку пластины A и B теперь заряжены с противоположной полярностью, между ними существует разность потенциалов. Когда эта разность потенциалов равна напряжению батареи, конденсатор больше не может заряжаться. Обратите внимание, что напряжение на конденсаторе имеет полярность, противоположную полярности батареи. Когда конденсатор не может быть заряжен дальше, мы считаем его полностью заряженным .

    Если теперь выключатель разомкнут, конденсатор останется заряженным, потому что избыточные электроны на пластине B не смогут переместиться на пластину A.

    Рисунок 2

    См. Рис. 3. Если между пластинами заряженного конденсатора провести перемычку, электроны будут течь от B к A. Это действие разряжает конденсатор и возвращает его в незаряженное состояние.

    Рисунок 3


    Пример 1

    Рассчитайте заряд конденсатора 10 мкФ, подключенного к источнику постоянного тока 200 В.

    C = 10 мкФ = 10 x 10-6 Фарад
    U = 200 Вольт

    Q = C x U

    Q = 10 х 10-6 х 200

    Q = 0.002 Кулоны

    Пример 2

    Постоянный ток в 10 ампер течет в ранее разряженный конденсатор в течение 20 секунд, когда разность потенциалов между пластинами составляет 600 вольт. Какая емкость конденсатора?

    I = 10 А
    t = 20 секунд

    Q = I x t

    Q = 10 х 20

    Q = 200 Кулонов

    Q = C x U

    Чтобы получить C сам по себе, преобразуем формулу:

    Q
    С = —
    U

    200
    С = ——
    600

    С = 0.33 фарада


    Из предыдущих упражнений видно, что факторы, влияющие на величину заряда конденсатора, зависят от емкости и напряжения:

    Q = C x U

    Чем больше емкость конденсатора, тем больше заряд при одинаковом приложенном напряжении. Если на конденсатор подается 10 Вольт, он заряжается до 10 В, после чего зарядка прекращается.Заряд остается на конденсаторе при поданном напряжении или без него.

    Когда напряжение на конденсаторе сравняется с напряжением питания, ток больше не будет течь. Конденсатор полностью заряжен и останется заряженным даже при отключении от источника питания. См. Рисунок 4.

    Рисунок 4


    Чем больше емкость конденсатора, тем больше заряд при одинаковом приложенном напряжении.Факторы, влияющие на емкость:

    1. Площадь плиты
    2. Расстояние между пластинами (расстояние между пластинами)
    3. Диэлектрический материал.

    (1) Площадь пластины

    Если площадь пластин конденсатора увеличивается, соответственно увеличивается емкость, при условии, что не изменяется расстояние между пластинами или диэлектрический материал. См. Рисунок 5.

    Емкость прямо пропорциональна площади пластины;

    C µ a

    Рисунок 5

    Когда два конденсатора устанавливаются параллельно, площадь пластины увеличивается, и поэтому увеличивается емкость.См. Рисунок 6.

    Рисунок 6

    .
    (2) Расстояние между пластинами

    Емкость конденсатора изменяется при изменении расстояния между пластинами. Он увеличивается, когда пластины сближаются, и уменьшается, когда они отдаляются друг от друга.

    См. Рисунок 7. Пластины (a) имеют большую емкость, чем пластины (b).

    Емкость обратно пропорциональна расстоянию между пластинами;

    1
    C µ —
    г

    Где d = расстояние между пластинами

    Рисунок 7

    См. Рисунок 8.Когда два конденсатора соединены последовательно, расстояние между пластинами увеличивается, поэтому емкость уменьшается.

    Рисунок 8


    (3) Диэлектрический материал

    При использовании одних и тех же пластин, закрепленных на определенном расстоянии друг от друга, емкость изменится, если для диэлектрика используются разные изоляционные материалы. Воздействие различных материалов сравнивается с действием воздуха — то есть, если конденсатор имеет заданную емкость, когда в качестве диэлектрика используется воздух, другие материалы, используемые вместо воздуха, будут умножать емкость на определенную величину, называемую диэлектрической постоянной ″. ».

    При замене диэлектрического материала изменяется емкость. См. Рисунок 9.

    Рисунок 9

    Например, некоторые типы промасленной бумаги имеют диэлектрическую проницаемость 3; и если такую ​​промасленную или вощеную бумагу поместить между пластинами, емкость будет в 3 раза больше, чем если бы диэлектриком был воздух.

