Как прозвонить тиристор: Страница не найдена — EvoSnab

Содержание

Как прозвонить тиристор мультиметром видео

Как проверить тиристор мультиметром

Прежде потрудитесь узнать, как работает тиристор. Заимейте представление о разновидностях: триак, динистор. Требуется правильно оценить результат теста. Ниже расскажем, как проверить тиристор мультиметром, даже приведем небольшую схему, помогающую выполнить задуманное в массовом порядке.

Разновидности тиристоров

Тиристор отличается от биполярного транзистора наличием большего количества p-n переходов:

  1. Типичный тиристор p-n переходов содержит три. Структуры с дырочной, электронной проводимостью чередуются на манер зебры. Можно встретить понятие n-p-n-p тиристор. Присутствует или отсутствует управляющий электрод. В последнем случае получаем динистор. Работает по приложенному меж катодом и анодом напряжением: при некотором пороговом значении открывается, начинается спад, ход электронам отсекается. Что касается тиристоров с электродами, управление производится в любом из двух срединных p-n переходов – стороны коллектора, либо эмиттера. Коренное отличие изделий от транзистора в неизменности режим после пропадания управляющего импульса. Тиристор остается открытым, пока ток не упадет ниже фиксированного уровня. Обычно называют током удержания. Позволяет строить экономичные схемы. Объясняет популярность тиристоров.
  2. Симисторы отличаются количеством p-n переходов, становится больше минимум на один. Способны пропускать ток в обоих направлениях.

Начало тестирования тиристора мультиметром

Сначала потрудитесь расположение электродов определить:

Для открытия тиристорного ключа катод прибора снабжается минусом (черный щуп мультиметра), на анод присоединяется плюс (красный щуп мультиметра). Тестер выставляется в режим омметра. Сопротивление открытого тиристора невелико. Хватит поставить предел 2000 Ом. Пришло время напомнить: тиристор способен управляться (открываться) положительными или отрицательными импульсами. В первом случае перемычкой из тонкой булавки замыкаем на базу анод, втором – катод. Тут и там должен тиристор открыться, в результате сопротивление станет меньше бесконечности.

Процесс тестирования сводится к пониманию, каким напряжением управляется тиристор. Минусовым или плюсовым. Попробуйте так и сяк (если отсутствует маркировка). Одна попытка точно сработает, если тиристор исправен.

Дальше процесс расходится с проверкой транзистора. При пропадании управляющего сигнала тиристор останется открытым, если ток превышает порог удержания. Ключ может закрыться. Если ток не дотягивает порога удержания.

  1. Ток удержания прописан техническими характеристиками тиристора. Потрудитесь скачать из интернета полную документацию, быть в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подает на щупы (традиционно 5 вольт), сколько мощности обеспечит. Проверить можно, заручившись помощью конденсатора большой емкости. Нужно правильно подключить щупы на выводы прибора в режиме измерения сопротивления, подождать, пока цифры на дисплее вырастут от нуля до бесконечности. Конденсатор процесс зарядки прошел. Теперь перейдем в режим измерения постоянного напряжения посмотреть величину разницы потенциалов на ножках конденсатор (мультиметр подает в режиме измерения сопротивления). По вольт-амперным характеристикам тиристора несложно определить, хватит ли значения создать ток удержания.

Динисторы звонятся проще. Попытайтесь открыть ключ. Зависит от того, хватит ли мощности мультиметра преодолеть барьер. Для гарантированной проверки тиристора лучше собрать отдельную схему. Наподобие представленной рисунком. Схеме сформирована следующими элементами:

  1. Три резистора послужат заданию режима тиристора. Один номиналом 300 Ом ограничивает ток. Если параметр нужно изменить, перестараться при наличии питания +5 вольт чрезвычайно сложно. Ничего страшного, если резистор убрать. Старайтесь руководствоваться вольт-амперными характеристиками тиристора. Идеально поставить переменный резистор диапазоном 100 – 1000 Ом. Два резистора правой ветки задают рабочую точку. В схеме на управляющий электрод подано 2,5 вольта. Если не согласуется с вольт-амперными характеристиками тиристора (см. документацию), измените номиналы. Образуют резистивный делитель. Напряжение 5 вольт делится пропорционально номиналам. Поскольку сопротивления равны друг другу, на управляющий электрод приходит ровно половина напряжения питания.
  2. Светодиод послужит нагрузкой. Стоит в «силовой» ветке, рядом находятся эмиттер, коллектор. Здесь после открытия ключа должен течь ток. Светодиод загорится, увидим, работает ли тиристор. Светодиод не инфракрасный. Возьмите видимый диапазон.

Схема проверки тиристора

Почему выбрали питание +5 вольт. Напряжение несложно найти на адаптере телефона (зарядное устройство). Присмотритесь: присутствует надпись наподобие 5V– /420 mA. Выходные значения напряжения, тока (сразу посмотрите, хватит ли удержать тиристор). Каждый знаток в курсе: +5 вольт доступно взять на шине USB. Портом снабжается теперь (в разном формате) практически любой гаджет, компьютер. С питанием проблем избегните. На всякий случай рассмотрим момент подробнее.

Проверка тиристоров на разъеме мультиметра для транзисторов

Многих интересует, возможно ли прозвонить тиристор мультиметром, используя штатное гнездо проверки транзисторов передней панели, обозначенное pnp/npn. Ответ положительный. Нужно просто подать правильно напряжения. Коэффициент усиления, выданный на дисплей, наверняка будет неверным. Поэтому руководствоваться цифрами избегайте. Давайте посмотрим, как примерно делается. Если открывается тиристор положительным потенциалом, подключать нужно на пин B (base) полугнезда npn. Анод втыкается на пин C (коллектор), катод – E (emitter). Едва ли удастся проверить мощный тиристор мультиметром, для микроэлектроники методика сгодится.

Где взять питание тестировщику

Положение электродов мультиметра

Адаптер телефона дает ток 100 – 500 мА. Часто бывает мало (если понадобится проверить тиристор КУ202Н мультиметром, отпирающий ток 100 мА). Где взять больше? Посмотрим шину USB: третья версия выдаст 5 А. Чрезвычайно большой ток для микроэлектроники, бросьте сомневаться в мощностных характеристиках интерфейса. Распиновку посмотрим в сети. Приводим рисунок, указывающий раскладку типичных портов USB. Показаны два типа интерфейсов:

  1. Первый USB тип А характерен компьютерам. Максимально распространенный. Найдете на адаптерах (зарядных устройствах) портативных плееров, iPad. Можно использовать в качестве источников питания схемы тестирования тиристора.
  2. Второй тип В характерен больше как концевой. Подключаются периферийные устройства наподобие принтеров, прочей оргтехники. Найти в качестве исходного источника питания сложно, игнорируя факт недоступности, авторы проверили раскладку.

Если кабель USB разрезать – уверены, многие ринутся курочить старую технику, обрывать хвосты мышкам – внутри провод питания +5 вольт традиционно красный, оранжевый. Информация поможет правильно прозвонить схему, добыть нужное напряжение. Присутствует на выключенном системном блоке (к розетке подсоединено). Вот почему огонек мышки продолжает гореть. На время теста компьютер достаточно будет ввести в режим гибернации. Кстати, напрямую не имеется в Windows 10 (полазить по настройкам, найдете в управлении энергопотреблением).

Раскладка портов USB

Заручившись помощью схемы, проверим тиристор, не выпаивая. Рабочая точка задана относительно земли порта, поэтому внешние устройства будут играть малую роль. Традиционно заземление персонального компьютера завязано на корпус, куда выходит провод входного фильтра гармоник. Схемные +5 вольт, земля развязаны с шиной. Достаточно тестируемую схему отключить от питания. Для проверки тиристора понадобится напаять усики на каждый вывод. Чтобы подвести питание, управляющий сигнал.

Многие, елозят на стуле, не понимая одной вещи: тут рассказываем, как прозвонить тиристор мультиметром, причем здесь светодиод плюс все навороты? Место светодиода можно – даже лучше – включить щупы тестера, регистрировать ток. Удается использовать малое напряжение питания, всегда безопаснее одновременно. Что касается персонального компьютера, дает широкие возможности тестирования любых элементов, включая тиристоры. Блок питания системника дает набор напряжений:

  1. +5 В идет кулерам, многим другим системам. Фактически стандартное напряжение питания. Провода вольтажа красного цвета.
  2. Напряжение +12 вольт используется для питания многих потребителей. Провод желтого цвета (не путать с оранжевым).
  3. – 12 вольт оставлено обеспечить совместимость с RS. Старый добрый COM-порт, через который сегодня программируются адаптеры промышленных систем. Некоторые источники бесперебойного питания. Провод обычно синий.
  4. Оранжевый провод обычно несет напряжение +3,3 В.

Видите, разброс великий, главное – ток. Мощность блоков питания компьютеров колеблется в области 1 кВт. Откроет любой тиристор! Пора пришла заканчивать. Надеемся, теперь читатели знают, как проводится прозвонка тиристора мультиметром. Иногда придется повозиться. Упомянутый выше тиристор КУ202Н снабжен структурой pnpn, незапираемый. После пропадания управляющего напряжения ключ не закрывается. Нужно убрать питание, чтобы погас светодиод. Отпирающее напряжение положительное. Подходит схеме. Единственно, ток удержания составляет 300 мА. Случай, когда не любой телефонный зарядник годится провести опыт.

Проверка тиристоров всех видов мультиметром

Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.

Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.

Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.

Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.

Основные характеристики

Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.

Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.

Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.

Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.

Определение управляющего напряжения

Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.

У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:

  • для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;
  • подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
  • перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
  • убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.

Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.

Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.

Проверка исправности

Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.

К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.

Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.

Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.

После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.

Проверка динистора

Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.

Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.

Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.

Значения тестера должны лежать в пределах милливольт. Динистор открылся.

Необычный способ

Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.

Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.

На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.

Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.

Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора.

Проверка в схеме

Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.

Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.

Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.

Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.

Тестирование высоковольтного тиристора

В случае проверки высоковольтного тиристора потребуется мультиметр с токовыми клещами. И проверка будет производиться при включенном оборудовании, так как сложно создать условия имитирующие рабочие параметры системы.

Все внешние воздействия необходимо делать в соответствии с инструкцией по эксплуатации на оборудование.

Измерения делаются с соблюдением техники безопасности, в остальном все, как и с обычными тиристорами.

Как проверить тиристор

Как проверить тиристор, если вы полный чайник? Итак, обо всем по порядку.

Принцип работы тиристора

Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле – это электромеханическое изделие, а тиристор – чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-). Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами и соседкой тетей Валей килограммов под двести и вы перемещаетесь с этажа на этаж. Как же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту?

В этом примере и основан принцип работы тиристора. Управляя маленьким напряжением кнопочки мы управляем большим напряжением… разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.

Тиристоры выглядят как-то вот так:

А вот и схемотехническое обозначение тиристора

В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги ( короче говоря с помощью короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)

Тиристоры, которые слева, устанавливают на алюминиевые радиаторы, а тиристоры-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешеная сила тока и коммутируют они очень большую мощность.

Маломощные тиристоры используются в радиопромышленности и, конечно же, в радиолюбительстве.

Параметры тиристоров

Давайте разберемся с некоторыми важными параметрами тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:

1) Uyотпирающее постоянное напряжение управления – наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тиристора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристора и электрический ток начинает спокойно себе течь через два оставшихся вывода – анод и катод тиристора. Это и есть минимальное напряжение открытия тиристора.

2) Uобр max – обратное напряжение, которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус – на анод.

3) Iос срсреднее значение тока, которое может протекать через тиристор в прямом направлении без вреда для его здоровья.

Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.

Как проверить тиристор КУ202Н

Ну и наконец-то переходим к самому важному – проверке тиристора. Будем проверять самый ходовый и знаменитый советский тиристор – КУ202Н.

А вот и его цоколевка

Для проверки тиристора нам понадобится лампочка, три проводка и блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тиристора.

На анод подаем “плюс” от блока питания, на катод через лампочку “минус”.

Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тиристора Uyотпирающее постоянное напряжение управления больше чем 0,2 Вольта. Берем полуторавольтовую батарейку и подаем напряжение на УЭ. Вуаля! Лампочка зажглась!

также можно использовать щупы мультиметра в режиме прозвонки, на щупах напряжение тоже больше 0,2 Вольта

Убираем батарейку или щупы, лампочка должна продолжать гореть.

Мы открыли тиристор с помощью подачи на УЭ импульса напряжения. Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.

Как проверить тиристор мультиметром

Можно также проверить тиристор с помощью мультиметра. Для этого собираем его по этой схемке:

Так как на щупах мультиметра в режиме прозвонки имеется напряжение, то подаем его на УЭ. Для этого замыкаем между собой анод и УЭ и сопротивление через Анод-Катод тиристора резко падает. На мультике мы видим 112 милливольт падение напряжения. Это значит, что он открылся.

После отпускания мультиметр снова показывает бесконечно большое сопротивление.

Почему же тиристор закрылся? Ведь лампочка в прошлом примере у нас горела? Все дело в том, что тиристор закрывается, когда ток удержания стает очень малым. В мультиметре ток через щупы очень малый, поэтому и тиристор закрылся без напряжения УЭ.

Есть также схема отличного прибора для проверки тиристора, ее можно глянуть в этой статье.

Также советую глянуть видео от ЧипДипа про проверку тиристора и ток удержания:

Как проверить тиристор мультиметром?

Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.

Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.

Предварительная подготовка

Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.

Маркировка обозначена красным овалом

Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).

Даташит на BT151 (аналог КУ202Н)

Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.

Тестирование на пробой

Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:

  1. Включаем прибор в режим «прозвонки» и снимаем измерения с перехода между выводами «К» и «УЭ», в соответствии с рисунком 3. Если полупроводник исправен, отобразится сопротивление перехода в диапазоне от 40 Ом до 0,55 кОм. Рис 3. Измеряем сопротивление между УЭ и К
  2. Меняем щупы местами и повторяем процесс, результат должен быть примерно таким же, как в пункте 1. Заметим, что чем больше сопротивление между выводами «УЭ» и «К», тем меньше ток открытия, а значит — выше чувствительность устройства.
  3. Меряем сопротивление между выводами «А» и «К» (см. рис. 4). На индикаторе мультиметра должно высветиться бесконечно большое сопротивление, причем, вне зависимости от полярности подключенного измерительного устройства. Иное значение указывает на пробой в переходе. Для «чистоты» проверки лучше выпаять подозрительную деталь и повторить тестирование.
Рис 4. Измеряем сопротивление перехода Анод-Катод

Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.

Проверка на открытие-закрытие

Предыдущее тестирование позволяет определить, имеется ли пробой, но не дает возможности проверить отсутствие внутреннего обрыва. Поэтому переводим мультиметр в режим «прозвонки» и подключаем к нему тиристор, в соответствии с рисунком 5 (щуп с черным проводом к выводу «К», красный — к «А»).

Рис. 5. Подключение для проверки на открытие

При таком подключении отобразится бесконечно большое сопротивление. Теперь соединяем на несколько мгновений «УЭ» с выходом «А», прибор покажет падение сопротивления, и после отключения «УЭ», показание опять вырастет до бесконечности. Это связано с тем, что идущего через щупы тока недостаточно для удержания тиристора в открытом состоянии. Поэтому, чтобы убедиться в работоспособности полупроводникового элемента, необходимо собрать несложную схему.

Самодельный пробник для тиристоров

В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.

Рисунок 6. Пробник для тиристоров

Обозначения:

  • Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
  • L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
  • VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
  • С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
  • R1 – сопротивление с номиналом 47 Ом.
  • VD2 – тестируемый тиристор.
  • FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).

После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:

  1. Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
  2. Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
  3. Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
  4. Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
  5. Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
  6. Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
  7. Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
  8. Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.

Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).

Проверка без выпаивания детали с платы

В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.

Методы проверки тиристоров на исправность

Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод – управляющий электрод.

Тиристор – это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:

  1. Высокая проводимость (открытое).
  2. Низкая проводимость (закрытое).

Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение.

Есть разные тиристоры, которые отличаются друг от друга характеристиками, управлением и т. д.

Самые известные типы данных устройств:

  • Диодный. Переходит в проводящий режим, когда уровень тока повышается.
  • Инверторный. Он переходит в режим низкой проводимости быстрей подобных устройств.
  • Симметричный. Устройство похоже на 2 устройства со встречно-параллельными диодами.
  • Оптотиристор. Работает благодаря потоку света.
  • Запираемые.

Применение тиристоров

Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами.

Общее применение делится на четыре группы:

  • Экспериментальные устройства.
  • Пороговые устройства.
  • Силовые ключи.
  • Подключение постоянного тока.

Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик. Отечественные производители делают отличные тиристоры, по небольшой стоимости. Одни из самых распространенных отечественных тиристоров, это устройства серии КУ 202е – используются в бытовых приборах.

Вот некоторые характеристики данного тиристора:

  • Обратное напряжение в состоянии высокой проводимости, максимально 100 В.
  • Напряжение в положении низкой проводимости 100 В.
  • Импульс в состоянии высокой проводимости – 30 А.
  • Повторный импульс в этом же положении – 10 А.
  • Постоянное напряжение 7 В.
  • Обратный ток – 4 мА
  • Ток постоянного типа – 200 мА.
  • Среднее напряжение -1,5 В.
  • Время включения – 10мкс.
  • Выключение – 100 мкс.

Иногда возникают ситуации, в которых необходимо проверить тиристор на работоспособность. Есть различные методы проверки, в этой статье будут рассмотрены основные из них.

Тиристоры быстродействующие ТБ333-250

Проверка с помощью метода лампочки и батарейки

Для этого метода достаточно иметь под рукой лишь лампочку, батарейку, 3 проводка и паяльник, чтобы припаять провода к электродам. Такой набор найдется в доме у каждого.

При проверке прибора с помощью метода батарейки и лампочки, нужно оценить нагрузку тока сто mA, которую создает лампочка, на внутренней цепи. Применять нагрузку следует кратковременно. При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях.

