Как расписать вольт: Вольт (единица измерения) — это… Что такое Вольт (единица измерения)?

Содержание

Вольт (единица измерения) — это… Что такое Вольт (единица измерения)?

Вольт (единица измерения)


Вольт (обозначение: В (рус.), V (лат.)) — единица измерения электрического напряжения в системе СИ.

Вольт равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт.

Единица названа в честь итальянского физика и физиолога Алессандро Вольта.

1 В = 1/300 ед. потенциала СГСЭ.

Определение

Вольт определён как разница потенциалов на концах проводника, рассеивающего мощность в один ватт при силе тока через этот проводник в один ампер. Отсюда, базируясь на единицах СИ, получим м2 · кг · с-3 · A-1, что эквивалентно джоулю энергии на кулон заряда, J/C.

Определение на основе эффекта Джозефсона

С 1990 года вольт стандартизирован посредством измерения с использованием эффекта Джозефсона, при котором используется в качестве привязки к эталону константа Джозефсона, зафиксированная 18-ой Генеральной конференцией по весам и измерениям как:

K{J-90} = 0. 4835979 GHz/µV.

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 В декавольт даВ daV 10−1 В децивольт дВ dV
102 В гектовольт гВ hV 10−2 В сантивольт сВ cV
103 В киловольт
кВ
kV 10−3 В милливольт мВ mV
106 В мегавольт МВ MV 10−6 В микровольт мкВ µV
109 В гигавольт ГВ GV 10−9 В нановольт нВ nV
1012 В теравольт ТВ TV 10−12 В пиковольт пВ pV
1015 В петавольт ПВ PV 10−15 В фемтовольт фВ fV
1018 В эксавольт ЭВ EV 10−18 В аттовольт аВ aV
1021 В зеттавольт ЗВ ZV 10−21 В зептовольт зВ zV
1024 В йоттавольт ИВ YV 10−24 В йоктовольт иВ yV
     применять не рекомендуется

Wikimedia Foundation. 2010.

  • Вольский Аркадий Иванович
  • Вольский район

Смотреть что такое «Вольт (единица измерения)» в других словарях:

  • Единица измерения Сименс — Сименс (обозначение: См, S)  единица измерения электрической проводимости в системе СИ, величина обратная ому. До Второй мировой войны (в СССР до 1960 х годов) сименсом называлась единица электрического сопротивления, соответсвующая сопротивлению …   Википедия

  • Зиверт (единица измерения) — Зиверт (обозначение: Зв, Sv)  единица измерения эффективной и эквивалентной доз ионизирующего излучения в Международной системе единиц (СИ), используется с 1979 г. 1 зиверт  это количество энергии, поглощённое килограммом… …   Википедия

  • Беккерель (единица измерения) — У этого термина существуют и другие значения, см. Беккерель. Беккерель (обозначение: Бк, Bq)  единица измерения активности радиоактивного источника в Международной системе единиц (СИ). Один беккерель определяется как активность источника, в… …   Википедия

  • Ватт (единица измерения) — О типе морских побережий см. Ватты Ватт (обозначение: Вт, W)  в системе СИ единица измерения мощности. Различают механическую, тепловую и электрическую мощность: в механике 1 ватт равен мощности, при которой за 1 секунду времени совершается… …   Википедия

  • Ньютон (единица измерения) — У этого термина существуют и другие значения, см. Ньютон. Ньютон (обозначение: Н) единица измерения силы в Международной системе единиц (СИ). Принятое международное название newton (обозначение: N). Ньютон производная единица. Исходя из второго… …   Википедия

  • Сименс (единица измерения) — У этого термина существуют и другие значения, см. Сименс. Сименс (русское обозначение: См; международное обозначение: S)  единица измерения электрической проводимости в Международной системе единиц (СИ), величина обратная ому. Через другие… …   Википедия

  • Фарад (единица измерения) — Фарад (обозначение: Ф, F) единица измерения электрической ёмкости в системе СИ (ранее называлась фарада). 1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон создаёт между обкладками конденсатора напряжение 1 вольт. Ф =… …   Википедия

  • Тесла (единица измерения) — У этого термина существуют и другие значения, см. Тесла. Тесла (русское обозначение: Тл; международное обозначение: T)  единица измерения индукции магнитного поля в Международной системе единиц (СИ), численно равная индукции такого… …   Википедия

  • Паскаль (единица измерения) — У этого термина существуют и другие значения, см. Паскаль (значения). Паскаль (обозначение: Па, международное: Pa)  единица измерения давления (механического напряжения) в Международной системе единиц (СИ). Паскаль равен давлению… …   Википедия

  • Грей (единица измерения) — У этого термина существуют и другие значения, см. Грей. Грей (обозначение: Гр, Gy)  единица измерения поглощённой дозы ионизирующего излучения в Международной системе единиц (СИ). Поглощённая доза равна одному грею, если в результате… …   Википедия

Книги

  • Джоуль, Евгений Стаховский. Джоуль – единица измерения работы, энергии и количества теплоты в Международной системе единиц. Джоуль равен работе, совершаемой при перемещении точки приложениясилы, равной одному ньютону,… Подробнее  Купить за 49 руб аудиокнига
  • Вольт, Евгений Стаховский. Вольт (русское обозначение: В; международное: V) – в Международной системе единиц (СИ) единица измерения электрического потенциала, разности потенциалов, электрического напряжения и… Подробнее  Купить за 49 руб аудиокнига

ом [Ом] в вольт на ампер [В/А] • Конвертер электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления. Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Нагретый до 800°C резистивный нагревательный элемент.

Введение

Резисторы на этой плате из блока питания обведены красными прямоугольниками и составляют половину ее элементов

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления — резисторов — не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах — мобильных телефонах, смартфонах, планшетах и компьютерах — число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами — конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Кабели должны обладать возможно меньшим электрическим сопротивлением

Определение

Электрическое сопротивление — это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость — о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей — волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию — резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Закон Ома

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Закон Ома

R = U/I

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление — закон Джоуля-Ленца:

Q = I2 · R · t

где

Q — количество выделенной теплоты за промежуток времени t, Дж;

I — сила тока, А;

R — сопротивление, Ом;

t — время протекания тока, сек.

