Как проверить микросхему мультиметром – виды и способы проверки работоспособности микросхем
Содержание статьи
Для проверки микросхемы на исправность используются мультиметры, специальные тестеры, осциллографы. В простых случаях можно обойтись без специальных приборов. Но даже при их наличии иногда проверить работоспособность схемы достаточно сложно. Для успешной проверки необходимо хотя бы примерно знать устройство микросхемы, какие сигналы и напряжения должны поступать на ее входы и формироваться на ее выходах. Рассмотрим вероятные сценарии проведения проверочных работ.
Способы проверки
Существует несколько способов, позволяющих проверить микросхему на работоспособность.
Внешний осмотр
Если микросхема установлена на плате и выпаивать ее нежелательно, то необходимо осуществить ее визуальный осмотр. При внимательном изучении можно обнаружить очевидные дефекты. Таковыми могут быть перегоревшие контакты, обгоревшие и отпавшие провода, трещины на корпусе, обгоревшие обвесные компоненты. Если видимых повреждений не обнаружено, необходимы более сложные действия.
Проверка работоспособности с помощью мультиметра
Следующий шаг проверки – диагностика цепей питания системы. Для этой цели используется мультиметр. Для уточнения выводов питания рекомендуется заглянуть в datasheet на микросхему. Плюс в нем обозначается как VCC+, минус – VCC-, общий провод – GND. Минусовый щуп мультиметра подводится к минусу устройства, плюсовой щуп – к плюсу. Если напряжение соответствует норме для данной системы, то цепи питания устройства являются рабочими. Если обнаружены проблемы, то цепь питания отпаивают и проверяют ее исправность. Если она исправна, то проблема заключается в самой микросхеме.
Выявление нарушений в работе выходов
Если микросхема имеет несколько выходов и хотя бы один из них неработоспособен или функционирует некорректно, вся схема не сможет выполнять назначенные функции.
Проверку выходов мультиметром начинают с измерения напряжения на выводе интегрированного в микросхему источника опорного напряжения Vref. Его номинальное напряжение указывается в сопроводительных документах на устройство. На этом выводе должно присутствовать постоянное напряжение установленной величины. Если напряжение ниже или выше этого значения, то внутри устройства происходят нештатные процессы.
Если в микросхеме присутствует времязадающая RC-цепь, то на ней в рабочем режиме должны происходить колебания. В даташите указывается вывод, на котором предусмотрены такие колебания. Проверочные работы в данном случае осуществляют с помощью осциллографа. Его общий щуп устанавливается на минус питания, измерительный щуп – на RC-вывод. Если при проведении измерений обнаруживаются колебания установленной формы, то устройство исправно. Отсутствие колебаний или их неправильная форма свидетельствуют о проблемах в микросхеме или времязадающих элементах.
Если микросхема выполняет функции управляющего компонента, то на выходном управляющем выводе (или нескольких) должны присутствовать соответствующие сигналы. По datasheet определяют, какой вывод является управляющим. Вывод или выводы проверяют с помощью осциллографа таким же способом, как времязадающие RC-цепи. Если сигнал на этих выводах присутствует и соответствует заданной форме, то данная микросхема является полностью работоспособной. Если же сигнал отсутствует или его форма отличается от нормальной, необходимо проверить управляемую цепь, так как причиной неисправности может быть именно она. Если управляемая цепь исправна, то микросхема неработоспособна и ее необходимо заменить.
Влияние разновидности микросхем на способы проверки
Способ и сложность проверочных работ во многом зависит от типа схемы:
- Самые простые для проверки мультиметром являются микросхемы серии КР 142, имеющие три вывода. Проверка осуществляется подачей напряжения на вход и его измерением на выходе.
На основании этих измерений делается вывод об исправности системы.
- Более сложные для проверки – микросхемы серий К 155, К 176. Для проверочных мероприятий понадобятся: колодка и источник питания с определенным уровнем напряжения, который подбирается под конкретную систему. На вход подается сигнал, контролируемый на выходе с помощью мультиметра.
- При необходимости проведения более сложных проверок используют не мультиметры, а специальные тестеры, которые можно собрать самостоятельно или купить в магазине радиоэлектроники. Тестеры позволяют проверить прозвонкой исправность отдельных узлов схемы. Данные проверки обычно отображаются на экране тестера, что позволяет сделать вывод о работоспособности отдельных элементов устройства.
При проведении проверок работоспособности микросхемы необходимо смоделировать нормальный режим ее работы. Для этого подаваемое напряжение должно соответствовать нормальному уровню, который соответствует конкретной системе. Проверять микросхемы на исправность рекомендуется на специальных проверочных платах.
Была ли статья полезна?
Да
Нет
Оцените статью
Что вам не понравилось?
Другие материалы по теме
Анатолий Мельник
Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.
проверка не выпаивая и способом «прозвона»
Не все знают, как проверить микросхему на работоспособность мультиметром. Даже при наличии прибора не всегда удается это сделать. Бывает, выявить причину неисправности легко, но иногда на это уходит много времени, и в итоге нет никаких результатов. Приходится заменять микросхему.
Способы проверки
Проверка микросхем — это трудный, иногда невыполнимый процесс. Все дело в сложности микросхемы, которая состоит из огромного количества различных элементов.
Есть три основных способа, как проверить микросхему, не выпаивая, мультиметром или без него:
- Внешний осмотр микросхемы. Если внимательно на нее посмотреть и изучить каждый элемент, то не исключено, что удастся найти какой-либо видимый дефект. Это может быть, например, перегоревший контакт (возможно, даже не один). Также при проведении внешнего осмотра микросхемы можно обнаружить трещину на корпусе. При таком способе проверки микросхемы нет необходимости пользоваться специальным устройством мультиметром. Если дефекты видны невооруженным глазом, можно обойтись и без приспособлений.
- Проверка микросхемы с использованием мультиметра. Если причиной выхода из строя детали стало короткое замыкание, то можно решить проблему, заменив элемент питания.
- Выявление нарушений в работе выходов. Если у микросхемы есть не один, а сразу несколько выходов, и если хотя бы один из них работает некорректно или вовсе не работает, то это отразится на работоспособности всей микросхемы.
Разумеется, самым простым способом проверки микросхемы является первый из вышеописанных: то есть осмотр детали. Для этого достаточно внимательно посмотреть сначала на одну ее сторону, а затем на другую, и попытаться заметить какие-то дефекты. Самый же сложный способ — проверка с помощью мультиметра.
Влияние разновидности микросхем
Сложность проверки во многом зависит не только от способа, но и от самих схем. Ведь эти детали электронно-вычислительных устройств хоть и имеют один и тот же принцип построения, но нередко сильно отличаются друг от друга.
Например:
- Наиболее простыми для проверки являются схемы, относящиеся к серии «КР142″.
Они имеют только 3 вывода, следовательно, как только на один из входов подается какое-либо напряжение, можно использовать проверяющий прибор на выходе. Сразу же после этого можно делать выводы о работоспособности.
- Более сложными типами являются «К155″, «К176″. Чтобы их проверить, приходится применять колодку, а также источник тока с определенным показателем напряжения, который специально подбирается под микросхему. Суть проверки такая же, как и в первом варианте. Необходимо лишь на вход подать напряжение, а затем посредством мультиметра проверить показатели на выходе.
- Если же необходимо провести более сложную проверку — такую, для которой простой мультиметр уже не годится, на помощь радиоэлектронщикам приходят специальные тестеры для схем. Способ называется прозвонить микросхему мультиметром-тестером. Такие устройства можно либо изготовить самостоятельно, либо купить в готовом виде. Тестеры помогают определить, работает ли тот или иной узел схемы. Данные, получаемые при проведении проверки, как правило, выводятся на экран устройства.
Важно помнить, что подаваемое на микросхему (микроконтроллер) напряжение не должно превышать норму или, наоборот, быть меньше необходимого уровня. Предварительную проверку можно провести на специально подготовленной проверочной плате.
Нередко после тестирования микросхемы приходится удалять некоторые ее радиоэлементы. При этом каждый из узлов должен быть проверен отдельно.
Работоспособность транзисторов
Перед проверкой радиодетали мультиметром, не выпаивая, нужно обязательно определить, к каким из двух типов относится транзистор — полевым или биполярным. Если к первым, то можно применять следующий способ проверки:
- Установить прибор в режим «прозвонки», а затем использовать красный щуп, подключая его к проверяемому элементу. Другой — черный — щуп должен быть приставлен к выводу коллектора.
- Сразу после выполнения этих несложных действий на экране устройства появится число, которое будет обозначать пробивное напряжение.
Аналогичный уровень можно будет увидеть и при проведении «прозвона» электрической цепи, заключенной между эмиттером и базой. Важно при этом не перепутать щупы: красный должен соприкасаться с базой, а черный — с эмиттером.
- Далее можно проверять все эти же выходы транзистора, но уже в обратном подключении: нужно будет поменять местами красный и черный щупы. Если транзистор работает хорошо, то на экране мультиметра должна быть показана цифра «1″, которая говорит о том, что сопротивление в сети является бесконечно большим.
Если транзистор является биполярным, то щупы должны меняться местами. Разумеется, цифры на экране прибора в этом случае будут обратные.
Конденсаторы, резисторы и диоды
Работоспособность конденсатора микросхемы также проверяется путем прикладывания щупов к его выходам. За очень короткий промежуток времени значение показываемого прибором сопротивления должно увеличиться от нескольких единиц до бесконечности. При изменении мест щупов должен наблюдаться тот же самый процесс.
Чтобы узнать, работает ли резистор схемы, необходимо определить его сопротивление. Значение этой характеристики должно быть больше нуля, однако не являться бесконечно большим. Если при проверке на дисплее прибора отображается не ноль и не бесконечность, значит, резистор работает корректно.
Не отличается особой сложностью и процесс проверки диодов. Сначала нужно определить сопротивление между катодом и анодом в одной последовательности, а затем, поменяв местоположение черного и красного щупов прибора, в другой. Об исправности диода будет говорить стремление отображаемого на экране числа к бесконечности в одном из этих двух случаев и нахождение его на отметке в несколько единиц — в другом.
Индуктивность, тиристор и стабилитрон
Проверяя микросхему на наличие неисправностей, возможно, придется также использовать мультиметр на катушке с током. Если где-то ее провод оборван, то прибор обязательно даст об этом знать. Главное, конечно, правильно его применить.
Все, что необходимо сделать для проверки катушки — замерить ее сопротивление: оно не должно быть бесконечным. Стоит помнить, что не каждый из имеющихся сегодня в продаже мультиметров может проверять индуктивность. Если нужно определить, является ли исправным такой элемент микросхемы, как тиристор, то следует выполнить следующие действия:
- Сначала соединить красный щуп с анодом, а черный, соответственно, с катодом. Сразу после этого на экране прибора появится информация о том, что сопротивление стремится к бесконечности.
- Выполнить соединение управляющего электрода с анодом и смотреть за тем, как значение сопротивления будет падать от бесконечности до нескольких единиц.
- Как только процесс падения завершится, можно отсоединять друг от друга анод и электрод. В результате этого отображаемое на экране мультиметра сопротивление должно остаться прежним, то есть равным нескольким Ом.
Если при проверке все будет именно так, значит, тиристор работает правильно, никаких неисправностей у него нет.
Чтобы проверить стабилитрон, нужно его анод соединить с резистором, а затем включить ток и постепенно поднимать его. На экране прибора должен отображаться постепенный рост напряжения. Через некоторое время этот показатель останавливается в какой-то точке и прекращает увеличиваться, даже если проверяющий по-прежнему увеличивает его посредством блока питания. Если рост напряжения прекратился, значит, проверяемый элемент микросхемы работает правильно.
Проверка микросхемы на исправность — это процесс, который требует серьезного подхода. Иногда можно обойтись без специального прибора и попробовать обнаружить дефекты визуально, используя для этого, например, увеличительное стекло.
Как проверить микросхему на работоспособность мультиметром
При работе с электронными схемами часто требуется проверить исправность микросхем и ее составных частей, не выпаивая при этом их из платы. Для этой цели существуют несколько методов определения, начиная с визуального осмотра, заканчивая прозвоном с помощью специальных приборов. Наиболее надежной и доступной является проверка с использованием мультиметра.
Что такое мультиметр?
Мультиметр — это универсальное комбинированное измерительное устройство, которое объединяет функции нескольких измерительных устройств, то есть измеряет практически все показатели цепи. Самый маленький набор функций мультиметра — это измерение напряжения, тока и сопротивления. Однако современные производители не останавливаются на достигнутом, а вместо этого добавляют ряд функций, таких как емкостное измерение конденсаторов, частоты тока, проверка диодов (измерение падения напряжения на pn-переходе), звуковых датчиков, измерений температуры и измерения определенных параметров транзистора, встроенный генератор низких частот и многое другое.
Проверка электросхемыМультиметр может быть:
- Аналоговый. В данном типе приборов присутствует индикатор, который имеет несколько шкал (по одной на каждый вид измерения).
- Цифровой. Наиболее привычный вариант с цифровым табло. Показывает более точные значения. Имеет большее распространение по сравнению с аналоговым.
Устройство микросхемы
В составе микросхемы встречаются радиоэлементы, которые проверяются различными способами.
Конденсаторы, резисторы и диоды
Мультиметром можно проверить работоспособность конденсатора микросхемы, подключив прибор к его выходам. В очень короткий период времени значение сопротивления, отображаемое на устройстве, должно увеличиться с нескольких единиц до бесконечности. При изменении положения щупа также следует обратить внимание на это изменение.
Чтобы узнать, работает ли резистор в цепи должным образом, необходимо определить его сопротивление. Значение этого атрибута должно быть больше нуля, но не бесконечно большим. Если показатель на дисплее прибора не равен нулю или бесконечен во время теста, резистор работает нормально.
Испытание резистораПроцесс проверки диодов не очень сложен. Сначала необходимо определить сопротивление между катодом и анодом в одном порядке, затем изменить положение черного и красного проводов устройства. Работоспособность диода будет указываться стремлением к бесконечности числа, отображаемого на экране.
Индукционные катушки, тиристоры и стабилитроны
Чтобы проверить катушку на наличие неисправностей, также может понадобиться мультиметр. Если провод в мотке где-нибудь оборвется, устройство обязательно подаст сигнал. Все, что нужно сделать, чтобы проверить катушку, — это измерить ее сопротивление: оно не должно быть бесконечным. Стоит помнить, что не все доступные сегодня мультиметры могут проверять индуктивность.
Если необходимо определить, исправен ли такой компонент в микросхеме, как тиристор, необходимо выполнить следующие шаги:
- Сначала подключить красный провод к аноду, а черный — к катоду. Сразу после этого на экране устройства отображается информация, указывающая, что сопротивление стремится к бесконечности.
- Подсоединить контрольный электрод к аноду и наблюдать, как сопротивление уменьшается от бесконечности до нескольких единиц.
- После завершения процесса анод и электрод можно отсоединить друг от друга. В результате сопротивление, отображаемое на экране мультиметра, должно оставаться неизменным, равным нескольким Ом.
- Если во время теста все показатели в норме, то тиристор работает нормально и неисправностей нет.
Шлейф
Прозвонок шлейфа:
- Устанавливается режим измерения на мультиметре.
- Нужно проверить режим прозвона. Для проверки достаточно того, чтобы контакты щупа соприкоснулись. Если все в порядке, мультиметр подаст звуковой сигнал. В случае отсутствия звукового сопровождения нужно поменять прибор или заняться его ремонтом.
- Приклеить конец шлейфа к столу.
- Поместить красный щуп мультиметра на первый конец шлейфа и первый контакт.
- Поставить черный щуп на второй контакт и другой конец шлейфа.
Важно! Кабель состоит из тонких медных проводов, которые легко ломаются, поэтому шлейф не должен сгибаться.
Проверка микросхемы
Сложность проверки во многом зависит не только от метода, но и от устройства и особенностей конструкции микросхем. В конце концов, эти детали электронных вычислительных устройств, хотя и имеют одинаковые принципы построения, часто сильно отличаются друг от друга.
Например:
- Самый простой способ проверки — метод, относящийся к серии «КР142». Они имеют только три выхода, поэтому, когда какое-либо напряжение подается на один из входов, на выходе может использоваться контрольное устройство. После этого можно сразу сделать выводы о состоянии элемента.
- Более сложными типами являются «K155», «K176». Чтобы проверить их, необходимо использовать модуль с источником тока с определенным индикатором напряжения, который специально выбран для микросхемы. Характер проверки такой же, как и в первом варианте: просто подается напряжение на вход и проверяется выходной контакт с помощью мультиметра.
- Если необходимо выполнить более сложные тесты, которые не подходят для тестирования с помощью простого мультиметра, придется использовать специальный тестер цепи. Эти устройства могут быть изготовлены отдельно или приобретены в продаже. Тестеры могут помочь определить, работает ли конкретный узел цепи правильно. Как правило, данные, полученные во время теста, отображаются на экране устройства.
Важно! Напряжение, подаваемое на микросхему (микроконтроллер), не должно превышать нормальное значение или, наоборот, быть ниже требуемого уровня. Предварительная проверка может быть проведена на специально подготовленной испытательной доске.
Испытание микросхемыПроверка стабилизатора
Электронные компоненты, такие как стабилитроны, выглядят как диоды, но их использование в радиотехнике несколько иное. Стабилитроны обычно используются для стабилизации питания в цепях малой мощности. Они подключены параллельно с нагрузкой. Когда напряжение слишком высокое, стабилитрон пропустит свой собственный ток, вызывая падение напряжения. Эти компоненты не могут работать при высоких токах, когда начинается нагрев, так как это приводит к тепловому отказу.