Проверка методом лампочки и батарейки осуществляется по трём схемам:

  • В первой схеме на управляющий электрод положительный потенциал не подается, благодаря чему не пропускается ток и лампочка не загорается. В случае если лампочка горит, тиристор работает неправильно.
  • Во второй схеме тиристор приводится в состояние высокой проводимости. Для этого нужно подать плюсовой потенциал на управляющий электрод (УЭ). В этом случае, если лампочка не горит, значит с тиристором что-то не так.
  • На третьей схеме с УЭ питание отключается, ток в этом случае проходит через анод и катод. Ток проходит благодаря удержанию внутреннего перехода. Но в этом случае, лампочка может не загореться не только из-за неисправности тиристора, но и из-за протекания тока меньшей величины через цепь, чем крайнее значение удержания.

Так исправность тиристора легко проверить в домашних условиях, не имея под рукой специального оборудования. Если разорвать цепь через анод или катод, у тиристора активируется состояние низкой проводимости.

При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях

Проверка мультиметром

Это самый простой вариант для проверки. В этом методе анод и контакты УЭ подключаются к прибору для измерения (мультиметру). Роль постоянного источника тока здесь играют батареи мультиметра. В качестве индикатора – стрелки или цифровые показатели.

Что нужно, чтобы проверить тиристор мультиметром:

  1. Подцепить черный щуп с минусом к катоду.
  2. Подцепить красный щуп с плюсом к аноду.
  3. Один конец выключателя соединить с разъемом красного щупа.
  4. Настроить мультиметр для измерения сопротивления, не превышающего 2 тысячи ОМ.
  5. Быстро включить и отключить выключатель.
  6. Если проход тока удерживается, значит с тиристором всё хорошо. Чтобы его отключить достаточно, отсоединить напряжение от одного из электродов (анод или катод).
  7. В случае если удерживания проводимости нет, нужно поменять щупы местами и проделать всё с самого начала.
  8. Если перекидывание щупов не помогло, то тиристор неисправен.

Чтобы проверить тиристор не выпаивая, нужно отсоединить УЭ от цепной схемы. Далее нужно проделать все пункты, которые описаны выше.

Роль постоянного источника тока здесь играют батареи мультиметра, в качестве индикатора – стрелки или цифровые показатели

Другие варианты проверки

Также тиристор можно проверить с помощью тестера. Для этого понадобится тестер, батарейка шести – десяти вольт и проводки.

Чтобы проверить устройство тестером нужно следовать следующей схеме:

Проверка тимистора с помощью омметра

Еще тиристор можно проверить с помощью омметра. Этот метод похож на проверку мультиметром и тестером. Потребуется:

  • Подключить плюс омметра к аноду, а минус к катоду. На датчике омметра должно быть показано высокое сопротивление.
  • Замкнуть вывод анода и УЭ, сопротивление на датчике омметра должно резко спасть.

Вот в принципе и вся инструкция для проверки. Если после этих действий отсоединить УЭ от анода, но не разрывать связь анода с омметром, датчик устройства должен показывать низкое сопротивление (это возникает, если ток анода, больше тока удержания).

Также существует еще один способ проверки тиристора с помощью омметров, для этого понадобится дополнительный омметр. Нужно плюсовой вывод одного омметра подключить к аноду, сопротивление в этот момент должно показываться высокое. Далее следует, также плюсовой вывод, но уже другого омметра, быстро подключить и отключить от управляющего электрода (УЭ), в этот момент сопротивление первого омметра резко уменьшится.

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

Как проверить тиристор мультиметром

Для проверки радиоэлементов на работоспособность, чаще всего используется мультиметр. Он хорош тем, что с его помощью, можно быстро выявить радикальные дефекты большинства радиодеталей. Минус тут в том, что не каждым мультиметром, и не каждую деталь, можно протестировать досконально.

Аналоговый мультиметр

Чаще всего называемый тестером, реже – авометром (Ампер-Вольт-Ом-метр) и, почти никогда, непосредственно мультиметром. Состоит из прецизионной стрелочной головки потенциометра и сложных коммутируемых цепей измерения. Причем, внутренняя батарея питания (4,5-9 В.) нужна лишь для измерения сопротивления. Напряжение и ток можно измерить и без нее.
Проверить тиристор мультиметром такого плана, можно только при наличии свежей, не разряженной батарейки.

Цифровой мультиметр

Так и называют, реже – тестером, и, почти никогда – авометром. Состоит из упрощенных коммутируемых цепей измерения обслуживающих микроконтроллер с АЦП (аналого-цифровой преобразователь). Его широкий диапазон измерения, чувствительность и точность, позволяют обойтись и без них. Внутренний элемент питания (1-9 В) используется не только для измерения сопротивления, но и для питания микроконтроллера и его периферии.

Как проверить тиристор мультиметром

Рассмотрим последовательность действий для определения работоспособности тиристора.

  1. Прозвонка анод-катод, при любом приложении щупов:
    • аналоговый покажет бесконечность, стрелка не двинется;
    • цифровой или никак не отреагирует или высветит несколько МОм.
  2. При прозвонке анод-управляющий электрод:
    • аналоговый покажет от нескольких до десятков кОм;
    • цифровой выдаст такие же цифры.
  3. При прозвонке катод-управляющий электрод:
    • то же самое для обоих приборов.

Теперь попробуем проверить тиристор на открытие, его основную работу. Для этого, минусовой щуп приложим к катоду, плюсовой к аноду и им же, не отрывая от анода, кратковременно коснемся управляющего электрода. Тиристор должен открыться (сопротивление упасть почти до 0 Ом) и удерживаться в таком состоянии до разрыва цепи.
Если этого не произошло то:

  • перепутаны плюсовой и минусовой щупы тестера;
  • неподходящий тестер или разряженная батарея в нем;
  • тиристор неисправен.

Перед тем, как выбросить тиристор, проверим мультиметр и правильность своих действий при работе с ним:

  • земляной (корпусный или COM) щуп аналогового тестера – является плюсовым, а у цифрового мультиметра наоборот – минусовым.
  • диапазон измерения должен быть выставлен на 100-2000 Ом, в зависимости от градации коммутационного блока;
  • питание измерительного прибора должно осуществляться свежей, не разряженной батареей с напряжением от 4,5 до 9 вольт;
  • на шкале цифрового мультиметра, в секторе измерения сопротивлений, должен присутствовать значок диода.

Цифровые тестеры-игрушки, размером со спичечную коробку и питанием от часового аккумулятора, для проверки полупроводниковых элементов не подходят. Да и полагаться на другие их измерения не стоит. Но и утверждать, что проверить тиристор цифровым мультиметром невозможно (а такое мнение бытует), тоже неверно. Можно, причем очень даже многими. Соблюдение вышеперечисленных правил, позволяет добиться положительных результатов с разными приборами.

8 thoughts on “ Как проверить тиристор мультиметром ”

Согласен с автором в том, что нормальные цифровые мультиметры тиристор прозвонят. Мой, к примеру, DT-838 DM — прозванивает, и довольно мощные надо сказать.
А насчет полярности щупов, катодного или анодного управления — заморачиваться не стоит: взялся за катод и анод и то одним то другим ткнул в управляющий. Не помогло, поменял местами и опять потыкал. В одном из четырех вариантов, точно сработает, если тиристор исправен.
На профпригодность тестер можно проверить прозвонкой одно-двувольтового стабилитрона.

Не согласен с утверждением автора, что миниатюрные цифровые «спичечные» тестеры можно использовать лишь в качестве игрушек. Есть среди них и вполне приличные приборы. Все зависит от цены.

Ток отпирания тиристоров как правило

Аккумулятор-то держит, — это не каждый тиристор выдержит прямое подключение к управляющему электроду аккумулятора. От многих и сгореть может. У мультиметров ограничивающие цепи стоят для избежания такого КЗ-шного конфуза. Да и измеряет он сопротивление за счет измерения падения напряжения на эталонном сопротивлении. В нормальных тестерах они разные на разных диапазонах, в других — не знаю, может и одно, максимальное. Возможно, именно это и подразумевалось, под упрощенными коммутируемыми цепями.

Вот так я и спалил один, прозванивая тиристоры КУ202Н на светомузыке, так как прямой ток управления на нём около 200 мА, а прямое напряжение управления 10 В.

Правильно. Напряжение — это одно дело, а ток — другое. Хоть закон Ома и увязал их до кучи, но через сопротивление ) А p-n переход управляющего электрода тонюсенький и сопротивления небольшого. Точнее, небольшим оно становится при определенном напряжении. Ему, если пихнуть без ограничения — сразу амба. Такая вот катавасия: кто управляется током, тому надо ограничивать ток, а кто напряжением — напряжение.

В тексте написано про полярность щупов (зeмляной (корпусный или COM) щуп aнaлогового тeстeрa – являeтся плюсовым, a у цифрового мультимeтрa нaоборот) Не у всех стрелочных приборов такая полярность щупов. Дешевые мультиметры — деньги на ветер. Ими часто можно совершать ошибки.
С автором статьи согласен.

Я тиристоры проверял и сейчас проверяю «аркашкой» — пробником из 4,5-вольтовой батарейки и лампочки на 3,5 вольта. Крокодилы пробника на катод и анод, и отверткой управляющий электрод соединяю с анодом. Лампочка зажглась и горит при разрыве цепи управляющего электрода, значит тиристор в порядке. Во всех других случаях (не горит, гаснет после прекращения тока через управляющий электрод, горит постоянно) тиристор в утиль. Никакими более сложными приборами не пользовался.
Сейчас задумался над проектом измерителя параметров транзисторов и диодов для домашней лаборатории. Если что, им можно будет параметры тиристоров (симисторов) измерять, хотя не знаю, где это может мне пригодится.

мир электроники — Как проверить тиристор

 Практическая электроника 

 материалы в категории

Тиристор — это одна из разновидностей полупроводниковых приборов. Внешне он напоминает обыкновенный диод, но в отличие от простого диода он может работать как ключ: открываться и закрываться. Поэтому кроме анода и катода у него имеется еще и третий вывод- для управления. Его так и называют: управляющий электрод (сокращенно УЭ)
В общем-то тиристоры это целый подкласс диодов: они тоже имеют разновидности-
а. просто тиристор: в открытом состоянии пропускает ток лишь в одну сторону
б. симистор или симметричный тиристор: в открытом состоянии может пропускать ток в обе стороны.
г. динистор: не имеет управляющего электрода и управляется приложенным к нему напряжением. Главный параметр у динистора- это так называемое пробивное напряжение: порог при котором динистор открывается и начинает пропускать ток.

Структура тиристора выглядит так:

Так он обозначается на схемах:

Тиристоры по мощности бывают, конечно-же, разные: повышенной мощности (силовые). Такие тиристоры рассчитаны на очень большой ток и выглядят приблизительно так:


Есть тиристоры и поменьше- для бытовой аппаратуры и , конечно, для радиолюбительских целей. Внешний вид у них может быть разный:

Ну теперь давайте разберемся как проверить тиристор. В качестве примера возьмем самый распространенный советский тиристор КУ202Н. Он выглядит так:

Для проверки нам понадобятся: блок питания с постоянным напряжением, лампочка, и еще один источник питания- например батарейка.

Припаиваем в выводам тиристора провода, на анод подаем плюс от источника питания, а минус подключаем через лампочку к катоду как на картинке ниже:


Теперь нам нужно тиристор «отпереть». Для того чтобы открыть тиристор необходимо на его управляющий электрод подать напряжение больше чем на аноде на 0,2V.

Для этого можно поступить двумя способами:
1. использовать отдельный источник питания. например батарейку. Если тиристор исправный, то лампочка должна загореться. См картинку:


2. Можно открыть тиристор мультиметром: для этого устанавливаем мультиметр в режим прозвонки- на его выводах тогда напряжение тоже будет выше 0,2V.


Ну это еще не все!!! После отпирания тиристор должен удерживаться в открытом состоянии. То есть лампочка должна продолжать гореть даже тогда когда с управляющего электрода убрали источник отпирающего напряжения.


Чтобы запереть тиристор нужно или убрать питание или подать на его управляющий вывод отрицательное напряжение.

Ну, и наконец, как быть если под рукою нет ни лампочки, ни источника питания а только лишь мультиметр? Тоже можно!

Как проверить тиристор мультиметром

Для проверки тиристора ставим мультиметр в режим «прозвонки» и подключаем щупы «плюс» на анод, «минус» на катод. Так как тиристор заперт, то на дисплее мультиметра будет высокое сопротивление.


Так как на щупах мультиметра имеется напряжение, то на управляющий электрод подаем «плюс»- кратковременно касаемся проводом от управляющего электрода на анод.
Тиристор должен открыться и на дисплее мультиметра появится низкое значение.


А вот дальше- самое интересное: если сейчас убрать провод с управляющего электрода то тиристор вновь запрется. Возникает вполне логичный вопрос: почему он не остался в открытом виде как на предыдущем примере с лампочкой?

все дело в том что для удержания в тиристора в открытом виде требуется определенный ток а на щупах мультиметра он недостаточный. Хотя, сразу оговорюсь: недостаточный он именно для тиристора КУ202: для слабеньких тиристоров типа КУ112 (применялись в импульсных источниках питания отечественных телевизоров) этого тока вполне достаточно и тиристор останется в открытом виде.

Ну и напоследок: основная часть информации и изображения любезно предоставлены сайтом Практическая электроника, и за это им огромная благодарность.

Как проверить симистор на работоспособность

Используя домашний тестер (мультиметр), легко выполнить проверку различных радиоэлементов. Для домашних мастеров, которые работают с электронными приборами это довольно полезная вещь. К примеру, правильно выполненная проверка симистора мультиметром позволит избежать поиска новых деталей при ремонте электрооборудования. Чтобы понять данный процесс досконально, необходимо выяснить, что представляют собой тиристоры.

Что такое тиристоры

Это полупроводниковые приборы, которые выполнены с учетом классических монокристальных технологий. На кристаллах имеются p-n переходы в количестве 3-х и более штук, с диаметрально противоположным устойчивым состоянием. Основным применением данной детали являются электронные ключи. Использование этих радиоэлементов может быть хорошей альтернативой механическому реле.

Процесс включения осуществляется регулируемым и плавным образом, без дребезжания контактов. Нагрузки по основным направлениям при открытии p-n перехода подаются управляемым образом, то есть присутствует возможность соблюдения контроля скорости при нарастании рабочего тока.

При этом, стоит отметить, что тиристор в сравнении с реле, может быть удачно интегрирован в электросхему с любым уровнем сложности. При отсутствии искрения каждого контакта, их можно использовать для систем, в которых не допускаются коммутационные помехи. Детали довольно компактны, выпускаются в виде разных форм-факторов, также и для установки на охлаждающие радиаторы.

Управление прибором осуществляется посредством внешнего воздействия на основе:

  • электрического тока, что поступает на управляющие электроды;
  • луча света, в случае использования фототиристора.

Примечательно, что в сравнении с тем же реле, нет необходимости в постоянной подаче управляющего сигнала. Рабочие p-n переходы будут открыты и после того, как завершена подача тока. Тиристоры закроются, при опускании протекающего сквозь него рабочего тока ниже уровня порогов удержания.

Еще одно свойство тиристоров, которое является основной характеристикой — это использование их в качестве одностороннего проводника. Так, протекание паразитных токов в обратное направление осуществляться не будет. Благодаря чему значительно упрощаются схемы по управлению радиоэлементами.

Тиристор может выпускаться в различной модификакции, исходя из того, какой способ управления и дополнительные возможности необходимы. Он может быть:

  • диодным с прямой проводимостью;
  • диодным с обратной проводимостью;
  • диодным симметричным;
  • триодным с прямой проводимостью;
  • триодным с обратной проводимостью;
  • триодным ассиметричным.

Бывают также разновидности триодных тиристоров с двунаправленной проводимостью.

Что такое симистор, и в чем его отличие от тиристора

Симисторы (или «триаки») являются особыми разновидностями триодных симметричных тиристоров. Главным преимуществом любого симистора можно считать наличие способности проводки тока на рабочем p-n переходе в двух направлениях. Благодаря этому осуществляется использование радиоэлементов сфере систем, имеющих переменное напряжение.

Их рабочие принципы и конструктивные особенности сходны с остальными тиристорами. При подачах управляющих токов p-n переходы отпираются, и остаются открытым до момента снижения величин рабочих токов. Популярным применением симистора является использование его для регуляторов напряжений в осветительных системах и бытовых электроинструментах.

Принцип работы этого радиокомпонента схожий с принципом действия транзистора, однако деталь не является взаимозаменяемой. Разобравшись в том, что такое симистор и тиристор, необходимо также рассмотреть вопрос, о проверке этих деталей на показатели работоспособности.

Видео «Как проверить рабочее состояние тиристора и симистора»

Как проверить тиристорный модуль. Как проверять тиристоры – пошаговая инструкция. Практическое применение симисторов

Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.

Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.

Предварительная подготовка

Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.

Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).


Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.

Тестирование на пробой

Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:



Рис 4. Измеряем сопротивление перехода Анод-Катод

Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.

Проверка на открытие-закрытие

Предыдущее тестирование позволяет определить, имеется ли пробой, но не дает возможности проверить отсутствие внутреннего обрыва. Поэтому переводим мультиметр в режим «прозвонки» и подключаем к нему тиристор, в соответствии с рисунком 5 (щуп с черным проводом к выводу «К», красный – к «А»).


Рис. 5. Подключение для проверки на открытие

При таком подключении отобразится бесконечно большое сопротивление. Теперь соединяем на несколько мгновений «УЭ» с выходом «А», прибор покажет падение сопротивления, и после отключения «УЭ», показание опять вырастет до бесконечности. Это связано с тем, что идущего через щупы тока недостаточно для удержания тиристора в открытом состоянии. Поэтому, чтобы убедиться в работоспособности полупроводникового элемента, необходимо собрать несложную схему.

Самодельный пробник для тиристоров

В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.


Рисунок 6. Пробник для тиристоров

Обозначения:

  • Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
  • L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
  • VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
  • С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
  • R1 – сопротивление с номиналом 47 Ом.
  • VD2 – тестируемый тиристор.
  • FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).

После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:

  1. Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
  2. Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
  3. Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
  4. Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
  5. Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
  6. Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
  7. Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
  8. Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.

Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).

Проверка без выпаивания детали с платы

В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.

Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.

Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.

Предварительная подготовка

Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.

Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).


Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.

Тестирование на пробой

Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:



Рис 4. Измеряем сопротивление перехода Анод-Катод

Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.

Проверка на открытие-закрытие

Предыдущее тестирование позволяет определить, имеется ли пробой, но не дает возможности проверить отсутствие внутреннего обрыва. Поэтому переводим мультиметр в режим «прозвонки» и подключаем к нему тиристор, в соответствии с рисунком 5 (щуп с черным проводом к выводу «К», красный – к «А»).