Георг Симон Ом

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Перегорание нити лампы накаливания в воздухе

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока — электронов проводимости — принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь — по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении — во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Микропроцессор и видеокарта

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии — его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры — выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа — «открыт-закрыт» — и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

В ксеноновой лампе-вспышке (обведена красной линией) вспышка происходит после ионизации газа в результате уменьшения его электрического сопротивления

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда — положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах — стабисторах — для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой — возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера. Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей — электролитов — определяется наличием и концентрацией ионов различных знаков — атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов — анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Гальваническое покрытие хромом пластмассовой душевой головки. На внутренней стороне, не покрытой хромом, виден тонкий красный слой меди.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине — от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа — «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Магнетрон 2М219J, установленный в бытовой микроволновой печи

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы — это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели — магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы поверхностного монтажа

Резисторы: их назначение, применение и измерение

Переменный регулировочный резистор

Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования его в качестве электрического сопротивления. Помимо этого, резисторы, являясь технической реализацией электрического сопротивления, также характеризуются паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Резистор — электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

10-ваттный керамический резистор

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R1 + R2 + … + Rn

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R1 · R2 · … · Rn/(R1 + R2 + … + Rn)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом — символ К, для мегаом — символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Цветовая маркировка резисторов

Измерение сопротивления резистора с помощью мультиметра

Для малогабаритных резисторов навесного монтажа и печатного применяется маркировка цветными полосками по имеющимся таблицам. Чтобы не рыться в справочниках, в Интернете можно найти множество различных программ для определения номинала резистора.

Резисторы для поверхностного монтажа (SMD) маркируются тремя или четырьмя цифрами или тремя символами, в последнем случае номинал тоже определяется по таблице или по специальным программам.

Измерение резисторов

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Что такое Вольт. Определение Вольта. Формула Вольта

Вольт (обозначение: В, V) — единица измерения электрического напряжения в системе СИ.

1 Вольт равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт.{3} \cdot \mbox{A}} \]

Единица названа в честь итальянского физика и физиолога Алессандро Вольта.

Этим методом величина вольта однозначно связывается с эталоном частоты, задаваемым цезиевыми часами: при облучении матрицы, состоящей из нескольких тысяч джозефсоновских переходов, микроволновым излучением на частотах от 10 до 80 ГГц, возникает вполне определённое электрическое напряжение, с помощью которого калибруются вольтметры. Эксперименты показали, что этот метод нечувствителен к конкретной реализации установки и не требует введения поправочных коэффициентов.

1 В = 1/300 ед. потенциала СГСЭ.

Что такое Вольт. Определение

Вольт определён как разница потенциалов на концах проводника, рассеивающего мощность в один ватт при силе тока через этот проводник в один ампер.

Отсюда, базируясь на единицах СИ, получим м² · кг · с-3 · A-1, что эквивалентно джоулю энергии на кулон заряда, J/C.

Определение на основе эффекта Джозефсона

Напряжение электрического тока – это величина, характеризующая разность зарядов (потенциалов) между полюсами либо участками цепи, по которой идет ток.

С 1990 года вольт стандартизирован посредством измерения с использованием нестационарного эффекта Джозефсона, при котором используется в качестве привязки к эталону константа Джозефсона, зафиксированная 18-ой Генеральной конференцией по весам и измерениям как:

K{J-90} = 0,4835979 ГГц/мкВ.

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы вольт пишется со строчной буквы, а её обозначение — с прописной. Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием вольта. Например, обозначение единицы измерения напряжённости электрического поля «вольт на метр» записывается как В/м.

Шкала напряжений

  • Разность потенциалов на мембране нейрона — 70 мВ.
  • NiCd аккумулятор — 1.2 В.
  • Щелочной элемент — 1.5 В.
  • Литий-железо-фосфатный аккумулятор (LiFePO4) — 3.3 В.
  • Батарейка «Крона» — 9 В.
  • Автомобильный аккумулятор — 12 В (для тяжёлых грузовиков — 24 В).
  • Напряжение бытовой сети — 220 В (среднеквадратичное).
  • Напряжение в контактной сети трамвая, троллейбуса — 600 В.
  • Электрифицированные железные дороги — 3 кВ (постоянный ток), 25 кВ (переменный ток).
  • Магистральные ЛЭП — 110 кВ, 220 кВ.
  • Максимальное напряжение на ЛЭП (Экибастуз-Кокчетав) — 1.15 МВ.
  • Самое высокое постоянное напряжение, полученное в лаборатории на пеллетроне — 25 МВ.
  • Молния — от 100 МВ и выше.
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Больше интересного в телеграм @calcsbox

Единицы измерения мощности

Единицы измерения мощности

Программа КИП и А

Мощность — физическая величина, равная скорости изменения, преобразования, передачи или потребления энергии системы. Также мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Международная система единиц (СИ)

В Международной системе единиц (СИ) единицей измерения мощности является ватт [Вт],[W], равный одному джоулю [Дж],[J], делённому на секунду.
  1 ватт определяется как мощность, при которой за 1 секунду времени совершается работа в 1 джоуль. Таким образом, ватт является производной единицей измерения и связан с другими единицами СИ следующими соотношениями:

  • Вт = Дж / с = кг·м²/с
  • Вт = H·м/с
  • Вт = В·А
  • 1 Мегаватт [МВт] = 1000 кВт
  • 1 Киловатт [кВт] = 1000 Вт
  • 1 Вольт-ампер [В·А] = 1 Вт

Внесистемные единицы

  • 1 Гигакалория в секунду [Гкал/с], [Gcal/s] = 4186.8 МВт
  • 1 Килокалория в секунду [ккал/с], [kcal/s] = 4186.8 Вт
  • 1 Калория в секунду [кал/с], [cal/s] = 4.1868 Вт
  • 1 Гигакалория в час [Гкал/ч], [Gcal/h] = 1.163 МВт
  • 1 Килокалория в час [ккал/ч], [kcal/h] = 1.163 Вт
  • 1 Калория в час [кал/ч], [cal/h] = 0.001163 Вт
  • 1 Котловая лошадинная сила [hp(S)] = 9809.5 Вт
  • 1 Электрическая лошадиная сила [hp(E)] = 746 Вт
  • 1 Гидравлическая лошадиная сила [hp(H)] = 745.7 Вт
  • 1 Механическая лошадиная сила [hp(I)] = 745.69987158227022 Вт
  • 1 Метрическая лошадиная сила [hp(M)] = 735.49875 Вт
  • 1 Килограмм·м/с [кг·м/с] = 9.80665 Вт
  • 1 Джоуль в секунду [Дж·с]= 1 Вт
  • 1 Джоуль в час [Дж·ч] = 0.0002777777777777 Вт
  • 1 Эрг в секунду [эрг·с] = 0.0000001 Вт
  • 1 Метрическая тонна охлаждения [RT] = 3861.15995 Вт

США и Британия

  • 1 Американская тонна охлаждения [USRT] = 3.51686666 кВт
  • 1 Британская термальная единица в секунду [BTU/s] = 1055.06 Вт
  • 1 Британская термальная единица в минуту [BTU/m] = 17.584333 Вт
  • 1 Британская термальная единица в час [BTU/h] = 0.293072224 Вт
  • 1 Фунт на фут в секунду [ft·lbf/s] = 1.35581795 Вт

 

обозначение и определение силы тока, как расписать единицу измерения математическим способом

Традиционный символ I происходит от французского словосочетания intensité du courant, что на русском языке означает «сила тока». Эта фраза часто используется в старых текстах. В современной практике её зачастую укорачивают до слова «ток». Обозначение I было впервые использовано самим Андре-Мари Ампером, в честь которого названы единица электрического тока и разработанный им закон.