    Различные материалы имеют разную диэлектрическую проницаемость и поэтому изменяют емкость, когда они помещаются между пластинами, чтобы действовать как диэлектрик.Ниже перечислены диэлектрические постоянные для типичных материалов

    Воздух 1.0
    Кварц от 3,4 до 4,2
    Стекло 5.1 до 8.0
    Слюда от 7,0 до 8,0


    Когда конденсатор полностью заряжен и сразу отключается от источника питания, конденсатор остается заряженным.

    Если теперь конденсатор закорочен на кусок проводника, энергия, накопленная в конденсаторе, будет рассеиваться в виде искры / трещины разрядного тока.

    Энергия, запасенная в конденсаторе, измеряется в джоулях (символ W). Чем больше значение емкости, тем больше энергии, запасаемой конденсатором, для данного напряжения.

    Конденсаторы

    можно разделить на два типа: поляризованные и неполяризованные .

    Поляризованные типы включают стандартные алюминиевые электролитические и танталовые электролитические конденсаторы. Они широко используются в источниках питания. Оба типа имеют положительные и отрицательные клеммы, и должен быть правильно подключен, чтобы сохранить диэлектрическую проницаемость.
    См. Рисунок 10.

    Фиг.10

    Неполяризованные конденсаторы, такие как полипропиленовые, поликарбонатные, полиэфирные, полистирольные, слюдяные и керамические, можно подключать любым способом. Все они обладают очень хорошими диэлектрическими свойствами. См. Рисунок 11.

    Фиг.11


    В конденсаторах общего назначения в качестве диэлектрика используется бумага, пропитанная воском или маслом.Две длинные прямоугольные алюминиевые фольги, разделенные двумя немного большими полосами пропитанной бумаги, скручиваются. Затем их вставляют в изолированный цилиндр и запечатывают на концах. Из каждой пластины выводится вывод, позволяющий подключить устройство к цепи. См. Рисунок 12.

    Фиг.12

    Конденсаторы с слюдяным диэлектриком имеют диапазон емкости от нескольких пФ до 0.02 мкФ. Обычно это прецизионные конденсаторы с высоким рабочим напряжением и превосходной долговременной стабильностью. Конденсаторы керамического и майларового типов обладают определенными преимуществами в конкретных схемах. Различные типы конденсаторов обычно получают свои названия от типов используемых диэлектриков. См. Рисунок 13.

    Рисунок 13


    При нормальной конструкции конденсаторы более 2 мкФ становятся очень громоздкими и громоздкими.Электролитический конденсатор имеет большую емкость внутри корпуса, которая намного меньше, чем при использовании обычной конструкции.

    Диэлектрик электролитических конденсаторов состоит из тонкой пленки оксида, образованной электрохимическим воздействием непосредственно на пластине из металлической фольги. Другая пластина состоит из пастообразного электролита.
    См. Рисунок 14.

    Рисунок 14

    Большая емкость является результатом того, что оксидный диэлектрический слой является чрезвычайно тонким, а эффективная площадь пластины значительно увеличивается за счет травления.Электролитический конденсатор представляет собой поляризованный компонент , что означает, что он должен быть включен в цепь в соответствии с маркировкой плюса и минуса на его корпусе. При неправильном подключении конденсатор обычно разрушается и может взорваться. Их значения варьируются от 1 мкФ до 10 000 мкФ.

    Керамические дисковые конденсаторы общего назначения обычно имеют допуск ± 20%.

    Бумажные конденсаторы обычно имеют допуск ± 10%.

    Для более жестких допусков используются трубчатые конденсаторы из слюды и керамики.Они имеют значения допуска от ± 2 до 20%.

    Посеребренные слюдяные конденсаторы доступны с допуском ± 1%.

    Допуски могут быть меньше на отрицательной стороне, чтобы обеспечить достаточную емкость, особенно для электролитических конденсаторов, которые имеют большой допуск. Например, электролит 20 мкФ с допуском -10%, + 50% может иметь емкость от 18 до 30 мкФ. Однако точное значение емкости не имеет решающего значения для большинства применений конденсаторов.


    Когда два или более конденсатора подключены параллельно, площадь пластины увеличивается, и поэтому увеличивается емкость.См. Рисунок 15.

    Рисунок 15

    Следовательно, общая емкость (CT) — это сумма отдельных емкостей, включенных параллельно.

    CT = C1 + C2 +. . . . . CN

    Когда группа подключена к источнику питания U, каждый конденсатор будет накапливать заряд, и мы будем называть их Q1 и Q2 соответственно.Общий накопленный заряд QT будет суммой отдельных начислений:

    QT = Q1 + Q2

    Так же, как U в параллельной цепи:

    CT = C1 + C2


    Пример 1

    Два конденсатора емкостью 2 мкФ и 5 мкФ подключены параллельно к источнику питания 20 В постоянного тока.
    Вычислить:

    (а) Эквивалентная емкость группы
    (б) Общая сумма заряда
    (c) Заряд каждого конденсатора.