Рис. 5. Подключение для проверки на открытие

При таком подключении отобразится бесконечно большое сопротивление. Теперь соединяем на несколько мгновений «УЭ» с выходом «А», прибор покажет падение сопротивления, и после отключения «УЭ», показание опять вырастет до бесконечности. Это связано с тем, что идущего через щупы тока недостаточно для удержания тиристора в открытом состоянии. Поэтому, чтобы убедиться в работоспособности полупроводникового элемента, необходимо собрать несложную схему.

Самодельный пробник для тиристоров

В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.


Рисунок 6. Пробник для тиристоров

Обозначения:

  • Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
  • L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
  • VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
  • С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
  • R1 – сопротивление с номиналом 47 Ом.
  • VD2 – тестируемый тиристор.
  • FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).

После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:

  1. Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
  2. Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
  3. Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
  4. Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
  5. Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
  6. Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
  7. Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
  8. Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.

Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).

Проверка без выпаивания детали с платы

В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.

Прежде потрудитесь узнать, как работает тиристор. Заимейте представление о разновидностях: триак, динистор. Требуется правильно оценить результат теста. Ниже расскажем, как проверить тиристор мультиметром, даже приведем небольшую схему, помогающую выполнить задуманное в массовом порядке.

Разновидности тиристоров

Тиристор отличается от биполярного транзистора наличием большего количества p-n переходов:

  1. Типичный тиристор p-n переходов содержит три. Структуры с дырочной, электронной проводимостью чередуются на манер зебры. Можно встретить понятие n-p-n-p тиристор. Присутствует или отсутствует управляющий электрод. В последнем случае получаем динистор. Работает по приложенному меж катодом и анодом напряжением: при некотором пороговом значении открывается, начинается спад, ход электронам отсекается. Что касается тиристоров с электродами, управление производится в любом из двух срединных p-n переходов – стороны коллектора, либо эмиттера. Коренное отличие изделий от транзистора в неизменности режим после пропадания управляющего импульса. Тиристор остается открытым, пока ток не упадет ниже фиксированного уровня. Обычно называют током удержания. Позволяет строить экономичные схемы. Объясняет популярность тиристоров.
  2. Симисторы отличаются количеством p-n переходов, становится больше минимум на один. Способны пропускать ток в обоих направлениях.

Начало тестирования тиристора мультиметром

Сначала потрудитесь расположение электродов определить:

  • катод;
  • анод;
  • управляющий электрод (база).

Для открытия тиристорного ключа катод прибора снабжается минусом (черный щуп мультиметра), на анод присоединяется плюс (красный щуп мультиметра). Тестер выставляется в режим омметра. Сопротивление открытого тиристора невелико. Хватит поставить предел 2000 Ом. Пришло время напомнить: тиристор способен управляться (открываться) положительными или отрицательными импульсами. В первом случае перемычкой из тонкой булавки замыкаем на базу анод, втором – катод. Тут и там должен тиристор открыться, в результате сопротивление станет меньше бесконечности.

Процесс тестирования сводится к пониманию, каким напряжением управляется тиристор. Минусовым или плюсовым. Попробуйте так и сяк (если отсутствует маркировка). Одна попытка точно сработает, если тиристор исправен.

Дальше процесс расходится с проверкой транзистора. При пропадании управляющего сигнала тиристор останется открытым, если ток превышает порог удержания. Ключ может закрыться. Если ток не дотягивает порога удержания.

  1. Ток удержания прописан техническими характеристиками тиристора. Потрудитесь скачать из интернета полную документацию, быть в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подает на щупы (традиционно 5 вольт), сколько мощности обеспечит. Проверить можно, заручившись помощью конденсатора большой емкости. Нужно правильно подключить щупы на выводы прибора в режиме измерения сопротивления, подождать, пока цифры на дисплее вырастут от нуля до бесконечности. Конденсатор процесс зарядки прошел. Теперь перейдем в режим измерения постоянного напряжения посмотреть величину разницы потенциалов на ножках конденсатор (мультиметр подает в режиме измерения сопротивления). По вольт-амперным характеристикам тиристора несложно определить, хватит ли значения создать ток удержания.

Динисторы звонятся проще. Попытайтесь открыть ключ. Зависит от того, хватит ли мощности мультиметра преодолеть барьер. Для гарантированной проверки тиристора лучше собрать отдельную схему. Наподобие представленной рисунком. Схеме сформирована следующими элементами:


Почему выбрали питание +5 вольт. Напряжение несложно найти на адаптере телефона (зарядное устройство). Присмотритесь: присутствует надпись наподобие 5V– /420 mA. Выходные значения напряжения, тока (сразу посмотрите, хватит ли удержать тиристор). Каждый знаток в курсе: +5 вольт доступно взять на шине USB. Портом снабжается теперь (в разном формате) практически любой гаджет, компьютер. С питанием проблем избегните. На всякий случай рассмотрим момент подробнее.

Проверка тиристоров на разъеме мультиметра для транзисторов

Многих интересует, возможно ли прозвонить тиристор мультиметром, используя штатное гнездо проверки транзисторов передней панели, обозначенное pnp/npn. Ответ положительный. Нужно просто подать правильно напряжения. Коэффициент усиления, выданный на дисплей, наверняка будет неверным. Поэтому руководствоваться цифрами избегайте. Давайте посмотрим, как примерно делается. Если открывается тиристор положительным потенциалом, подключать нужно на пин B (base) полугнезда npn. Анод втыкается на пин C (коллектор), катод – E (emitter). Едва ли удастся проверить мощный тиристор мультиметром, для микроэлектроники методика сгодится.

Где взять питание тестировщику

Положение электродов мультиметра

Адаптер телефона дает ток 100 — 500 мА. Часто бывает мало (если понадобится проверить тиристор КУ202Н мультиметром, отпирающий ток 100 мА). Где взять больше? Посмотрим шину USB: третья версия выдаст 5 А. Чрезвычайно большой ток для микроэлектроники, бросьте сомневаться в мощностных характеристиках интерфейса. Распиновку посмотрим в сети. Приводим рисунок, указывающий раскладку типичных портов USB. Показаны два типа интерфейсов:

  1. Первый USB тип А характерен компьютерам. Максимально распространенный. Найдете на адаптерах (зарядных устройствах) портативных плееров, iPad. Можно использовать в качестве источников питания схемы тестирования тиристора.
  2. Второй тип В характерен больше как концевой. Подключаются периферийные устройства наподобие принтеров, прочей оргтехники. Найти в качестве исходного источника питания сложно, игнорируя факт недоступности, авторы проверили раскладку.

Если кабель USB разрезать – уверены, многие ринутся курочить старую технику, обрывать хвосты мышкам – внутри провод питания +5 вольт традиционно красный, оранжевый. Информация поможет правильно прозвонить схему, добыть нужное напряжение. Присутствует на выключенном системном блоке (к розетке подсоединено). Вот почему огонек мышки продолжает гореть. На время теста компьютер достаточно будет ввести в режим гибернации. Кстати, напрямую не имеется в Windows 10 (полазить по настройкам, найдете в управлении энергопотреблением).

Раскладка портов USB

Заручившись помощью схемы, проверим тиристор, не выпаивая. Рабочая точка задана относительно земли порта, поэтому внешние устройства будут играть малую роль. Традиционно заземление персонального компьютера завязано на корпус, куда выходит провод входного фильтра гармоник. Схемные +5 вольт, земля развязаны с шиной. Достаточно тестируемую схему отключить от питания. Для проверки тиристора понадобится напаять усики на каждый вывод. Чтобы подвести питание, управляющий сигнал.

Многие, елозят на стуле, не понимая одной вещи: тут рассказываем, как прозвонить тиристор мультиметром, причем здесь светодиод плюс все навороты? Место светодиода можно – даже лучше – включить щупы тестера, регистрировать ток. Удается использовать малое напряжение питания, всегда безопаснее одновременно. Что касается персонального компьютера, дает широкие возможности тестирования любых элементов, включая тиристоры. Блок питания системника дает набор напряжений:

  1. +5 В идет кулерам, многим другим системам. Фактически стандартное напряжение питания. Провода вольтажа красного цвета.
  2. Напряжение +12 вольт используется для питания многих потребителей. Провод желтого цвета (не путать с оранжевым).
  3. — 12 вольт оставлено обеспечить совместимость с RS. Старый добрый COM-порт, через который сегодня программируются адаптеры промышленных систем. Некоторые источники бесперебойного питания. Провод обычно синий.
  4. Оранжевый провод обычно несет напряжение +3,3 В.

Видите, разброс великий, главное – ток. Мощность блоков питания компьютеров колеблется в области 1 кВт. Откроет любой тиристор! Пора пришла заканчивать. Надеемся, теперь читатели знают, как проводится прозвонка тиристора мультиметром. Иногда придется повозиться. Упомянутый выше тиристор КУ202Н снабжен структурой pnpn, незапираемый. После пропадания управляющего напряжения ключ не закрывается. Нужно убрать питание, чтобы погас светодиод. Отпирающее напряжение положительное. Подходит схеме. Единственно, ток удержания составляет 300 мА. Случай, когда не любой телефонный зарядник годится провести опыт.

Тиристоры сейчас применяются во многих бытовых приборах. Схем с их участием существует множество.

Домашние мастера, собирая зарядное устройство или регулятор накала обычной лампочки, должны быть уверены: тиристор т253 или какой-либо другой исправен. Для этого эти полупроводники следует проверить.

Особенности работы

Данный вид полупроводников представляет собой диод, имеющий третий вывод, управляющий электрод, дополнительный. Их часто называют еще и тринистрами. Через этот электрод они управляются путем пропускания электрического тока.

Ток пропускается в одном направлении, а помечают его кольцевой полоской, которую наносят у катода.

Работоспособность любого тиристора проверяют и пропусканием нагрузки. Использовать для этого можно маленькую лампочку от обычного фонарика. Ее нить будет светиться от самого маленького тока.

Если ток проходит через тиристор, то есть он работоспособен, то лампочка загорается, если же нет, то остается темной.

Операция эта проводится следующим образом:

  • переключатель прибора ставят на проверку диодов;
  • проверяют переходы полупроводника катод-управляющий электрод, а также катод-анод. Имейте в виду – сопротивление первого должно находиться в пределах от 50 до 500 Ом;
  • учтите, что в каждом отдельном случае величина в измерениях должна быть одинаковой хотя бы примерно. Следует иметь в виду, что чем она выше, тем чувствительнее полупроводник.

Однако даже положительный результат такой проверки ничего не значит. Если тиристор ранее использовался в какой-то схеме, то переход между анодом и катодом может быть перегоревшим. Величина его в обоих измерениях очень большая, но мультиметром измерить ее невозможно.

Тиристор лучше проверять с помощью источников питания. Например, это можно сделать благодаря цепи тока переменного. Изготавливают несложную испытательную плату с лампочкой-индикатором, проводами и обычной кнопкой включения-выключения.

От трансформатора включают ток в 12 В. Смотрят: если при нажатии кнопки включения лампочка горит в полнакала, то все в порядке. Такой слабый свет легко объясняется тем, что через тиристор проходит полуволна переменного напряжения.

В принципе, проверка годности полупроводников – не такое уж и трудное занятие, для которого профессионалы и не требуется. Впрочем, и специальные приборы, как оказалось, тоже.

Как проверить рабочее состояние тиристора и симистора:

Здравствуйте дорогие читатели. Часто в своих изделиях радиолюбители используют тиристоры и часто возникает необходимость их проверки на работоспособность. Вообще проверке должен подвергаться любой элемент схемы при ее сборке. Ведь из-за одной «паршивой овцы» может пройти мор по всем компонентам и блокам устройства.

Схемы включения тиристора для его проверки приведены на рисунках. Рисунки с первого по четвертый подписаны – здесь надеюсь все понятно. Рис.5 и Рис.6 – проверяем сопротивление перехода управляющий электрод – катод в обоих направлениях. У КУ202 , например, это сотни Ом, а у Т-160 – десятки Ом в обоих направлениях. Если собрать схемку, показанную на Рис.7 и подключить ее к источнику постоянного тока с напряжением, равным рабочему напряжению лампочки (нагрузка), то лампочка гореть не должна. При кратковременном замыкании контактов S5 лампа должна загореться и гореть постоянно, при условии, что ток протекающий через нее больше тока удержания конкретного тиристора. Вот выдержка из справочника для тиристоров Т-160.

Тиристоры Т-160 параметры


Ток удержания тиристора Т-160 – не более 0,25 ампера. Если ток протекающий через нагрузку (лампочку), будет меньше тока удержания, то лампочка будет гаснуть (тиристор будет закрываться) сразу после размыкания контактов S5. Если вместо постоянного напряжения подать переменное – Рис.8, то при замыкании контактов S6, тиристор Т8 должен открыться, а лампочка загореться в половину накала, так как открытый тиристор будет пропускать только одну полуволну переменного тока. При размыкании контактов S6 лампочка должна погаснуть. Если тиристор ведет себя так, как я рассказал, то тиристор исправен. Успехов всем. До свидания. К.В.Ю.

Все своими руками Как проверить тиристор

Опубликовал admin | Дата 8 января, 2013

Как проверить тиристор тестером.

     Здравствуйте дорогие читатели. Часто в своих изделиях радиолюбители используют тиристоры и часто возникает необходимость их проверки на работоспособность. Вообще проверке должен подвергаться любой элемент схемы при ее сборке. Ведь из-за одной «паршивой овцы» может пройти мор по всем компонентам и блокам устройства.

     Схемы включения тиристора для его проверки приведены на рисунках. Рисунки с первого по четвертый подписаны – здесь надеюсь все понятно. Рис.5 и Рис.6 – проверяем сопротивление перехода управляющий электрод – катод в обоих направлениях. У КУ202, например, это сотни Ом, а у Т-160 – десятки Ом в обоих направлениях. Если собрать схемку, показанную на Рис.7 и подключить ее к источнику постоянного тока с напряжением, равным рабочему напряжению лампочки (нагрузка), то лампочка гореть не должна. При кратковременном замыкании контактов S5 лампа должна загореться и гореть постоянно, при условии, что ток протекающий через нее больше тока удержания конкретного тиристора. Вот выдержка из справочника для тиристоров Т-160.

Тиристоры Т-160 параметры


Ток удержания тиристора Т-160 – не более 0,25 ампера. Если ток протекающий через нагрузку (лампочку), будет меньше тока удержания, то лампочка будет гаснуть (тиристор будет закрываться) сразу после размыкания контактов S5. Если вместо постоянного напряжения подать переменное – Рис.8, то при замыкании контактов S6, тиристор Т8 должен открыться, а лампочка загореться в половину накала, так как открытый тиристор будет пропускать только одну полуволну переменного тока. При размыкании контактов S6 лампочка должна погаснуть. Если тиристор ведет себя так, как я рассказал, то тиристор исправен. Успехов всем. До свидания. К.В.Ю.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:48 762


Как проверить тиристор тестером

Тиристоры являются особым видом полупроводников, относящихся к категории диодов. Однако, в отличие от диода, тиристор оборудован третьим выводом, выполняющим функции управляющего электрода. Фактически, это диод, имеющий три вывода. В связи с широким применением этих приборов, очень часто возникает вопрос, как проверить тиристор мультиметром. Для проведения проверки, необходимо знать принцип работы этого устройства.

Принцип работы и параметры тиристора

Действие тиристора очень похоже на работу реле. Тем не менее, между ними существует значительное отличие, поскольку реле относится к электромеханическим изделиям, а тиристор – к чисто электрическим. Поэтому, основным принципом работы тиристора является возможность регулировать большое напряжение с помощью маленького напряжения.

В отличие от реле, здесь отсутствуют клацающие контакты, и при нормальном режиме работы в этом устройстве просто нечему выгорать. Теоретически, такой прибор может работать до бесконечности.

Основной параметр тиристора является отпирающим постоянным напряжением управления. Оно представляет собой минимальное напряжение постоянного значения, которым обладает управляющий электрод. С помощью этого напряжения, тиристор переключается из одного состояния в другое, то есть – закрывается и открывается. Управляющий электрод с минимальным напряжением производит открытие тиристора, после чего, электричество начинает свободно протекать через два других электрода – анод и катод.

Обратное напряжение представляет собой значение, способное выдерживаться тиристором в случае подачи плюса на катод, а минуса – на анод. При работе, должно учитываться и среднее значение тока, проходящее через прибор в прямом направлении без ущерба для его нормального функционирования.

Способы проверки тиристора

После изучения принципа действия и параметров прибора, можно переходить к его проверке.

Одна из таких проверок проводится с помощью лампочки, трех проводков и блока питания, выдающего постоянный ток. В блоке питания необходимо выставить напряжение, соответствующее напряжению, при котором загорается лампочка. К каждому электроду припаивается проводок. После этого, через блок питания подается плюс на анод и минус на катод. Затем, от батарейки на 1,5 В нужно подать напряжение на управляющий электрод. Если лампочка загорелась, значит, устройство работает нормально.

При решении вопроса, как проверить тиристор тестером, используется стандартный мультиметр. Контакты устройства, анод и управляющий электрод подключаются к щупам измерительного прибора. При включении наблюдается падение сопротивления, это означает, что тиристор открылся. После выключения, на шкале мультиметра вновь наблюдается бесконечное значение сопротивления.

Как проверить исправность тиристора

Как проверить тиристор

Как прозвонить провода на конкретном примере

В качестве примера рассмотрим стандартную сеть проводки в квартире или частном доме. В идеале, все электро коммуникации должны быть выполнены в соответствии с нормативами, все потребители разделены (сгруппированы) и каждая цепь запитана в распределительном щите через определенный автомат.