Весь процесс похож на то, как проверяют диод. Это можно сделать в режиме тестирования резистора или диода с использованием обычного мультиметра. Как и диод, работающий стабилитрон может проводить ток в одном направлении.
Как проверить микросхему мультиметром
Первое и самое важное правило: можно проверять только полностью отключенную цепь, ни при каких обстоятельствах нельзя подключаться к проводам под напряжением.
Микросхема с помощью мультиметра проверяется по следующему алгоритму:
1. Устанавливается щуп в разъемы мультиметра:
— Красный штекер щупа в гнездо VΩmA
— Черный щуп в разъеме COM
2. Устройство включается поворотом регулятора, выбирается нужный режим, отмеченный нужным условным знаком. После этого на экране устройства должны отображаться цифры.
3. Проверяется правильность работы мультиметра. Это делается путем соприкосновением контактов датчика . Если прибор работает нормально, то будет слышен звуковой сигнал, а на экране появится значение, близкое к нулю.
Как проверить работоспособность радиодеталей внешним осмотром
Внешний осмотр платы проводится в случаях, когда под рукой нет никаких приборов. Надежность этого способа не так велика. Если внимательно присмотреться к каждому элементу, есть вероятность обнаружить видимые дефекты. Например, это может быть сгоревший контакт или физическое повреждение Такой метод проверки устраняет необходимость в специальном оборудовании с мультиметром. Если дефекты видны невооруженным глазом, никакое оборудование не может быть использовано.
Важно! В противном случае все же придется прибегнуть к помощи специального оборудования.
Меры безопасности
При использовании мультиметра необходимо строго соблюдать следующие правила электробезопасности:
- Нельзя применять мультиметр во влажной среде.
- Запрещается изменять режим работы и предел измерения в течение процесса.
- Измерение параметров, превышающих высший предел измерения прибора, запрещено.
- Запрещено включать в работу мультиметр с неисправным измерительным щупом.
Часто для проведения ремонтных и монтажных работ в радиоэлектронике требуется проверить работоспособность элементов платы. Выпаять и проверить каждый из них отдельно не представляется возможным, поэтому нужно знать, как проверить микросхему мультиметром, не выпаивая. Мультиметровая проверка будет наилучшим выбором. Это универсальный прибор, который прост в работе и доступен большинству пользователей.
Как проверить микросхему стабилизатор. Как проверить диод мультиметром
Информация для начинающих радиолюбителей:
функции проверки стабилитронов в мультиметрах нет.
И не ищите мультиметр со стабилитронометром. Но понятно, что проверять надо. Более того, надо тестировать даже исправный компонент на предмет параметра фактического напряжения стабилизации. Истина прописная. Вот только как, чтобы не собирать отдельного прибора и не использовать одну из существующих методик, занимающих, пусть и не очень, но относительно продолжительное время, причём не только по времени проведения проверки, но и по подготовки к ней. Но прав оказался один известный юморист, утверждающий, что на всём постсоветском пространстве проблем с «соображалкой» у народа нет.
Собрать решил устройство как приставку к мультиметру, причём компактную. Корпус от упаковки безопасных лезвий «Schick ». Розетка для оконечника телефонного кабеля подошла и по размеру и по цвету, а к ней удалось приладить кнопку включения питания. Учитывая некоторое своеобразие корпуса, сборку пришлось выполнять, так сказать, «пошаговым» способом.
Шаг первый
Шаг второй
— уборка в нишу корпуса всего выше перечисленного и установка по месту штырей (образующих импровизированную вилку для соединения пробника с мультиметром) путём использования на них резьбового соединения и двух гаек М4 на каждый. Расстояние между центров штырей 18,5 мм.
Шаг третий — установка светодиодов и ограничительных резисторов.
Спрятал содержимое «от глаз подальше» и сверху прикрутил подходящие контакты для подсоединения проверяемых стабилитронов. Контакты можно поворачивать вокруг своей оси и тем самым менять расстояние между ними в зависимости от длины проверяемого компонента. Пробую в деле:
Импортный стабилитрон BZX85C18 — чуток не дотянул до заявленного параметра.
Зато отечественный КС515А не подкачал, как говориться «в яблочко». И вот теперь имею в арсенале Schick арный тестер стабилитронов.))
Видео
Сам мультиметр конечно можно заменить любым, даже стрелочным, вольтметром — это будет полезно, если по ходу работы в мастерской вам часто приходится проверять такие детали. Желаю успехов, Babay. Россия, Барнаул.
Идентификация стабилитронов оказывается затруднительной, поскольку для этого необходим источник напряжения, превышающий напряжение стабилизации. » присутствует постоянное напряжение около 15 В. Работоспособность модуля сохраняется при уменьшении питающего напряжения до 0,8 В. Резистор R1 совместно с испытуемым стабилитроном, который подключают к контактным площадкам Х1 и Х2, образуют параметрический стабилизатор напряжения.
Цифровой мультиметр М-830. М-838 или аналогичный устанавливают в режим измерения постоянного напряжения на пределе 20 В и подключают с соблюдением полярности к гнездам XS1 и XS2. При отсутствии подключаемого элемента мультиметр должен показать выходное напряжение преобразователя. Выводы тестируемого элемента соединяют с контактными площадками Х1 и Х2, если это стабилитрон и он соединен анодом с минусом, а катодом с плюсом, то мультиметр покажет напряжение стабилизации данного стабилитрона. При обратном подключении его выводов показания будут не более 0,7 В.
Если показания при подключении элемента в одной полярности не изменяются, а в другой не превышают 0,7 В — это диод или стабилитрон с более высоким, чем 20 В, напряжением стабилизации. Для симметричного стабилитрона в обоих случаях показания будут одинаковыми и меньше выходного напряжения преобразователя. Если показания муль-тиметра близки к нулю в обоих направлениях подключения, испытуемый элемент (диод или стабилитрон) пробит. При максимальных показаниях в обоих вариантах подключения тестируемого элемента — обрыв.
Устройство собирают на печатной плате из двусторонне фольгированного стеклотекстолита, чертеж которой показан на рис. 2. Одна сторона является лицевой панелью на которой сделаны контактные площадки Х1 и Х2. На второй стороне монтируют детали методом поверхностного монтажа без сверления отверстий. Их выводы укорачивают и припаивают непосредственно к печатным проводникам. Через отверстия в плате контакты Х1 и Х2 соединяют с контактными площадками второй стороны.
Контактные пластины для установки гальванического элемента изготовляют также из двусторонне фольгированного стеклотекстолита, зачищают, залуживают и припаивают к печатным проводникам платы. К минусовой пластине, для улучшения контакта с элементом питания, припаивают пружинящий лепесток. Преобразователь напряжения КФ-29 приклеивают к плате, а его выводы припаивают к соответствующим контактным площадкам. Гнезда XS1 и XS2 подбирают по диаметру щупов мультиметра и закрепляют на плате гайками. Гнезда можно использовать любые из имеющихся в наличии, изменив способ их крепления Выключатель питания SA1 — любой малогабаритный движковый.
При отсутствии модуля КФ-29 преобразователь можно собрать по схеме, приведенной на рис. 3. На транзисторе VT1 и трансформаторе Т1 собран бло-кинг-генератор. Импульсы напряжения с коллектора транзистора VT1 выпрямляются диодом VD1, сглаживаются конденсатором СЗ. Постоянное напряжение через резистор R1 поступает на гнезда XS1 и XS2. Элементы этого преобразователя монтируют на аналогичной плате, причем лицевая панель не меняется а печатные проводники и монтаж на второй стороне выполняют в соответствии с рис. 4.
В устройстве применены резисторы МЛТ, С2-33, оксидные конденсаторы С1 и СЗ — импортные, С2 — К10-17. Для изготовления трансформатора Т1 используют ферритовое кольцо типоразмера К10*6хЗ мм магнитной проницаемостью 1000. 2000, грани которого предварительно притупляют с помощью надфиля и обматывают тонкой виниловой лентой. Первичная обмотка содержит 20 витков, а вторичная — 10 витков провода ПЭВ-2 0,31 Диод 1N5817 заменим на 1N5818, 1N5819. Транзистор — КТ3102 с любым буквенным индексом Выключатель SA1 — любой малогабаритный движковый.
После монтажа устанавливают гальванический элемент и включают SA1. Если собранный преобразователь не начинал работать, необходимо поменять местами выводы одной из обмоток трансформатора Т1. Внешний вид приставки показан на рис. 5. Ее можно использовать и со стрелочным мультиметром.
Данная статья посвящена проверке радиодеталей (транзисторов, диодов, конденсаторов и т.д.) и опубликована в связи со многими обращениями ко мне по этому поводу.
Как проверить радиодеталиДля проверки исправности радиодеталей потребуется измерительный прибор – мультиметр.

Резистор
Невооруженным взглядом можно определить сгоревший резистор – он почернеет. Даже если на нем остается нужное сопротивление, его следует заменить.
Для проверки мультиметр ставится в режим омметра. Затем подсоединяем щупы (полярность не имеет значения) к выводам резистора и сравниваем замеренное сопротивление с номинальным. Номинал указывается либо на плате, либо на самом резисторе. Некоторые резисторы маркируются не цифрами, а разноцветными полосками, расшифровываемыми по нехитрой схеме. Отклонения в пределах 5% от номинала считаются нормой.
Конденсатор
Так же, как и резистор, может визуально сигнализировать о неисправности. Конденсатор может вздуться или вообще взорваться и вытечь. Заметить это легко. В таком случае измерения не требуются – деталь подлежит безоговорочной замене.

Еще один нехитрый тест конденсатора – проверка целостности контактов. Для этого «ножки» конденсатора нужно слегка согнуть, после чего попытаться повернуть их или вытащить. Если наблюдается хотя бы минимальный люфт – конденсатор неисправен.
В других случаях конденсатор проверяют омметром. Значение сопротивления должно равняться бесконечности. Если нет – замена.
Диод
Диод проводит ток в одном направлении и не проводит в обратном. Стрелочным мультиметром это легко проверить в режиме омметра. Положительный щуп – к аноду, отрицательный – к катоду. В таком положении ток должен проходить. Если поменять щупы местами, то результат замера будет равноценен обрыву цепи.
Цифровой мультиметр ставится в специальный режим проверки диодов. Фиксируемое напряжение на германиевом диоде должно быть в районе 200-300мВ, на кремниевом – 550 – 700. Если напряжение зашкаливает за 2000мВ – диод неисправен.
Транзистор Биполярный
Проще всего представить транзистор в виде двух «встречных» диодов.

Переход эмиттер-коллектор не должен прозваниваться вообще! Если ток проходит при отсутствии напряжения на базе, транзистор необходимо выбросить.
Полевой
Перед проверкой необходимо замкнуть между собой все контакты, чтобы разрядилась емкость затвора. После этого омметр должен фиксировать сопротивление, равное бесконечности на всех выводах. В противном случае деталь подлежит замене.
Стабилитрон
Проверка стабилитрона – процесс более деликатный. Цифровым мультиметром здесь пользоваться не рекомендуется – он запросто может «пробить» исправную деталь в обоих направлениях. Если есть аналоговый тестер, то проверить можно так же, как диод. Если нет – есть различные способы проверки. Опишем простейший.
Понадобится блок питания с регулировкой подаваемого напряжения. Подключаем к аноду резистор сопротивлением 300-500 Ом, затем подключаем блок питания. Замеряем напряжение на стабилитроне, поднимая его значение на блоке питания. Достигнув определенного значения (лучше, если оно известно заранее – напряжение стабилизации), напряжение должно перестать расти. Если продолжает – меняем стабилитрон.
Тиристор
Положительный щуп омметра – к аноду, отрицательный – к катоду. Сопротивление должно равняться бесконечности. Если коснуться управляющим электродом анода, то должно зафиксироваться сопротивление порядка 100 Ом. При отсоединении УЭ это значение должно остаться фиксированным. Если результат на любом из этих этапов отличается от описанного, тиристор необходимо заменить.
Катушка индуктивности
Простейшую поломку – обрыв – легко определить омметром. Сопротивление должно быть. Как правило – несколько сотен Ом. Если значение уходит в бесконечность – значит, произошел обрыв.
Сложнее обстоит дело с замыканием витков. Как правило, определить его почти невозможно – все способы небезупречны.

Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр
Транзисторы биполярныеЧаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов
Так же стоит прозвонить переход Эмиттер-Коллектор. Точнее это 2 перехода. . . Ну в прочем не суть. В любом транзисторе, ток не должен проходить через них в любом направлении, пока транзистор закрыт. Если же на Базу подали напряжение, то ток протекая через переход База-Эмиттер откроет транзистор, и сопротивление перехода Эмиттер-Коллектор резко упадёт, почти до нуля. Учтите, что падение напряжения на переходах транзистора обычно не ниже 0,6В. А у сборных транзисторов (Дарлингтонов) более 1,2В. По этому некоторые «китайские» мультиметры с батарейкой в 1,5В просто не смогут их открыть. Не поленитесь/поскупитесь достать себе мультиметр с «Кроной»!
Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!
Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!
Транзисторы униполярные (полевые)У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.
Если при проверке приложить положительный щуп тестового прибора к затвору транзистора n-типа, а отрицательный — к истоку, зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком и истоком прибор покажет некоторое сопротивление. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.
Учтите ещё, что в современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Проверить это легко, пролистав даташит на Ваш экземпляр.
Конденсаторы – ещё одна разновидность радиодеталей. Они тоже довольно часто выходят из строя. Чаще всего умирают электролитические, плёнки и керамика портятся несколько реже. . .
Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.
Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.
Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.
Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.
Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.
Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.
Если оно меньше бесконечности и не равно нулю, то резистор скорее всего пригоден к использованию. Обычно, мёртвые резисторы чёрные – перегретые! Но чёрные бывают и живыми, хотя их тоже стоит заменить. После нагрева, их сопротивление могло измениться от номинального, что плохо повлияет на работу устройства! Вообще стоит прозвонить все резисторы, и если их сопротивление отличается от номинального, то лучше заменить. Заметьте, что отличие от номинала на ± 5% считается допустимым. . .
Проверить диоды по моему проще всего. Померили сопротивление, с плюсом на аноде, показывать должно несколько десятков/сотен Ом. Померили с плюсом на катоде – бесконечность. Если не так, то диод стоит заменить. . .
ИндуктивностьРедко, но всё же из строя выходят индуктивности. Причины тому две. Первая – КЗ витков, а вторая – обрыв. Обрыв вычислить легко – достаточно проверить сопротивление катушки. Если оно меньше бесконечности, то всё ОК. Сопротивление индуктивностей обычно не более сотен Ом. Чаще всего несколько десятков. . .
КЗ между витков вычислить несколько труднее. Надо проверить напряжение самоиндукции. Это работает только на дросселях/трансформаторах, с обмотками в хотя бы 1000 витков. Надо подать импульс низковольтный на обмотку, А после, замкнуть эту обмотку лампочкой газоразрядной. Фактически, любя ИН-ка. Импульс обычно подают, слегка касаясь контактов КРОНЫ. Если ИН-ка в итоге мигнёт, то всё норм. Если нет, то либо КЗ витков, либо очень мало витков. . .
Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!
ОптопарыОптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.
Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!
ТиристорыЕщё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.
Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.
Но учтите, что некоторые «китайские» мультиметры могут выдавать слишком маленький ток, так что если тиристор закрылся, ничего страшного! Если он всё же открыт, то убираем щуп от катода, а через пару секунд присоединяем обратно. Теперь тиристор/симистор точно должен закрыться. Сопротивление равно бесконечности!
Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.
Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300…500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.
Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!
СтабисторыСтабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.
Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200…500Ом. Повышаем напряжение, меряя напряжение на стабисторе.
Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!
Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!
Микросхемы/ИМСИх великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.
Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.
Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.
Ну всё, ни пуха Вам, и поменьше горелых деталек!
Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.
Но для начала вспомним, что представляет собой полупроводниковый диод.
Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.
У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.
На физическом уровне диод представляет собой один p-n переход.
Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.
Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение (+ ), а к катоду – отрицательное, т.е. (— ). В таком случае диод открывается и через его p-n переход начинает течь ток .
При обратном включении, когда к аноду приложено отрицательное напряжение (— ), а к катоду положительное (+ ), то диод закрыт и не пропускает ток .
Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.
У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов . Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.
Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение ! Его ещё называют падением напряжения на p-n переходе . Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV). Его то и показывает дисплей прибора.
В обратном включении, когда к аноду подключен минусовой (— ) вывод тестера, а к катоду плюсовой (+ ), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.
В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо V f ), что дословно переводится как «падение напряжения в прямом включении «.
Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.
Узнать подробнее о параметрах диода можно .
Проверка диода.
Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки . В этом мы скоро убедимся.
Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.
Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов . Не забывайте об этом важном правиле!
Итак, проверим диод в прямом включении. При этом плюсовой щуп (красный ) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный ) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.
Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).
Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (I обр ). Но он настолько мал, что его обычно не учитывают.
Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.
На дисплее покажется «1 » в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.
Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы?» Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.
Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!
В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.
Неисправности диода.
У диода есть две основные неисправности. Это пробой перехода и его обрыв .
Пробой . При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.
Обрыв . При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – «1 «. При таком дефекте диод представляет собой изолятор. «Диагноз» — обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся.
А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе — Forward Voltage Drop (V f )) можно ориентировочно судить о типе диода и материале из которого он изготовлен.
Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин V f , которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.