    Решение 1

    (а) CT = C1 + C2
    CT = 2 + 5
    CT = 7 мкФ

    (б) Общая сумма:
    QT = CT x U
    QT = 7 x 10-6 x 20
    QT = 140 x 10-6 Кулонов

    Заряд на каждом конденсаторе определяется по формуле: Q = C x U
    Поскольку конденсаторы включены параллельно, напряжение на них одинаковое.

    Зарядка на 2 мкФ:
    Q1 = 2 x 10-6 x 20 = 40 x 10-6 Кулонов

    Зарядка на 5 мкФ:
    Q2 = 5 x 10-6 x 20 = 100 x 10-6 Кулонов

    Чек: QT = Q1 + Q2

    140 х 10-6 = 40 х 10-6 + 100 х 10-6


    Пример 2

    Пять конденсаторов емкостью 20 мкФ, 100 мкФ, 50 мкФ, 300 мкФ и 40 мкФ соответственно подключены параллельно к источнику питания 1000 В.

    Вычислить:
    (а) Эквивалентная емкость группы
    (б) Общая сумма заряда
    (c) Заряд каждого конденсатора.

    Решение 2

    (а) CT = C1 + C2 + C3 + C4 + C5
    CT = 20 + 100 + 50 + 300 + 40 = 510 мкФ

    QT = CT x U
    QT = 510 x 10-6 x 1000 = 0.51 кулон

    (в) Q1 = C1 x U
    Q1 = 20 x 10-6 x 1000 = 0,02 Кулоны

    Q2 = C2 x U
    Q2 = 100 x 10-6 x 1000 = 0,1 Кулон

    Q3 = C3 x U
    Q3 = 50 х 10-6 х 1000 = 0.05 Кулоны

    Q4 = C4 x U
    Q4 = 300 x 10-6 x 1000 = 0,3 Кулон

    Q5 = C5 x U
    Q5 = 40 x 10-6 x 1000 = 0,04 Кулон

    Чек:

    QT = Q1 + Q2 + Q3 + Q4 + Q5
    QT = 0.02 + 0,1 + 0,05 + 0,3 + 0,04
    QT = 0,51 Кулоны


    Рассмотрим эффект последовательного соединения двух одинаковых конденсаторов. Площадь пластины остается прежней, но толщина диэлектрика увеличивается. См. Рисунок 16.

    Рисунок 1 6

    1
    Емкость µ —————
    расстояние (г)

    1
    Расстояние µ —————
    Емкость

    Если объединить все расстояния между пластинами конденсаторов, то получится один конденсатор с расстоянием dT (d1 + d2 = dT).

    Формула емкости серии

    1 1 1 1
    — = — + — +. . . . . . .. —
    CT C1 C2 CN

    Примечание:
    Общая емкость в цепи серии рассчитывается таким же образом, как полное сопротивление в цепи , параллельной .

    Общая емкость в цепи , параллельной , рассчитывается таким же образом, как и полное сопротивление в цепи серии .


    Так же, как ток одинаков во всех резисторах в последовательной цепи; заряд одинаковый на всех конденсаторах в последовательной цепи. Это связано с тем, что во всех частях последовательной цепи одновременно должен протекать один и тот же зарядный ток.

    QT = Q1 = Q2 = Q3 (кулоны)


    Пример 1

    Рассчитайте общую емкость трех последовательно соединенных конденсаторов номиналом 10 мкФ, 30 мкФ и 60 мкФ.

    Решение

    1 1 1 1
    — = — + — + —
    CT C1 C2 C3

    1 1 1 1
    — = — + — + —
    КТ 10 30 60

    1 6 + 2 + 1 9
    — = ——————— = —
    КТ 60 60


    60
    CT = — = 6.66 мкФ (до 2 знаков после запятой)
    9


    Этот пример проясняет, что общая емкость цепочки из подключенных конденсаторов серии на меньше, чем , чем у наименьшего отдельного конденсатора . Это также относится к резисторам, включенным параллельно.


    Теперь можно рассчитать общий заряд для предыдущего примера при подключении к источнику питания 200 В.

    QT = CT x U (кулоны)

    QT = 6,66 x 10-6 x 200
    QT = 1333 x 10-6 Кулонов

    Поскольку конденсаторы соединены в серию , заряд на каждом равен тому же , что и общий заряд, т.е.е. 1333 x 10-6 кулонов.