Условие: в одной из комнат перестала работать розетка. Задача: выявить причину неисправности. Решение:

Первый шаг — проверка распределительного щита на предмет срабатывания автоматики. Если все автоматы находятся во включенном положении, то необходимо обесточить исследуемую линию (либо всю квартиру).
Теперь, для исключения банальной версии неисправности самой розетки, ее нужно извлечь из подрозетника, визуально осмотреть на наличие дефектов и плохого контакта. Обычные розетки имеют простую конструкцию. Более дорогие модели, имеющие в качестве зажимов клеммники, лучше дополнительно прозвонить.
Убедившись, что розетка рабочая, необходимо проверить соединение проводов в распределительной коробке. Если в комнате имеется несколько распределительных коробок, то нужная будет находиться над неисправной розеткой или в непосредственной близости.
В распределительной коробке основной кабель разрывается, соединяется с жилами розетки и далее отходит к следующему потребителю (распределительной коробке).
Как видно из примера, в распределительной коробке находиться три скрутки (фаза, ноль, земля). При прозвонке кончик одного щупа должен касаться оголенной скрутки. Вторым щупом поочередно  проверяется контакты розетки. Либо, если удобно, один щуп фиксируется в контакте розетки, а вторым поочередно проверяются скрутки в распределительной коробке.

Рассмотрев основную последовательность действий, отметим важные моменты и особенности при измерениях:

  • На этапе проверки скруток в распределительной коробке, при отсутствии видимых дефектов, дополнительно можно проверить соединения под напряжением. Для этого подайте ток включив автоматы в щите. Если имеются сомнения в цветовой маркировке проводов, то фазу можно определить с помощью индикаторной отвертки (при контакте с фазной жилой в отвертке загорается индикатор или подается звуковой сигнал). Для поиска рабочего и защитного зануления потребуется мультиметр. После того, как фазная жила (L) найдена, на мультиметре выставляется режим ACV (может обозначаться V~ измерение переменного напряжения) на отметке выше 220 В, фазный щуп красного цвета фиксируется на фазной жиле, а черным щупом определяется ноль и земля. При контакте с рабочим занулением (N) прибор будет отображать напряжение в пределах 220 Вольт. При касании щупом защитного зануления (PE) – показания будут ниже 220 Вольт. После проверки квартира (комната)  опять должна быть обесточена.
  • Следующий момент. Не всегда можно быть точно уверенным, что провода от изучаемой розетки отходят в ближайшую распределительную коробку. Бывает, что розетки в обход распределительных коробок запитывают с ближайшими розетками. Также распространена связка, когда две розетки в смежных комнатах монтируют в одной точке общей стены. Все это нужно анализировать и учитывать.
  • Вопрос удобства измерений очень актуален. Ведь, как правило, розетка и распределительная коробка находятся на значительном удалении, а измерительные щупы мультиретра часто имеют длину 30 — 50 см. В этом случае, для удобства, в розетку можно вставить перемычку (соединить два контакта), а прозвонку выполнять непосредственно в распределительной коробке. Более точное измерение можно выполнить, если соединить розетку с исправным удлинителем.

Подключение щупов в мультиметр

Щупы – специальный вид коннекторов, которые помогают измерять характеристики электрических деталей и участков проводной цепи. Они легко соединяют необходимые разъёмы мультитестера с другими выходами.

Обычно являют собой металлический стержень и пластиковой изоляцией, на одном конце которого выход стержня с другого – провод с коннектором для вставки в разъёмы 20А, А, СОМ и VΩ прибора.

Кроме того, иногда в арсенале необходимо иметь дополнительный набор щупов, но вместо стержня используются металлические “крокодилы” – зубчатые зажимы.


“Крокодил” являет собой специальный вид насадок для щупов мультитестера, очень удобный при измерении электрических характеристик средних и больших деталей

Большинство приборов импортируются из Китая, где их изготавливают на заводах, цехах и мини-мастерских. В связи с этим производители экономят на всём, в том числе и материалах для щупов, которые быстро выходят из строя.

Рекомендуется щупы сделать самостоятельно, купив детали на радио-рынке или в радиомагазине. Вместо изоляционного пластика часто используют пустые ампулки и оболочки для шариковых ручек.


Разъёме СОМ является электрическим “минусом”, выполняет функцию заземления на всех режимах и диапазонах. Обычно сюда подключают черный щуп

Подключаем штекер черного щупа в разъём мультиметра с условным обозначением COM. А штекер красного щупа подключаем в разъём с обозначением VΩ, который предназначен для измерения постоянного и переменного напряжения.

Настоятельно не рекомендуем зажимать красный и чёрный щуп на контакт в любом режиме, исключение – круговой переключатель на позиции “►” (прозвон цепи).

Кроме напряжения мультитестером можно измерить величину силы тока и значение сопротивления

Важно помнить, что при измерении величины сопротивления необходимо отключать питание

Что покажет при неисправности розетки

Если сеть отсутствует, на мультиметре будет значение 0 Вольт. Причина – неисправность розетки или отсутствие электричества. Чтобы установить причину, нужно прозвонить другие розетки в помещении. Если не работает только одна, проверяются ее контакты и по необходимости производится замена на новую.

При скачках напряжения значения на мультитестере будут сильно отличаться от номинальных 220 Вольт. По ГОСТу допустимо отклонение в 10%, больший разброс может привести к поломке электроприборов. Если зафиксирован сильный скачок напряжения, стоит установить в квартире дополнительно устройство для стабилизации. Домашняя сеть работает на напряжение в 220 Вольт, однако в розетке оно может отличаться от номинала. Напряжение, находящееся в пределах установленной ГОСТом нормы, является залогом качественной и стабильной работы бытовых приборов

Важно уметь проверять напряжение при помощи мультитестера, чтобы предотвратить риск поломки электроустройств. При значительном отклонении от установленных значений следует позаботиться о стабилизации напряжения в помещении

Проверка обмоток возбуждения

Чтобы проверить исправность обмоток возбуждения автомобильного генератора, предварительного необходимо снять регулятор и щеткодержатель, чтобы получить доступ к контактным кольцам. Для диагностики потребуется омметр, щупы которого следует прикладывать к контактным кольцам генератора. В результате проверки сопротивление должно находиться на уровне в 5-10 Ом. Также необходимо убедиться визуально, что отсутствуют обрывы в обмотке.

Для диагностики замыкания обмотки возбуждения «на массу» потребуется соединить один щуп омметра с любым контактным кольцом, а второй приложить к статору генератора. В результате измерения на экране должно отображаться бесконечное сопротивление.

При диагностике генератора также необходимо осмотреть его на наличие механических повреждений. По результатам всех проверок определяется целесообразность ремонта прибора или его замены новым.

Наглядные видеоуроки

Если бойлер не греет воду или же выбивает УЗО при его включении, проверить ТЭН водонагревателя можно следующим образом:

Проверяем исправность нагревателя в бойлере

Причина, по которой водонагреватель может биться током

Если же вы хотите прозвонить ТЭН стиральной машины, перед этим придется добраться до него. Вся инструкция предоставлена пошагово в этом видео:

Разбираем корпус стиральной машины и прозваниваем ТЭН

https://youtube.com/watch?v=5oV3E7b08Xc

Чтобы проверить утюг мультиметром, достаточно разобрать корпус и дотронуться щупами до выводов, как показано здесь:

Ремонтируем утюг

https://youtube.com/watch?v=KnTYT_qWeXA

Что касается чайника, его прозвонить можно по следующей методике:

Ремонт электрочайника своими руками

https://youtube.com/watch?v=KC7cdowo8P0

Аналогичным образом можно выполнить проверку исправности нагревательного элемента в посудомоечной машине, обогревателе (к примеру, в спирали тепловой пушки) или другом бытовом электроприборе. Надеемся, наши инструкции вам помогли и теперь понятно, как проверить ТЭН мультиметром в домашних условиях!

Подключение щупов в мультитестер

Щупы представляют собой коннекторы для измерения параметров электрических компонентов и участков электроцепи. Устройства помогают объединить разъемы мультиметра с другими выходами. Щупы выглядят как металлический стержень, изолированный пластиком. На одном из концов щупа имеется провод с коннектором для соединения с разъемами (20A, A, VΩ, COM).

Большая часть измерительного оборудования поставляется из Китая. Некоторые изделия вполне качественные, однако встречается и низкокачественная продукция. Как правило, производители дешевых изделий экономят на материалах для щупов, в результате чего те быстро становятся непригодными для использования.

Щупы при желании можно изготовить своими руками. Нужные детали несложно найти на местном радиорынке или в магазине радиотоваров. В качестве изоляции можно применить подручные материалы, например, пустые пластиковые ампулы или оболочки от шариковых ручек.

Измерение мультиметром

Перед тем как мультиметром проверить напряжение в сети 220В, желательно понять устройство и маркировку прибора. Лучше использовать цифровой механизм. Он корректно отображает информацию, лоялен к неправильному подсоединению щупов. Дополнительно цифровые измерительные приборы неприхотливы к эксплуатации.

Главные составляющие мультиметра:

  • ЖК экран для отображения показателей.
  • Колесо, используемое для установки режимов (параметров) работы прибора.
  • Щупы (2 шт.) — красный и черный. Непосредственно с их помощью проводят измерения.
  • V= — определение напряжения постоянного тока;
  • V

— напряжение переменного тока;

Ω — позволяет узнавать сопротивление;
A= — определение постоянного тока;
-hFE — проверка работоспособности транзистора;
o))) — быстрая прозвонка электрической цепи;
OFF/ON — выключение/включение.

Для каждого из параметров предусмотрены номинальные диапазоны измерений. Они указаны на панели мультиметра.

» токов могут заменяться аббревиатурами DC или AC. К примеру, чтобы выставить колесо регулировки на параметр измерения напряжения переменного тока, нужно повернуть его к аббревиатуре ACV или VАС.

Подготовительный этап

Дополнительно, перед тем как померить напряжение мультиметром в розетке, стоит выяснить назначение всех его разъемов на корпусе.

  • 10ADC. Предназначен только для определения параметров силы постоянного тока. Максимальный разрешенный показатель – до 10 А. В этот разъем всегда вставляют только красный щуп.
  • COM. Разъем является общим. К нему всегда подсоединяют для замеров только черный щуп.
  • VΩmA. Разъем, который предназначен для выполнения всех основных измерений, таких как сила тока (до 10 А), напряжение или сопротивление.

Чаще используют разъем VΩmA.

Подключение мультиметра и проведение измерений

Для выполнения работ нужно правильно подключить щупы. Красный вставляют в разъем VΩmA, а черный — в СОМ. Далее нужно перевести колесо управления на нужный режим работы прибора. Для определения напряжения его выставляют на аббревиатуру ACV или V

. При этом положение колеса нужно задать так, чтобы оно находилось на отметке выше предполагаемого напряжения сети. Для бытовой точки питания характерен показатель 220 В. Значит нужно задать ближайшее большее по величине значение. Для большинства мультиметров это будет 750 В.

Пошаговая инструкция проверки позистора мультиметром

Для процесса тестирования, помимо измерительного прибора, потребуется паяльник. Подготовив все необходимое, начинаем действовать в следующем порядке:

  1. Подключаем тестируемую деталь к мультиметру. Желательно, чтобы прибор был оснащен «крокодилами», в противном случае припаиваем к выводам элемента проволоку и накручиваем ее на разные иглы щупов.
  2. Включаем режим измерения наименьшего сопротивления (200 Ом). Прибор покажет номинальную величину R, характерную для тестируемой модели (как правило, менее одного-двух десятков Ом). Если показание отличается от спецификации (с учетом погрешности), можно констатировать неисправность радиокомпонента.
  3. Аккуратно нагреваем корпус тестируемой детали при помощи паяльника, величина R начнет резко увеличиваться. Если она осталась неизменной, элемент необходимо менять.
  4. Отключаем мультиметр от тестируемой детали, даем ей остыть, после чего повторяем действия, описанные в пунктах 1 и 2. Если сопротивление вернулось к номинальному значению, то радиокомпонент с большой долей вероятности можно признать исправным.

Как измерить напряжение в розетке

При проведении электромонтажных работ после отключения рубильника в щитке необходимо проверить факт напряжения в сети. Это можно сделать индикаторной отверткой или мультиметром. Плюс мультиметра еще и в том, что он позволит определить не только наличие или отсутствие напряжения, но и установить его величину. Что расширяет возможности его использования (например, если нужно зафиксировать напряжение в дневное и ночное время для сохранности электробытовой аппаратуры)

Как проверить напряжение в розетке мультиметром:

Включить прибор Прокрутить регулятор в положение ACV (тут важно не ошибиться, так как если установить на DCV и попытаться определить напряжение, то тестер выйдет из строя). И выбрать примерную вилку напряжения, если есть сомнения, то смело выбирайте максимальную цифровую границу — 750 В (зависит от модели, предельное значение возможно будет отличаться)

Известно, что в домашней сети напряжение в 220 В. Устанавливать на мультиметре значение меньше этого показателя нельзя, так как это грозит поломкой прибора. Еще раз убедиться, что на ЖК-дисплее высветились три нуля, переключатель установлен на 750 В (или выше) в секторе ACV. Проверить правильность подключения проводов к измерителю.
Теперь можно щупы вставить в отверстия розетки. После завершения работы щупы по необходимости вынимаются, а прибор отключается. На экране высветятся показания в диапазоне 207-253 В, это считается нормой (она прописана в ГОСТ 29322-92). Как уже написано выше, зона DCV предназначена для замера постоянного напряжения. Практическое применение это находит, если требуется проверить заряд аккумулятора, блока питания либо, к примеру, батарейки, чтобы выяснить, можно ли ее выбрасывать или она послужит еще свое, например в детской игрушке. Замер происходит достаточно просто. Красный щуп прикладывается к плюсовому контакту, а черный, соответственно, к минусовому. Перепутать тут нестрашно, если соедините наоборот, то на экране будет показано значение со знаком минус. Так как напряжение в батарейках невелико, если стержни прижать пальцами, для человека это не будет опасно.

Как видите, измерить напряжение мультиметром совсем несложно.

Как проверить мультиметром напряжение в розетке 220в

Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом — не касаться руками токопроводящих частей щупов.

Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «V Ω mA».

Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.

Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.

Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.

Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.

Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.

В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в V Ω mA.

Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.

Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА , а не какой-нибудь другой.

Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.

Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.

В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.

Проверка биполярного транзистора мультиметром

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).

Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

  1. Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
  2. Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

  1. Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

  1. Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
  2. Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.

Отклонения от этих значений говорят о неисправности компонента.

Цифровой тестер – подробное описание

Перед тем как измерить силу тока в каком-либо приборе или определить уровень напряжения в розетке, следует запомнить некоторые сокращенные термины, которые располагаются на передних панелях многих моделей мультиметров:

  • OFF – это положение вращающегося переключателя говорит о том, что тестер выключен;
  • DCV – участок перемещения триггера, позволяющий измерять постоянную разность потенциалов диапазоном от 200 милливольт до 1 киловольта;
  • DCA – этот сектор позволяет измерять постоянный ток;
  • ACV – эти положения переключателя позволяют замерять переменное напряжение, максимальная величина которого равна 750 Вольт;
  • hFe – функция проверки работоспособности транзисторов;
  • >l – этот сектор переключателя позволяет выполнить такую функцию, как прозвонить провода.
  • Ω – обозначает режим измерения сопротивления, обычно от 200 Ом до 2 мегаОм.

Комплектуются эти тестеры двумя щупами двух цветов – как правило, черного и красного. Для их подключения на передней панели должны быть три разъема. Красный щуп подсоединяется к одному из фазных разъемов, черный – к нулевому. Нулевой разъем имеет маркировку «СОМ». Красный щуп подсоединяется к одному из двух разъемов – для замера тока величиной до 10 ампер, либо для всех остальных измерений, обозначенному как «VΩmA». Этими же щупами производится измерение напряжения 220 вольт, также можно померять ток в розетке и любое сопротивление.

Перед тем как измерить напряжение в розетке, обязательно нужно проверить целостность изоляции щупов, чтобы не быть пораженным электрическим током. Это – основное правило безопасности, касающееся работы с тестером.

Стандартные показатели домовой электросети

Перед тем, как проверить напряжение в розетке мультиметром или с помощью того же прибора выяснить силу тока в удлинителе, важно знать – на какие параметры ориентироваться для сравнения. Основные показатели домашней электросети представлены в ГОСТ 32144-2013

При этом помимо непонятных для обычного пользователя данных (отклонение от частоты, несинусоидальность колебаний, отсутствие симметрии напряжений в трехфазной сети), в нем указываются и более понятные вещи:

Основные показатели домашней электросети представлены в ГОСТ 32144-2013. При этом помимо непонятных для обычного пользователя данных (отклонение от частоты, несинусоидальность колебаний, отсутствие симметрии напряжений в трехфазной сети), в нем указываются и более понятные вещи:

  • питание от переменного тока с частотой колебаний 50 Г;
  • стандартное напряжение и его допустимые отклонения – для жилых и общественных помещений не производственного назначения приняты 220 В с допустимым отклонением до 10%, для более мощных потребителей – трехфазная сеть с напряжением 380 В;
  • допустимый номинальный ток в потребителе – 6, 10, 16, 25, 32 А. Розетки и выключатели, рассчитанные на силу тока 6…16 А предназначены для бытовых целей, 25 А – для приборов с повышенным потреблением энергии, 32 А – для трехфазных цепей промышленного значения.

При этом простейшими способами – включением в розетку прибора, включением тумблера – можно установить только наличие тока в сети, но не величину его силы и напряжения. Так же срабатывают так называемые «пробники» – отвертки со световой или звуковой индикацией, срабатывающей при контакте с активной проводкой.

Для более подробного и грамотного исследования состояния электросети используются специальные многофункциональные приборы – мультиметры.

Измерение линейного и фазного напряжения

В большинстве частных домов при подключении к электросети напряжением 220 В на счетчик либо электрощиток приходит только 2 или 3 провода.

В первом случае двумя проводами являются:

Во втором случае (с тремя проводами) имеются:

  • фаза;
  • ноль;
  • заземление.

Наличие сразу 4 или 5 проводов говорит о том, что имеется подключение к сети 380 В. Чаще всего такое напряжение подключается к:

  • офисным зданиям;
  • производственным объектам;
  • гаражным кооперативам;
  • предприятиям торговли;
  • реже — к частным домам.

Напряжение между любыми двумя из трех фаз электропитающей линии получило название линейного, а между любой из фаз и нулем называется фазным напряжением. Для нашей страны принят стандарт линейного напряжения 380 В, а фазного — 220 В.

Для проверки фазного или линейного напряжения электротока в сети можно использовать те же приборы, с помощью которых измеряется и переменное напряжение:

  • вольтметр, не использующийся в повседневной жизни;
  • мультиметр, применяющийся в жизни достаточно часто;
  • тестер — аналог мультиметра, только механической конструкции;
  • индикаторная отвертка, без которой не обойтись любому уважающему себя владельцу частного дома.