Великий учёный

Имя André-Marie Ampère увековечено среди имён других 72 учёных на первом этаже Эйфелевой башни. Его вклад в науку заложил фундамент для понимания явлений электромагнетизма. Хоть Андре-Мари был не первым человеком, обнаружившим связь между электричеством и магнетизмом, он впервые попытался теоретически объяснить и продемонстрировать, как в математических выражениях расписывается связь между этими явлениями. Ампер с помощью устройства собственного изобретения смог измерить ток, а не просто зафиксировать его присутствие.

Учёный родился в Лионе в 1775 году и был современником Французской революции. Будучи сыном коммерсанта и чиновника, он с ранних лет проявлял страсть к математике, а став подростком, читал сложные трактаты Эйлера и Лагранжа. Получил должность профессора математики Парижской политехнической школы в 1809 году, а в 1814 г. был избран членом Академии наук. Хоть Андре-Мари преподавал математику, его интересы распространялись на многие области, в том числе на химию и физику.

Наиболее значимый документ Ампера по теории электричества был опубликован в 1826 году. Теоретические основы, представленные в этом труде, стали фундаментом для дальнейших открытий в области электричества и магнетизма. Получив известность и признание в высокоуважаемых академиях и научных организациях мира, Ампер избегал публичности и чувствовал себя счастливым только в скромной лаборатории в Париже.

Несмотря на достижения и место в обществе, судьба учёного сложилась довольна трагично. В 1793 году его отца гильотинировали за политические убеждения. Это событие стало причиной глубокой депрессии Андре-Мари и едва не свело его с ума. Первая жена рано ушла из жизни после продолжительной болезни, второй брак был неудачным и несчастливым. Сам Ампер умер в 1836 году от воспаления лёгких в Марселе и был похоронен на кладбище Монмартр в Париже.

Электрический ток

Электричеством называют форму энергии, основанной на наличии электрических зарядов в веществе. Вся материя состоит из атомов, а атомы содержат заряженные частицы. Каждый протон в атомном ядре содержит одну единицу положительного электрического заряда, а каждый электрон, вращающийся вокруг ядра, несёт в себе единицу отрицательного. Электрические явления возникают, когда электроны покидают атомы: потеря одного или нескольких из них превращает атом в положительно заряженный ион. Все явления, происходящие с зарядами, могут быть отнесены к двум основным категориям:

  • статическое электричество;
  • электрический ток.

Первый термин описывает поведение зарядов в состоянии покоя. Подобные явления хорошо иллюстрируют наэлектризованные волосы — они будут отталкиваться друг от друга, поскольку обладают одним зарядом.

Электрический ток имеет отношение к поведению зарядов в движении. Чтобы они перемещались непрерывно, им нужно обеспечить беспрепятственный маршрут. Путь для зарядов называют электрической цепью. Простейшая электрическая цепь, как правило, состоит из следующих элементов:

  • источника;
  • нагрузки;
  • соединяющих проводников.

Электрическим током называют любое движение носителей электрических зарядов: субатомных частиц (электронов или протонов), ионов (атомов, потерявших или набравших электроны) или квазичастиц (дырок в полупроводниках, которые можно рассматривать в качестве положительно заряженных носителей).

Ток в проводнике представляет собой движение электронов в одном направлении (постоянный) или с периодической сменой направления движения (переменный). В газах и жидкостях он состоит из потока положительных ионов в одном направлении вместе с потоком отрицательных в обратном. Существуют и другие его виды, например, пучки протонов, позитронов или других заряженных мюонов в ускорителях частиц.

В отношении общепринятого направления тока существует некоторое противоречие, основа которого была заложена более двух веков назад. Поскольку в те времена электроны ещё не были обнаружены, учёные предположили, что перемещаемые частицы несли положительный заряд. Традиция обозначать направление тока как направление движения положительных частиц не забыта и сейчас, хоть в проводниках носителями заряда являются электроны.

Единица и определение

Важнейшей характеристикой для описанных явлений является количественное измерение потока заряженных частиц. Этот показатель называют силой тока, его единица измерения — ампер (обозначается A). В численном выражении 1 ампер равен единичному заряду (1 кулону), проходящему через точку в цепи за единицу времени (1 секунду). Таким образом, A можно рассматривать как скорость потока I=Q/T, имеющую такой же смысл для заряда, как и скорость для физических тел. Широко применяются следующие кратные единицы:

  • 10 −6А — микроампер мкА;
  • 10 −3А — миллиампер мА;
  • 10 3А — килоампер кА.

Эволюция эталона

В знак признания фундаментальных работ великого физика André-Marie Ampère название ампер было принято в качестве электрической единицы измерения на международной конвенции в 1881 году. По международному определению 1883 года 1ампером являлся ток, способный при прохождении раствора нитрата серебра выделить 0,001118000 грамм серебра за секунду. Более поздние замеры показали, что принятый эквивалент составлял 0,99985 A, поэтому способы расписать ампер через явления электролиза со временем перестали удовлетворять из-за растущих требований к точности.

С 1948 года A (amper) был определён в Международной системе единиц как неизменяющийся ток, протекающий в двух параллельных проводниках бесконечной длины и ничтожно малого сечения, помещённых на расстоянии одного метра друг от друга в вакууме, и производящий между ними силу взаимодействия, равную 2х10 -7 ньютонов на метр длины. Это определение базируется на явлении электромагнетизма, связывая метр, килограмм и электрические единицы магнитной постоянной (1.25663706х10 -6 м кг с -2 А -2).

Реализация такого эталона основана на работе сложных электромеханических устройств. Их точность ограничивается десятимиллионными долями, что недостаточно для современных нужд. Эта проблема классического определения ампера привела к новой практической реализации. В соответствии с ней все электрические единицы рассматриваются как производные от электрических квантовых стандартов на основе эффекта Джозефсона и квантового эффекта Холла. Подобная привязка позволяет воспроизводить единицу с точностью до миллиардных долей.