    Напряжение питания равно U, а падение напряжения на отдельных конденсаторах C1, C2 и C3 равно U1, U2 и U3 соответственно, поскольку все конденсаторы включены последовательно:

    UT = U1 + U2 + U3

    Q
    Q = C x U U1 = —
    C1

    Q 1333 x 10-6 1333
    U1 = — = ———— = —— = 133.30 Вольт
    C1 10 х 10-6 10

    Q 1333 x 10-6 1333
    U2 = — = ———— = —— = 44,43 В
    С2 30 х 10-6 30

    Q 1333 x 10-6 1333
    U3 = — = ———— = —— = 22.21 вольт
    С3 60 х 10-6 60

    Примечание:
    Сумма трех отдельных падений напряжения на трех конденсаторах равна напряжению питания. Большее падение напряжения происходит на конденсаторе меньшей емкости, а меньшее падение напряжения — на конденсаторе большей емкости.


    Пример

    Три конденсатора емкостью 6 мкФ, 8 мкФ и 16 мкФ соответственно подключены последовательно к источнику постоянного тока 100 В.Вычислить:

    (1) Суммарная емкость цепи
    (2) Общий накопленный заряд
    (3) Падение напряжения на каждом конденсаторе.

    Решение

    1 1 1 1
    (1) — = — + — + —
    CT C1 C2 C3

    1 1 1 1
    — = — + — + —
    КТ 6 8 16

    1 8 + 6 + 3 17
    — = —————— = —
    КТ 48 48


    48
    CT = — = 2.82 мкФ
    17

    (2) QT = CT x U

    QT = 2,82 x 10-6 x 100

    QT = 282 x 10-6 кулонов

    Q 282 x 10-6
    (3) U1 = — = ———— = 47.05 Вольт
    C1 6 х 10-6

    Q 282 x 10-6
    U2 = — = ———— = 35,35 В
    С2 8 х 10-6

    Q 282 x 10-6
    U3 = — = ———— = 17.63 В
    C3 16 x 10-6

    Чек:
    UT = U1 + U2 + U3
    100 = 47,05 + 35,35 + 17,63
    100 = 100

    Производители указывают безопасное рабочее напряжение на корпусе конденсаторов, и это значение не должно быть превышено. См. Рисунок 17.
    Если это безопасное рабочее напряжение на конденсаторе превышено, возможно, что диэлектрик может выйти из строя, что приведет к короткому замыканию в конденсаторе.

    Фиг.17

    Рабочее напряжение равнопроходных конденсаторов серии

    Когда два одинаковых конденсатора соединены последовательно, рабочее напряжение является суммой двух рабочих напряжений конденсаторов. Например, два конденсатора одинаковой величины, рассчитанные на максимальное питание 130 В, могут быть подключены последовательно и подключены к источнику питания до 260 Вольт.
    В практических схемах этого не делается.Было бы разумно использовать два конденсатора на 260 В.


    Ниже приводится метод, используемый для определения полной емкости цепи, показанной на Рисунке 18.


    Рисунок 18

    Сначала найдите общую емкость параллельной ветви (CP):

    CP = C2 + C3

    CP = 3 + 6 = 9 мкФ

    Этот конденсатор CP емкостью 9 мкФ включен последовательно с конденсатором на 12 мкФ.

    Чтобы найти полную емкость цепи:

    1 1 1
    — = — + —
    CT C1 CP

    1 1 1
    — = — + —
    CT 12 9

    1 3 + 4 7
    — = ———— = —
    КТ 36 36

    36
    CT = — = 5.14 мкФ
    7

    Суммарный заряд схемы:

    QT = CT x U

    QT = 5,14 x 10-6 x 200 = 1028 x 10-6 Кулонов

    Теперь мы можем найти падение напряжения на конденсаторе 12 мкФ:

    QT 1028 x 10-6 1028
    U1 = — = ————— = —— = 85.66 Вольт
    С1 12 х 10-6 12

    Падение напряжения на обоих конденсаторах в параллельной цепи будет одинаковым (U2):

    QT 1028 x 10-6 1028
    U2 = — = ———— = —— = 114,2 В
    КП 9 х 10-6 9

    Поскольку конденсатор 12 мкФ включен в цепь последовательно, через него протекает полный ток, и поэтому накопленный на нем заряд будет равен общему заряду QT.

    Q1 = U1 x C1

    Q1 = 85,66 x 12 x 10-6 = 1028 x 10-6 Кулонов

    Накопленный заряд на конденсаторе 3 мкФ:

    Q2 = U2 x C2
    Q2 = 114,2 x 3 x 10-6 = 343 x 10-6 Кулонов

    Накопленный заряд на конденсаторе 6 мкФ:

    Q3 = U2 x C3
    Q3 = 114.2 x 6 x 10-6 = 685 x 10-6 Кулонов

    Заряд, накопленный двумя конденсаторами, включенными параллельно, равен общему заряду.