Определение наличия и величины напряжения в сети выполняется точно по той же схеме, как и для переменного тока.

Наиболее распространенной причиной поломок и выхода из строя электроприборов является заводской брак. Эксплуатация в неправильных условиях, в том числе и нестабильное напряжение в сети — чуть менее распространенная причина. Если при перепадах напряжения компрессор холодильника просто сгорит — еще не большая беда. Гораздо хуже, если это приведет к возникновению пожара. Для защиты от таких ситуаций и было разработано специальное устройство — реле напряжения.

Реле контроля напряжения позволяет максимально обезопасить условия работы домашних электроприборов

Основным предназначением реле является автоматическое подключение электроприборов к сети питания и автоматическое отключение в случае превышающих норму колебаний либо падения напряжения ниже определенного уровня. Современные реле напряжения состоят из электромагнитного выключателя и микропроцессорной платы. Также иногда еще можно встретить устройства более старого образца, работа которых основана на диодах, транзисторах и резисторах.

Лицевая часть корпуса обычно оснащена рычагами регулирования либо клавишами управления. В некоторых моделях дополнительно установлен и дисплей, отображающий величину напряжения в режиме реального времени. Перед вводом прибора в эксплуатацию следует произвести настройку лимитируемых значений срабатывания (как правило, от 100 до 400 В). Принцип действия устройства достаточно прост.

В режиме реального времени процессором определяется величина напряжения. Реле никак себя не проявляет, пока напряжение в сети стабильно или не выходит за определенные допуски. При превышении значением напряжения минимальной либо максимальной границы реле размыкает цепь, обесточивая всех потребителей электроэнергии. Реле срабатывает за доли секунды, что на 100% гарантирует надежность устройства и защиту от скачков напряжения.

Если даже за продолжительный период проживания в доме или квартире случаев перегорания бытовых приборов не наблюдалось, это вовсе не означает, что контролировать стабильность напряжения не нужно. В большинстве случаев напряжение постоянно отклоняется от нормы на минимальную величину, что также негативно влияет на работу и срок службы приборов.

Подключение домашних приборов к электросети через реле осуществляется в следующих целях:

  • обеспечение защиты одно- и трехфазных сетей;
  • предохранение дорогостоящей бытовой техники от поломок;
  • исключение вероятности перекоса или обрыва фаз;
  • безопасное функционирование установок, оснащенных электродвигателями;
  • защита сети от перенапряжения в общественных зданиях, цехах промышленных предприятий, квартирах и домах.

Расчет силы тока по мощности и напряжению

С помощью мультиметра или вольтметра или омметр, вы получите мгновенное чтение состояния вашей розетки. Кроме того, гораздо безопаснее проверить розетку с помощью мультиметра, так как даже одно подключение устройства к сломанной розетке может привести к повреждению. К счастью, тестирование розетки 220v с помощью мультиметра является относительно простым делом.

Что такое мультиметры

Самое главное, что мультиметр измеряет напряжение. Вся другая информация на многометровые дисплеи выводится из этого измерения. Например, мультиметры могут измерить сопротивление, непрерывность, частоту, логическую схему, силу тока и емкости, все от этого одного основного измерения напряжения.

Для того, чтобы получить измерение напряжения, мультиметр использует резистор, который подключен по проводам между считыванием счетчика и электрической цепью, которая проходит испытания. Мультиметр использует эту схему, чтобы исследовать электрическое поле, а затем производит считывание его свойств.

Материалы

Следующие элементы необходимы для проверки розетки:

  1. Цифровой или аналоговый мультиметр
  2.     Розетка 220v

Инструкции

С помощью мультиметра, можно быстро проверить вашу розетку и избавить себя от головной боли хотя бы по этому вопросу. С рабочим цифровым или аналоговым мультиметром любой может проверить розетку в считанные секунды.

    1. Найдите автоматический выключатель для вашей розетки 220v на главной панели рубильника, который обычно можно найти в гараже или подсобном помещении, а если вы живете в городской квартире, то это находится в коридоре. Автоматический выключатель 220 вольт будет двухполюсным выключателем, и будет больше, чем другие на панели.     2. Включите мультиметр. Найдите ручку, поверните на сторону переменного тока, и выберите напряжение, которое ближе всего к тому, что в розетке должно быть (220v в данном случае).     3. Найдите два тестера-провода и подключите их к мультиметру, сопоставив красный (положительный) в красный вход и черный (отрицательный) в черный. Эти цвета кодировок, как правило, являются универсальными и служат, чтобы легко определить правильные соединения для всех устройств.     4. После того, как у вас есть подключенные щупы, вставьте их в два входных гнезда розетки. Горячие слоты могут быть идентифицированы, они — два внешних вертикальных входа. После того, как тестовые провода вставлены, вы должны получить немедленное чтение. Напряжение должно быть в пределах от 220 до 240 вольт.     5. Далее, вы должны проверить нейтральный слот. Нейтральный слот L-образную форму для обоих трех- и четырех направлений горячих точек. Вставьте красный щуп в один горячий слот, а затем черный щуп в нейтральное гнездо. Вы должны получить немедленное чтение между 110 и 120 вольт. Далее следует переместить красный провод к другому горячему слоту, при этом вы должны получить еще немедленное чтение 110-120 вольт.     6. Следует удалить ваши тестовые провода и выключить мультиметр, а затем подключить шнур прибора к розетке для нормальной работы.

Дополнительные советы

Имейте в виду следующее, как вы проверяете выходы розетки:

    1. Убедитесь, что вы следуете всем инструкциям по технике безопасности при работе с электрическими приборами.     2. Всегда проверяйте розетки перед подключением нового прибора, чтобы избежать повреждения этого прибора или розетки.     3. Прочитайте инструкцию к мультиметру и вашему прибору перед использованием любого из них.

Как купить мультиметр

Список источников

  • www.asutpp.ru
  • poweredhouse.ru
  • samelectrik.ru
  • master-kleit.ru
  • stroy-okey.ru
  • sovet-ingenera.com
  • pauk.top
  • machosrules.ru
  • shtyknozh.ru
  • okeydrive.ru
  • guru220v.ru
  • electrobox.su

Выбор, замена и обнаружение тиристора

Введение

Тиристор — это устройство с четырьмя полупроводниковыми слоями или тремя PN переходами. Твердотельное полупроводниковое устройство с четырьмя слоями чередующихся материалов P- и N-типа. Он также известен как «SCR» (кремниевый управляющий выпрямитель). Термин «тиристор» происходит от слов тиратрон (газожидкостная трубка, работающая как SCR ) и транзистор.И он действует исключительно как бистабильный переключатель в электронной схеме.

Что такое тиристор?

Каталог


Ⅰ Типы тиристоров

Обычно используемые тиристоры включают однонаправленные тиристоры, тиристоры, отключающие тиристоры и т. Д., Которые следует выбирать в разумных пределах в соответствии с потребностями схемы.

Тиристор однонаправленный

Однонаправленный тиристор отличается тем, что ток может течь только от анода A к катоду k, и в основном используется для управления источником постоянного тока или пульсирующим постоянным током, выпрямлением переменного тока и инвертором постоянного тока.

Тиристоры однонаправленные можно разделить на тиристоры обыкновенные и тиристоры высокочастотные (рабочая частота выше 110 кГц). Обычно используются однонаправленные тиристоры серии 3CT, серии 3DT, серии KP и серии KK (высокочастотные тиристоры), а также импортные серии MCR, серии SF, серии BST и т. Д.

TRIAC

TRIAC разработан на основе однонаправленного тиристора и представляет собой устройство регулирования мощности переменного тока. TRIAC может не только заменить два однонаправленных тиристора в антипараллельном, но и требует только одну схему триггера, что более удобно в использовании.

Особенностью TRIAC является то, что через него может проходить переменный ток, который в основном используется для управления источником питания переменного тока и регулировки напряжения переменного тока. Обычно используемые TRIAC включают серии 3CTS и KS, а также импортированные серии MAC, серии SM, серии BCR и т. Д.

Тиристор выключения затвора

Затвор запирающий тиристор отличается тем, что он может отключаться управляющим электродом. Он в основном используется в бесконтактных переключателях выключения ворот, инверторах постоянного тока, диммерах, регуляторах скорости и других случаях.

Запирающие тиристоры

— это силовые управляющие устройства, разработанные на основе обычных тиристоров. После срабатывания обычного тиристора на включение его управляющий электрод не работает. Чтобы выключить тиристор, необходимо отключить питание или прямой ток, протекающий через тиристор, должен быть меньше, чем ток удержания. Запирающий тиристор затвора преодолевает указанные выше недостатки. Когда к управляющему электроду G добавляется положительное импульсное напряжение, тиристор включается, а когда к управляющему электроду G добавляется отрицательное импульсное напряжение, тиристор выключается.

Отключающие тиристоры

— идеальные высоковольтные и сильноточные коммутационные устройства. Например, запорные тиристоры высокой мощности серии DG могут достигать максимального напряжения 4500 В и максимального тока 3000 А.

T Выбор гиристора

2.1 Особые требования применяемой схемы

Существует много типов тиристоров, которые следует разумно выбирать в соответствии с конкретными требованиями прикладной схемы.

Для управления напряжением постоянного и переменного тока, управляемого выпрямления, регулирования напряжения переменного тока, инвертора мощности, схемы защиты импульсного источника питания и т. Д. Можно выбрать обычные тиристоры.

Для выключателя переменного тока, регулирования напряжения переменного тока, линейного регулирования скорости двигателя переменного тока, линейного затемнения лампы, твердотельного реле, твердотельного контактора и т. Д. Следует выбрать симистор.

Для частотно-регулируемого регулирования скорости двигателя переменного тока, прерывателя, инвертора мощности и различных схем электронного переключателя вы можете выбрать тиристор выключения затвора.

Для генератора пилообразных волн, длительной задержки, защиты от перенапряжения и схемы запуска с силовым транзистором и т. Д. Можно выбрать тиристор BTG.

В электромагнитных плитах, электронных балластах, ультразвуковых схемах, сверхпроводящих магнитных накопителях энергии, импульсных источниках питания и других схемах можно выбрать тиристоры с обратной проводимостью.

В оптроне, световом датчике, световой сигнализации, световом счетчике, фотоэлектрической логической схеме и схеме контроля работы автоматической производственной линии можно выбрать тиристор управления светом.

2.2 M ain P Параметры гиристора T

Основные параметры тиристора должны определяться в соответствии с конкретными требованиями прикладной схемы.

Выбранный тиристор должен иметь определенный запас мощности, а его номинальное пиковое напряжение и номинальный ток (средний ток в рабочем состоянии) должны быть выше максимального рабочего напряжения и максимального рабочего тока управляемой цепи на 1.5 — 2 раза.

Параметры прямого падения напряжения тиристора, тока запуска затвора и напряжения запуска должны соответствовать требованиям прикладной схемы (это относится к схеме управления затвором) и не должны быть высокими или низкими, иначе это повлияет на нормальная работа тиристора.

Ⅲ Замена тиристора

Если тиристор поврежден и не заменяется ни один тиристор того же типа, можно использовать другой тип тиристора с аналогичными рабочими параметрами.

При разработке схемы приложения обычно оставляют большой запас. При замене тиристора просто обратите внимание на его номинальное пиковое напряжение (повторяющееся пиковое напряжение), номинальный ток (средний ток в рабочем состоянии), напряжение срабатывания затвора и ток срабатывания затвора, особенно на два индикатора номинального пикового напряжения и номинального тока.

Скорость переключения тиристора, используемого для замены, должна соответствовать скорости переключения поврежденного тиристора. Например: после выхода из строя высокоскоростного тиристора, используемого в импульсной цепи, и высокоскоростного инвертора, вместо обычного тиристора можно использовать только такой же тип быстрого тиристора.

При выборе тиристора, который будет использоваться для замены, нет необходимости оставлять слишком большой запас для любого параметра, и его параметр должен быть как можно ближе к параметру заменяемого тиристора, поскольку чрезмерно большой запас не является допустимым. только бесполезная трата, но также иногда имеет побочные эффекты, такие как отсутствие срабатывания или нечувствительность срабатывания.

При этом внешний вид двух тиристоров должен быть одинаковым, иначе это вызовет неудобства при установке.

Ⅳ Обнаружение тиристора

Тиристоры обычно обозначаются буквами «SCR» на принципиальных схемах. Например, SCR2 относится к тиристору с номером 2. Обозначение тиристора на принципиальной схеме показано на рисунке 1.

Рисунок 1. Обозначения тиристора

4.1 Обнаружение U ненаправленных T гиристоров

(1) Дискриминация каждого электрода: Согласно структуре обычного тиристора видно, что между затвором G и катодом K имеется PN-переход, который имеет однонаправленные проводящие характеристики, в то время как между анодом A и затвором последовательно соединены два PN-перехода противоположных полярностей.Следовательно, измеряя сопротивление между выводами обычного тиристора с уровнем R × 100 или R × 1 k Q мультиметра, можно определить три электрода.

Конкретный метод: используйте черный щуп мультиметра для подключения одного электрода тиристора и используйте красный щуп для касания двух других электродов по очереди. Если результат измерения имеет значение сопротивления в несколько тысяч Ом (кОм) и другое значение сопротивления в несколько сотен Ом (Ом), можно определить, что черный зонд подключен к затвору G.При измерении со значением сопротивления в несколько сотен Ом красный зонд был подключен к катоду K, а при измерении со значением сопротивления в несколько тысяч Ом красный зонд был подключен к аноду A. Если измеренные значения сопротивления оба очень большие, это означает, что черный зонд не подключен к затвору G. Примените тот же метод для проверки других электродов, пока не будут найдены три электрода.

Вы также можете измерить прямое и обратное сопротивление между любыми двумя контактами.Если прямое и обратное сопротивление близки к бесконечности, два электрода — это анод A и катод K, а другой штифт — затвор G.

Каждый электрод обычных тиристоров можно также оценить по форме упаковки.

Например, конец с болтом обычного тиристора с болтом — это анод A, конец с более тонким выводом — это затвор G, а конец с более толстым выводом — катод K.

Выводной конец плоского тиристора — затвор G, плоский конец — анод A, а другой конец — катод K.

Тиристор в металлическом корпусе (Т0-3) представляет собой тиристор обыкновенный, его корпус — анод А.

Средний вывод пластикового тиристора (T0-220) — это анод A, и он в основном соединен с собственным радиатором.

Рис. 2. Расположение контактов нескольких общих тиристоров

(2) Оценка хорошего или плохого состояния: Используйте уровень R × 1 кОм мультиметра для измерения значений прямого и обратного сопротивления между анодом A и катодом K обычного тиристора, которое обычно должно быть бесконечным (∞); Если значения прямого и обратного сопротивления равны нулю или оба значения сопротивления малы, это указывает на то, что пробой, короткое замыкание или утечка происходит внутри тиристора.

Измерьте значения прямого и обратного сопротивления между затвором G и катодом K. Обычно должны быть значения прямого и обратного сопротивления, аналогичные диодным (фактические результаты измерений меньше, чем у обычных диодов), то есть значение прямого сопротивления составляет малое (менее 2 кОм) и большое значение обратного сопротивления (более 80 кОм). Если значения сопротивления в обоих измерениях большие или маленькие, это означает, что тиристор разомкнут или замкнут накоротко между электродом G и K.Если значения прямого и обратного сопротивления равны или близки, это указывает на то, что тиристор вышел из строя, и PN-переход между его электродами G и K потерял эффект однонаправленной проводимости.

Измерьте значение прямого и обратного сопротивления между анодом A и затвором G. В нормальных условиях оба сопротивления должны составлять несколько сотен кОм (кОм) или быть бесконечными. Если значения прямого и обратного сопротивления не совпадают (однонаправленная проводимость, как у диода).Один из двух PN-переходов, последовательно включенных между затвором G и электродом A, был закорочен.

(3) Обнаружение возможности срабатывания: Для обычных тиристоров с малой мощностью (рабочий ток ниже 5 А) ее можно измерить с помощью уровня R × 1 мультиметра. Во время измерения черный датчик подключается к аноду A, а красный датчик подключается к катоду K. В это время стрелка часов не двигается, а значение сопротивления отображается как бесконечное (∞). Используйте пинцет или проволоку, чтобы закоротить анод A и затвор G тиристора (см. Рисунок 3), что эквивалентно приложению прямого триггерного напряжения к затвору G.В это время, если значение сопротивления составляет от нескольких Ом до десятков Ом (значение удельного сопротивления будет варьироваться в зависимости от номера детали тиристора), это указывает на то, что тиристор проводит ток из-за прямого триггера. Затем отсоедините электрод A и затвор G (щупы на электродах A и K не двигаются, отключается только триггерное напряжение затвора G). Если значение, указанное стрелкой часов, все еще находится в диапазоне от нескольких Ом до десятков Ом, это означает, что срабатывание тиристора хорошее.

Рисунок 3. Обнаружение возможности срабатывания

Для обычных тиристоров средней и большой мощности с рабочим током выше 5 А падение напряжения в открытом состоянии VT, ток удержания I H и напряжение запуска затвора Vo относительно велики. Ток, обеспечиваемый уровнем R × 1 кОм мультиметра, низкий, и тиристор не может быть полностью включен, поэтому на конце черного щупа можно последовательно подключить регулируемый резистор 200 Ом и от одной до трех сухих батарей 1,5 В (в зависимости от мощности испытуемого тиристора, если его рабочий ток больше 100 А, три 1.Применяются сухие батареи 5 В), как показано на рисунке 4.

Рисунок 4. Обнаружение напряжения срабатывания

Вы также можете использовать испытательную схему на рисунке 5 для проверки пусковой способности обычного тиристора. В схеме vT — испытуемый тиристор, HL — индикатор 6,3 В (маленькие электрические шарики в фонарике), GB — источник питания 6 В (можно использовать четыре сухие батареи на 1,5 В или регулируемый источник питания 6 В), S — кнопка, R — токоограничивающий резистор.