Проверка радиодеталей мультиметром
Серия статей известного автора множества радиолюбительских публикаций Дригалкина В.В. для начинающих радиолюбителей
Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“
Без измерительного прибора Вам не обойтись, т.к. придется проверять сопротивление резисторов, напряжения и тока в разных цепях конструкций. Измерительный прибор, в народе – омметр, авометр (ампер-вольт-омметр) , тестер или мультиметр (от английского multimeter – измерительный прибор, объединяющий в себе несколько функций) – должен иметь каждый. Сейчас большой популярностью пользуются цифровые приборы. Они многофункциональные и сравнительно не дорогие . Ранее в качестве измерительного прибора широко пользовались аналоговыми тестерами со стрелочным индикатором (см. Рис. 1).
Не все начинающие знают, что омметром можно проверять почти все радиоэлементы : резисторы, конденсаторы, катушки индуктивности, трансформаторы, диоды, тиристоры, транзисторы, некоторые микросхемы. В авометре омметр образован внутренним источником тока (сухим элементом или батареей), стрелочным прибором и набором резисторов, которые переключаются при изменении пределов измерения. Сопротивления резисторов подобраны таким образом, чтобы при коротком замыкании клемм омметра стрелка прибора отклонилась вправо до последнего деления шкалы. Это деление соответствует нулевому значению измеряемого сопротивления. Когда же клеммы омметра разомкнуты, стрелка прибора стоит напротив левого крайнего деления шкалы, которое обозначено значком бесконечно большого сопротивления. Если к клеммам омметра подключено какое-то сопротивление, стрелка показывает промежуточное значение между нулем и бесконечностью, и отсчет производится по оцифровке шкалы. В связи с тем, что шкалы омметров выполняются в логарифмическом масштабе, края шкалы получаются сжатыми. Поэтому наибольшая точность измерения соответствует положению стрелки в средней, растянутой части шкалы. Таким образом, если стрелка прибора оказывается у края шкалы, в сжатой ее части, для повышения точности отсчета следует переключить омметр на другой предел измерения.
Омметр производит измерение сопротивления, подключенного к его клеммам, путем измерения постоянного тока, протекающего в измерительной цепи. Поэтому к измеряемому сопротивлению прикладывается постоянное напряжение от встроенного в омметр источника. В связи с тем, что некоторые детали обладают разными сопротивлениями постоянному току в зависимости от полярности приложенного напряжения , для грамотного использования омметра необходимо знать, какая из клемм омметра соединена с плюсом источника тока, а какая – с минусом. В паспорте авометра эти сведения обычно не указаны, и их нужно определить самостоятельно . Это можно сделать либо по схеме авометра, либо экспериментально с помощью какого-либо дополнительного вольтметра или исправного диода любого типа. Щупы омметра подключают к вольтметру так, чтобы стрелка вольтметра отклонялась вправо от нуля. Тогда тот щуп, который подключен к плюсу вольтметра, будет также плюсовым, а второй – минусовым. При использовании в этих целях диода два раза измеряют его сопротивление; сначала произвольно подключая к диоду щупы, а второй раз – наоборот. За основу берется то измерение, при котором показания омметра получаются меньшими. При этом щуп, подключенный к аноду диода, будет плюсовым, а щуп, подключенный к катоду диода, – минусовым.
При проверке исправности того или иного радиоэлемента возможны две различные ситуации: либо проверке подлежит изолированный, отдельный элемент, либо элемент, впаянный в какое-то устройство. Нужно учесть, что, за редкими исключениями, проверка элемента, впаянного в схему, не получится полноценной, при такой проверке возможны грубые ошибки. Они связаны с тем, что параллельно контролируемому элементу в схеме могут оказаться подключены другие элементы, и омметр будет измерять не сопротивление проверяемого элемента, а сопротивление параллельного соединения его с другими элементами. Оценить возможность достоверной оценки исправности контролируемого элемента схемы можно путем изучения этой схемы, проверяя, какие другие элементы к нему подключены и как они могут повлиять на результат измерения. Если такую оценку произвести затруднительно или невозможно, следует отпаять от остальной схемы хотя бы один из двух выводов контролируемого элемента и только после этого производить его проверку. При этом также не следует забывать и о том, что тело человека также обладает некоторым сопротивлением, зависящим от влажности кожной поверхности и от других факторов. Поэтому при пользовании омметром во избежание появления ошибки измерения нельзя касаться пальцами обоих выводов проверяемого элемента.
Проверка резисторов
Проверка постоянных резисторов производится омметром путем измерения их сопротивления и сравнения с номинальным значением, которое указано на самом резисторе и на принципиальной схеме аппарата. При измерении сопротивления резистора полярность подключения к нему омметра не имеет значения. Необходимо помнить, что действительное сопротивление резистора может отличаться по сравнению с номинальным на величину допуска. Поэтому, например, если проверяется резистор с номинальным сопротивлением 100 кОм и допуском ±10%, действительное сопротивление такого резистора может лежать в пределах от 90 до 110 кОм. Кроме того, сам омметр обладает определенной погрешностью измерения (обычно порядка 10%) . Таким образом, при отклонении фактически измеренного сопротивления на 20% от номинального значения резистор следует считать исправным.
1. Вообще то, где какой щуп указано на корпусе любого авометра.
2. Если он не оборван, то исправен и всегда может пригодится.
При проверке переменных резисторов измеряется сопротивление между крайними выводами, которое должно соответствовать номинальному значению с учетом допуска и погрешности измерения, а также необходимо измерять сопротивление между каждым из крайних выводов и средним выводом. Эти сопротивления при вращении оси из одного крайнего положения в другое должны плавно, без скачков изменяться от нуля до номинального значения. При проверке переменного резистора, впаянного в схему, два из его трех выводов необходимо выпаивать. Если переменный резистор имеет дополнительные отводы, допустимо, чтобы только один вывод оставался припаянным к остальной части схемы.
Проверка конденсаторов
В принципе конденсаторы могут иметь следующие дефекты: обрыв, пробой и повышенная утечка. Пробой конденсатора характеризуется наличием между его выводами короткого замыкания, то есть нулевого сопротивления. Поэтому пробитый конденсатор любого типа легко обнаруживается омметром путем проверки сопротивления между его выводами. Конденсатор не пропускает постоянного тока, его сопротивление постоянному току, которое измеряется омметром, должно быть бесконечно велико. Однако это оказывается справедливо лишь для идеального конденсатора. В действительности между обкладками конденсатора всегда имеется какой-то диэлектрик, обладающий конечным значением сопротивления, которое называется сопротивлением утечки. Его-то и измеряют омметром. В зависимости от используемого в конденсаторе диэлектрика устанавливаются критерии исправности по величине сопротивления утечки. Слюдяные, керамические, пленочные, бумажные, стеклянные и воздушные конденсаторы имеют очень большое сопротивление утечки, и при их проверке омметр должен показывать бесконечно большое сопротивление . Однако имеется большая группа конденсаторов, сопротивление утечки которых сравнительно невелико. К ней относятся все полярные конденсаторы, которые рассчитаны на определенную полярность приложенного к ним напряжения, и эта полярность указывается на их корпусах. При измерении сопротивления утечки этой группы конденсаторов необходимо соблюдать полярность подключения омметра (плюсовой вывод омметра должен присоединяться к плюсовому выводу конденсатора), в противном случае результат измерения будет неверным. К этой группе конденсаторов в первую очередь относятся все электролитические конденсаторы и оксидно-полупроводниковые. Сопротивление утечки исправных конденсаторов этой группы должно быть не менее 100 кОм, остальных не менее 1 МОм. При проверке конденсаторов большой емкости нужно учесть, что при подключении омметра к конденсатору, если он не был заряжен, начинается его зарядка, и стрелка омметра делает бросок в сторону нулевого значения шкалы. По мере зарядки стрелка движется в сторону увеличения сопротивлений. Чем больше емкость конденсатора, тем медленнее движется стрелка. Отсчет сопротивления утечки следует производить только после того, как она практически остановится. При проверке конденсаторов емкостью порядка 1000 мкФ на это может потребоваться несколько минут. Внутренний обрыв или частичная потеря емкости конденсатором не могут быть обнаружены омметром, для этого необходим прибор, позволяющий измерять емкость конденсатора. Однако обрыв конденсатора емкостью более 0,2 мкФ может быть обнаружен омметром по отсутствию начального скачка стрелки во время зарядки . Следует заметить, что повторная проверка конденсатора на обрыв по отсутствию начального скачка стрелки может производиться только после снятия заряда, для чего выводы конденсатора нужно замкнуть на короткое время.
Конденсаторы переменной емкости проверяются омметром на отсутствие замыканий. Для этого омметр подключается к каждой секции агрегата и медленно поворачивается ось из одного крайнего положения в другое. Омметр должен показывать бесконечно большое сопротивление в любом положении оси.
Проверка катушек индуктивности
При проверке катушек индуктивности омметром контролируется только отсутствие в них обрыва. Сопротивление однослойных катушек должно быть равно нулю, сопротивление многослойных катушек близко к нулю. Иногда в паспортных данных аппарата указывается сопротивление многослойных катушек постоянному току и на его величину можно ориентироваться при их проверке. При обрыве катушки омметр показывает бесконечно большое сопротивление. Если катушка имеет отвод, нужно проверить обе секции катушки, подключая омметр сначала к одному из крайних выводов катушки и к ее отводу, а затем – ко второму крайнему выводу и отводу.
Проверка низкочастотных дросселей и трансформаторов
Как правило, в паспортных данных аппаратуры или в инструкциях по ее ремонту указываются значения сопротивлений обмоток постоянному току, которые можно использовать при проверке трансформаторов и дросселей. Обрыв обмотки фиксируется по бесконечно большому сопротивлению между ее выводами. Если же сопротивление значительно меньше номинального, это может указывать на наличие короткозамкнутых витков. Однако чаще всего короткозамкнутые витки возникают в небольшом количестве, когда происходит замыкание между соседними витками, и сопротивление обмотки изменяется незначительно. Для проверки отсутствия короткозамкнутых витков можно поступить следующим образом. У трансформатора выбирается обмотка с наибольшим количеством витков, к одному из выводов которой подключается омметр с помощью зажима “крокодил”. Ко второму выводу этой обмотки прикасаются слегка влажным пальцем левой руки. Держа металлический наконечник второго щупа омметра правой рукой, подключают его ко второму выводу обмотки, не отрывая от него пальца левой руки. Стрелка омметра отклоняется от своего начального положения, показывая сопротивление обмотки. Когда стрелка остановится, отводят правую руку с щупом от второго вывода обмотки. В момент разрыва цепи при исправном трансформаторе чувствуется легкий удар электрическим током, возникающей при разрыве цепи. В связи с тем, что энергия разряда мизерна, никакой опасности такая проверка не представляет. Омметр при этом нужно использовать на самом меньшем пределе измерения, который соответствует наибольшему току измерения.
Проверка диодов
Полупроводниковые диоды характеризуются резко нелинейной вольтамперной характеристикой. Поэтому их прямой и обратный токи при одинаковом приложенном напряжений различны. На этом основана проверка диодов омметром. Прямое сопротивление измеряется при подключении плюсового вывода омметра к аноду, а минусового вывода – к катоду диода. У пробитого диода прямое и обратное сопротивления равны нулю. Если диод оборван, оба сопротивления бесконечно велики.
Указать заранее значения прямого и обратного сопротивлений или их соотношение нельзя, так как они зависят от приложенного напряжения, а это напряжение у разных авометров и на разных пределах измерения различно. Тем не менее, у исправного диода обратное сопротивление должно быть больше прямого. Отношение обратного сопротивления к прямому у диодов, рассчитанных на низкие обратные напряжения, велико (может быть более 100). У диодов, рассчитанных на большие обратные напряжения, это отношение оказывается незначительным, так как обратное напряжение, приложенное к диоду омметром, мало по сравнению с тем обратным напряжением, на которое диод рассчитан. Методика проверки стабилитронов и варикапов не отличается от изложенной. Как известно, если к диоду приложено напряжение, равное нулю, ток диода также будет равен нулю. Для получения прямого тока необходимо приложить к диоду какое-то пороговое небольшое напряжение . Любой омметр обеспечивает приложение такого напряжения. Однако если соединено последовательно и согласно (в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается и может оказаться больше, чем напряжение на клеммах омметра. По этой причине измерить прямые напряжения диодных столбов или селеновых столбиков при помощи омметра оказывается невозможно.
Проверка тиристоров.
Неуправляемые тиристоры (динисторы) могут быть проверены таким же образом, как диоды, если напряжение отпирания динистора меньше напряжения на клеммах омметра. Если же оно больше, динистор при подключении омметра не отпирается и омметр в обоих направлениях показывает очень большое сопротивление. Тем не менее, если динистор пробит, омметр это регистрирует нулевыми показаниями прямого и обратного сопротивлений. Для проверки управляемых тиристоров (тринисторов) плюсовой вывод омметра подключается к аноду тринистора, а минусовой вывод – к катоду. Омметр при этом должен показывать очень большое сопротивление, почти равное бесконечному. Затем замыкают выводы анода и управляющего электрода тринистора, что должно приводить к резкому уменьшению сопротивления, так как тринистор отпирается. Если после этого отключить управляющий электрод от анода, не разрывая цепи, соединяющей анод тринистора с омметром, для многих типов тринисторов омметр будет продолжать показывать низкое сопротивление открытого тринистора. Это происходит в тех случаях, когда анодный ток тринистора оказывается больше так называемого тока удержания. Тринистор остается открытым обязательно, если анодный ток больше гарантированного тока удержания. Это требование является достаточным, но не необходимым. Отдельные экземпляры тринисторов одного и того же типа могут иметь значения тока удержания значительно меньше гарантированного. В этом случае тринистор при отключении управляющего электрода от анода остается открытым. Но если при этом тринистор запирается и омметр показывает большое сопротивление, нельзя считать , что тринистор неисправен.
Проверка транзисторов.
Эквивалентная схема биполярного транзистора представляет собой два диода, включенных навстречу один другому. Для p-n-р транзисторов эти эквивалентные диоды соединены катодами, а для n-p-п транзисторов – анодами. Таким образом, проверка транзистора омметром сводится к проверке обоих р-n переходов транзистора: коллектор-база и эмиттер-база. Для проверки прямого сопротивления переходов p-n-р транзистора минусовой вывод омметра подключается к базе, а плюсовой вывод омметра – поочередно к коллектору и эмиттеру. Для проверки обратного сопротивления переходов к базе подключается плюсовой вывод омметра. При проверке n-p-п транзисторов подключение производится наоборот: прямое сопротивление измеряется при соединении с базой плюсового вывода омметра, а обратное сопротивление – при соединении с базой минусового вывода. При пробое перехода его прямое и обратное сопротивления оказываются равными нулю. При обрыве перехода его прямое сопротивление бесконечно велико. У исправных маломощных транзисторов обратные сопротивления переходов во много раз больше их прямых сопротивлений. У мощных транзисторов это отношение не столь велико, тем не менее, омметр позволяет их различить. Из эквивалентной схемы биполярного транзистора вытекает, что с помощью омметра можно определить тип проводимости транзистора и назначение его выводов (цоколевку). Сначала определяют тип проводимости и находят вывод базы транзистора. Для этого один вывод омметра подключают к одному выводу транзистора, а другим выводом омметра
касаются поочередно двух других выводов транзистора. Затем первый вывод омметра подключают к другому выводу транзистора, а другим выводом омметра касаются свободных выводов транзистора. Затем первый вывод омметра подключают к третьему выводу транзистора, а другим выводом касаются остальных. После этого меняют местами выводы омметра и повторяют указанные измерения. Нужно найти такое подключение омметра, при котором подключение второго вывода омметра к каждому из двух выводов транзистора, не подключенных к первому выводу омметра, соответствует небольшому сопротивлению (оба перехода открыты). Тогда вывод транзистора, к которому подключен первый вывод омметра, является выводом базы. Если первый вывод омметра является плюсовым, значит, транзистор относится к n-p-п проводимости, если – минусовым, значит, – p-n-р проводимости. Теперь нужно определить, какой из двух оставшихся выводов транзистора является выводом коллектора. Для этого омметр подключается к этим двум выводам, база соединяется с плюсовым выводом омметра при n-p-п транзисторе или с минусовым выводом омметра при p-n-р транзисторе и замечается сопротивление, которое измеряется омметром. Затем выводы омметра меняются местами (база остается подключенной к тому же выводу омметра, что и ранее) и вновь замечается сопротивление по омметру. В том случае, когда сопротивление оказывается меньше, база была соединена с коллектором транзистора.
Проверка деталей цифровым мультиметром.
Главным отличием цифрового прибора от аналогового является то, что результаты измерения отображаются на жидкокристаллическом дисплее. К тому же цифровые мультиметры обладают более высокой точностью и отличаются простотой использования, т.к. не приходится разбираться во всех тонкостях градирования измерительной шкалы, как со стрелочными измерительными приборами.
Цифровой тестер (см. Рис. 1), как и аналоговый, имеет два щупа – черный и красный, и от двух до четырех гнезд. Черный вывод является общим (масса). Гнездо для общего вывода помечается как СОМ или просто “-” (минус), а сам вывод на конце часто имеет так называемый пкрокодильчикп, для того, чтобы при измерении можно было зацепить его за массу электронной схемы. Красный вывод вставляется в гнездо, помеченное символами напряжения – “V” или “+” (плюс).
Если Ваш прибор содержит более двух гнезд, например, как на Рис. 1, красный щуп вставляется в гнездо “VQmA”. Эта надпись говорит о том, что Вы можете измерять напряжение, сопротивление и небольшой ток – в миллиамперах. Гнездо, расположение немного выше, с маркировкой 10ADC говорит о том, что Вы можете измерять большой постоянный ток, но не выше 10А.