Будущее величины в СИ

В 2005 году Международный комитет мер и весов начал первые приготовления к переопределению единиц СИ с целью привязки их к естественным константам. В соответствии с таким взглядом на эталоны ампер будет определяться подсчётом одиночных частиц с элементарным зарядом e. На основании решения 2014 года пересмотр вступает в силу в 2018 году.

Элегантная реализация нового определения A теоретически возможна с помощью одноэлектронных насосов, производящих электрический ток через синхронизированный контролируемый транспорт одиночных электронов. Некоторые международные исследования в этом направлении уже близки к достижению такой амбициозной цели.

Воздействие на человека

В большинстве случаев электрический ток представляет собой поток электронов. Поскольку ампер является мерой количества заряда, проходящего в секунду, нетрудно будет посчитать количество электронов в перемещённом заряде: 1 Кл = 6,24151·10 18. То есть один ампер равен потоку 6340 квадриллионов частиц в секунду. Это колоссальная цифра, но вряд ли она иллюстративна для сравнительного понимания, когда показатель чего-либо измеряют в амперах. В этом помогут следующие повседневные примеры:

  • 160х10 -19 — один электрон в секунду;
  • 0,7х10 -3 — слуховой аппарат;
  • 5х10 -3 — пучок в кинескопе телевизора;
  • 150х10 -3 — портативный ЖК телевизор;
  • 0,2 — электрический угорь;
  • 0,3 — лампа накаливания;
  • 10 — тостер, чайник;
  • 100 — стартер автомобиля;
  • 30х10 3 — удар молнии;
  • 180х10 3 — дуговая печь для ферросплавов;
  • 5х10 6 — дуга между Юпитером и Ио.

Порог смертельно опасного воздействия на человеческий организм начинается с 18 мА. Ток, превышающий это значение и проходящий через грудную клетку, способен стимулировать мышцы груди таким образом, что их спазмы могут вызвать полную остановку дыхания. Другой опасный эффект при подобном воздействии связан с фибрилляцией желудочков сердца. Основные факторы летальности:

  1. Сила тока. Так как сопротивление между точками входа и выхода — постоянная величина, по закону Ома высокое напряжение делает вероятным высокий ампераж.
  2. Маршрут протекания. Наиболее опасны для сердечной мышцы направления рука-рука и передняя-задняя части грудной клетки.
  3. Индивидуальная чувствительность к воздействию электричества и особенности организма (сопротивление кожи и её влажность, возраст и пол, заболевания, наличие медицинских имплантов).
  4. Продолжительность воздействия.

Большое влияние на тяжесть поражения током оказывает также неспособность отпустить источник. При условии, что пальцы человека держат в руках один из контактов под напряжением, многие взрослые люди не могут отпустить источник при протекающем постоянном токе менее 6 мА. При 22 мА это будет не под силу всем людям. 10 мА для человека, находящегося в воде, достаточно, чтобы вызвать полную потерю контроля над мышцами.

Практические измерения

Подсчёт количества электронов в проводнике с секундомером в руке практически неосуществим, поэтому ток измеряют специальными приборами (амперметрами) или косвенными расчётами. Амперметры устроены таким образом, что они реагируют на магнитное поле, создаваемое измеряемым током. Существуют различные типы подобных измерительных приборов, но все они основаны на одном принципе. Общие правила измерений силы тока можно свести к следующему перечню:

  1. Амперметр всегда включается последовательно к нагрузке, при измерениях ток должен протекать через прибор. Подключение прибора параллельно может привести к протеканию в нём слишком больших токов, что способно вызвать его выход из строя.
  2. Для высокой точности измерений внутреннее сопротивление прибора должно быть настолько низким, насколько это возможно, чтобы не влиять на параметры цепи.
  3. Следует позаботиться о виде тока (AC или DC). В случае с постоянным обязательно обратить внимание на полярность.
  4. Диапазон измерений должен быть настолько большим, насколько это возможно без вреда для точности. Важно, чтобы неизмеряемое значение не оказалась за пределами шкалы.

Возможны случаи, когда контур невозможно разомкнуть для замеров или нужное место в цепи труднодоступно. В таких ситуациях измерение можно выполнить косвенно. Определив падение напряжения на резисторе, можно с помощью закона Ома определить ток. Косвенные измерения удобно производить мультиметром — прибором, объединяющим функции омметра, вольтметра и амперметра.

В ситуациях, когда ток слишком высок для того, чтобы измерить его стандартным прибором, используют шунтирование. Самый дешёвый и простой способ — параллельное присоединение к участку резистора с омметром. Применение для измерений трансформатора тока добавляет важное преимущество, заключающееся в создании гальванической развязки между измерительным прибором и схемой, в которой измеряется ток. Но в этом случае анализ возможен только для переменного тока.

Измерения тока на реальных схемах выполняются в большинстве случаев для двух целей. Основная задача замеров — контроль за питанием. Вторая функция анализа токов заключается в определении неисправностей или превышения допустимого ампеража.

Очень важен выбор правильной технологии снятия показаний, чтобы компоненты контрольного оборудования способны были должным образом работать в пиковых и аварийных режимах. Современное развитие цифровой и компьютерной техники значительно расширило возможности точного измерения и исследования токов косвенными методами, а полупроводниковые технологии недалёкого будущего обещают дозировать электричество с точностью до единичного заряда.

Блок питания 12 Вольт 3 Ампера и небольшой «допилинг»

Увидел я на сайте Чайнабея данный блок питания и захотелось мне с ним познакомиться поближе. А так как данный блок питания мне предоставили в итоге бесплатно, то не поэкспериментировать над ним было бы кощунством, в общем продолжение под катом.

Ну в общем заказал я данный блок питания, долго, коротко ли ползал он где то почтой Китая, но в итоге дополз до моего рабочего стола.

Пришел он в стандартном желтом конверте, в общем стандартные бла-бла-бла, фото под спойлером.

Фото как это пришло

Стандартный желтый конверт, внутри стандартный белый коробок.

Внутри стандартного белого коробка собственно герой обзора. Такой весь из себя сияет, ничего, посмотрим что будет дальше. 🙂

На торце указаны технические характеристики.

Характеристики меня немного запутали, обычно или указывают полный диапазон, или если есть выбор 110/220, то соответственно есть переключатель и внутри схема сетевого выпрямителя с переключением на удвоение. Здесь никакого переключателя не было. Позже посмотрим внимательнее что внутри.

Размеры относительно небольшие.

С торца расположены клеммы подключения 220 Вольт, клемма заземления и клеммы выхода 12 Вольт. Так же здесь расположен светодиод, который показывает наличие выходного напряжения и подстроечный резистор для корректировки выходного напряжения.