Рис. 5. Испытательная схема для проверки возможности срабатывания

Когда кнопка S не подключена, тиристор VT находится в состоянии блокировки, а световой индикатор HL не горит (если в это время горит HL, может произойти поломка vT или повреждение из-за утечки). После однократного нажатия кнопки S (включите S на мгновение, чтобы обеспечить пусковое напряжение для затвора G тиристора VT), если индикатор HL всегда горит, это означает, что тиристор имеет хорошую пусковую способность.Если яркость индикатора низкая, это говорит о том, что тиристор имеет низкую производительность и большое падение напряжения проводимости (падение напряжения проводимости должно быть около 1 В при нормальных условиях). Если кнопка S включена, индикатор горит, а когда кнопка S выключена, индикатор не горит, что указывает на повреждение тиристора и плохое срабатывание срабатывания.

4.2 Обнаружение TRIAC

(1) Дискриминация каждого электрода: Используйте уровень R × 1 или R × 10 мультиметра для измерения значений прямого и обратного сопротивления между тремя контактами TRIAC.Если измерено, что один вывод не соединен с двумя другими выводами, то этот вывод является основным электродом T2.

После нахождения электрода T2 оставшиеся два контакта являются основным электродом T1 и затвором G3. Измерение значений прямого и обратного сопротивления между этими двумя контактами даст два меньших значения сопротивления. При измерении с малым значением сопротивления (порядка десятков Ом) черный зонд подключается к основному электроду T1, а красный зонд подключается к затвору G.

Один конец болта TRIAC в форме болта является основным электродом T2, более тонкий конец вывода — затвором G, а конец более толстого вывода — основным электродом T1.

Оболочка металлического (ТО-3) ТРИАК является основным электродом Т2.

Средний вывод заключенного в пластик (TO-220) TRIAC — это главный электрод T2, который обычно подключается к собственному небольшому радиатору.

Рис. 6. Расположение контактов на нескольких TRIAC

(2) Оценка того, хорошо это или плохо: используйте уровень R × 1 или R × 10 мультиметра для измерения значений прямого и обратного сопротивления между основным электродом T1 и основным электродом T2 и между основным электродом T2 и ворота G ТРИАКА.Обычно оно должно быть близко к бесконечности. Если все измеренные значения сопротивления очень малы, это означает, что электроды TRIAC вышли из строя или закорочены.

Измерьте прямое и обратное сопротивление главного электрода T1 и затвора G. Обычно оно должно находиться в диапазоне от десятков Ом (Ом) до ста Ом (Ом) (когда черный датчик подключен к электроду T1, а красный датчик подключен к электроду T1). подключенного к вентилю G, измеренное значение прямого сопротивления немного меньше, чем значение обратного сопротивления).Если значения прямого и обратного сопротивления между электродом T1 и затвором G измерены как бесконечные, это указывает на то, что тиристор был поврежден из-за разомкнутой цепи.

(3) Обнаружение возможности запуска: Для маломощных триакомеров с рабочим током ниже 8А его можно измерить напрямую с помощью уровня R × 1 мультиметра. При измерении сначала подключите черный зонд к основному электроду T2, а красный зонд к основному электроду T1, затем с помощью пинцета замкните накоротко электрод T2 и затвор G и добавьте триггерный сигнал положительной полярности к затвору G.Если значение сопротивления, измеренное в это время, изменяется от бесконечности до более чем десяти Ом (Ом), это означает, что тиристор сработал на проводимость, а направление проводимости — T2 → T1.

Затем подключите черный зонд к основному электроду T1, а красный зонд к основному электроду T2. Используйте пинцет, чтобы замкнуть электрод T2 и затвор G, и добавьте триггерный сигнал отрицательной полярности к затвору G. Если значение сопротивления, измеренное в это время, изменяется от бесконечности до более чем десяти Ом (Ом), это означает, что тиристор был инициирован для проведения, а направление проводимости — T1 → T2.

Если затвор G отключен после срабатывания тиристора для включения, состояние проводимости с низким сопротивлением не может поддерживаться между электродами T2 и T1, и значение сопротивления становится бесконечным, это указывает на то, что TRIAC имеет низкую производительность или поврежден. Если сигнал триггера положительной (или отрицательной) полярности добавляется к вентилю G, тиристор все еще не проводит (значения прямого и обратного сопротивления между T1 и T2 все еще бесконечны), то тиристор поврежден и не имеет целостности триггера.

Для TRIAC средней и высокой мощности с рабочим током 8 А или более при измерении их пусковой способности можно последовательно подключить от одной до трех сухих батарей 1,5 В к щупу мультиметра, а затем выполнить измерения с использованием уровня R × 1. как описано выше.

Для симистора с выдерживаемым напряжением 400 В или более его пусковая способность и характеристики также могут быть проверены с использованием напряжения 220 В переменного тока.

На рис. 7 представлена ​​тестовая схема симистора TRIAC. В схеме FL представляет собой лампу накаливания 60 Вт / 220 В, VT — это проверяемый симистор, R — резистор ограничения тока 100 Ом, а S — кнопка.

Рисунок 7. Цепь симистора

После того, как вилка питания подключена к рабочей частоте переменного тока, TRIAC находится в выключенном состоянии и лампочка не горит. (Если в это время лампочка горит нормально, это означает, что электроды T1 и T2 тестируемого тиристора вышли из строя и закорочены; если лампочка слегка горит, это означает, что тестируемый тиристор поврежден утечка). Нажмите кнопку S один раз, чтобы подать сигнал триггерного напряжения для затвора G тиристора.В нормальных условиях тиристор должен сразу сработать для включения, а лампочка будет нормально светиться. Если лампочка не излучает свет, внутренняя цепь проверяемого тиристора выходит из строя. Если лампочка включается при нажатии кнопки S, а лампочка выключается при отпускании кнопки, это указывает на плохие характеристики срабатывания испытуемого тиристора.

При использовании мультиметра для обнаружения маломощных светоуправляемых тиристоров установите мультиметр на уровень R × 1, подключите один к трем 1.Подключите сухие батареи 5 В к черному щупу и измерьте значения прямого и обратного сопротивления между двумя контактами. Обычно он должен быть бесконечным. Затем используйте небольшой фонарик или лазерную ручку, чтобы осветить светоприемное окно тиристора с управляемым светом. В это время можно измерить небольшое значение прямого сопротивления, но значение обратного сопротивления все еще бесконечно. При измерении с малым значением сопротивления черный зонд подключается к аноду A, а красный зонд подключается к катоду K.

Для измерения светоуправляемых тиристоров также можно использовать следующий метод. Включите выключатель питания S и осветите светоприемное окно тиристора VT фонариком. После добавления триггерного источника света (мощный светоуправляемый тиристор имеет собственный источник света, если к светоизлучающему диоду или полупроводниковому лазеру в его оптическом кабеле добавлено рабочее напряжение, внешний источник света не требуется), индикатор EL должен гореть. После того, как источник света откачан, индикатор EL должен продолжать гореть.Есть только одно соединение PN. Следовательно, вам просто нужно измерить электроды A и G мультиметром.

Установите мультиметр на уровень R × 1 кОм, и два щупа можно подключить к одному из двух выводов тестируемого тиристора (измерьте их значения прямого и обратного сопротивления). Если пара контактов измеряется с низким значением сопротивления, черный датчик подключается к аноду A, тогда как красный датчик подключается к затвору G, а другой контакт является катодом K.

(2) Определение хорошего или плохого состояния: Используйте уровень R × 1 мультиметра для измерения значений прямого и обратного сопротивления между электродами тиристора BTG.В нормальных условиях прямое и обратное сопротивление между анодом A и катодом K бесконечно; прямое сопротивление между анодом A и затвором G (когда черный зонд подключен к электроду A) составляет от нескольких сотен Ом до нескольких тысяч Ом, а значение обратного сопротивления бесконечно. Если значения прямого и обратного сопротивления между двумя электродами очень малы, это означает, что тиристор был замкнут накоротко и поврежден.

(3) Обнаружение возможности запуска: установите мультиметр на уровень R × 1 Ом, подключите черный зонд к аноду A, а красный зонд к катоду K.Измеренное сопротивление должно быть бесконечным. Затем прикоснитесь к вентилю G пальцем и добавьте к нему сигнал индукции человеческого тела. Если в это время сопротивление между электродами A и K изменяется от бесконечности до низкого сопротивления (несколько Ом), это указывает на то, что тиристор обладает хорошей запускающей способностью. В противном случае производительность тиристора оставляет желать лучшего.

Часто задаваемые вопросы о тиристорах

1. Что такое тиристор и его типы?
Тиристор — это четырехслойное устройство с чередующимися полупроводниками P-типа и N-типа (P-N-P-N).В своей основной форме тиристор имеет три вывода: анод (положительный вывод), катод (отрицательный вывод) и затвор (контрольный вывод). Затвор контролирует поток тока между анодом и катодом.

2. Что такое тиристорная схема?
В общем, тиристоры также являются переключающими устройствами, аналогичными транзисторам. … SCR или тиристор — это четырехслойное полупроводниковое переключающее устройство с тремя переходами. Он имеет три вывода: анод, катод и затвор. Тиристор также является однонаправленным устройством, как диод, что означает, что он течет ток только в одном направлении.

3. Где используется тиристор?
Тиристоры могут использоваться в схемах переключения мощности, схемах замены реле, схемах инверторов, схемах генераторов, схемах датчиков уровня, схемах прерывателей, схемах диммирования света, схемах недорогих таймеров, логических схемах, схемах управления скоростью, фазах. -схемы управления и др.

4. Почему SCR называется тиристорным?
Кремниевый управляемый выпрямитель (SCR) — это однонаправленное полупроводниковое устройство, изготовленное из кремния.Это устройство является твердотельным эквивалентом тиратрона и, следовательно, его также называют тиристорным или тироидным транзистором.

5. Что такое тиристорная схема?
В общем, тиристоры также являются переключающими устройствами, аналогичными транзисторам. … SCR или тиристор — это четырехслойное полупроводниковое переключающее устройство с тремя переходами. Он имеет три вывода: анод, катод и затвор. Тиристор также является однонаправленным устройством, как диод, что означает, что он течет ток только в одном направлении.

Тиристор

— для чего это электронное устройство? — ES Components

Тиристор (/ θaɪˈrɪstər /) представляет собой твердотельный полупроводниковый прибор с четырьмя слоями чередующихся материалов P- и N-типа. Он действует исключительно как бистабильный переключатель, проводящий, когда затвор получает ток триггера, и продолжает проводить до тех пор, пока напряжение на устройстве не изменится на обратное, или пока напряжение не будет снято (каким-либо другим способом).Трехпроводный тиристор предназначен для управления большим током пути от анода к катоду, управляя этим током меньшим током другого его вывода, известного как его затвор. Напротив, двухпроводный тиристор предназначен для включения, если разность потенциалов между его выводами достаточно велика (напряжение пробоя).

Некоторые источники определяют кремниевый выпрямитель (SCR) и тиристор как синонимы. Другие источники определяют тиристоры как более изысканно сконструированные устройства, которые включают по крайней мере четыре слоя чередующейся подложки N-типа и P-типа.

Первые тиристорные устройства были выпущены в продажу в 1956 году. Поскольку тиристоры могут управлять относительно большой мощностью и напряжением с помощью небольшого устройства, они находят широкое применение в управлении электроэнергией, начиная от регуляторов освещенности и управления скоростью электродвигателя до высокой. -передача постоянного тока по напряжению. Тиристоры могут использоваться в схемах переключения мощности, схемах замены реле, схемах инверторов, схемах генераторов, схемах датчиков уровня, схемах прерывателей, схемах диммирования света, схемах недорогих таймеров, логических схемах, схемах управления скоростью, фазовых схемы управления и др.Первоначально для отключения тиристоров требовалось только реверсирование тока, что затрудняло их применение для постоянного тока; более новые типы устройств можно включать и выключать с помощью управляющего сигнала. Последний известен как тиристор выключения затвора или тиристор GTO. Тиристор не является пропорциональным устройством, как транзистор. Другими словами, тиристор может быть только полностью включен или выключен, а транзистор может находиться между включенным и выключенным состояниями. Это делает тиристор не подходящим в качестве аналогового усилителя, но полезным в качестве переключателя.

Источник: Википедия

Веха IEEE PELS: SCR / Thyristor, 1957 г.

Программа IEEE Milestones отмечает значительные технические достижения во всех областях, связанных с IEEE. Вехи — это признание технологических инноваций и передового опыта на благо человечества, которые заключаются в уникальных электротехнических изделиях, услугах, основополагающих статьях и патентах. Каждая веха свидетельствует о значительном техническом достижении, которое произошло не менее двадцати пяти лет назад в области технологий, представленных в IEEE и оказавших, по крайней мере, региональное влияние.Это первый этап, спонсируемый IEEE Power Electronics Society.

Компания GE присутствует на этом сайте и по сей день. В 2012 году Parker Aerospace и GE Aviation создали совместное предприятие под названием Advanced Atomization Technologies, Клайд, штат Нью-Йорк, США. Паркер открыл свой завод в Клайде в 1966 году и купил здание у Clyde Industrial Development Corporation в 1969 году. До прихода Паркера General Electric производила промышленную продукцию на заводе в течение 20 лет, и именно в этот период выпрямитель с кремниевым управлением (SCR) ) или был изобретен тиристор.Компания Advanced Atomization Technologies неуклонно росла на протяжении многих лет, и в настоящее время ее штат составляет 430 человек. В 2014 году на предприятии были значительно расширены производственные мощности, офисное здание и увеличился штат сотрудников.

Трехконтактное устройство p-n-p-n, представленное General Electric (GE) в 1957 году как кремниевый управляемый выпрямитель (SCR, позже тиристор), стало доминирующим устройством управления в электроэнергетике. Разработка SCR произвела революцию в управлении электрическими машинами.До 1955 года триодные вакуумные лампы использовались для управления машинами, которые были сложны в эксплуатации и, как известно, ненадежны. Симметричный переключатель (TRIAC) произошел от SCR, позже появился запирающий тиристор.

Изобретение SCR / тиристора произвело революцию в управлении преобразованием энергии, заменив выпрямительные лампы с вакуумной трубкой, управляемой ртутной дугой, на SCR, четырехслойный трехконтактный полупроводниковый прибор (тиратрон) с трехполюсным полупроводниковым устройством.Это четырехслойный твердотельный полупроводниковый прибор с тремя выводами. Он имеет анод, катод и затвор. Диод представляет собой устройство с двумя выводами, ток течет от анода к катоду, когда между анодом и катодом прикладывается положительное напряжение. SCR работает как диод, за исключением того, что ток не может течь, пока между затвором и катодом не будет приложено небольшое напряжение. Подача тока останавливается за счет уменьшения тока ниже значения фиксации.

Изобретение тиристора / тиристора привело к значительным улучшениям в выпрямлении линейных напряжений и стало основой современного управления скоростью двигателей переменного и постоянного тока.

Первоначальное применение SCR касалось поэтапного управляемого исправления. Выпрямление включает преобразование переменного напряжения в постоянное. Выпрямление с управлением по фазе позволило преобразовать переменное напряжение в постоянное, а путем задержки точки срабатывания можно регулировать среднее значение на выходе постоянного тока. Это привело к быстрому развитию передачи постоянного тока высокого напряжения на большие расстояния и для передачи.

На фото слева направо: Шрирам (Рам) Дурджати, Джон Кассакян, Ахмед Элассер, Джеймс Маццарелла, Хосе Моура, Фреде Блаабьерг, Джерард Херли

Расположение: Advanced Atomization Technologies, 124 Columbia St, Clyde, NY 14433


Спонсор

Тиристоры SIDAC | Защитные тиристоры SIDAC | Тиристоры

SIDACtor ® Критерии выбора устройства

При выборе устройства SIDACtor ® используйте следующие критерии:

Напряжение в закрытом состоянии (В

DRM )

V DRM устройства SIDACtor ® должно быть больше максимального рабочего напряжения цепи, которую защищает устройство SIDACtor ®.

Пример 1: Для приложения POTS (Plain Old Telephone Service) преобразуйте максимальное рабочее напряжение звонка (150 VRMS) в пиковое напряжение и добавьте максимальное смещение постоянного тока батареи центрального офиса:

  • 150 В RMS v2 + 56,6 В PK = 268,8 В PK
  • ∴ В DRM > 268,8 В

Пример 2: Для приложения ISDN добавьте максимальное напряжение источника постоянного тока к максимальному напряжению передаваемого сигнала (для U.S. приложений, U-интерфейс не будет иметь постоянного напряжения, но европейские и японские приложения ISDN могут):

  • 150 В ПК + 3 В ПК = 153 В ПК
  • ∴ V DRM > 153 V

Напряжение переключения (В

S )

Значение V S устройства SIDACtor ® должно быть равно или меньше номинального мгновенного пикового напряжения компонента, который он защищает.

Пример 1: V S = V Поломка реле

Пример 2: V S = SLIC V PK

Пиковый импульсный ток (I

PP )

Для цепей, не требующих дополнительного последовательного сопротивления, номинальный импульсный ток (I PP ) устройства SIDACtor ® должен быть больше или равен импульсным токам, связанным с испытаниями на устойчивость к ударам молнии в соответствии с применимыми нормативными требованиями ( Я ПК ):

Для цепей, в которых используется дополнительное последовательное сопротивление, номинальный импульсный ток (I PP ) устройства SIDACtor ® должен быть больше или равен доступным импульсным токам, связанным с испытаниями на устойчивость к ударам молнии в соответствии с применимыми нормативными требованиями (I ПК (в наличии) ):

Максимальный доступный импульсный ток рассчитывается путем деления пикового импульсного напряжения (В PK ) на общее сопротивление цепи (R ИТОГО ):

  • I PK (в наличии) = V PK / R ИТОГО

Для продольных скачков напряжения (наконечник — заземление, кольцо — заземление) R ИТОГО рассчитывается как для наконечника, так и для кольца:

  • R ИСТОЧНИК = V PK / I PK
  • R ИТОГО = R НАКОНЕЧНИК + R ИСТОЧНИК
  • R ИТОГО = R КОЛЬЦО + R ИСТОЧНИК

Для металлических скачков (Tip-Ring):

  • R ИСТОЧНИК = V PK / I PK
  • R ИТОГО = R НАКОНЕЧНИК + R КОЛЬЦО + R ИСТОЧНИК

Пример 1: Производитель модема должен соответствовать требованиям TIA-968-A к импульсным перенапряжениям типа A без какого-либо последовательного сопротивления.