Переключатель мультиметра позволяет выбрать один из нескольких пределов для измерений.
Чтобы измерить постоянное напряжение выбираем режим DCV1, если переменное ACV, подключаем щупы и смотрим результат. При этом на шкале переключателя вы должны выбрать большее напряжение, чем измеряемое. Например, Вам необходимо измерить напряжение в электрической розетки. В вашем приборе шкала ACV состоит из двух параметров: 200 и 750 (это вольты). Значит, нужно установить стрелочку переключателя на параметр 750 и можно смело измерять напряжение.
1 DC – постоянный ток (Direct Current), AC – переменный ток (Alternating Current).
Ток измеряется последовательным включением мультиметра в электрическую цепь. Для примера можно взять обычную лампочку от карманного фонаря и подключить ее последовательно с прибором к адаптеру 5В. Корда по цепи пойдет ток и лампочка загорится, прибор покажет значение тока.
Сопротивление на приборе обозначается значком, немного похожим на наушники. Для измерения сопротивления резистор должен быть выпаян из электрической цепи хотя бы одним концом, чтобы быть уверенным в том, что никакие другие компоненты схемы не повлияют на результат. Подключаем щупы к двум концам резистора и сравниваем показания омметра со значением, которое указано на самом резисторе . Стоит учитывать и величину допуска (возможных отклонений от нормы), т.е. если по маркировке резистор на 200кОм и допуском ± 15%, его действительное сопротивление может быть в пределах 170-230кОм.
Проверяя переменные резисторы, измеряем сначала сопротивление между крайними выводами (должно соответствовать номиналу резистора), а затем подключив щуп мультиметра к среднему выводу, поочередно с каждым из крайних. При вращении оси переменного резистора, сопротивление должно изменяться плавно, от нуля до его максимального значения, в этом случае удобней использовать аналоговый мультиметр наблюдая за движением стрелки, чем за быстро меняющимися цифрами на жидкокристаллическом экране.
Для проверки диодов типовые приборы содержат специальный режим. В более дешевых тестерах можно воспользоваться режимом прозвонки. Тут все просто: в одну сторону диод звониться, а в другую – нет. Проверить диод можно и в режиме сопротивления. Для этого устанавливаем переключатель на 1к0м. При подключении красного вывода мультиметра к аноду диода, а черного к катоду, Вы увидите его прямое сопротивление, при обратном подключении сопротивление будет настолько высоко, что на данном пределе измерения вы не увидите ничего. Если диод пробит, его сопротивление в любую сторону будет равно нулю, если оборван, то в любую сторону сопротивление будет бесконечно большим.
Обычный биполярный транзистор представляет собой два диода, включенных навстречу один другому. Зная, как проверяются диоды, несложно проверить и такой транзистор. Стоит не забывать, что транзисторы бывают разных типов: у р-п-р условные диоды соединены катодами, у п-р-п – анодами. Для измерения прямого сопротивления транзисторных p-n-р переходов, минус мультиметра подключается к базе, а плюс поочередно к коллектору и эмиттеру. При измерении обратного опротивления меняем полярность. Для проверки транзисторов п-р-п типа делаем все наоборот. Если еще короче, то переходы база-коллектор и база-эмиттер в одну сторону должны прозваниваться, в другую – нет.
Для измерения у транзистора коэффициента усиления по току используем режим hEF, если он есть на Вашем приборе. Разъем, в который вставляют контакты транзистора для измерения hEF, не очень качественный практически во всех моделях тестеров и довольно глубоко посажен. То есть ножки транзистора до них иногда не достают. Как выход – вставьте одножильные провода и выводами транзистора касайтесь именно их.
На цифровых мультиметрах пределов измерений обычно больше, к тому же часто добавлены дополнительные функции, например, частотомер, измеритель емкости конденсаторов и даже датчик температуры. Но такими возможностями обладают более дорогие модели тестеров. Кроме того, в дорогих моделях отсутствует необходимость переключать шкалу измерения. Просто устанавливаете переключать на измерение емкости, сопротивления и т.д., и прибор показывает результат.
Для того, чтобы мультиметр не вышел из строя при измерениях напряжения или тока, особенно если их значение неизвестно, переключатель желательно установить на максимально возможный предел измерений, и только если показание при этом слишком мало, для получения более точного результата, переключайте мультиметр на предел ниже текущего.
Icl7106 как проверить работоспособность — Вместе мастерим
На примере цифрового мультиметра DT9208A рассказано о диагностике и ремонте с заменой основной микросхемы-капли на популярную ICL7106.
При ремонте неисправного импульсного блока питания электролит после входного диодного моста оказался заряженным. Мультиметр использовался в режиме прозвонки диодов и сгорел.
Вот так выглядит плата прибора с деталями:
После вскрытия обнаружены перегоревшая дорожка и два диода 1N4007. Эти дефекты устранены, но мультимер не заработал, индикатор оставался темным.
В интернете найдена схема на DT9208A, даже не один вариант. Каждая немного отличается от ремонтируемого прибора. Несколько статей и книг по теме. Изучена информация по основной микросхеме-капле. Установлена возможность ее замены на микросхему ICL7106 в DIP корпусе, или ее аналог КР572ПВ5. По хорошей цене купить можно кликнув на фото ниже.
Времени потрачено достаточно, на мой взгляд информация получена полезная и возможно кому-то еще понадобится. Коротко приведу то, что было важно для меня.
- Схема из интернета, которая мне наиболее подошла:
- Нумерация и назначение выводов микросхемы-капли на плате мультиметра:
У микросхемы-капли 42 вывода, у микросхемы ICL7106 всего 40. Выводы между 25 -26, 38-39 останутся не подключенными. Не будут задействованы функции индикации низкого заряда батареи и удержания измерений. На мой взгляд это не создаст значительных неудобств.
- Проверка исправности микросхемы-капли. Для этого достаточно измерить ее режим:
При напряжении кроны под нагрузкой у меня 8,46В напряжение между выводами 1 и 26 составило 8В. Напряжение между выводами 1 и 32 стабилизировано самой микросхемой и должно быть 3±0,05 В. Напряжение между выводами 32 и 36 должно быть 0,1 В (выставляется резистором VR2(Vref) по схеме).
На выводе 39 должны быть импульсы более 30 кГц, амплитудой не менее 5В:
Если что-то не так, а дорожки и элементы вокруг исправны, то микросхему нужно менять. У меня не было импульсов на выводе 39, внешний резистор и конденсатор генератора исправны.
- Как конструктивно заменить микросхему-каплю на большую ICL7106?
Для этого каплю нужно высверлить сверлом около 6 мм и далее круглым напильником увеличить диаметр отверстия, чтобы дорожки, которые шли внутрь капли были надежно изолированы друг от друга. Затем подготавливаем 40 проводов длиной 4-5 см, залуживаем их и контакты на плате. Микросхему располагаем с противоположной стороны, там достаточно места, и аккуратно, по одному продевая в отверстие, паяем все 40 проводов в соответствии с номерами на плате и самой микросхеме.
На фото ниже вид со стороны распайки выводов на плате:
А на этом фото показана установленная микросхема ICL7106 с противоположной стороны:
Чтобы экран крышки мультиметра при закрывании корпуса не перемкнул выводы микросхемы, на него, напротив микросхемы, наклеить изоляционный материал.
После включения прибор заработал. Но не измерял емкость конденсаторов и частоту. Пришлось поменять еще две микросхемы: LM324 (измерение емкости) и 7555 (измерение частоты). Эти микросхемы не являются дефицитом и стоят недорого. Вместо 7555 я поставил таймер 1006ВИ1, это то же самое.
После ремонта мультиметр нужно откалибровать. Для этого понадобится один или несколько приборов, которым вы доверяете. Перед началом калибровки в отремонтированный мультиметр установить новую крону (или подключить к БП на 9В). На подстроечные резисторы маркером нанести вертикальные риски, чтобы при необходимости вернуть их в исходное положение. Так как схемы имеют различие, найти нужный подстроечник можно методом пробы. Если не тот, по риске вернуть назад и пробовать следующий.
Проверку необходимо делать во всех режимах. Если есть погрешность или несоответствие, использовать подстроечные резисторы мультиметра как сказано выше.
На фото ниже пример расположения некоторых подстроечных резисторов:
Ремонтировать прибор, или покупать новый — личное дело каждого. Микросхему ICL7106 я купил за 1,7$, LM324 и 1006ВИ1 у меня были. Новый прибор стоит от 15 до 20 $. И еще, мастеру сам процесс ремонта интересен, да и выбросить все что было целым не рационально.
Микросхему ICL7106 по аналогии можно использовать в большинстве мультиметров подобного класса.
Наиболее полезная информация изложена в книжке: Д.А. Садченков. Современные цифровые мультиметры.
Если восстанавливать мультиметр совсем нет желания, новый по хорошей цене можно купить кликнув на фото ниже.
Мини ампервольтметры для лабораторного блока питания или индикации напряжения бортсети автомобиля можно купить кликнув на фото ниже.
Материал статьи продублирован на видео:
9 комментариев к “Мультиметр цифровой. Устройство, ремонт.”
Отличная статья,спасибо автору за полезные информации.
Нужна ваша помощь,у меня такой мультиметр правда дешевая китайская поделка,ситуация такая хотел замерить напряжение акб шуруповерта и забыл переключать рычаг в нужное положение т.е стоял на замене постоянного тока 20а и итоги когда щупы коснулись к контактам аккумулятора пошла небольшая искра после чего мультиметр перестал ничего замерить,включается но на дисплее светится цифры 1или 0 при повороте рычага.
Может скажите что проверить?
При открытии его ничего не видно что сгорело,проверил все смд резисторы вроде все живые.
Спасибо.
Проверьте дорожки, которые отходят от тех разъемов, куда были подключены измерительные щупы в момент искры. В цепи измерения тока есть предохранитель, проверьте его. Он правда в цепи измерения мА, но смотря как были у Вас щупы вставлены. Затем проверьте резисторы, подключенные к тем дорожкам, ну и так далее, по цепочке.
Спасибо вам за ответ.
знаете я вроде проверял все дорожки и под увилечением,негде не видно обрыв дорожек.
Предохранители нет стоит шунт.Резисторы нормальные ,правда ещё смд конденсаторы не все проверял.
щупы стояли сом на своём гнезде а второй красный в гнездо 20А ,а при измерении напряжения аккумулятора на контактах акб небольшая искра пошла и тот же убрал щупы.
Есть подозрение что одна микросхема которая находится внизу рядом с гнездом щупы накрылась,беда в том что на её корпусе ничего не видно или китайцы стёрли или так была ,под микроскопом смог какие та буквы и цифры рашифровать и кажется hc14ag 14 ножки в смд корпусе.
Это микросхема LM324 в SMD корпусе (4 операционных усилителя в одном корпусе). Для уточнения неисправных элементов нужно проверить режимы.
Добрый день !
Понимаете судя по буквам и цифрам которые удалось разглядеть то не lm324.
Плата мультиметра сильно отличается от оригинальной .
Жаль что сюда не смогу выложить вам фото платы.
Спасибо за статью, у меня мультиметр от фирмы Kewtech, при измерении тока сгорает предохранитель на 500ma. Прибор был залит водой, затем отмыт спиртом, высушен. Дефект появился после сушки. Спасибо.
Наверное похвалы Вам не нужны, потому что Вы сами знаете, что Вы молодец.
Главное Вы хороший мастер своего дела и грамотный человек.
Спасибо!
Вопрос:
При проверке транзистора неопределенной проводимости и цоколевки прибор MY63 дисплей стал постепенно мутнеть и потом перестал включаться.
Вскрыл и заменил предохранитель. Дисплей все равно не высвечивается. Запитывал от ИП 9В.
С уважением!
Вячеслав
Начните с проверки режима микросхемы 7601 и работы ее генератора.
Самостоятельно организовать и произвести ремонт мультиметра вполне по силам каждому пользователю, хорошо знакомому с азами электроники и электротехники. Но прежде чем приступать к такому ремонту необходимо попробовать разобраться с характером возникшего повреждения.
Визуально обнаруживаемые дефекты (заводской брак)
Проверить исправность прибора на начальной стадии ремонта удобнее всего путём осмотра его электронной схемы. Для данного случая разработаны следующие правила поиска неисправностей:
- необходимо тщательно обследовать печатную плату мультиметра, на которой могут иметься хорошо различимые заводские недоработки и ошибки;
- особое внимание должно уделяться наличию нежелательных замыканий и некачественной пайки, а также дефектам на выводах по краям платы (в районе подключения дисплея). Для ремонта придется применить пайку;
- заводские ошибки чаще всего проявляются в том, что мультиметр показывает не то, что он должен по инструкции, в связи с чем его дисплей обследуется в первую очередь.
Если мультиметр выдает неправильные показания во всех режимах и микросхема IC1 нагревается, то надо осмотреть разъемы для проверки транзисторов. Если длинные выводы замкнулись, то ремонт будет заключаться всего-навсего в их размыкании.
В общей же сложности визуально определяемых неисправностей может набраться достаточное количество. С некоторыми из них вы можете ознакомиться в таблице и затем устранить своими руками. (по адресу: http://myfta.ru/articles/remont-multimetrov.) Перед ремонтом необходимо изучить схемы мультиметра, которая обычно дается в паспорте.
Проверка дисплея
Если хотят проверить исправность и провести ремонт индикатора мультиметра, то обычно прибегают к помощи дополнительного прибора, выдающего сигнал подходящей частоты и амплитуды (50-60 Гц и единицы вольт). При его отсутствии можно воспользоваться мультиметром типа M832 с функцией генерации прямоугольных импульсов (меандра).
Для диагностики и ремонта дисплея мультиметра необходимо вынуть рабочую плату из корпуса прибора и выбрать удобное для проверки контактов индикатора положение (экраном вверх).
После этого следует присоединить конец одного щупа к общему выводу исследуемого индикатора (он расположен в нижнем ряду, крайний слева), а другим концом поочередно прикасаться к сигнальным выводам дисплея.
При этом все его сегменты должны загораться один за другим согласно разводке сигнальных шин, с которой следует ознакомиться отдельно. Нормальное «срабатывание» проверяемых сегментов во всех режимах свидетельствует о том, что дисплей исправен.
Дополнительная информация. Указанная неисправность чаще всего проявляется в процессе эксплуатации цифрового мультиметра, в котором его измерительная часть выходит из строя и нуждается в ремонте крайне редко (при условии, что соблюдаются требования инструкции).
Последнее замечание касается лишь постоянных величин, при измерении которых мультиметр хорошо защищён по перегрузкам. Серьёзные затруднения с выявлением причин отказа прибора чаще всего встречаются при определении сопротивлений участка цепи и в режиме прозвонки.
Неполадки, связанные с проверкой сопротивлений
В данном режиме характерные неисправности, как правило, проявляются в измерительных диапазонах до 200 и до 2000 Ом. При попадании на вход постороннего напряжения, как правило, сгорают резисторы под обозначениями R5, R6, R10, R18, а также транзистор Q1. Кроме того, нередко пробивается и конденсатор C6. Последствия воздействия постороннего потенциала проявляются следующим образом:
- при полностью «выгоревшем» триоде Q1 при определении сопротивления мультиметр показывает одни нули;
- в случае неполного пробоя транзистора прибор с разомкнутыми концами должен показывать сопротивление его перехода.
Обратите внимание! В других режимах измерения этот транзистор замкнут накоротко и поэтому влияния на показания дисплея не оказывает.
При пробое C6 мультиметр не будет работать на измерительных пределах 20, 200 и 1000 Вольт (не исключён и вариант сильного занижения показания).
Если мультиметр постоянно пищит при прозвонке или молчит, то причиной может быть некачественная пайка выводов микросхемы IC2. Ремонт заключается в тщательной пайке.
Неполадки в АЦП
Обследование и ремонт неработающего мультиметра, неисправность которого не связана с уже рассмотренными случаями, рекомендуется начинать с проверки напряжения 3 Вольта на питающей шине АЦП. При этом в первую очередь необходимо убедиться в том, что отсутствует пробой между питающим выводом и общей клеммой преобразователя.
Пропадание элементов индикации на экране дисплея при наличии питающего преобразователь напряжения с большой долей вероятности свидетельствует о повреждении его схемы. Такой же вывод можно сделать и при выгорании значительного количества схемных элементов, расположенных поблизости от АЦП.
На практике этот узел «выгорает» лишь при попадании на его вход достаточно высокого напряжения (более 220 Вольт), что проявляется визуально в виде трещин в компаунде модуля.
Тестирование АЦП
Прежде чем говорить о ремонте, необходимо провести проверку. Простым способом тестирования АЦП на пригодность к дальнейшей эксплуатации является прозвонка его выводов с использованием заведомо исправного мультиметра того же класса. Отметим, что для такой проверки не подходит случай, когда второй мультиметр неправильно показывает результаты измерений.
При подготовке к работе прибор переводится в режим «прозвонки» диодов, а измерительный конец провода в красной изоляции подсоединяется к выводу микросхемы «минус питания». Вслед за этим чёрным щупом последовательно касаются каждой из её сигнальных ножек.
Так как на входах схемы имеются защитные диоды, включённые в обратном направлении, после подачи прямого напряжения от стороннего мультиметра они должны открыться.
Факт их открытия фиксируется на дисплее в виде падения напряжения на переходе полупроводникового элемента. Аналогично проверяется схема при подключении щупа в чёрной изоляции к контакту 1 (+ питания АЦП) с последующим касанием всех остальных выводов. При этом показания на экране дисплея должны быть такими же, как в первом случае.