После вскрытия моему взору предстала печатная плата данного блока питания.
На плате распаян полноценный входной фильтр, конденсатор 33мкФ 400 В (вполне нормально для заявленной мощности), высоковольтная часть, сделанная по схемотехнике автогенератора (когда заказывал, то надеялся что будет стандартная UC3842), выходной фильтр из двух конденсаторов 470мкФ 25 Вольт и дросселя. Емкость выходного фильтра маловата, я бы поставил раза в 2 больше.

Силовой транзистор 5N60D — www.icemostech.com/ice/superjunction/ICE5N60D20140221Rev2.pdf только в корпусе ТО-220.
Выходной диод — stps20h200ct — datasheet.octopart.com/STPS20h200CT-STMicroelectronics-datasheet-10413158.pdf аналогично в корпусе ТО-220.
Схема стабилизации и обратной связи сделана на TL431.

Обратная сторона платы.

Ничего необычного, пайка среднего качества, флюс смыт, довольно аккуратно.
Но удивила маркировка на плате (она есть и с верхней стороны).
SM-24W, может изначально БП был 24 Ватта, потом решили что маловато будет и написали 36?
Эксперименты покажут.

Первое включение, ничего не бахнуло, уже неплохо.

Нагрузил блок питания классическими неубиваемыми советскими резисторами, 10 Ом 2 штуки параллельно.
Ток около 2.5 Ампера.

Напряжение мерял после проводов к резисторам, потому немного просело.
Оставил так, пошел попить чайку и покурить, ждал что рванет.
Не рвануло, даже почти не нагрелось, градусов 40, ну может 45, специально не мерял, по ощущениям немного теплый.

Догрузил еще на 0.22 А (не нашел ничего рядом подходящего), ничего не изменилось.

Решил на этом не останавливаться и повесил на выход еще один резистор 10 Ом.
Напряжение просело до 10.05 Вольта, но блок питания продолжал упорно работать.

Дальше мне стало жалко разработчиков данного блока питания, сумевших настолько его упростить, и при этом добиться его работоспособности и я на этом этапе решил закончить стандартные эксперименты над ним.
К слову я был настроен скептически по отношению к данному блоку питания, в основном из-за его схемотехники, как то вот привык работать с более дорогими блоками питания, где есть ШИМ контроллер, контроль тока и т.п. Практика показала, что такой вариант тоже вполне жизнеспособен.

Дальше я решил перейти к нестандартной части испытаний и попробовать добиться от него того, для чего я хотел его взять. Собственно постоянные читатели моих обзоров привыкли, что я люблю не только показать товар в обзоре, а и применить его, не буду вас расстраивать и в этот раз.

Допилинг

Началось все с того, что позвонил товарищ и спросил, можно ли сделать небольшой бесперебойничек для питания электромагнитного замка и контроллера. Живет он в частном секторе, свет иногда ненадолго, да пропадет. Аккумулятор у него уже был, остался от компьютерного бесперебойника, большой ток уже не тянет, а с замком вполне нормально справляется.

В общем накидал небольшую добавочную платку к этому блоку питания.

Платка, схема и небольшое описание процесса.

Схема.

И страссированная по ней плата.

Схема обеспечивает ограничение тока заряда (в моем случае настроено на 400мА), защиту от переразряда аккумулятора (настроено на 10 Вольт), простенькую защиту от переполюсовки аккумулятора (кроме случая если переполюсовать прямо на ходу), ну и собственно функцию подачи напряжения от аккумулятора на выход блока питания.

Перенес платку на текстолит, покрыл припоем…

Подобрал детали.

Спаял плату, реле стоит другое, так как сначала не заметил что оно на 5 Вольт, пришлось поискать на 12.

Пояснения по схеме.
С2 в принципе можно не ставить, тогда R5 и R6 заменяются одним на 9.1к.
Он нужен для уменьшения ложных срабатываний при резком изменении нагрузки.

В идеале конечно лучше было бы домотать пару витков в дополнение ко вторичной обмотке, так как блок питания работает с перегрузом по напряжению в 20%. Испытания показали что работает все отлично, но лучше либо домотать немного вторичку, либо еще лучше — дорабатывать БП на 15 Вольт, а не на 12. В моем случае пришлось еще изменить номинал резистора в делителе обратной связи у блока питания, на схеме это R7, там стоят 4.7 КОм, я поставил 4.3 КОм, в случае применения БП на 15 Вольт, этого скорее всего делать не придется.

После сборки платы встроил ее в блок питания.
На плате обозначены точки подключения и видно место, где перерезана минусовая дорожка (над цифрой 3).

Плату обмотал скотчем, и уложил на более-менее свободное место.

После (на самом деле лучше до того как изолируем скотчем) выставил выходное напряжение блока питания 13.8 Вольта (это напряжение которое будет поддерживаться на аккумуляторе, обычно выставляется в диапазоне 13.8-13.85.

Вот вид собранного и настроенного устройства.

Подключил небольшую нагрузку и аккумулятор. Ток заряда 0.39А (может немного падать по мере прогрева).

Отключил блок питания от сети, нагрузка продолжает работать, на мультиметре ток нагрузки +ток потребления реле + ток потребления цепей измерения.

Товарищу надо было бесперебойник на ток 0.8-1 Ампер, я нагрузил немного больше.

После этого подключил питания 220 Вольт, на одном мультиметре напряжение на нагрузке (будет еще подниматься, аккумулятор не заряжен), на втором ток заряда (немного просел из-за прогрева).

В общем на мой взгляд переделка удалась, от такого БП можно питать небольшие нагрузки, до 1-1.5 Ампера. Больше не стал бы, так как БП в нештатном режиме. Если использовать БП на 15 Вольт, то ток можно поднять, но надо всегда учитывать ток заряда аккумулятора (он определяется резистором R1. 1.6 Ома дает тока заряда около 0.4 А, чем меньше сопротивление, тем больше ток и наоборот.
Переделать так можно и более мощные БП, надо заменить только реле и мощный диод на плате.
Если кто то несогласен с настроенным током заряда, напряжением окончания заряда и авто отключения, то это все легко меняется, если надо, объясню как это сделать.

Работает данный БП уже неделю без никаких проблем (клеммы на провод к аккумулятору товарищ припаивал уже сам), надеюсь что данная переделка будет кому нибудь интересна, вопросы и замечания по схеме, конструкции и печатной плате приветствуются.
Да, я знаю что есть менвелловские БП с функцией бесперебойника (и даже успешно их использую), но они стоят около 30 баксов, а здесь недорогой БП (может даже есть уже в наличии) и комплект деталей стоимостью меньше бакса.