  • I PK = 100 A, 10×560 мкс
  • IPP = 100 A, 10×560 мкс
  • Следовательно, будет выбрано устройство SIDACtor ® с рейтингом «B» или «C».

Пример 2: Производитель линейной карты должен соответствовать требованиям к скачкам напряжения GR 1089 с 30 O на наконечнике и 30 O на кольце.

  • I PK = 100 A, 10×1000 мкс
  • В ПК = 1000 В
  • R ИСТОЧНИК = V PK / I PK = 10 O
  • R ИТОГО = R ИСТОЧНИК + R НАКОНЕЧНИК = 40 O
  • I PK (в наличии) = V PK / R ИТОГО = 1000 В / 40 O
  • ∴ I PP = 25 A

Ток удержания (I

H )

Потому что TIA-968-A 4.4.1.7.3 указывает, что зарегистрированное оконечное оборудование не превышает 140 мА постоянного тока на провод в условиях короткого замыкания, ток удержания устройства SIDACtor ® установлен на 150 мА.

В соответствии с конкретными критериями проектирования ток удержания (I H ) устройства SIDACtor ® должен быть больше постоянного тока, который может подаваться во время работы и короткого замыкания.

Емкость в закрытом состоянии (C O )

Если предположить, что критическая точка вносимых потерь составляет 70 процентов от исходного значения сигнала, устройство SIDACtor ® можно использовать в большинстве приложений со скоростью передачи до 30 МГц.Для скоростей передачи более
30 МГц настоятельно рекомендуется новая серия MC.

Нормативные требования

Из-за огромной стоимости прерывания обслуживания и выхода из строя сетевого оборудования поставщики услуг телефонии приняли различные спецификации, помогающие регулировать надежность и производительность приобретаемых ими телекоммуникационных продуктов. В Европе и на большей части Дальнего Востока наиболее распространенными стандартами являются ITU-T K.20 и К.21.

В Северной Америке большинство операционных компаний основывают свои требования на NEB, которые содержат требования GR1089, TIA-968-A (ранее известный как FCC Part 68) и UL 60950-1.

Этот раздел является перефразированием существующих документов и не охватывает полностью перечисленные рекомендации, стандарты или нормативные требования. Эта информация предназначена только для справки. Для получения точных спецификаций получите ссылочный документ из соответствующего источника.

SIDACtor ® Описание семейства

Broadband Optimized ™ Protection

Семейство продуктов ™, оптимизированных для широкополосной связи, ориентировано на удовлетворение требований к производительности и нормативных требований к широкополосному оборудованию. Семейство Broadband Optimized с широким спектром решений предоставляет приложениям опции, необходимые для удовлетворения уникальных потребностей в защите оборудования DSL (до VDSL), а также Ethernet (до 1000baseT).Оптимизация выполняется с использованием запатентованных и запатентованных подходов, которые сводят к минимуму негативное влияние емкости устройства на широкополосные сигналы. Семейство Broadband Optimized обеспечивает решение для защиты от перенапряжения, которое помогает приложениям соответствовать требованиям Telcordia GR-1089, выпуск 4, и рекомендациям ITU-T K.20, K.21, K.44 и K.45.

SLIC Защита

Семейство продуктов SLIC ориентировано на удовлетворение уникальных потребностей в защите наборов микросхем SLIC (схемы интерфейса абонентской линии).Семейство продуктов Fixed Voltage и Battrax ® позволяет защитить устройства SLIC от переходных процессов, вызванных молнией и перекрестным напряжением переменного тока. Семейство SLIC предоставляет решение для защиты от перенапряжения, которое помогает приложениям соответствовать требованиям Telcordia GR-1089, выпуск 4, и рекомендациям ITU-T K.20, K.21, K.44 и K.45.

Защита LCAS

Семейство продуктов LCAS ориентировано на специализированную защиту коммутаторов доступа к линейным каналам (LCAS).В этом семействе используется специализированная асимметричная конструкция, специально разработанная для устройств LCAS. Семейство LCAS предоставляет решение для защиты от перенапряжения, которое помогает приложениям соответствовать требованиям Telcordia GR-1089, выпуск 4, и рекомендациям ITU-T K.20, K.21, K.44 и K.45.

Защита основной полосы частот

Семейство продуктов Baseband предназначено для удовлетворения требований к производительности и нормативных требований к телекоммуникационному оборудованию основной полосы частот, например, голосовой связи, модемам и DS1.Они предлагают решение для защиты от перенапряжения, которое помогает приложениям соответствовать требованиям Telcordia GR-1089, выпуск 4, рекомендациям ITU-T K.20, K.21, K.44 и K.45, а также TIA-968-A.

Защита от сильных перенапряжений

Продукты High Surge Current представляют собой уникальное семейство очень надежных твердотельных защитных устройств, предназначенных для использования в средах с высокой степенью воздействия. В это семейство входят продукты, специально разработанные для первичной защиты, такие как устройства ячейки и TO-220.В семействе High Surge Current также есть устройства, способные выдерживать ток 5 кА 8/20 мкс для использования в экстремальных условиях. Для повышения требований к вторичной защите в корпусе DO-214 доступно устройство с рейтингом D, способное выдерживать ток 1000 А 2/10 мкс. Семейство High Surge Current Protection обеспечивает защиту от перенапряжения, которая помогает приложениям соответствовать требованиям Telcordia GR-1089, выпуск 4, и рекомендациям ITU-T K.20, K.21, K.44 и K.45.

Таблица выбора приложений семейства SIDACtor ®
Приложение Telecom Broadband Optimized ™ Protection Защита SLIC Защита основной полосы частот (Voice-DS1) Защита LCAS Защита от сильных перенапряжений
ADSL
ADSL2 / 2 +
VDSL
VDSL2
HDSL2 / 4
ISDN
Ethernet 10/100 / 1000BaseT
PoE
VoIP FXO
VoIP FXS
Отрицательный сигнал SLIC
Положительный и отрицательный сигнал SLIC
Реле LCAS
POTS-Телефонные и беспроводные
Модем MDC
PCI-модем
Многофункциональный принтер-факс
T1 / E1 / J1 (DS1)
Система безопасности
Модули первичной защиты
Модули вторичной защиты — Ленточные протекторы
Установки с малым числом пар
Усилители мощности CATV
Базовые станции

SIDACtor ® Строительство и эксплуатация

Устройства SIDACtor — это тиристорные устройства, используемые для защиты чувствительных цепей от электрических помех, вызванных скачками напряжения, вызванными молнией, импульсами с индуктивной связью и неисправностями в сети переменного тока.Уникальная структура и характеристики тиристора используются для создания устройства защиты от перенапряжения с точными и воспроизводимыми характеристиками включения с возможностью перескока низкого напряжения и высокого импульсного тока.

Ключевые параметры

Ключевые параметры для устройств SIDACtor : V DRM , I DRM , V S , I H и V T (см. Рисунок 1 .3 на странице 11).

В DRM — это повторяющееся пиковое значение напряжения в закрытом состоянии устройства (также известное как резервное напряжение) и непрерывная пиковая комбинация переменного и постоянного напряжения, которая может быть приложена к устройству SIDACtor в его выключенное состояние.

I DRM — максимальное значение тока утечки, которое возникает в результате применения V DRM .

Коммутационное напряжение (V S ) — это максимальное напряжение, которому могут подвергаться последующие компоненты во время состояния быстрого нарастания (100 В / мкс) перенапряжения.

Ток удержания (I H ) — это минимальный ток, необходимый для поддержания устройства во включенном состоянии.

Напряжение в открытом состоянии (В T ) — это максимальное напряжение на устройстве во время полной проводимости.

Операция

Устройство работает как выключатель. В выключенном состоянии устройство имеет токи утечки (I DRM ) менее 5 мкА, что делает его невидимым для цепи, которую оно защищает. Когда переходное напряжение превышает V DRM устройства, устройство начинает переходить в защитный режим с характеристиками, аналогичными лавинному диоду.При подаче достаточного тока (I S ) устройство переключается во включенное состояние, шунтируя скачок напряжения от защищаемой цепи. Находясь во включенном состоянии, устройство может потреблять большой ток из-за низкого падения напряжения (V T ) на устройстве. Как только ток, протекающий через устройство, прерывается или падает ниже минимального тока удержания (I H ), устройство перезагружается, возвращаясь в свое выключенное состояние. Если значение I PP превышено, в устройстве обычно возникает постоянное короткое замыкание.

Физика

Устройство представляет собой полупроводниковый прибор, имеющий четыре слоя переменной проводимости: PNPN (рисунок 1.2 ниже). Четыре уровня включают в себя эмиттерный слой, верхний базовый слой, средний слой и нижний базовый слой. Эмиттер иногда называют катодной областью, а нижний базовый слой — анодной областью.

Рисунок 1.2 Геометрическая структура двунаправленных устройств

SIDACtor

По мере того, как напряжение на устройстве увеличивается и превышает V DRM устройства, электрическое поле на центральном переходе достигает значения, достаточного, чтобы вызвать лавинное умножение.Когда происходит лавинное умножение, сопротивление устройства начинает уменьшаться, и ток начинает увеличиваться до тех пор, пока коэффициент усиления устройства по току не превысит единицу. При превышении единицы устройство переключается с высокого импеданса (измеренного при V S ) на низкое (измеренное при V T ) до тех пор, пока ток, протекающий через устройство, не станет ниже его удерживающего тока (I H ). ).

Сравнение защиты от перенапряжения

Четыре наиболее часто используемых технологии защиты от перенапряжения:

  • Устройства SIDACtor ®
  • Газоразрядные трубки (ГДТ)
  • Металлооксидные варисторы (MOV)
  • TVS диоды

Все четыре технологии соединены параллельно с защищаемой схемой, и все они демонстрируют высокий импеданс в закрытом состоянии при смещении напряжением, меньшим, чем их соответствующие напряжения блокировки.

Устройства SIDACtor ®

A SIDACtor ® — это устройство PNPN, которое можно рассматривать как тиристорное устройство без затвора. При превышении пикового напряжения в закрытом состоянии (V DRM ) устройство SIDACtor ® будет ограничивать переходное напряжение в пределах номинального напряжения переключения устройства (V S ). Затем, как только ток, протекающий через устройство SIDACtor ®, превысит его ток переключения, устройство сработает лом и имитирует состояние короткого замыкания.Когда ток, протекающий через устройство SIDACtor ®, меньше, чем ток удержания устройства (I H ), устройство SIDACtor ® выполнит сброс и вернется к своему высокому импедансу в закрытом состоянии.

Преимущества

Преимущества устройства SIDACtor ® включают его быстрое время отклика (рис. 1.1), стабильные электрические характеристики, долгосрочную надежность и низкую емкость. Кроме того, поскольку устройство SIDACtor ® является ломом, оно не может быть повреждено напряжением.

Ограничения

Поскольку устройство SIDACtor ® представляет собой лом, его нельзя использовать непосредственно через линию переменного тока; он должен быть размещен за грузом. Невыполнение этого требования приведет к превышению максимального номинального тока в открытом состоянии для устройства SIDACtor ®, что может привести к переходу устройства в состояние постоянного короткого замыкания.

Приложения

Хотя устройства SIDACtor ® используются и в других приложениях, они в основном используются в качестве основного устройства защиты от перенапряжения в телекоммуникационных цепях и цепях передачи данных.Для приложений за пределами этой области следуйте критериям проектирования в « SIDACtor ® Критерии выбора устройства».

Газоразрядные трубки

Газоразрядные трубки (GDT) представляют собой стеклянные или керамические корпуса, заполненные инертным газом и закрытые с каждого конца электродом. Когда переходное напряжение превышает номинальное значение пробоя постоянного тока устройства, перепад напряжения вызывает зажигание электродов газовой трубки, что приводит к возникновению дуги, которая, в свою очередь, ионизирует газ внутри трубки и обеспечивает путь с низким импедансом для переходного процесса. следить.Как только переходный процесс падает ниже напряжения и тока удержания постоянного тока, газовая трубка возвращается в выключенное состояние.

Преимущества

Газоразрядные трубки имеют высокий импульсный ток и низкую емкость. Номинальный ток может достигать
20 кА, а номинальная емкость может достигать 1 пФ при нулевом напряжении смещения.

Приложения

Газоразрядные трубки

обычно используются для первичной защиты из-за их высокой стойкости к импульсным перенапряжениям. Однако их низкий уровень помех для высокочастотных компонентов делает их кандидатом на использование высокоскоростных каналов передачи данных.

Металлооксидные варисторы

Металлооксидные варисторы (MOV) представляют собой компоненты со сквозными отверстиями с двумя выводами, которые обычно имеют форму дисков. Изготовленные из спеченных оксидов и схематически эквивалентные двум взаимно соединенным PN-переходам, MOV шунтируют переходные процессы, уменьшая их сопротивление при приложении напряжения.

Преимущества

Поскольку импульсные характеристики MOV определяются их физическими размерами, доступны высокие значения импульсного тока.Кроме того, поскольку MOV являются фиксирующими устройствами, их можно использовать в качестве устройств защиты от переходных процессов во вторичных линиях электропередачи переменного тока.

Приложения

Хотя использование MOV ограничено во многих телекоммуникационных приложениях (кроме одноразового оборудования), они полезны в приложениях переменного тока, где требуется зажимное устройство, а жесткие допуски по напряжению — нет.

TVS диоды

Ограничители напряжения переходных процессов (TVS) — это ограничители напряжения с ограничением напряжения, которые построены с соединением PN-переходов.Во время проводимости TVS-диоды создают путь с низким импедансом, изменяя свое сопротивление при приложении напряжения к их клеммам. Как только напряжение будет снято, диод выключится и вернется к своему высокому импедансу в закрытом состоянии.

Преимущества

Поскольку TVS-диоды являются твердотельными устройствами, они не устают и не изменяются их электрические параметры, пока они работают в установленных пределах. TVS-диоды эффективно фиксируют быстрорастущие переходные процессы и хорошо подходят для низковольтных приложений, которые не требуют шунтирования большого количества энергии.

Приложения

Из-за низкой номинальной мощности TVS-диоды не используются в качестве первичных защитных устройств интерфейса между наконечником и кольцом, но их можно использовать в качестве вторичных защитных устройств, встроенных в схему.

Уровни перерегулирования по сравнению с dv / dt

На рисунке 1.4 ниже показано сравнение пикового напряжения между устройствами SIDACtor ®, газоразрядными трубками (GDT), металлооксидными варисторами (MOV) и TVS-диодами, все с номинальным номинальным напряжением отключения 230 В.Ось X представляет dv / dt (увеличение напряжения во времени), приложенное к каждому устройству защиты, а ось Y представляет максимальное падение напряжения на каждом устройстве защиты.

Рисунок 1.4 Уровни перерегулирования в зависимости от dv / dt

Защита телекоммуникаций

Поскольку раннее телекоммуникационное оборудование было сконструировано из таких компонентов, как механические реле, катушки и электронные лампы, оно было в некоторой степени невосприимчиво к ударам молнии и сбоям питания.Но по мере того как пошаговые переключатели и несущие цифровой петли уступили место более современному оборудованию, такому как мультиплексоры, маршрутизаторы, шлюзы и IP-коммутаторы, возрастает потребность в защите этого оборудования от переходных процессов в системе, вызванных молнией и сбоями питания.

Молния

Во время грозы переходные напряжения индуцируются в телекоммуникационной системе токами молнии, которые входят в проводящий экран подвешенного кабеля или через подземные кабели через токи заземления.

Когда это происходит, ток, проходящий через проводящий экран кабеля, создает одинаковое напряжение как на концевом, так и на кольцевом проводниках на оконечных концах. Пиковое значение и форма волны, связанная с этим состоянием, известная как продольный скачок напряжения, зависят от расстояния, на которое переходный процесс проходит по кабелю, и материалов, из которых изготовлен кабель.

Хотя скачки напряжения, вызванные молнией, всегда имеют продольный характер, дисбаланс, возникающий из-за оконечного оборудования и асимметричной работы первичных защитных устройств, также может привести к металлическим переходным процессам.Перенапряжение между наконечником и кольцом обычно наблюдается в оконечном оборудовании и является основной причиной, по которой большинство регулирующих органов требует, чтобы телекоммуникационное оборудование имело как продольную, так и металлическую защиту от перенапряжения.

Сбой питания

Другой системный переходный процесс, который является обычным явлением для телекоммуникационных кабелей, — это воздействие системы электропитания переменного тока. Обычное использование столбов, траншей и заземляющих проводов приводит к различным уровням воздействия, которые можно классифицировать как прямое повреждение питания, индукция мощности и повышение потенциала земли.

Непосредственный сбой питания возникает, когда линия питания напрямую контактирует с телекоммуникационными кабелями. Прямой контакт обычно вызывается падающими деревьями, зимним обледенением, сильной грозой и дорожно-транспортными происшествиями. Непосредственный сбой питания может привести к появлению в линии больших токов.

Индукция мощности обычна, когда силовые и телекоммуникационные кабели проложены в непосредственной близости друг от друга. Электромагнитная связь между кабелями приводит к наведению системных переходных процессов на телекоммуникационные кабели, что, в свою очередь, может вызвать чрезмерный нагрев и возгорание оконечного оборудования, расположенного на концах кабеля.

Повышение потенциала земли является результатом больших токов короткого замыкания, протекающих на землю. Из-за различного удельного сопротивления почвы и наличия нескольких точек заземления могут возникнуть различия в потенциалах системы.

Молния

Молния — одно из самых распространенных и опасных явлений в природе. В любой момент времени по всему земному шару происходит около 2000 гроз, при этом молния ударяет по Земле со скоростью более 100 раз в секунду. Согласно IEEE C.62, в течение одного года в Соединенных Штатах молния ударяет в среднем 52 раза на квадратную милю, что приводит к 100 смертельным случаям, 250 травмам и повреждению оборудования на сумму более 100 миллионов долларов.

Явление молнии

Молния возникает из-за сложного взаимодействия дождя, льда, сквозняков и сквозняков, возникающих во время типичной грозы. Движение капель дождя и льда внутри облака приводит к сильному накоплению электрических зарядов вверху и внизу грозового облака. Обычно положительные заряды концентрируются в верхней части грозового разряда, в то время как отрицательные заряды накапливаются внизу. Сама молния не возникает до тех пор, пока разность потенциалов между двумя зарядами не станет достаточно большой, чтобы преодолеть изолирующее сопротивление воздуха между ними.