При смене полярности подключения второго измерительного прибора его индикатор всегда показывает обрыв, поскольку входное сопротивление рабочей микросхемы достаточно велико.
При этом неисправными будут считаться выводы, в обоих случаях показывающие конечное значение сопротивления. Если при любом из описанных вариантов подключения мультиметр показывает обрыв – это с большой вероятностью свидетельствует о внутреннем обрыве схемы.
Возможен ли в таком случае ремонт?
Поскольку современные АЦП чаще всего выпускаются в интегральном исполнении (без корпуса), то заменить их редко кому удаётся. Так что если преобразователь сгорел, то починить мультиметр не удастся, ремонту он не подлежит.
Неполадки в круговом переключателе
Ремонт потребуется, если возникли неисправности, связанные с пропаданием контакта в круговом галетном переключателе. Это проявляется не только в том, что не включается мультиметр, но и в невозможности получить нормальное соединение без сильного нажатия на галетник. Объясняется это тем, что в дешёвых китайских мультиметрах контактные дорожки редко покрываются качественной смазкой, что приводит к их быстрому окислению.
При эксплуатации в пыльных условиях, например, они через какое-то время загрязняются и теряют контакт с переключающей планкой. Для ремонта этого узла мультиметра достаточно удалить из его корпуса печатную плату и протереть контактные дорожки ваткой, смоченной в спирте. Затем на них следует нанести тонкий слой качественного технического вазелина.
В заключении отметим, что при обнаружении заводских «непропаев» или замыканий контактов в мультиметре следует устранить эти недоработки, воспользовавшись низковольтным паяльником с хорошо отточенным жалом. В случае отсутствия полной уверенности в причине поломки прибора следует обратиться к специалисту по ремонту измерительной техники.
Самостоятельно организовать и произвести ремонт мультиметра вполне по силам каждому пользователю, хорошо знакомому с азами электроники и электротехники. Но прежде чем приступать к такому ремонту необходимо попробовать разобраться с характером возникшего повреждения.
Визуально обнаруживаемые дефекты (заводской брак)
Проверить исправность прибора на начальной стадии ремонта удобнее всего путём осмотра его электронной схемы. Для данного случая разработаны следующие правила поиска неисправностей:
- необходимо тщательно обследовать печатную плату мультиметра, на которой могут иметься хорошо различимые заводские недоработки и ошибки;
- особое внимание должно уделяться наличию нежелательных замыканий и некачественной пайки, а также дефектам на выводах по краям платы (в районе подключения дисплея). Для ремонта придется применить пайку;
- заводские ошибки чаще всего проявляются в том, что мультиметр показывает не то, что он должен по инструкции, в связи с чем его дисплей обследуется в первую очередь.
Если мультиметр выдает неправильные показания во всех режимах и микросхема IC1 нагревается, то надо осмотреть разъемы для проверки транзисторов. Если длинные выводы замкнулись, то ремонт будет заключаться всего-навсего в их размыкании.
В общей же сложности визуально определяемых неисправностей может набраться достаточное количество. С некоторыми из них вы можете ознакомиться в таблице и затем устранить своими руками. (по адресу: http://myfta.ru/articles/remont-multimetrov.) Перед ремонтом необходимо изучить схемы мультиметра, которая обычно дается в паспорте.
Проверка дисплея
Если хотят проверить исправность и провести ремонт индикатора мультиметра, то обычно прибегают к помощи дополнительного прибора, выдающего сигнал подходящей частоты и амплитуды (50-60 Гц и единицы вольт). При его отсутствии можно воспользоваться мультиметром типа M832 с функцией генерации прямоугольных импульсов (меандра).
Для диагностики и ремонта дисплея мультиметра необходимо вынуть рабочую плату из корпуса прибора и выбрать удобное для проверки контактов индикатора положение (экраном вверх).
После этого следует присоединить конец одного щупа к общему выводу исследуемого индикатора (он расположен в нижнем ряду, крайний слева), а другим концом поочередно прикасаться к сигнальным выводам дисплея.
При этом все его сегменты должны загораться один за другим согласно разводке сигнальных шин, с которой следует ознакомиться отдельно. Нормальное «срабатывание» проверяемых сегментов во всех режимах свидетельствует о том, что дисплей исправен.
Дополнительная информация. Указанная неисправность чаще всего проявляется в процессе эксплуатации цифрового мультиметра, в котором его измерительная часть выходит из строя и нуждается в ремонте крайне редко (при условии, что соблюдаются требования инструкции).
Последнее замечание касается лишь постоянных величин, при измерении которых мультиметр хорошо защищён по перегрузкам. Серьёзные затруднения с выявлением причин отказа прибора чаще всего встречаются при определении сопротивлений участка цепи и в режиме прозвонки.
Неполадки, связанные с проверкой сопротивлений
В данном режиме характерные неисправности, как правило, проявляются в измерительных диапазонах до 200 и до 2000 Ом. При попадании на вход постороннего напряжения, как правило, сгорают резисторы под обозначениями R5, R6, R10, R18, а также транзистор Q1. Кроме того, нередко пробивается и конденсатор C6. Последствия воздействия постороннего потенциала проявляются следующим образом:
- при полностью «выгоревшем» триоде Q1 при определении сопротивления мультиметр показывает одни нули;
- в случае неполного пробоя транзистора прибор с разомкнутыми концами должен показывать сопротивление его перехода.
Обратите внимание! В других режимах измерения этот транзистор замкнут накоротко и поэтому влияния на показания дисплея не оказывает.
При пробое C6 мультиметр не будет работать на измерительных пределах 20, 200 и 1000 Вольт (не исключён и вариант сильного занижения показания).
Если мультиметр постоянно пищит при прозвонке или молчит, то причиной может быть некачественная пайка выводов микросхемы IC2. Ремонт заключается в тщательной пайке.
Неполадки в АЦП
Обследование и ремонт неработающего мультиметра, неисправность которого не связана с уже рассмотренными случаями, рекомендуется начинать с проверки напряжения 3 Вольта на питающей шине АЦП. При этом в первую очередь необходимо убедиться в том, что отсутствует пробой между питающим выводом и общей клеммой преобразователя.
Пропадание элементов индикации на экране дисплея при наличии питающего преобразователь напряжения с большой долей вероятности свидетельствует о повреждении его схемы. Такой же вывод можно сделать и при выгорании значительного количества схемных элементов, расположенных поблизости от АЦП.
На практике этот узел «выгорает» лишь при попадании на его вход достаточно высокого напряжения (более 220 Вольт), что проявляется визуально в виде трещин в компаунде модуля.
Тестирование АЦП
Прежде чем говорить о ремонте, необходимо провести проверку. Простым способом тестирования АЦП на пригодность к дальнейшей эксплуатации является прозвонка его выводов с использованием заведомо исправного мультиметра того же класса. Отметим, что для такой проверки не подходит случай, когда второй мультиметр неправильно показывает результаты измерений.
При подготовке к работе прибор переводится в режим «прозвонки» диодов, а измерительный конец провода в красной изоляции подсоединяется к выводу микросхемы «минус питания». Вслед за этим чёрным щупом последовательно касаются каждой из её сигнальных ножек.
Так как на входах схемы имеются защитные диоды, включённые в обратном направлении, после подачи прямого напряжения от стороннего мультиметра они должны открыться.
Факт их открытия фиксируется на дисплее в виде падения напряжения на переходе полупроводникового элемента. Аналогично проверяется схема при подключении щупа в чёрной изоляции к контакту 1 (+ питания АЦП) с последующим касанием всех остальных выводов. При этом показания на экране дисплея должны быть такими же, как в первом случае.
При смене полярности подключения второго измерительного прибора его индикатор всегда показывает обрыв, поскольку входное сопротивление рабочей микросхемы достаточно велико.
При этом неисправными будут считаться выводы, в обоих случаях показывающие конечное значение сопротивления. Если при любом из описанных вариантов подключения мультиметр показывает обрыв – это с большой вероятностью свидетельствует о внутреннем обрыве схемы.
Возможен ли в таком случае ремонт?
Поскольку современные АЦП чаще всего выпускаются в интегральном исполнении (без корпуса), то заменить их редко кому удаётся. Так что если преобразователь сгорел, то починить мультиметр не удастся, ремонту он не подлежит.
Неполадки в круговом переключателе
Ремонт потребуется, если возникли неисправности, связанные с пропаданием контакта в круговом галетном переключателе. Это проявляется не только в том, что не включается мультиметр, но и в невозможности получить нормальное соединение без сильного нажатия на галетник. Объясняется это тем, что в дешёвых китайских мультиметрах контактные дорожки редко покрываются качественной смазкой, что приводит к их быстрому окислению.
При эксплуатации в пыльных условиях, например, они через какое-то время загрязняются и теряют контакт с переключающей планкой. Для ремонта этого узла мультиметра достаточно удалить из его корпуса печатную плату и протереть контактные дорожки ваткой, смоченной в спирте. Затем на них следует нанести тонкий слой качественного технического вазелина.
В заключении отметим, что при обнаружении заводских «непропаев» или замыканий контактов в мультиметре следует устранить эти недоработки, воспользовавшись низковольтным паяльником с хорошо отточенным жалом. В случае отсутствия полной уверенности в причине поломки прибора следует обратиться к специалисту по ремонту измерительной техники.
КАК ПРОВЕРИТЬ МИКРОСХЕМУ СТАБИЛИЗАТОР
Понадобилось собрать входные стабилизирующие цепи по питанию для устройства на основе микроконтроллера PIC16F628 стабильно работающего при напряжении от 5 вольт. Это не сложно. Взял интегральную микросхему PJ7805 и на её основе в соответствии со схемой из даташита сделал. Подал напряжение и на выходе получил 4,9 вольта. Всего скорей, что этого вполне достаточно, но упрямство, замешанное на педантичности, взяло верх.
Достал коробушку с интегральными стабилизаторами и вознамерился перемерить все соответствующего достоинства. А чтобы вдруг не ошибиться даже соответствующую схемку выложил перед собой. Однако энтузиазм закончился уже на первом же компоненте. Этот «ёжик без ручек, без ножек» из соединительных проводов с крокодилами желал жить своей жизнью и воли радиолюбителя подчинялся с большим трудом. Да к тому же проверяемый стабилизатор на выходе показал 4,86 вольта, чем поверг мой оптимизм в уныние.
Нет тут нужно что-то более существенное, например какой-то пусть и простой но, тем не менее, пробник что ли. Забил в поисковик яндекса и получил то, что видите на фото «Комплекс контроля интегральных стабилизаторов напряжения». Ну, это не для средних радиолюбительских умов. Стало ясно, что велосипед придётся изобретать.
Схема испытателя КРЕН
Составленная схема явно уступает верхней картинке, ну тут уж ничего не поделаешь, что можем. Конденсатор С1 устраняет генерацию при скачкообразном включении входного напряжения, С2 служит для защиты от переходных помеховых импульсов. Их ёмкость решил взять 100 мкФ. Вольтаж в соответствии с напряжением проверяемого стабилизатора. Ставить конденсаторы как можно ближе к корпусу интегрального стабилизатора. Диод VD1 1N4148 не позволит конденсатору на выходе стабилизатора разрядится через него после выключения (это чревато выходом стабилизатора из строя). U Вх. интегрального стабилизатора должно быть выше U Вых. минимум на 2,5 вольта. Нагрузку подбирать так же в соответствии с возможностями тестируемого стабилизатора.
На роль корпуса был выбран самодельный вариант оборудованный контактными штырями для соединения с мультиметром (минус в гнездо «сom», плюс в «V»). В качестве соединительного элемента выводов проверяемого компонента со схемой можно приспособить вот такой тройной штыревой контакт. В мою задачу входит проверка трёхвыводных интегральных стабилизаторов рассчитанных на напряжение не более 12 вольт поэтому в схему поставлю два конденсатора 100 мкф х 16 В. Диод согласно схемы.
В просверленные точно в соответствии с диаметром штыревых контактов отверстия их и вставляем, с внутренней стороны надеваем на каждый штырь по соответствующей (махонькой) металлической шайбочке, смочив активным флюсом и плотно прижав припаиваем каждую шайбу к соответствующему штырю не допуская соединения пар штырь – шайба между собой. Для этого шайбы нужно подточить, центральную с обеих сторон, крайние с одной. Отверстия по месту установки нужно
именно просверлить, если проколоть шилом образуется внутренняя неровность краёв отверстия и ровно + плотно установить шайбу не выйдет. Штыри, для прочности, также обязательно должны находится на общем твёрдом основании из диэлектрика.
Контактные площадки образованные местом пайки штырей и шайб становятся местом установки компонентов схемы. Получается компактно, также выполняется рекомендация минимального расстояния конденсаторов от выводов проверяемого интегрального стабилизатора. С соединительными проводами всё просто, главное взять их соответствующего цвета (для «+» красный, для «-» чёрный) и никакой путаницы не будет.
Подумав, установил кнопку включения нажимного действия, поставлена в разрыв плюсового (красного) провода на входе питания. Всё таки это удобство из разряда необходимых. Тройной штыревой контакт понадобилось «доработать» — немного согнуть, тут так, либо один раз подогнать контакты под выводы компонентов, либо перед каждым соединением ножки стабилизаторов гнуть под контакты.
Пробник – приставка к мультиметру готов. Вставляю в соответствующие гнёзда мультиметра штыри пробника, предел измерения выставляю 20 вольт постоянного напряжения, провода подвода электрического тока подсоединяю к лабораторному блоку питания в соответствии с их расплюсовкой, устанавливаю для проверки стабилизатор (попался на 10 вольт), выставляю соответственно на БП напряжение 15 вольт и нажимаю кнопку включения на пробнике. Устройство сработало, на дисплее 9,91 В. Далее в течении минуты разобрался со всеми трёхвыводными стабилизаторами на напряжение до 12 вольт включительно. Несколько, из числа бережно хранимых, оказались негодными.
Итого
Давно понятно, что вот такие простенькие пробники – приставки в радиолюбительском деле так же необходимы, как и весьма серьёзные измерительные приборы, но вот делать их (возиться с их изготовлением) попросту лень, а напрасно, и понимание этого приходит каждый раз когда это простенькое устройство всё же было собрано и оказало неоценимую помощь в творческих начинаниях. Автор — Babay iz Barnaula.
Форум
Форум по обсуждению материала КАК ПРОВЕРИТЬ МИКРОСХЕМУ СТАБИЛИЗАТОР
Проверка электрической розетки с помощью цифрового мультиметра
Эти диагностические шаги используются, чтобы помочь найти электрические проблемы в ряде различных источников. Цифровой мультиметр дает автоматические быстрые показания, отображающие VAC (вольт переменного тока), VDC (вольт постоянного тока) и сопротивление. Проверяя электрическую розетку с помощью цифрового мультиметра в вашем доме, вам нужно будет использовать показания VAC, доступные на устройстве, потому что вы ищете измерение напряжения переменного тока.Если вы хотите узнать больше о питании переменного и постоянного тока, обязательно прочтите эту статью «Война токов: мощность переменного и постоянного тока» от Министерства энергетики.
Вот как проверить электрическую розетку с помощью цифрового мультиметра:
- Сначала возьмите цифровой мультиметр. (Нужен новый? Посмотрите на нашей странице мультиметра. )
2. Затем установите шкалу в положение «Напряжение переменного тока» или «В переменного тока». Примечание: максимальное напряжение для каждого комплекта, бытовой ток составляет примерно 120 вольт, установите шкалу соответственно.
3. После этого подключите щупы к соответствующим входам: COM для черного провода и Volts для красного провода.
4. Затем вставьте красный зонд в правую прорезь розетки.
5. Затем осторожно вставьте черный зонд в левую прорезь розетки.
6. Наконец, проверьте показания на вашем счетчике, он должен показывать напряжение в вашем доме.
Объясните логику тестирования электрической розетки с помощью цифрового мультиметра:
Первый шаг при проверке электрической розетки — найти разъем мультиметра с надписью «Вольт» и вставить в него красный провод.
Далее вам нужно будет подключить черный провод, это делается путем подключения его к метке «com». Примечание. Красный провод может иметь красное кольцо вокруг разъема, а черный провод может иметь черное кольцо. Как упоминалось выше, вы будете использовать на мультиметре параметр «VAC» или «Вольт». Поэтому убедитесь, что цифровой мультиметр находится в этой настройке. Каждый мультиметр отличается, что означает, что ваш может показывать 0,0 В переменного тока, В переменного тока или только 0,0. Как только это будет установлено, вы готовы начать тестирование.
Теперь пора вставить красный провод в вертикальный паз розетки. Убедитесь, что он вставлен в паз справа.
Черный провод вставляется в левый вертикальный паз розетки. Теперь пора проверить, что вы читаете. Обычно вы должны получать показания от 110 до 120 В переменного тока. Все это зависит от уровней мощности, которые поставляют коммунальные предприятия. Если ваш мультиметр продолжает показывать 0,0, возможно, соединение плохое, попробуйте пошевелить проводами для лучшего контакта. Если это не поможет, у вас может быть проблема с электричеством в розетке.
Затем пора вынуть черный провод из гнезда и вставить его в овальное гнездо.Эта часть электрической розетки является заземлением, и вы скоро увидите значение напряжения. Если показания не отображаются, возможно, перегорел предохранитель или сработал автоматический выключатель.
Цифровой мультиметр — чрезвычайно полезный инструмент, который можно носить дома. Вот несколько руководств, посвященных другим вещам, которые вы можете делать с ним:
Здесь мы объясняем , как определить место повреждения скрытого кабеля с помощью цифрового мультиметра .
В этом руководстве объясняется, как тестировать светодиоды с помощью цифрового мультиметра .