Резюме.
Плюсы
Он работает.
Характеристики вполне соответствуют заявленным.
Качество сборки вполне приемлемое

Минусы.
Клеммник довольно неудобный, залуженный провод 0.75 лезет с трудом.
Не помешал бы варистор после предохранителя, но это я уже придираюсь, хорошо что фильтр по входу поставили.
Конденсаторы на выходе весьма неважные, я бы заменил, но если нагружать не по максимуму, то вполне пройдут.

Мое мнение, блок питания вполне нормальный, подойдет для питания всяких светодиодных лент и видеокамер, электрозамков и т.п.
Данный товар был предоставлен мне бесплатно для теста и обзора магазином chinabuye.

Джоуль единица измерения — Справочник химика 21

    Количество теплоты, подводимой (или отводимой) к произвольной массе вещества, обозначают Qt, а удельное количество теплоты, отнесенное к единице массы вещества, — (/. Теплоту в системе СИ измеряют в джоулях (Дж), килоджоулях (кДж) допускаются и такие единицы измерения, как калория и килокалория (ккал). [c.25]

    Единицами измерения количества теплоты служат джоуль и калория (ГОСТ 8550—57). В практике расчетов необходимо различать малые калории (кал) и большие калории, или килокалории (ккал). Одна малая калория представляет собой количество тепла, которое необходимо для нагревания 1 г, а ккал — 1 кг воды на 1 (с 19,5 до 20,5° С) при нормальном атмосферном давлении. [c.21]


    Джоуль (Дж)—единица измерения всех видов энергии и работы в Международной системе единиц СИ. Он равен работе силы в 1 Н на пути в 1 м. [c.23]

    Необходимо условиться относительно единицы измерения количества теплоты. В настоящее время за единицу количества теплоты принят джоуль, который равен работе, производимой силой в 1 ньютон при перемещении точки ее приложения на 1 -метр по направлению этой силы. С другой стороны, джоуль можно охарактеризовать как работу, совершаемую электрическим током мощностью в 1 ватт в течение 1 с. Наконец, следует отметить, еще одно определение джоуля, связанное непосредственно с представлением о количестве теплоты. Джоуль — это такое количество теплоты, которое необходимо для нагревания 1/4,186 г воды на ГС в интервале температур от 14,65 до 15,65°С. Последнее определение иллюстрирует взаимосвязь джоуля с калорией, которая в настоящее время для определения количества теплоты не рекомендуется. Следовательно, единицей теплоемкости для принятой единицы количества вещества является Дж/К. [c.29]

    Соотношения между единицами энергии. При вычислении термодинамических свойств веществ на основании использования экспериментальных результатов спектроскопических, калориметрических, масс-спектрометрических и иных исследований приходится иметь дело с количествами энергии, выраженными в различных единицах. Традиционной единицей измерения энергии при калориметрических исследованиях является калория, в то время как традиционными единицами энергии при спектроскопических исследованиях — обратный сантиметр, а при масс-спектрометрических исследованиях — электрон-вольт. В механике издавна укоренились в качестве основных единиц энергии эрг и джоуль = 10 эрг. Однако если соотношения между обратным сантиметром и эргом и электронвольтом и эргом определяются лишь значениями основных физических постоянных, так как [c.956]

    В данной книге в качестве единицы измерения теплоты используется только джоуль, однако следует знать и о калории, поскольку в старой литературе повсеместно используется именно калория. Калория приблизительно вчетверо больше джоуля 1 кал = 4,184 Дж. Теплоты реакций для молярных количеств веществ обычно имеют порядок килоджоулей (кДж) или килокалорий (ккал) 1 кДж = 1000 Дж и 1 ккал = 1000 кал. [c.89]

    Обозначения единиц, происходящих от имен собственных, начинаются с прописной буквы. Например, А — ампер, К — кельвин, Дж — джоуль. Единицы измерения, выражающие произведение двух других единиц, представляют знаком умножения, например Н м, Дж с. Единицы измерения, как частное от деления двух другах единиц, могут быть представлены любым из способов м/с, [c.6]

    Ранее вы уже встречались с единицей измерения под названием джоуль при измерении количества энергии. При рассмотрении энергоемкости пищевых продуктов мы используем понятие калория вовсе не для того, чтобы сбить вас с толку. Энергию измеряли в калориях во всех случаях до тех пор, пока не была введена метрическая систсма мер СИ. В принципе энергоемкость продуктов питания можно считать и в джоулях, поскольку [c.240]

    В СИ предусматривается одна и та же единица — джоуль для измерения всех видов анергии, в том числе тепловой. Это устраняет необходимость введения в расчетные формулы дополнительных множителей для пересчета единиц измерения различных видов энергии. Если же тепловая энергия измеряется в ккал, то для перехода к единицам СИ или МКГСС в расчетные формулы вводится делитель А (термический эквивалент работы), равитга количеству тепла, которое соответствует данной единице работы (дж или кгс-м)  [c.34]

    Джоуль является очень удобной единицей измерения теплоты, так как с его помощью легко понять связь между теплотой, работой-и энергией. До введения системы СИ в химии было принято пользоваться в качестве единицы измерения теплоты калорией. Одна калория (кал) определяется как количество теплоты, необходимое для повышения температуры 1 г чистой воды на 1″С (точнее от 14,5 до 15,5″»С). Это определение основано на измерениях теплоты и непосредственно не связано с работой. Дело в том, что калория была введена в XIX столетии, когда еще не было известно, что теплота и работа являются различными формами энергии. [c.88]

    Работу также измеряют в джоулях (система СИ) применяется и другая единица измерения — килограмм-сила-метр (кгс-м) [c.25]

    Этот переход происходит в строго эквивалентной (равной) мере, хотя исторически сложилось так, что каждой форме энергии соответствуют свои единицы измерения. В настоящее время за общую единицу энергии принят джоуль. В этих единицах измеряется также работа теплоту чаще принято измерять в калориях. [c.13]

    Чтобы получить представление о величине джоуля, укажем, что бейсбольный мяч массой около 150 г, летящий после подачи со скоростью около 150 км ч (40 м с ), обладает кинетической энергией в 120 Дж. Широко распространенная в прошлом единица измерения тепла-калория (кал)-приблизительно в четыре раза больше джоуля (точнее, 1 кал = = 4,184 Дж). [c.101]

    Единица измерения работы — Джоуль (1 Дж=1 Н-м). Энергию и работу измеряют в одних и тех же единицах. [c.212]


    Стандартная энтропия чистых веществ относится к 1 моль вещества при р=101 кПа и определенной температуре, чаще 298 К. Она обозначается 5 . Единица измерения энтропии — джоуль на моль-кельвин (Дж/(моль-К). [c.98]