Формирование молнии

Молния между облаками и землей начинает формироваться, когда уровень отрицательного заряда, содержащегося на нижних уровнях облаков, начинает увеличиваться и притягивать положительный заряд, находящийся на Земле. Когда формирование отрицательного заряда достигает своего пикового уровня, волна электронов, называемая ступенчатым лидером, начинает устремляться к Земле. Двигаясь с шагом 50 метров, ступенчатый лидер инициирует электрический путь (канал) для удара молнии. По мере того как ступенчатый лидер приближается к земле, взаимное притяжение между положительными и отрицательными зарядами приводит к тому, что положительный поток электронов подтягивается от земли к ступенчатому лидеру.Положительно заряженный поток известен как стример. Когда коса и ступенчатый лидер входят в контакт, он замыкает электрическую цепь между облаком и землей. В этот момент взрывной поток электронов движется к земле со скоростью, равной половине скорости света, и завершает формирование молнии.

Lightning Bolt

Первая вспышка молнии возникает, когда ступенчатый лидер и коса соединяются, в результате чего ток проходит на землю.Последующие удары (3-4) происходят по мере того, как большое количество отрицательного заряда движется дальше вверх по ступенчатому лидерству. Эти последующие удары, известные как возвратные удары, нагревают воздух до температуры, превышающей 50 000 ° F, и вызывают мерцающую вспышку, связанную с молнией. Общая продолжительность большинства молний составляет от 500 миллисекунд до одной секунды.

Во время удара молнии соответствующие напряжения находятся в диапазоне от 20000 В до 1000000 В, а токи в среднем составляют около 35000 А. Однако максимальные токи, связанные с молнией, были измерены до 300000 А.

10 ключевых фактов о Lightning

  1. Молния поражает землю в среднем 100 раз в секунду.
  2. Удары молнии могут поражать компьютеры и другое электронное оборудование на расстоянии до километра.
  3. Молния вызывает кратковременные перенапряжения (очень быстрые электрические скачки) на линиях электропитания, передачи данных, а также в сигнальных и телефонных линиях. Эти скачки затем переносятся на уязвимое оборудование и воздействуют на него.
  4. Электронное оборудование, подверженное риску, включает компьютерное и периферийное оборудование, системы управления зданием, системы IP-PBX, оборудование кабельного телевидения, системы пожарной безопасности и безопасности, системы PoE и системы освещения.
  5. Переходные перенапряжения могут вызвать мгновенное повреждение оборудования и его схем, что приведет к дорогостоящим и длительным остановкам в работе и скрытым повреждениям, а также может привести к поломкам через несколько недель или месяцев.
  6. Даже оборудование в здании со структурной молниезащитой по-прежнему подвергается большому риску, поскольку структурная защита предназначена для предотвращения повреждения здания и предотвращения гибели людей.
  7. В то время как большинство предприятий подвержены риску, университетские городки или многоквартирные дома, как правило, особенно уязвимы.
  8. Молния может поражать и поражает одно и то же место и может поражать одно и то же место несколько раз. Сайты, которые однажды пострадали, оказались уязвимыми и часто снова страдают в течение нескольких месяцев.
  9. Защита электронных систем от повреждений вследствие кратковременного перенапряжения стоит лишь небольшую часть стоимости ущерба.
  10. Littelfuse разрабатывает и производит качественное молниезащитное оборудование.

Формы всплесков напряжения для различных стандартов
GR 1089 ‐ Core
ITU-T K.20 и K.21
TIA-968-A (ранее известный как FCC Part 68)
TIA-968-A (ранее известный как FCC Part 68)
IEC 61000-4-2, 4-4 и 4-5 Резюме
Стандарт материкового Китая-YD / T 950-1998
Стандарт материкового Китая-YD / T 993-1998
Стандарт материкового Китая-YD / T 1082-2000
Администрация по сертификации и аккредитации
Китайской Народной Республики
UL 497
UL 497A
UL 497B
UL 497C
UL 497D
UL 60950-1 2 nd Edition

Как работает тиристор?

4 декабря 2019

Знаете ли вы, что полупроводниковое устройство под названием «тиристор» решает огромную проблему передачи энергии от генерирующей станции к потребителям, расположенным далеко? Традиционные передачи электроэнергии переменного тока сталкиваются с огромными потерями мощности, а также страдают от проблемы стабильности и управляемости.Для передачи электроэнергии на большие расстояния правильным выбором является технология HVDC. В HVDC большие объемы электроэнергии переменного тока должны быть преобразованы в постоянный ток с помощью преобразовательных станций. После этого мощность постоянного тока передается потребителям. Эту важную задачу преобразования выполняет уникальное полупроводниковое переключающее устройство, называемое «тиристором», а точнее кремниевые выпрямители. Давайте посмотрим, как работает тиристор.

Тиристор — Введение

Возможно, вы видели различные полупроводниковые переключающие устройства, такие как диоды и транзисторы, как показано на рис. 1.Точно так же тиристор — это еще и переключатель. Все эти переключающие устройства изготовлены из хорошо известного полупроводникового материала кремния. Тиристор состоит из 4 чередующихся слоев N- и P-областей. Чтобы понять, почему используется тиристор, давайте посмотрим на работу обычного транзистора, BJT.

Рис. 1 Полупроводниковые коммутационные устройства: диод и транзистор

Принцип работы BJT

Когда мы подключаем первичный источник питания, мы видим, что один из переходов транзистора всегда смещен в обратном направлении.Чтобы включить транзистор, достаточно подключить вторичный источник напряжения между эмиттером и выводом базы (рис. 2). Это включит транзистор. Однако, если мы отключим вторичный источник напряжения, транзистор выключится, так как ему требуется постоянное вторичное напряжение. Необходимость в непрерывном источнике базового тока приводит к огромным потерям мощности, особенно в приложениях с высокой мощностью.

Рис: 2 Для включения транзистора нам понадобится вторичный источник напряжения между эмиттером и выводом базы

. Чтобы решить эту проблему, в 1950 году Уильям Шокли предложил очень интересный переключатель мощности, известный как тиристор.В тиристорах, в отличие от транзисторов, такое постоянное вторичное питание не требуется. После срабатывания, даже если убрать вторичное питание, тиристор продолжит работать. Чтобы правильно понять работу тиристора, сначала нам нужно понять, что такое область истощения, и основные принципы работы диода.

Работа диода

Здесь показана структура из чистого кремния. Чистый кремний имеет очень низкую проводимость. Мы можем увеличить его проводимость, введя примеси типа N или P, процесс, известный как легирование (рис. 3A).Если часть кремния легирована P-типом, а другая часть N-типом, мы получим PN переход или, проще говоря, диод. На стыке пересечения ФН происходит одно интересное явление — естественная миграция электронов. Это приведет к тому, что сторона P будет слегка заряжена отрицательно, а сторона N — слегка положительно заряжена. Короче говоря, это обедненная область, где на PN-переходе отсутствуют свободные электроны или дырки. Небольшие отрицательный и положительный заряды в области истощения будут создавать электрическое поле между ними, как показано на рисунке 3B.Это электрическое поле создает барьерный потенциал. Из-за барьерного потенциала дальнейшей естественной миграции электронов не произойдет.

Рис. 3A Легирование примесями типа N и P Рис. 3B Небольшие отрицательный и положительный заряды в области истощения
будут создавать электрическое поле.

Этот PN переход представляет собой не что иное, как диод. Чтобы увидеть, как это работает, давайте подключим к диоду источник прямого напряжения со значением напряжения, превышающим потенциал барьера. Вы можете видеть, что электроны будут оттеснены отрицательной клеммой и пересекут PN-переход.После перехода они займут отверстия, доступные в области P. Из-за притяжения области N эти электроны перескочат к ближайшим дыркам, и поток продолжится. Здесь диод работает в прямом смещенном состоянии (рис. 4А).

Однако, если мы изменим напряжение питания, электроны и дырки просто уйдут, и диод не будет работать (Рис. 4B).

Рис. 4A Диод в состоянии прямого смещения Рис. 4B Диод в состоянии обратного смещения

Концепция мажоритарных и неосновных носителей заряда

В P-слое дырки являются основными носителями заряда, однако следует отметить, что в P-области также есть несколько электронов, которые мы называем неосновными носителями.То же самое и с областью N.

Рис. 5 Мажоритарные и неосновные носители

Детали конструкции тиристора

Обладая этими базовыми знаниями, давайте узнаем о работе тиристора.

Если пластина кремниевой структуры легирована четырьмя альтернативными формами типов P и N, рождается тиристор. Здесь также происходит образование обедненных областей на стыках. Каким бы способом вы не подавали напряжение на тиристор, всегда будет хотя бы один обратносмещенный переход (рис. 6).Во втором случае имеется только один обратносмещенный переход. Попробуем сделать из этой конфигурации рабочий тиристор.

Рис: 6 При подаче напряжения на тиристор всегда будет как минимум один обратный смещенный переход

Включение тиристора — срабатывание затвора

Чтобы тиристор стал активным, мы должны преодолеть эту область истощения. В тиристорах для этого используется эффективный и популярный метод, называемый «запуск затвора». Срабатывание затвора — это процесс инжекции электронов.Для этого подключим вторичный источник напряжения к клеммам затвора и катода. Этот вторичный источник вводит много электронов в P-область. По мере продолжения этого процесса P-область становится переполненной электронами (рис. 7). Электроны теперь стали основными носителями заряда в этой области. Короче говоря, P-область в конечном итоге становится N-областью. Эта новая область N приведет к автоматическому уменьшению области истощения.

Рис. 7 С помощью запуска затвора область P переполнена электронами

Поскольку область P стала новой областью N, из-за срабатывания затвора три области на нижней стороне вместе становятся большой областью N. показано на фиг. 8А.Теперь структура тиристора выглядит как диод с PN переходом. Как мы видели ранее, когда мы прикладываем прямое напряжение смещения к диоду с PN переходом, он начинает проводить. На этом этапе, даже если вы работаете, поскольку инжектированные электроны в P-области уже попали в N-область. Таким образом, в тиристоре вторичное напряжение питания необходимо только для срабатывания.

Рис. 8A. После срабатывания затвора три нижние области вместе становятся большой областью N. Рис: 8B Даже если убрать вторичное напряжение, тиристор продолжит работать.

Как выключить тиристор?

Теперь давайте посмотрим, как мы можем выключить тиристор.Единственный способ выключить тиристор — подать на него обратное напряжение (рис. 9).

Рис. 9 Чтобы выключить тиристор, вы должны подать на него обратное напряжение.

Самый эффективный способ добиться этого — использовать LC-генератор. В генераторе LC происходит обмен энергией между конденсатором и катушкой индуктивности. Вы можете видеть колеблющийся поток электронов в цепи. Это означает, что напряжение в цепи также будет колебаться, как показано на рисунке 10A. Предположим, что пиковое напряжение LC-цепи больше, чем напряжение, приложенное к тиристору.Если мы вставим тиристорную цепь в эту LC-цепь, тиристор будет подвергаться колебаниям напряжения вместо постоянного напряжения (Рис. 10B). В режиме обратного смещения напряжения тиристор обязательно отключится.

Рис. 10A Колебания энергии в LC-цепи Рис. 10B Тиристор будет подвергаться колебаниям напряжения
вместо постоянного напряжения с LC-цепью.

Без необходимости во вторичном питании, тиристоры помогают технологии HVDC экономить огромное количество электроэнергии.

ОБ АВТОРЕ

Эта статья написана Маюри Барадкар, M.E. (Энергетические системы) Электротехника В настоящее время она работает в Lesics Engineers Pvt.Ltd в качестве визуального преподавателя. Сфера ее интересов: энергосистема, силовая электроника, электрические машины. Чтобы узнать больше об авторе, перейдите по этой ссылке


Резистор Тиристорный MOSFET JFET и NPN PNP Биполярный транзисторный конденсатор Многофункциональный тестер транзисторов Автоматическое обнаружение диодов Промышленные электрические транзисторы santafewash.com

Многофункциональный тестер транзисторов Автоматическое определение диода + тиристора + резистора + конденсатора + MOSFET + JFET и биполярного транзистора NPN PNP: Электроника. Он может автоматически обнаруживать биполярные транзисторы NPN и PNP, N-канальные и P-канальные MOSFET, JFET, диоды (включая двойные диоды), N- и P-IGBT, резисторы (включая потенциометры), катушки индуктивности, конденсаторы, тиристоры и TRIAC и аккумулятор (0,1- Для автоматического обнаружения стабилитронов (0,01-20 В) он также может выполнять самотестирование и автоматическую калибровку.。 Благодаря инфракрасному декодеру он поддерживает календарное инфракрасное кодирование для отображения инфракрасного сигнала через инфракрасную команду приема. 。 Оснащенный встроенным литий-ионным аккумулятором большой емкости, его высокое качество позволяет сохранять высокую производительность в течение длительного времени. 。 Поддерживающий дисплей на китайском и английском языках, озаглавленный с возможностью практического применения, он долговечен для использования в практической жизни. 。。。 Спецификация: Тип изделия: Тестер транзисторов。 Размер: прибл. 9 x 7 x 2,8 см / 3,5 x 2,8 x 1,1 дюйма。 Цвет: бежевый。 Применение: тестовые диоды (включая двойные диоды), N- и P-IGBT, резисторы (включая потенциометры), катушки индуктивности, конденсаторы, тиристорные тестеры。。。 Упаковка Список:。 1 тестер。 1 USB-кабель для зарядки。 2 упаковки x тестовый компонент。。。。




Резистор Тиристорный MOSFET JFET и NPN PNP Биполярный транзисторный конденсатор Многофункциональный тестер транзисторов Автоматическое определение диода

Длина кабеля: 5 шт. Кабели Разъем жесткого диска Occus SATA для HP Pavilion DV9000 TX1000 DV6000 Series, Sakula Home Button Наклейка Кнопка Touch ID для iPhone 8 8 Plus 7 7 Plus 6S Plus 6S 6 Plus 6 5S SE iPad mini iPad Air, Turck Rsm Набор кабелей Rkm 50-6M, 5-полюсный штекер / гнездо, прямой / прямой, 6M Rsm Rkm 50-6M, 600 В перем. JUMPER-h2502TR / A3049A / h2500TR 6, 4 X 0603 100 элементов Вогнутый SMD T / R NRSN06I4J680TRF Толстопленочный массив Res 68 Ом 5% ± 200 ppm / ° C ISOL 8-контактный литой 1206.для Homtom HT37 Pro Разъем зарядного порта Гибкий кабель зарядной док-станции USB Lysee Гибкие кабели для мобильных телефонов. 1-полюсный Siemens -HI Тип ED4 Прерыватель цепи Siemens ED41B090 90 А, 500 МГц Snagless RNS / с двойным экраном S / FTP Kabelmeister Meister 36213 Cat7 Ethernet 10-гигабитный / сетевой патч-кабель Cat 6 A 1-метровый медный проводник Magenta PiMF, CAT 5e Plenum White Reelex Box . 250 шт. Электрические изолированные обжимные кольца вилка крюк лопата стыковые соединения водонепроницаемые морские автомобильные терминалы набор термоусадочных соединителей для проводов.C2G 00584 Кабель Cat5e, оранжевый, 100 футов, 30,48 метра, неэкранированный сетевой коммутационный кабель Ethernet без загрузки.


Краткая история тиристорного клапана

SSEN Transmission объявила, что в настоящее время ведутся работы по прокладке 10 км подземного кабеля на Шетландских островах и в Кейтнессе, что стало важной вехой для проекта Шетландского HVDC мощностью 600 МВт.

Береговой кабель будет проходить от преобразовательной станции в Кергорде на Шетландских островах и коммутационной станции в Носс-Хед в Кейтнессе до точек выхода на берег подводного кабеля.После установки он будет соединен с подводным кабелем HVDC протяженностью 260 км, который впервые обеспечит подключение Шетландских островов к национальной энергосистеме и упростит подключение новой возобновляемой генерации, раскрывая возобновляемый потенциал Шетландских островов.

Работы по прокладке кабеля выполняются главным подрядчиком SSEN Transmission, специалистами по кабельным технологиям NKT, и следят за ходом строительства коммутационной станции в Носс-Хеде и преобразовательной станции в Кергорде.

Ведущий менеджер проекта Крис Финниган, ответственный за проект прокладки кабеля HVDC, сказал: «Приятно видеть, как прокладка кабеля идет полным ходом, а подключение Шетландских островов к электросети Великобритании впервые становится реальностью. Это важная веха для проект, потребовалось много тяжелой работы и сотрудничества с нашими коллегами из NKT, чтобы добраться до этого этапа.

«Мы чрезвычайно благодарны всем, кто живет вдоль соответствующих наземных кабельных маршрутов, за их сотрудничество и понимание, и с нетерпением ждем возможности безопасно доставить 260 км кабелей с наименьшими возможными нарушениями.

Арне Абрахамссон, директор проекта NKT, сказал: «Это действительно важный проект не только с точки зрения его технической сложности, но и с точки зрения роли, которую проект будет играть в переходе к нулевым выбросам после его завершения. . Это был долгий путь, чтобы добраться до этой точки в проекте, и мы рады видеть, что кропотливая работа всех и месяцы планирования и подготовки к строительству приносят свои плоды ».

По мере того, как команды в Шетланде и Кейтнессе начинают работать Что касается прокладки кабеля, NKT также приступила к производству как наземных, так и подводных кабелей, муфт и концевых заделок в рамках подготовки к монтажным работам в следующем году.

Помимо подготовки к прокладке берегового кабеля, SSEN Transmission также проводила морские изыскания перед установкой участка подводного кабеля, который, как ожидается, начнется в конце лета 2022 года. Исследовательское судно Nordhoek Pathfinder проводит предварительные -разложите исследования, которые проводятся для создания обновленной картины подводного кабельного маршрута от Кейтнесса до Шетландских островов. Они помогают команде проекта понять состояние морского дна, глубину отложений, определить местонахождение коренных пород и выявить любые опасности, такие как кораблекрушения или неразорвавшиеся боеприпасы.

Для прибрежного маршрута автономное исследовательское судно проводило съемку кабельной трассы недалеко от побережья Шетландских островов в Weisdale Voe, собирая данные съемки в конце мая.

Добавить комментарий

Ваш адрес email не будет опубликован.