А для более глубокого погружения попробуйте этот учебник по измерению сопротивления с помощью цифрового мультиметра .
Как использовать мультиметр (Руководство для DIYer’s)
Фото: fotosearch.com
Когда-то предназначенные для инженеров и техников-электронщиков, мультиметры, иногда называемые «мультитестерами», снизились в цене и размерах, что сделало их незаменимыми для домовладельцев, у которых есть базовые знания схемотехники. При устранении проблем с мелкой бытовой техникой, модулями умного дома, акустическими системами или практически любым другим электронным устройством мультиметр будет одним из самых ценных инструментов в вашем арсенале.
Если вы новичок в мультиметрах, эти гаджеты сначала могут показаться сложными. Однако изучите основы, и вскоре вы сможете самостоятельно выполнять ряд диагностических тестов. Поскольку мультиметры различаются от модели к модели, перед началом работы обязательно изучите руководство по эксплуатации вашего конкретного устройства.
Фото: fotosearch.com
Два типа мультиметров
Аналоговые мультиметры, или вольт-ом-миллиамперметры (ВОМ), существуют уже несколько десятилетий, и их все еще можно найти по доступной цене в любой мастерской -типа магазин.Новые дети в этом блоке — цифровые мультиметры (DMM) — предлагают более высокую точность с десятичной точкой, даже расширенные функции, такие как способность автоматически определять переменный ток (AC) или постоянный ток (DC).
Приложения и ограничения
Модели VOM и DMM измеряют напряжение, сопротивление и ток, заменяя необходимость в отдельных вольтметрах, омметрах и амперметрах. В то время как вы можете тестировать домашнее напряжение с помощью мультиметра, тестирование электрическим током ограничивается цепями с низким напряжением, такими как небольшие двигатели постоянного тока (DC) или низковольтные устройства переменного тока (AC) — например, ваши термостаты и дверные звонки. .Чтобы избежать перегорания предохранителя, повреждения мультиметра или риска получения травмы, не пытайтесь измерять ток, превышающий максимально допустимый для вашего устройства.
Среди прочего, мультиметры могут определять:
- Доступный заряд аккумулятора
- Напряжение в розетке или выключателе
- Повреждение кабелей и шнуров
- Жизнеспособность предохранителей, диодов и резисторов
- Проводящая способность электрического пути
Измерение напряжения
С помощью мультиметра вы можете измерять как переменное, так и постоянное напряжение, что особенно полезно для обнаружения коротких замыканий или определения заряда аккумуляторной батареи.Начните с выбора соответствующего тока на мультиметре и диапазона напряжения выше, чем ток, который вы проверяете. Например, если вы измеряете напряжение в сетевой розетке на 120 вольт, поверните ручку мультиметра до следующего наивысшего значения — 200 переменного тока. Если вы тестируете автомобильный аккумулятор на 12 В, выберите следующий по величине вариант — 20 В постоянного тока.
Затем перед тестированием убедитесь, что вы подключили измерительные провода к правильным разъемам: Для проверки напряжения подключите красный провод к порту с надписью «V». Для этого, а также для всех тестов мультиметра , черный провод подключается к общему (COM) порту.
Чтобы проверить заряд аккумулятора постоянным током, прикоснитесь красным щупом к его положительной клемме, а черным щупом — к отрицательной клемме; мультиметр покажет существующий заряд аккумулятора. Поскольку полярность не является проблемой для переменного напряжения, не имеет значения, какой датчик вы вставляете в какое-либо отверстие стенной розетки; вставьте оба щупа, и мультиметр покажет напряжение на розетке.
Совет по безопасности: Держите датчики за изолированные ручки. Не прикасайтесь к металлической части зондов, чтобы избежать поражения электрическим током.
Фото: fotosearch.com
Проверка сопротивления и целостности
В электронике «сопротивление» — это количество препятствий для потока электричества, и чем меньше, тем больше или, скорее, полезно для работы вашего бытовая техника. Имея в руках мультиметр, вы можете проверить сопротивление компонентов печатной платы и элементов бытовой техники по всему дому. Если, например, микроволновая печь не работает должным образом, эта проверка может помочь вам определить, следует ли заменить один нефункционирующий компонент на печатной плате или сразу купить новую микроволновую печь.
Прежде чем приступить к тестированию, убедитесь, что прибор отключен от сети. Подключите красный провод к порту с символом ома «Ω» и выберите функцию минимального сопротивления на шкале. Хотя вы можете тестировать отдельные конденсаторы и компоненты непосредственно на печатной плате, вы получите более точные показания, если вы удалите компонент, а затем протестируете его. Когда вы одновременно касаетесь черным и красным щупами обоих концов компонента, вы получаете показания. Чем ниже показание, тем меньше сопротивление электрическому потоку.Сравнивая показания других компонентов на печатной плате, вы можете определить, следует ли заменять компонент с необычно высоким показателем.
Чтобы проверить непрерывность, или непрерывный поток , электрического пути между двумя точками, подключите красный провод к гнезду «Ω» и поверните шкалу к символу непрерывности. Небольшое значение — или звуковой сигнал — указывает на то, что между двумя точками существует непрерывный путь. Однако отсутствие чтения или звукового сигнала указывает на проблему. Например, если вы только что вставили новую лампочку в лампу, но все еще не включается, не включается, запуск этого теста на обоих концах шнура питания может подтвердить, что в вашей затемненной комнате виноват внутренний обрыв кабеля. .
Тестирование тока низкого напряжения
Для измерения тока низкого напряжения мультиметр должен стать частью цепи, позволяя току фактически проходить через мультиметр. Это удобно для определения того, получает ли низковольтная цепь, например, петельный набор ландшафтных фонарей на солнечной энергии, питание для всех источников света. Для этого теста подключите красный провод к порту с меткой «A» для ампер и выберите на шкале следующую по величине функцию ампер.
В вашем руководстве по эксплуатации может быть таблица, но если нет, вы можете протестировать простую схему, подключив прямую подачу от источника питания (обычно черного) к красному щупу мультиметра.Затем черный щуп мультиметра подключается к положительному проводу (обычно черному) на приборе, который вы тестируете. Наконец, нейтральный провод источника питания (обычно белый) подключается к отрицательному проводу устройства (также белый). Если вы правильно подключили цепь, включите источник питания, чтобы измерить электрический расход или ток через цепь.
Совет по безопасности: Как упоминалось ранее, не проверяйте , а не схему, которая превышает возможности вашего мультиметра.Мультиметры «свариваются» при максимальном напряжении, которое обычно ниже, чем в быту. Если на мультиметре есть надпись «10A MAX FUSED», не проверяйте ток, который, как вы подозреваете, может быть выше 10 ампер.
Универсальный акселератор тестера-мультиметра. Микросхемы ICL7106, ICL7106R, ICL7106S
Справочные данные микросхем аналого-цифровых преобразователей ICL7106, ICL7106R, ICL7106S, COFOVKA, технические параметры, типовая схема включения. Микросхема ICL7106 представляет собой АЦП с выходом на 3.5-разрядный жидкокристаллический цифровой индикатор. Используется в измерительных приборах.
ICL7106 выпускается в трех вариантах исполнения корпуса: ICL7106 — PDIP-40, ICL7106R — PDIP-40 (с зеркальным расположением выходов) и ICL7106S в корпусе MQFP (с четырехсторонним расположением). Как и в неподходящей версии.
Характеристики микросхем
Электрические параметры:
- Максимально допустимое напряжение питания, не приводящее к поломке = 15В.
- Номинальное напряжение питания = 9В.
- Ток потребления номинальный = 1м.
- Текущий ток не более = 1,8 мА.
- Индикация количества разрядов = 3,5
- Постоянное напряжение на входе относительно минуса питания = св.
- Масштаб = 2В или 200МВ.
- Температурный дрейф нуля не более = 1 УФ / с.
- Шум при VVx = 0, 200 мВ по шкале не более = 15 УФ.
Назначение выводов микросхемы
Рис.1. Микросхема Calp ICL7106S.
Рис. 2. Коколы и расположение выводов для микросхемы ICL7106, ICL7106R.
Типовая схема включения
Тактовая частота задается RC цепочкой на выходах 38.39, 40 (или 1,2,3 для зеркальной схемы). FOSC = 0,45 / (RC). Емкость должна быть не менее 50 ПФ, сопротивление не менее 50 кОм. Типовая частота FOSC = 48 кГц.
Тактовая частота в 4 раза ниже, чем у FOSC.
С1 = 0.1 мкФ C2 = 0,47 мкФ SZ = 0,22 мкФ C4 = 100 ПФ R2 = 47 кОм R3 = 100 ком R5 = 1 МОм.
Для шкалы 0-199,0МВ R1 = 24 ком R4 = 1 ком.
Для шкалы 0-1,9999 R1 = 24 ком R4 = 25 ком.
Рис. 3. Типовая схема включения микросхемы ICL7106.
Рис. 4. Эквивалентная схема микросхемы АЦП ICL7106.
Настольный компьютер невозможно представить без удобного недорогого цифрового мультиметра.В данной статье рассматривается цифровой мультиметр 830-й серии, наиболее частые неисправности и способы их устранения.
В настоящее время выпускается огромное количество разнообразных цифровых измерительных приборов разной степени сложности, надежности и качества. В основе всех современных цифровых мультиметров лежит интегральный аналого-цифровой преобразователь напряжения (АЦП). Одним из первых таких АЦП, пригодных для построения недорогих портативных измерительных приборов, стал преобразователь на микросхеме ICL71O6, выпущенный компанией Maxim.В результате было разработано несколько удачных недорогих моделей цифровых мультиметров 830-й серии, таких как M830V, M830, M832, M838. Вместо буквы м может стоять ДТ. В настоящее время эта серия инструментов является самой распространенной и повторяющейся в мире. Его основные возможности: измерение постоянного и переменного напряжения до 1000 В (входное сопротивление 1 МОм), измерение постоянных токов до 10 А, измерение сопротивления до 2 МОм, проверка диодов и транзисторов. Кроме того, в некоторых моделях присутствует режим звукового кольца соединений, измерения температуры с термопарой и без термопары, меандр, генерирующий частоту 50… 60 Гц или 1 кГц. Основным производителем мультиметров этой серии является Precision Mastech Enterprises (Гонконг).
Схема и устройство работы
Рис. 1. Структурная схема АЦП 7106
Основа мультиметра — АЦП IC1 типа 7106 (ближайший отечественный аналог — микросхема 572fv5). Его структурная схема представлена на рис. 1, а основа для исполнения в случае ДИП-40 — на рис. 2. Перед ядром 7106 могут быть разные префиксы в зависимости от производителя: ICL7106, TC7106 и т. Д.В последнее время все чаще используются незаметные микросхемы (DIE CHIPS), кристалл которых припаян непосредственно к печатной плате.
Рис. 2. COCOLOGY ADC 7106 в корпусе DIP-40
Рассмотрим схему мультиметра Mastech M832 (рис. 3). На выходе 1 микросхемы IC1 положительное напряжение питания батареи 9В подается на выход 26 — отрицательное. Внутри АЦП находится источник стабилизированного напряжения 3 В, его вход подключен к выходу 1 IC1, а выход — к выходу 32. Выход 32 подключен к общему выводу мультиметра и гальванически связан с вход устройства SOM.Разница напряжений между выводами 1 и 32 составляет примерно 3 В в широком диапазоне питающих напряжений — от номинального до 6,5 В. Это стабилизированное напряжение поступает на регулируемый делитель R11, VR1, R13, динамик динамика — на вход Микросхемы 36 (в режиме измерения тока и напряжения). Делитель задается потенциалом U UG на выходе 36, равным 100 мВ. Резисторы R12, R25 и R26 выполняют защитные функции. Транзистор Q102 и резисторы R109, R110NR111 отвечают за индикацию разряда аккумулятора.Конденсаторы C7, C8 и резисторы R19, R20 отвечают за отображение десятичных точек дисперсии.
Рис. 3. Принципиальная схема мультиметра M832.
Диапазон рабочих входных напряжений Umax напрямую зависит от уровня регулируемого опорного напряжения на выходах 36 и 35 и составляет:
Стабильность и точность показаний дисплея зависят от стабильности этого опорного напряжения. Показания дисплея N зависят от входного напряжения UBX и выражаются числом:
Рассмотрим работу устройства в основных режимах.
Измерение напряжения
Упрощенная схема мультиметра в режиме измерения напряжения представлена на рис. 4. При измерении постоянного напряжения входной сигнал подается на R1 … R6, с выхода которого через переключатель (по 1-8 / 1 .. 1-8 / 2) подается на защитный резистор R17. Этот резистор, кроме того, при измерении переменного напряжения вместе с конденсатором образует фильтр нижних частот. Далее сигнал поступает на прямой вход микросхемы АЦП, выход 31. На обратный вход микросхемы подается общий выходной потенциал, генерируемый источником стабилизированного напряжения 3 В, выход 32.
Рис. 4. Упрощенная схема мультиметра в режиме измерения напряжения
При измерении переменного напряжения выпрямляется одноальпидным выпрямителем на диоде D1. Резисторы R1 и R2 подобраны таким образом, чтобы при измерении синусоидального напряжения прибор показывал правильное значение. Защиту АЦП обеспечивают делитель R1 … R6 и резистор R17.
Измерение силы тока
Рис. 5. Упрощенная схема мультиметра в режиме измерения тока
Упрощенная схема мультиметра в режиме измерения тока представлена на рис.5. В режиме измерения постоянный ток протекает через резисторы RO, R8, R7 и R6, переключаемые в зависимости от диапазона измерения. Падение напряжения на этих резисторах через R17 поступает на вход АЦП, и результат отображается на дисплее. Защиту АЦП обеспечивают диоды D2, D3 (в некоторых моделях могут не устанавливаться) и предохранитель F.
.Измерение сопротивления
Рис. 6. Упрощенная схема мультиметра в режиме измерения сопротивления
Упрощенная схема мультиметра в режиме измерения сопротивления представлена на рис.6. В режиме измерения сопротивления используется зависимость, выражаемая формулой (2). На диаграмме показано, что один и тот же ток от источника напряжения + LJ проходит через эталонный резистор Рона и измеряемый резистор Rx (входные токи 35, 36, 30 и 31 пренебрежимо малы), а отношение UBX и Uon равно отношению сопротивлений резисторов RX и Ron. R1 …. R6 используются как эталонные резисторы, R10 и R103 используются как токосъемные. Защита АЦП обеспечивается термистором R18 [В некоторых дешевых моделях используются обычные резисторы с номиналом 1… 2 ком), транзистор Q1 в режиме Stabitron (не всегда) и резисторы R35, R16 и R17 на входах 36, 35 и 31 АЦП.
Проблемный режим
В схеме вызова используется микросхема IC2 (LM358), содержащая два операционных усилителя. На одном усилителе собран звуковой генератор, на другом — компаратор. При напряжении на входе компаратора (вывод 6) меньше порогового, на его выходе (вывод 7) устанавливается низкое напряжение, открывающее ключ на транзисторе Q101, в результате чего по нему раздается звуковой сигнал.Порог определяется делителем R103, R104. Защиту обеспечивает резистор R106 на входе компаратора.
Мультиметры с дефектами
Все неисправности можно разделить на заводской брак (а бывает) и поломку, вызванную ошибочными действиями оператора.
Поскольку мультиметр используется в мультиметрах, возможно замыкание элементов, плохие пайки и поломки элементов, особенно расположенных по краям платы. Ремонт неисправного прибора нужно начинать с визуального осмотра печатной платы.Наиболее частые заводские дефекты мультиметров M832 приведены в таблице.
Проявление дефекта | Возможная причина | Устранение дефекта |
---|---|---|
При включении устройства дисплей загорается, а затем плавно гаснет | Неисправность генератора микросхемы SPP, сигнал с которого поступает на подложку ЖКИ | Проверить элементы C1 и R15 |
При включении прибора дисплей загорается, а затем плавно гаснет.Со снятой задней крышкой Устройство работает нормально | С задней крышкой прибора пружина контактного винта падает на резистор R15 и замыкает цепь задающего генератора | Согнуть или немного укоротить пружину |
При включении устройства режим измерения напряжения дисплея изменяется от 0 до 1 | Неисправность или некачественное снятие цепи интегратора: Конденсаторы С4, С5 и С2 и резистор R14 | Отсосать или заменить C2, C4, C5, R14 |
Аппарат надолго сбрасывает показания. | Некачественный конденсатор СЗ на входе АЦП (вывод 31) | Заменить СЗ на конденсатор с малым коэффициентом поглощения |
При измерении сопротивления показаний дисплея длительное время устанавливается | Конденсатор C5 низкого качества (цепь автоматической коррекции нуля) | Заменить C5 на конденсаторе с малым коэффициентом поглощения |
Устройство некорректно работает во всех режимах, перегревается микросхема IC1. | Длинные выводы для проверки транзисторов были закрыты | Отсоедините выводы разъема |
При измерении переменного напряжения показания прибора «плавают», например, вместо 220 В меняются от 200 до 240 В | Потеря емкости конденсатора СЗ. Возможна пайка его выводов или просто отсутствие этого конденсатора | Заменить СЗ на хороший конденсатор с малым коэффициентом поглощения |
При включении мультиметра постоянно издает звуковой сигнал, или наоборот беззвучно в режиме подключения звонка | Плохая пайка выводов микросхемы SU2 | Выводы IC2 |
Сегменты на дисплее исчезают и появляются | Плохой контакт ЖК-дисплея и контактов платы мультиметра через токопроводящие резиновые вставки | Для восстановления надежного контакта необходимо: Регулировка токопроводящей резинки; Вода со спиртом — соответствующие контактные площадки на печатной плате; Сделайте эти контакты на плате |
Исправность ЖК-дисплея можно проверить с помощью источника переменного напряжения частотой 50… 60 Гц и амплитуда в несколько вольт. В качестве такого источника переменного напряжения можно взять мультиметр М832, имеющий режим генерации меандра. Для проверки дисплея необходимо положить его на плоскую поверхность дисплеем вверх, подключить один короткоэкранный мультиметр M832 к общему дисплею индикатора (нижний ряд, левый выход), а другой щуп мультиметра прикладывать поочередно. к остальной части дисплея. Если удалось добиться зажигания всех сегментов дисплея, значит, он исправен.