    QT = Q2 + Q3
    QT = 343 x 10-6 + 685 x 10-6
    1028 x 10-6 = 1028 x 10-6


    Источник: http: // local.ecollege.ie/Content/APPRENTICE/liu/electrical_notes/LL218.doc

    Если вы являетесь автором приведенного выше текста и не соглашаетесь делиться своими знаниями для преподавания, исследований, стипендий (для добросовестного использования, как указано в США Государства авторские права низкие) отправьте нам электронное письмо, и мы быстро удалим ваш текст. Добросовестное использование — это ограничение и исключение из исключительного права, предоставленного законом об авторском праве автору творческой работы. В законодательстве США об авторском праве добросовестное использование — это доктрина, которая разрешает ограниченное использование материалов, защищенных авторским правом, без получения разрешения от правообладателей.Примеры добросовестного использования включают комментарии, поисковые системы, критику, новостные репортажи, исследования, обучение, архивирование библиотек и стипендии. Он предусматривает легальное, нелицензионное цитирование или включение материалов, защищенных авторским правом, в работы других авторов в соответствии с четырехфакторным балансирующим тестом. (источник: http://en.wikipedia.org/wiki/Fair_use)

    Информация о медицине и здоровье, содержащаяся на сайте, носит общий характер и цель , которая является чисто информативной и по этой причине не может в любом случае заменить совет врача или квалифицированного лица, имеющего законную профессию.

    Тексты являются собственностью их авторов, и мы благодарим их за предоставленную нам возможность бесплатно делиться своими текстами с учащимися, преподавателями и пользователями Интернета, которые будут использоваться только в иллюстративных образовательных и научных целях.

    Конденсаторы

    Параллельные пластины

    Если вам известна разность потенциалов между двумя параллельными пластинами, вы можете легко вычислить напряженность электрического поля между пластинами.Пока вы не приближаетесь к краю пластин, электрическое поле между пластинами остается постоянным, а его сила определяется уравнением:

    Обратите внимание, что при разности потенциалов V в вольтах и ​​расстоянии между пластинами в метрах единицами измерения напряженности электрического поля являются вольты на метр [В / м]. Ранее единицы измерения напряженности электрического поля выражались в ньютонах на кулон [Н / Кл]. Легко показать, что они эквивалентны:

    Вопрос: Величина напряженности электрического поля между двумя противоположно заряженными параллельными металлическими пластинами равна 2.0 × 10 3 ньютонов на кулон. Точка P находится посередине между плитами.
    (A) Нарисуйте по крайней мере пять линий электрического поля, чтобы представить поле между двумя противоположно заряженными пластинами.
    (B) Электрон находится в точке P между пластинами. Вычислите величину силы, действующей на электрон со стороны электрического поля.

    Ответ:

    (А)

    (В)

    Конденсаторы

    Параллельно проводящие пластины, разделенные изолятором, могут использоваться для хранения электрического заряда.Эти устройства бывают разных размеров и известны как конденсаторы с параллельными пластинами. Количество заряда, которое конденсатор может хранить на одной пластине при заданной разности потенциалов на пластинах, известно как емкость устройства, выраженная в кулонах на вольт, также известная как Фарад (F). Фарад — это очень большая емкость, поэтому большинство конденсаторов имеют значения в диапазонах мкФ, наноФарад и даже пикофарад.

    Вопрос: Конденсатор хранит 3 микрокулоны заряда с разностью потенциалов 1.5 вольт на пластинах. Какая емкость?

    Ответ:

    Вопрос: Сколько заряда находится на верхней пластине конденсатора емкостью 200 нФ при разности потенциалов 6 вольт?

    Ответ:

    Количество заряда, которое может удерживать конденсатор, определяется его геометрией, а также изоляционным материалом между пластинами.Емкость напрямую связана с площадью пластин и обратно пропорциональна расстоянию между пластинами, как показано в формуле ниже. Диэлектрическая проницаемость изолятора (ε) описывает сопротивление изолятора созданию электрического поля и равна 8,85 × 10 -12 Фарад на метр для конденсатора с воздушным зазором.

    Вопрос: Найдите емкость двух параллельных пластин длиной 1 миллиметр и шириной 2 миллиметра, если они разделены 3 микрометрами воздуха.

    Добавить комментарий

    Ваш адрес email не будет опубликован.