    Традиционной единицей измерения теплоты, работы и энергии является калория, которая вводится эмпирически как количество теплоты, необходимое для повышения температуры одного грамма воды на один градус Кельвина (в системе СИ просто на 1 кельвин). Хотя, согласно термодинамике, теплота, энергия и работа эквивалентные величины, единица их измерения-калория-не связана очевидным образом с массой и ускорением. Такой выбор единиц затрудняет понимание физической связи между ними. Джоуль как единица измерения теплоты гораздо удобнее в том отношении, что позволяет видеть связь между теплотой, работой и энергией уже по самому своему определению. Хотя большая часть термодинамической литературы основана на использовании калории, логическая простота определения джоуля должна в конце концов обеспечить его повсеместное использование, подобно тому как литр и метр вытеснили галлон и ярд в большинстве передовых стран мира. [c.443]

    Тепловые единицы. Единицей измерения тепла, как и любого другого вида энергии, в СИ является джоуль (Дж). [c.22]

    Бк=2,703-10″» Ки 1 мКи = 37 МБк. Единицей измерения энергии ионизирующих излучений, как и любого вида энергии, в Международной системе (СИ) является джоуль (Дж). [c.58]

    Обмен энергией между системой и внешней средой может осушествляться в различных формах тепловая, механическая, электрическая энергия, энергия излучения могут превращаться друг в друга. В превращениях, происходящих в ходе химических реакций, участвуют, как правило, тепловая энергия О и механическая (или работа А). Единица измерения энергии — джоуль (Дж). [c.90]

    Следует отметить, что в системах тепловых единиц СИ, МКС °К МКС °С единицей измерения количества теплоты является джоуль, а не калория между этими единицами узаконено следующее соотношение 1 межд. кал=4,1868 дж 1 межд. кк гл= 1/859,845 абс. квт. ч. Аналогично и единицей измерения теплового потока служит ватт, вместо калории в секунду. [c.578]

    Единицей измерения разности потенциальной энергии электронов в двух различных точках пространства является вольт. Для того чтобы между двумя точками пространства возник электрический ток, между ними должно существовать некоторое напряжение. Для определения напряжения электрического поля используется механический эквивалент потенциальной энергии, единицей измерения которого является джоуль эта единица энергии измеряется работой, которую необходимо выполнить, чтобы на пути длиной 1 м придать телу массой 1 кг ускорение 1 м/с . Вольт представляет собой напряжение между двумя точками электрического поля, при перемещении между которыми заряда в 1 Кл выполняется работа в [c.285]

    В системе СИ производной единицей энергии является джоуль (Дж). Однако в спектроскопии традиционно используется электрон-вольт (эВ), так как джоуль является слишком большой величиной и его неудобно применять в качестве единицы измерения атомных [c.357]

    Справочник У. Д. Верятина и др. Термодинамические свойства неорганических веществ под редакцией А. П. Зефирова содержит для большого числа веществ значения теплот образования (АЯ , 293), энтропии (Згэз), параметров фазовых переходов, коэффициентов уравнений, выражающих температурную зависимость теплоемкости, давления насыщенного пара и изменения энергии Гиббса при реакциях образования (АСг . г), а также термодинамические свойства металлических сплавов. Данные приведены из разных источников. Наряду с этим приводятся характеристики кристаллической структуры веществ. Все величины, зависящие от единиц измерения энергии, выражены параллельно через джоули и термохимические калории.  [c.76]

    Согласно уравнению массоотдачи в форме (5.22), коэффициент р имеет размерность [Р] = [у]/[С] = кг/(м с)/(кг/м ) = м/с, и его физическое содержание соответствует массе целевого компонента, отдаваемой единичной поверхностью контакта фаз среде-носителю (или от среды) в единицу времени при разности концентраций на поверхности и в среде (С р — Сд), равной 1 кг/м . Коэффициент теплоотдачи а всегда имеет одинаковую размерность, поскольку причина переноса теплоты во всех случаях выражается только разностью температур, и различие здесь может быть только в принятых единицах измерения теплоты, температуры и времени джоули или калории, градусы Цельсия или Фаренгейта, секунды или часы. [c.358]

    Единица измерения тепловой энергии — джоуль (Дж). Тепловая энергия — наиболее известная форма энергии. Столь же. корошо известны м е х а н и ч е с к а я энергия и ее основные виды потенциальная и кинетическая. Экспериментально установлено, что механическая энергия может быть целиком превращена в такое же количество тепловой энергии. В термодинамике механическая энергия чаще всего расходуется на работу, которая измеряется произведением силы на путь ее действия (расстояние) или произведением давления на объем. В любом из этих случаев размерность работы одинакова, так как давление есть сила, приходящаяся на единицу площади. [c.36]

    Метрические единицы были впервые введены во Франции около 200 лет назад. В 1960 г. усовершенствованный вариант метрической системы был одобрен на международном уровне, и по первым буквам ее официального французского названия Le Systeme International d Unites (Международная система мер) она была названа системой СИ. Единицы СИ сейчас используются учеными во всем мире, включая Соединенные Штаты. Все единицы измерений в этой системе являются производными от семи основных величин и соответствующих единиц. О некоторых единицах системы СИ (таких, как грамм, градус Цельсия и секунда) вы, наверное, уже слышали и пользовались ими. Другие единицы системы СИ, необходимые при изучении химии (паскаль, джоуль и моль), могут быть для вас новыми. Их смысл выяснится по мере упоминания в книге. [c.15]

    Разумеется, равенство А и Q соблюдается при условии, что теплота и работа выражены в одних и тех же единицах измерения. Межг дународной системой (СИ) предусмотрено использование именно такой, общей для всех форм энергии, единицы — джоуля (Дж). [c.28]

    В системе единиц СИ единицей энергии (теплота, работа) является джоуль (Дж), равный работе силы в 1 ньютон (Н) на пути в 1 м, 1 Дж=1 Н-1 м. Другая важная единица измерения энергии— электронвольт/моль. Один эВ/моль равен энергии, приобретаемой Л/ элементарными электрическими зарядами (Л/д — постоянная Авогадро, е —заряд электрона) при л-охождении через поле с разностью потении алов 1В 1 эВ = 9б 487 Дж. [c.40]

    За единицу измерения полной теплоемкости в системе СИ принимают джоуль на фадус (Дж/фад), обозначают теплоемкость буквой С. [c.38]

    Энтропия тела (системы)—мера обесценения энергии — определяется как величина отношения количества тепла, полученного или отданного телом, к его средней абсолютной температуре. Единицами измерения являются джоуль на градус Кельвина дж/°К), килокалория на градус Кельвина (ккалГК) и т. д. [c.584]