Описанные выше неисправности также могут появиться во время работы. Следует отметить, что в режиме измерения постоянного напряжения прибор редко выходит из строя, т.к. хорошо защищен от перегрузок на входе. Основные проблемы возникают при измерении тока или сопротивления.
Ремонт неисправного прибора следует начинать с проверки напряжения питания и работоспособности АЦП: напряжение стабилизации 3 В и отсутствие пробоя между питанием и общим выходом АЦП.
В режиме измерения тока по входам V, Ω и MA, несмотря на наличие предохранителя, бывают случаи, когда предохранитель сгорает позже, чем успевают пробиться предохранительные диоды d2 или d3. Если в мультиметре установлен предохранитель, предохранитель, не соответствующий требованиям инструкции, то в этом случае возможно сопротивление R5 … R8, и оно не может отображаться визуально на сопротивлениях. В первом случае, когда изготавливается только диод, дефект проявляется только в режиме измерения тока: ток через прибор течет, но на дисплее отображаются нули.В случае перегорания резисторов R5 или R6 в режиме измерения напряжения прибор будет контролировать показания или показывать перегрузку. При полном сгорании одного или обоих резисторов прибор не сбрасывается в режиме измерения напряжения, но при замыкании входов дисплей обнуляется. При сгорании резисторов R7 или R8 на диапазонах измерения тока 20 мА и 200 мА прибор покажет перегрузку, а в диапазоне 10 А — только нули.
В режиме измерения сопротивление повреждению происходит, как правило, в диапазонах 200 Ом и 2000 Ом.В этом случае при подаче напряжения на вход могут сгореть резисторы R5, R6, R10, R18, выполнен транзистор Q1 и конденсатор Sat. Если транзистор Q1 полностью сломан, то при измерении сопротивления прибор покажет нули. В случае неполной проверки транзистора мультиметр с открытыми стрелками покажет сопротивление этого транзистора. В режимах измерения напряжения и тока транзистор замыкает тумблер, и показания мультиметра не влияют.При проверке конденсатора С6 мультиметр не измеряет напряжение в диапазонах 20 В, 200 В и 1000 В или существенно занижает показания в этих диапазонах.
При отсутствии индикации на дисплее при наличии питания на АЦП или визуально заметном выгорании большого количества элементов схемы велика вероятность выхода из строя АЦП. Исправность АЦП проверяется регулятором напряжения источника стабилизированного напряжения 3 В. На практике АЦП мигает только тогда, когда на вход подается высокое напряжение, намного превышающее 220 В.В соединении появляются трещины, увеличивается ток потребления микросхемы, что приводит к ее заметному нагреву. .
При подаче очень высокого напряжения на вход очень высокого напряжения в режиме измерения напряжения может произойти пробой по элементам (резисторам) и печатной плате, в случае режима измерения напряжения схема защищена делителем на сопротивлениях R1 … R6.
В дешевых моделях серии DT длинные выводы деталей могут конденсироваться на экран, расположенный на задней крышке устройства, нарушая работу схемы.У Мастеха таких дефектов не наблюдается.
Источник стабилизированного напряжения 3 В в АЦП в дешевых китайских моделях на практике может давать напряжение 2,6 … 3,4 В, а некоторые устройства перестают работать при напряжении питающей батареи 8,5 В.
В моделях DT используются некачественные АЦП, они очень чувствительны к скоростям цепи интегратора C4 и R14. В мультиметрах Mastech качественные АЦП позволяют использовать элементы близкого номинала.
Часто в мультиметрах DT при открытых аппликаторах в режиме измерения сопротивления прибор долго подходит к значению перегрузки («1» на дисплее) или вообще не выставляется.«Разоблачить» некачественную микросхему АЦП можно снижением сопротивления R14 с 300 до 100 кОм.
При измерении сопротивления в верхней части диапазона прибор «набивает» показания, например при измерении сопротивления резистора 19,8 кОм показывает 19,3 кОм. «Ток» путем замены конденсатора С4 на конденсатор 0,22 … 0,27 мкФ.
Поскольку дешевые китайские фирмы используют некачественные несоответствующие АЦП, то случаев прерывания непрерывности не бывает, и определить причину неисправности бывает очень сложно, и она может отличаться по-разному, в зависимости от порванного выхода.Например, не горит один из выводов индикатора. Поскольку в мультиметрах используются дисплеи со статическим дисплеем, для определения причины неисправности необходимо проверить напряжение на соответствующем выходе микросхемы АЦП, оно должно быть около 0,5 В относительно общего выхода. Если он равен нулю, значит АЦП неисправен.
Эффективный способ найти причину неисправности — переделка аналого-цифрового преобразователя микросхемы преобразователя следующим образом. Используется еще один, конечно, хороший цифровой мультиметр.Включен в режим проверки диодов. Черный щуп, как обычно, установлен в соме, а красный — в гнездо VQMA. Красный щуп подключается к выводу 26 [минус питание), а черный поочередно касается каждой ножки микросхемы АЦП. Поскольку на входах аналого-цифрового преобразователя при обратном включении установлены защитные диоды, то при таком подключении они должны открыться, что отразится на дисплее в виде падения напряжения на разомкнутом диоде. Реальное значение этого напряжения на дисплее будет несколько больше, т.к. в схему включены резисторы.Аналогично проверяются все выводы АЦП при подключении черного щупа к выводу 1 [питание АЦП) и поочередного касания остальных выводов микросхемы. Показания приборов должны быть аналогичными. Но если при этих проверках поменять полярность включения на противоположную, прибор всегда должен показывать обрыв, т.к. входное сопротивление хорошей микросхемы очень велико. Таким образом, неисправными можно считать выводы, которые показывают конечное сопротивление при любой полярности подключения к микросхеме.Если устройство показывает кластер на какое-либо подключение исследуемого выхода, это девяносто процентов говорит о внутреннем обрыве. Указанный метод проверки достаточно универсален и может применяться при проверке различных цифровых и аналоговых микросхем.
Имеются неисправности связанные с некачественными контактами на переключателе галереи, прибор работает только при нажатии на галлеты. Фирмы, производящие дешевые мультиметры, редко закрывают дорожки под переключателем галереи смазки, которые быстро окисляются.Часто трассы несколько загрязнены. Ремонт осуществляется следующим образом: Печатная плата вынимается из корпуса, а тракты переключателя протираются спиртом. Затем наносится тонкий слой технического вазелина. Все, устройство исправлено.
В устройствах серииDT иногда бывает так, что напряжение переменного тока измеряется со знаком минус. Это свидетельствует о неправильной установке D1, обычно из-за неправильной маркировки на корпусе диода.
Бывает, что производители дешевых мультиметров ставят в цепь звукового генератора некачественные операционные усилители, а потом при включении прибора гудит зуммер.Этот дефект устраняет электролитический конденсатор емкостью 5 мкФ, включенный параллельно силовой цепи. Если это не обеспечивает стабильной работы звукового генератора, необходимо заменить операционный усилитель на LM358P.
Часто возникает такая неприятность, как протечка аккумулятора. Небольшие капли электролита можно протереть спиртом, но если плата сильно залита, то хороших результатов можно получить, промыв ее горячей водой с хозяйственным мылом. После снятия индикатора и исчезновения сдавливания, используя щетку, например зубную, нужно тщательно очистить доску с двух сторон и промыть под струей воды из-под крана.Повторяя стирку 2 … 3 раза, плата просушивается и устанавливается в корпус.
В большинстве устройств, выпущенных в последнее время, применяются АЦП противоборства (DIE CHIPS). Кристалл устанавливается прямо на печатную плату и залит смолой. К сожалению, это значительно снижает ремонтопригодность приборов, т.к. при выходе из АЦП он часто встречается довольно часто, его сложно заменить. Приборы с неподходящим АЦП иногда чувствительны к яркому свету.Например, при работе рядом с настольной лампой могут увеличиваться погрешности измерения. Дело в том, что индикатор прибора и плата имеют некоторую прозрачность, и свет, проникая в них, попадает на кристалл CRP, вызывая фотоэффект. Чтобы устранить этот недостаток, нужно снять плату и, сняв индикатор, зафиксировать место расположения кристалла АЦП (он хорошо виден через плату) плотной бумагой.
При покупке мультиметра DT следует обратить внимание на качество механики переключателя, необходимо несколько раз прокрутить переключатель галереи мультиметра, чтобы убедиться, что переключатель стоит четко и без перегрева: дефекты пластика не ремонтируются.
Настольный компьютер невозможно представить без удобного недорогого цифрового мультиметра.
В статье рассказывается об устройстве цифровых мультиметров 830-й серии, его схеме, а также о наиболее распространенных неисправностях и способах их устранения.
В настоящее время выпускается огромное количество разнообразных цифровых измерительных приборов разной степени сложности, надежности и качества. В основе всех современных цифровых мультиметров лежит интегральный аналого-цифровой преобразователь напряжения (АЦП).Одним из первых таких АЦП, пригодных для построения недорогих портативных измерительных приборов, был преобразователь на микросхеме ICL7106, выпущенный компанией Maxim. В результате было разработано несколько удачных недорогих моделей цифровых мультиметров 830-й серии, таких как M830B, M830, M832, M838. Вместо буквы М может стоять ДТ. В настоящее время эта серия инструментов является самой распространенной и повторяющейся в мире. Его основные возможности: измерение постоянного и переменного напряжения до 1000 В (входное сопротивление 1 МОм), измерение постоянных токов до 10 А, измерение сопротивления до 2 МОм, проверка диодов и транзисторов.Кроме того, в некоторых моделях есть режим звукового кольца соединений, измерения температуры с термопарой и без термопары, меандр, генерирующий частоту 50 … 60 Гц или 1 кГц. Основным производителем мультиметров этой серии является Precision Mastech Enterprises (Гонконг).
Схема и устройство работы
Принципиальная схема мультиметра
Основа мультиметра — АЦП IC1 типа 7106 (ближайший отечественный аналог — микросхема 572fv5).Его структурная схема представлена на рис. 1, а основа для исполнения в корпусе DIP-40 — на рис. 2. Перед ядром 7106 могут быть разные префиксы в зависимости от производителя: ICL7106, TC7106 и т. Д. В последнее время незаметны микросхемы. Все чаще используются (DIE CHIPS), кристалл которых припаян непосредственно к печатной плате.
Рассмотрим схему мультиметра Mastech M832 (рис. 3). На выходе 1 микросхемы IC1 положительное напряжение питания батареи 9В подается на выход 26 — отрицательное.Внутри АЦП находится источник стабилизированного напряжения 3 В, его вход соединен с выходом 1 IC1, а выход — с выходом 32. Выход 32 подключен к общему выводу мультиметра и гальванически связан. к общему прибору ввода. Разница напряжений между выводами 1 и 32 составляет примерно 3 В в широком диапазоне питающих напряжений — от номинального до 6,5 В. Это стабилизированное напряжение поступает на регулируемый делитель R11, VR1, R13, а с его выхода — на вход микросхема 36 (в режиме Измерения токов и напряжений).В делителе установлен потенциал U на выходе 36, равный 100 мВ. Резисторы R12, R25 и R26 выполняют защитные функции. Транзистор Q102 и резисторы R109, R110 и R111 отвечают за индикацию разряда батареи. Конденсаторы С7, С8 и резисторы R19, R20 отвечают за отображение десятичных точек дисперсии.
Диапазон рабочих входных напряжений U Max напрямую зависит от уровня регулируемого опорного напряжения на выходах 36 и 35 и составляет
Стабильность и точность показаний дисплея зависят от стабильности этого опорного напряжения.
Показания дисплея N зависят от входного напряжения U и выражаются числом
Рассмотрим работу прибора в основных режимах.
Измерение напряжения
Упрощенная схема мультиметра в режиме измерения напряжения представлена на рис. 4.
При измерении постоянного напряжения входной сигнал поступает на R1 … R6, с выхода которого через переключатель [по 1-8 / 1 … 1-8 / 2) поступает на защитный резистор. R17.Этот резистор, кроме того, при измерении переменного напряжения вместе с конденсатором С3 образует фильтр нижних частот. Далее сигнал поступает на прямой вход микросхемы АЦП, выход 31. На обратный вход микросхемы подается общий выходной потенциал, генерируемый источником стабилизированного напряжения 3 В, выход 32.
При измерении переменного напряжения выпрямляется одноальпидным выпрямителем на диоде D1. Резисторы R1 и R2 подобраны таким образом, чтобы при измерении синусоидального напряжения прибор показывал правильное значение.Защиту АЦП обеспечивают делитель R1 … R6 и резистор R17.
Измерение силы тока
Упрощенная схема мультиметра в режиме измерения тока представлена на рис. 5.
В режиме измерения постоянного тока последний протекает через резисторы R0, R8, R7 и R6, переключаемые в зависимости от диапазона измерения. Падение напряжения на этих резисторах через R17 поступает на вход АЦП, и результат отображается на дисплее..R1..R6 используются как эталонные резисторы, R10 и R103 используются как токосъемные. Защиту АЦП обеспечивают термистор R18 (в некоторых дешевых моделях используются обычные резисторы номиналом 1,2 кОм), транзистор Q1 в стабилитронном режиме (не всегда) и резисторы R35, R16 и R17 на входах 36, 35. и 31 АЦП.
Режим служебной цепи В схеме вызова используется микросхема IC2 (LM358), содержащая два операционных усилителя. На одном усилителе собран звуковой генератор, на другом — компаратор.При напряжении на входе компаратора (вывод 6), меньшем порогового значения, на его выходе (вывод 7) низкое напряжение открывает ключ на транзисторе Q101, в результате чего раздается звуковой сигнал. Порог определяется делителем R103, R104. Защиту обеспечивает резистор R106 на входе компаратора.
Дефекты мультиметров
Все неисправности можно разделить на заводской брак (а бывает) и поломку, вызванную ошибочными действиями оператора.
Поскольку мультиметр используется в мультиметрах, возможно замыкание элементов, плохие пайки и поломки элементов, особенно расположенных по краям платы.Ремонт неисправного прибора нужно начинать с визуального осмотра печатной платы. Наиболее частые заводские дефекты мультиметров M832 приведены в таблице.
Исправность ЖК-дисплея можно проверить с помощью источника переменного напряжения с частотой 50,60 Гц и амплитудой в небольшое вольт. В качестве такого источника переменного напряжения можно взять мультиметр М832, имеющий режим генерации меандра. Для проверки дисплея необходимо положить его на плоскую поверхность дисплеем вверх, подключить один мультиметр M832 короче к общему дисплею индикатора (нижний ряд, левый выход), а другой щуп мультиметра прикладывать поочередно к Остальные выводы по дисплею.Если удалось добиться зажигания всех сегментов дисплея, значит, он исправен.
Описанные выше неисправности также могут появиться во время работы. Следует отметить, что в режиме измерения постоянного напряжения прибор редко выходит из строя, т.к. хорошо защищен от перегрузок на входе. Основные проблемы возникают при измерении тока или сопротивления.
Ремонт неисправного прибора следует начинать с проверки напряжения питания и работоспособности АЦП: напряжение стабилизации 3 В и отсутствие пробоя между питанием и общим выходом АЦП.
В режиме измерения тока при использовании входов V, Q и MA, несмотря на наличие предохранителя, бывают случаи, когда предохранитель сгорает позже, чем успевают пробиться предохранительные диоды D2 или D3. Если в мультиметре установлен предохранитель, предохранитель, не соответствующий требованиям инструкции, то в этом случае возможно сопротивление R5 … R8, и оно не может отображаться визуально на сопротивлениях. В первом случае, когда изготавливается только диод, дефект проявляется только в режиме измерения тока: ток через прибор течет, но на дисплее отображаются нули.В случае перегорания резисторов R5 или R6 в режиме измерения напряжения прибор будет контролировать показания или показывать перегрузку. При полном сгорании одного или обоих резисторов прибор не сбрасывается в режиме измерения напряжения, но при замыкании входов дисплей обнуляется. При сгорании резисторов R7 или R8 на диапазонах измерения тока 20 мА и 200 мА прибор покажет перегрузку, а в диапазоне 10 А — только нули.
В режиме измерения сопротивление повреждению происходит, как правило, в диапазонах 200 Ом и 2000 Ом.В этом случае при подаче напряжения на вход могут сгореть резисторы R5, R6, R10, R18, выполнен транзистор Q1 и конденсатор С6. Если транзистор Q1 полностью сломан, то при измерении сопротивления прибор покажет нули. В случае неполной проверки транзистора мультиметр с открытыми стрелками покажет сопротивление этого транзистора. В режимах измерения напряжения и тока транзистор замыкает тумблер, и показания мультиметра не влияют.При обрыве конденсатора С6 мультиметр не будет измерять напряжение в диапазонах 20 В, 200 В и 1000 В или существенно занижать показания в этих диапазонах.
При отсутствии индикации на дисплее при наличии питания на АЦП или визуально заметном выгорании большого количества элементов схемы велика вероятность выхода из строя АЦП. Исправность АЦП проверяется регулятором напряжения источника стабилизированного напряжения 3 В. На практике АЦП мигает только тогда, когда на вход подается высокое напряжение, намного превышающее 220 В.В соединении появляются трещины, увеличивается ток потребления микросхемы, что приводит к ее заметному нагреву. .
При подаче очень высокого напряжения на вход очень высокого напряжения в режиме измерения напряжения может произойти пробой по элементам (резисторам) и печатной плате, в случае режима измерения напряжения схема защищена делителем на сопротивлениях R1.R6.
В дешевых моделях серии DT длинные выводы деталей могут конденсироваться на экран, расположенный на задней крышке устройства, нарушая работу схемы.У Мастеха таких дефектов не наблюдается.
Источник стабилизированного напряжения 3 В в АЦП в дешевых китайских моделях на практике может давать напряжение 2,6,3,4 В, а некоторые устройства перестают работать уже при напряжении питающей батареи 8,5 В.
В моделях DT используются некачественные АЦП, они очень чувствительны к скоростям цепи интегратора C4 и R14. В мультиметрах Mastech качественные АЦП позволяют использовать элементы близкого номинала.
Часто в мультиметрах DT при открытых аппликаторах в режиме измерения сопротивления прибор очень длинный до значения перегрузки («1» на дисплее) или вообще не выставлен.«Вылечить» некачественную микросхему АЦП можно уменьшением сопротивления R14 коэффициентами с 300 до 100 кОм.
При измерении сопротивления в верхней части диапазона прибор «набивает» показания, например при измерении сопротивления резистора 19,8 кОм показывает 19,3 кОм. «Лечится» заменой конденсатора С4 на конденсатор 0,22 … 0,27 мкФ.
Поскольку дешевые китайские фирмы используют некачественные несоответствующие АЦП, то случаев прерывания непрерывности не бывает, и определить причину неисправности бывает очень сложно, и она может отличаться по-разному, в зависимости от порванного выхода.Например, не горит один из выводов индикатора. Поскольку в мультиметрах используются дисплеи со статическим дисплеем, для определения причины неисправности необходимо проверить напряжение на соответствующем выходе микросхемы АЦП, оно должно быть около 0,5 В относительно общего выхода. Если он равен нулю, значит АЦП неисправен.
Эффективный способ найти причину неисправности — переделка аналого-цифрового преобразователя микросхемы преобразователя следующим образом. Используется еще один, конечно, хороший цифровой мультиметр.Включен в режим проверки диодов. Черный щуп, как обычно, устанавливается в гнездо COM, а красный — в гнездо VQMA. Красный щуп прибора подключен к выводу 26 (минус питание), а черный поочередно касается каждой ножки микросхемы АЦП. Поскольку на входах аналого-цифрового преобразователя при обратном включении установлены защитные диоды, то при таком подключении они должны открыться, что отразится на дисплее в виде падения напряжения на разомкнутом диоде. Реальное значение этого напряжения на дисплее будет несколько больше, т.к. в схему включены резисторы.Аналогично проверяются все выводы АЦП при подключении черного щупа к выводу 1 (плюс питания АЦП) и поочередному касанию остальных выводов микросхемы. Показания приборов должны быть аналогичными. Но если при этих проверках поменять полярность включения на противоположную, прибор всегда должен показывать обрыв, т.к. входное сопротивление хорошей микросхемы очень велико. Таким образом, неисправными можно считать выводы, которые показывают конечное сопротивление при любой полярности подключения к микросхеме.Если устройство показывает кластер на какое-либо подключение исследуемого выхода, это девяносто процентов говорит о внутреннем обрыве. Указанный метод проверки достаточно универсален и может применяться при проверке различных цифровых и аналоговых микросхем.
Имеются неисправности связанные с некачественными контактами на переключателе галереи, прибор работает только при нажатии на галлеты. Фирмы, производящие дешевые мультиметры, редко закрывают дорожки под переключателем галереи смазки, которые быстро окисляются.Часто трассы несколько загрязнены. Ремонт осуществляется следующим образом: Печатная плата вынимается из корпуса, а тракты переключателя протираются спиртом. Затем наносится тонкий слой технического вазелина. Все, устройство исправлено.
В приборах серии ДТ иногда бывает, что переменное напряжение измеряется со знаком минус. Это свидетельствует о неправильной установке D1, обычно из-за неправильной маркировки на корпусе диода.
Бывает, что производители дешевых многодиметровых кювет ставят в цепь звукового генератора некачественные операционные усилители, а потом при включении устройства раздается жужжание зуммера.Этот дефект устраняет электролитический конденсатор емкостью 5 мкФ, включенный параллельно силовой цепи. Если это не обеспечивает стабильной работы звукового генератора, необходимо заменить операционный усилитель на LM358P.
Часто возникает такая неприятность, как протечка аккумулятора. Небольшие капли электролита можно протереть спиртом, но если плата сильно залита, то хороших результатов можно получить, промыв ее горячей водой с хозяйственным мылом. После снятия индикатора и исчезновения сдавливания, используя щетку, например зубную, нужно тщательно очистить доску с двух сторон и промыть под струей воды из-под крана.Повторяя мойку 2,3 раза, плата просушивается и устанавливается в корпус.
В большинстве устройств, выпущенных в последнее время, применяются АЦП противоборства (DIE CHIPS). Кристалл устанавливается прямо на печатную плату и залит смолой. К сожалению, это значительно снижает ремонтопригодность приборов, т.к. при выходе из АЦП он часто встречается довольно часто, его сложно заменить. Приборы с неподходящим АЦП иногда чувствительны к яркому свету.Например, при работе рядом с настольной лампой могут увеличиваться погрешности измерения. Дело в том, что индикатор прибора и плата имеют некоторую прозрачность, и свет, проникая в них, попадает на кристалл CRP, вызывая фотоэффект. Чтобы устранить этот недостаток, нужно снять плату и, сняв индикатор, зафиксировать место расположения кристалла АЦП (он хорошо виден через плату) плотной бумагой.
При покупке мультиметра DT следует обратить внимание на качество механики переключателя, необходимо несколько раз прокрутить переключатель галереи мультиметра, чтобы убедиться, что переключатель стоит четко и без перегрева: дефекты пластика не ремонтируются.
Подробнее …
В разных местах вам предстоит ловить рыбу. Также бывает, когда из теплового пункта или других хозяйственных служб сбрасывается вода, используемая для охлаждения агрегатов тепловых электростанций, и несколько дополнительных градусов иногда приводят к повышенной концентрации рыбы некоторых пород в таких местах.
Общеизвестно, что при температуре выше 25 ° C в малоходовой и мелководной воде степень насыщения кислородом практически равна нулю, и это создает условия, в которых трудно выжить рыбам определенных пород.
Эта микросхема получила широкое распространение в измерительной технике. Практически все мультиметры (выпуск 90-х и 2000-х годов) использовались как «мозги». Восстановить практически потерянные устройства и заказать. Отремонтирую все известное (или почти все) устройство Mastech M890F. Обзор исключительно для дружелюбных с паяльником.
Заказывал эти микросхемы в середине августа. Гуляли чуть больше месяца.
К сожалению, данный товар в данный момент недоступен.Купил спонтанно. Решающую роль сыграла цена. В свое время наша компания заказывала эти МС в известной московской фирме. Цена немного изменилась в соответствии с курсом доллара.
Цена около 33 рублей за штуку на Али почти подарок. Но суть не в этом. Расскажу, почему взял, и что сделал.
А сначала посмотрим, как они упаковывались и в каком виде все вышло. Эта информация иногда бывает важной.
Стандартный бумажный пакет «Пропупус» изнутри.
Микросхемы с ножками были вставлены во вспененный полиэтилен (он пытался объяснить, как мог), поэтому никто не пострадал.
Эти микросхемы входят в состав одного из самых популярных мультиметров Mastech M890F. Но не только в них. Они используются в других устройствах этой компании (и не только). Самые распространенные: M830, M832, M838.
Основой этого прибора (M890F), как и большинства недорогих мультиметров, является аналого-цифровой преобразователь ICL706, работающий по принципу двойного интегрирования.Это полный аналог известной отечественной ИМС К572ПВ5. Можно использовать как ремонтный комплект. Но это дороже.
Основными ошибками в работе, приводящими к выходу из строя прибора, являются измерения с перегрузкой и выбором неправильного режима измерения в результате невнимательности или спешки. Это приводит к выходу из строя АЦП, перегрузке дорожек, выходу из строя других микросхем. Не менее опасно переключение пределов и режимов измерения без отключения от измеряемой цепи.В то же время токопроводящие дорожки переключателей часто свариваются. В результате аппарат больше не ремонтируется. Это недостаток всех устройств подобного типа по переключателям.
Что именно стало причиной поломки этого мультиметра, я не знаю.
Дорожки испарились на: 20к, 200ком и 200мв. Теоретически и их можно восстановить. Но это искусство аппликаций. А пока попробую себя в ремонте 🙂
У меня их (мультиметры) несколько штук выпало.Сам он лично никого не сжигал. Неисправность собрана у знакомых. Десять лет назад ремонт был нецелесообразным из-за стоимости микросхемы (уже писали). Да и восстанавливать такие устройства можно только с учетом их будущей нетрудоспособности. Часть функций будет потеряна безвозвратно даже после восстановления. Следы назад не приклеить. 🙁
Вот он самый обычный мультиметр.
Видош он конечно носил. Но уже много лет.
При частых отказах одна или несколько проводов кабеля оборваны, ну очень сильно.
Вариантов всего два: либо не подъем, либо эстакада.
Как видите, я жалею. Процедура утомительная.
В этом аппарате, кроме процессора, спорны печатные кондукторы. Я их восстановил. Есть несколько образцовых сопротивлений. Их нужно подбирать очень аккуратно. От них зависит погрешность всего инструмента. Эти сопротивления в маркировке на одной полосе больше.
Есть и такие экземпляры.
Это немного другой аппарат, правда той же фирмы.Но в качестве примера подойдет. Хорошо видно, что плата сгорела в режиме измерения сопротивления. Вот куда воткнуть чтоб в плате образовалась такая дырочка!
Я это понял. Но не все знают, что напряжение в сети измеряется в вольтах, а не в омах 🙂
тоже можно восстановить, но какие-то пределы измерения придется пожертвовать. Но это будет отдельная история …
А это М832, который уже не восстанавливается.
В таких мультиметрах надо сначала снять «кляксу», потом припаять микросхему к распечатанным контактам.Они любезно предоставлены.
Вернитесь к M890.
Первым делом при прогаре платы и перегоревших печатных проводниках оказываются неисправный процессор IC1, встроенный таймер IC8 7555 и два контейнера-бака MS LM358. Неисправность МС часто заводится питающим напряжением. IC8 7555 находится на верхней плате.
Ток потребления хорошего мультиметра около 4мА. Конкретно процессор потребляет чуть меньше 2-го. И ничего больше. Об этом нужно помнить. Повышенный ток потребления говорит о любой неисправности.
Прилагаю отредактированную схему мультиметра. Ремонт и калибровка прибора очень удобны. Схема изначально была скачана из Интернета и редактировалась несколько лет. В схеме могут быть недочеты. Возможно, и не все удалось исправить.
IC8 7555 Можно просто выпасть из схемы, которую я сделал. Мультиметр не сможет измерить частоту. Для меня это не критично.
В интернете тоже есть схема с более поздней модификацией этого устройства.
Это (так сказать) совсем другое устройство. На мой взгляд, более убогий. Схема упростилась.
Все элементы схемы собраны на одной плате. Чисто внешне (без вскрытия) отличить очень сложно, разве что по весу. И продал на несколько лет позже и дешевле.
приступаю непосредственно к ремонту.
Чтобы определить, что произошло, необходимо узнать верхнюю плату. Для этого открутите четыре винтика и запомните, как ламели расположены у переключателя.У них есть своеобразная особенность в самый неподходящий момент. И лучше сразу удалить, чтобы потом не искать их на полу.
Устройство работает нормально и без верхней платы. Нужно только сдвинуть 2 и 6 контактов разъема (я их обозначил на рисунке). По ним проходит 9В. Он исчезнет, а измеренные значения на дисплее исчезнут. При ремонте это не очень важно.
Практически всегда сгорает защитный транзистор Q4 (9014).
Я уже уронил. Мультиметр может работать и без него. Но лучше заменить. Что за, но все же защита.
Теперь нужно измерить напряжение между ножками 1 и 32 процессора. При этом ротатор ремонтируемого мультиметра должен стоять в любом режиме, кроме измерения сопротивления.
Оно должно быть примерно в указанных пределах (2,8–3,0 В). При превышении значений (обычно более 6В) с вероятностью 99% процессор устройства.Само
Процентов находится на другой стороне платы под индикатором. Чтобы добраться до него, нужно открутить четыре винта и снять модуль с индикатором.
Эти микросхемы есть в мультиметрах Mastech M890F. Чаще встречались «кляксы».
И в том, и в другом случае выпадает неисправная микросхема. Вместо него ставится обычная МС из Китая. Что я успешно сделал.
Вы можете приобрести наш аналог кр572фв5. Тогда он был впаян в другое неисправное устройство.Уже много лет работает.
Вот только расстояние между ног немного другое. Будет немного.
После проведения процедур мультиметр ожил. Замерил напряжение на АКБ.
Почти правда. Осталось настроить мультиметр на образцовые приборы. Но не все, что у них есть. Кроме того, вы можете скорректировать показания, сравнив их с другим устройством, которому вы доверяете.
Начать нужно с калибровки постоянных напряжений (VR1).И только потом переменные (VR2). Последовательность других регулировок «скорости» не влияет 🙂
Точность измерения сопротивления определяется точностью измерения сопротивления образца внутри прибора и никакие потенциометры не регулируются.
Вот и все.
И еще кое-что в конце.
Я попытался рассказать об использовании микросхемы ICL706 в качестве Ремкомплект. Невозможно описать все неисправности мультиметров, в которых необходима их замена. Кому что-то непонятно по поводу фишек, задавайте вопросы.За советами по ремонту обращайтесь в личку.
Надеюсь хоть кому то помогло.
Всем удачи!
1x — 100PF Конденсатор 1x — 10n Конденсатор 1x — 100n Конденсатор 1x — 220n Конденсатор 1x — 470N Конденсатор 2x — 10uf Конденсатор |
3X — 1N4148 DIODE 1x — ICL7107 IC 1x — 7660 IC 2x — MAN6910 2-значный 7-сегментный светодиодный дисплей |
Этот цифровой вольтметр идеально подходит для использования в источниках постоянного тока.Он включает 3,5-битный светодиодный дисплей с общим катодом. Он измеряет напряжение постоянного тока от 0 до 199,9 В с разрешением 0,1 В. Вольтметр основан на одной микросхеме ICL7107 и может быть установлен на небольшой печатной плате размером 3 х 7 см. Схема должна быть оборудована источником питания 5В и потребляет ток около 25 мА.
Яркость светодиодных сегментов Дисплей можно изменить, добавив или убрав количество диодов 1N4148, которые включаются последовательно.
Вольтметр также можно настроить для измерения напряжения в разных диапазонах. Замена резистора 1М на 100К позволит измерить напряжение 0-19,99В \ 0,01В (10мВ) — погрешность.
Калибровка
С помощью потенциометра 10К установите опорное напряжение между выводами 35 и 36 микросхемы ICL7107, напряжение между этими выводами должно быть равно 1В.
Возможно использование других индикаторов.
Источник — http: // electronics-diy.com / icl7107_volt_meter.php.
National Semiconductor 7703701EB Цифровая микросхема
Конфигурация:• Длина корпуса: 0,840 дюйма максимум
• Рабочая температура: от -55 до 125 градусов Цельсия
• Максимальная мощность рассеиваемой мощности: 500 Милливатт
Номер детали: MM54C85J, DLA900-86-P -A919
Показать подробное описание
Важное примечание. Другие аксессуары, руководства, кабели, данные калибровки, программное обеспечение и т. Д. Не входят в комплект данного оборудования, если они не указаны в приведенном выше описании складских позиций.
Характеристики:
- Герметично закрытый
- Монолитный и положительный выходы
- Расширяемый и маломощный
View It Live Request
Покупка подержанного оборудования не всегда должна быть выстрелом в темноте. Мы знаем, что существует множество различий, когда дело доходит до бывшего в употреблении оборудования, и довольно часто выбор между различными частями затруднен, особенно когда оборудование не находится прямо перед вами.
Ну, а что, если бы вы смогли увидеть оборудование до того, как его купили? Не просто изображение с веб-сайта производителя, а фактическая часть оборудования, которую вы получите.
С помощью InstraView ™ мы на один шаг приближаем вас к проверке интересующего вас оборудования, не дожидаясь его появления у дверей.
InstraView ™ работает в вашем веб-браузере и позволяет просматривать фактическое оборудование, которое вас интересует, перед покупкой.Вы можете увеличить масштаб, чтобы увидеть этикетки с серийным номером, или уменьшить масштаб, чтобы увидеть общее состояние оборудования.
Это как если бы магазин пришел к вам!
Форма запроса InstraView
Для начала …
1. Заполните форму запроса ниже
2. Мы отправим вам электронное письмо, в котором вы узнаете, когда именно ваше оборудование будет доступно для просмотра
Объект для проверки: 48659-1 — Цифровая микросхема National Semiconductor 7703701EB
Спасибо!
Мы свяжемся с вами в ближайшее время.
Artisan Scientific Corporation dba Artisan Technology Group не является аффилированным лицом или дистрибьютором National Semiconductor.