    Обмен энергией между системой и внешней средой может осуществляться в различных формах тепловая, механическая, электрическая энергия, энергия излучения могут превращаться друг в друга В превращениях, про исходящих в ходе химических реакций, участвуют, как правило, тепловая энергия Q и механическая (или работа А) Единица измерения энергии — джоуль (Дж) Тепловая и механическая энергия—алгебраические величины Знаки величин Q к А в термодинамике рас сматрнваются по отношению к системе Энергия, получа емая системой, обозначается знаком + . отданная си схемой — знаком —  [c.90]

    В качестве предпочтительной в настоящее время принята Международная система единиц — СИ (System International — SI), базирующаяся на единицах длины I (м — метр), массы т кг — килограмм) и времени т (с — секунды) к ним примыкает единица температуры Т, t К — градус Кельвина «Кельвин»). Отсюда получаются производные размерности и единицы измерения (в принятой системе единиц), например для скорости w = = 1/х (м/с), силы Р = ml/z (кг-м/обычно используют квадратные скобки например, [т] = кг. [c.42]

    Работа, количество теплоты, энергия измеряются в джоулях (Дж). в технике применяют следующие единиць измерения теплоты — калория — это количество тепла, необходимого для нагрева 1 г воды на 1 градус Цельсия, и килокалория, равная 4,1868 Дж. Количество электричества — киловатт-час, равный 3,6 10 Дж. [c.291]

    Единицей измерения энергии в системе СИ является джоуль. Однако до сих пор наряду с джоулем широко используется внесистемная единица — калория (килокалория). Обратите внима- [c.61]


2017 Краска для ремонта Chevrolet Volt

Чтобы заказать подходящую краску для ретуши для вашего Chevrolet Volt 2017, вам понадобится цветовой код вашего автомобиля.

Щелкните здесь, чтобы увидеть изображение

с точным указанием местоположения кода краски, если вам нужна помощь в его поиске в автомобиле.

Чип Цвет Описание Цветовой код
Белый Олимпийский 50, 8624, ГАЗ, WA8624
Черный 41A, 8555, GBA, WA8555
Черный чайник Meet Metallic 384A, GB8, WA384A
Ты водишь меня Grazy Metallic 380A, GA6, WA380A
Нефритовый металлик 378A, GA1, WA378A
Switchblade Серебристый металлик 17, 636R, GAN, WA636R

Иди сюда, чтобы начать оформление заказа на окраску Chevrolet Volt 2017

Советы:

Чтобы ваш Chevrolet Volt 2017 снова выглядел как новый, воспользуйтесь этими хитростями и советами.

Удалите ржавчину перед нанесением краски

Тщательно удалите ржавчину на том месте, которое вы собираетесь красить на своем Volt. Лучший способ — использовать наждачная бумага (предпочтительно зернистость 180) или металлическая щетка. Если наждачная бумага на вашем Chevrolet создала царапины, удалите их наждачной бумагой с зернистостью 320.

Вы также можете использовать преобразователь ржавчины и нанести его на ржавые участки на вашей краске для ретуши Chevrolet Volt 2017.

Очистите поверхность краски для ретуши Chevrolet Volt 2017 перед нанесением краски

Перед нанесением краски для ретуши необходимо, чтобы рабочая зона была по возможности свободной или грязной и чистой.

Температура должна быть не менее 50 градусов, чтобы краска хорошо держалась. В холодную погоду поставьте автомобиль в гараж.

Очистите окрашиваемую область на вашем Chevrolet Volt неабразивной чистой тканью. Используя простое ведро с водой и мылом для удаления грязи и других лишних материалов, которые не должны быть вкраплены в краску Chevrolet.

Если у вас есть остатки, которые трудно удалить, нанесите средство для удаления жира и воска.

Малярная лента, наклеенная вокруг пространства, которое будет подкрашиваться на вашей воле Volt Помогите защитить ваши ремонтные работы от кровотечения в окружающую область, которая уже выглядит хорошо.

Подтвердите точность вашей краски для ретуши Chevrolet Volt 2017, цветовой код

Перед заказом краски еще раз проверьте код краски для вашей краски для ретуши Chevrolet Volt 2017. Не делайте ошибки, полагая, что вы знаете правильный код. Цвета краски, используемые производителями, часто имеют похожий вид и названия, но требуют другого кода краски.Цвета цветного чипа Отображаемые на этой странице могут отличаться в зависимости от устройства или компьютера, которые вы используете, и его видеовозможностей.

Идентификационный номер вашего автомобиля («VIN») не используется для определения кода краски. Используйте ссылку, показанную выше если вам нужна помощь в подтверждении правильного цветового кода для вашей покупки.

Иди сюда, чтобы начать оформление заказа на окраску Chevrolet Volt 2017 года


Chevrolet | General Motors | Заявление о конфиденциальности

© Copyright 2007-2021 Все права защищены.

Chevy, Chevrolet и соответствующие логотипы и названия являются товарными знаками General Motors:
300 Центр Возрождения
Детройт, Мичиган 48265

Chevy Touch Up Paint — официальный авторизованный партнер ведущих продавцов авторемонтных красок.

Volt Racing Acid Yellow для Ford Mustang GT4 Paint — 30 мл | ZP-1666

Категории ›Краски подобранного цвета› Кислотно-желтый Volt Racing для Ford Mustang GT4 Paint — 30 мл


Volt Racing Acid Yellow для Ford Mustang GT4 Paint — 30 мл

они были предварительно разбавлены и подготовлены для аэрографии.

Для получения дополнительной информации об использовании красок с нулевым согласованием цвета, пожалуйста, прочтите руководство по применению здесь


All Zero Paint сохнет матово и требует нанесения лака, если не указано иное

Примечания по применению: Краски Zero Paint предварительно разбавлены для использования с аэрографом. Встряхивайте емкость до тех пор, пока краска полностью не перемешается. Распыление при 15-40 фунт / кв. Дюйм,
Рекомендуется 3-4 средних слоя.Сушка на воздухе при 20 ° C. Без пыли: 5-10 мин., Без отлипа: 20-30 мин.
Для дополнительного разбавления используйте разбавители для базовых покрытий.

Какой очиститель аэрографа мне следует использовать? Вы можете использовать либо очиститель для аэрографа Zero Paints, либо разбавители для базовых покрытий, в качестве альтернативы подойдут любые разбавители, содержащие толуол, но лучше сначала протестировать. НЕ используйте разбавители White Spirt или Acrylic Thinners, они не подходят.

Примечания по охране здоровья и безопасности:

Вредно при вдыхании.Раздражает глаза. Хранить вдали от источников возгорания. НЕ КУРИТЬ. Избегать попадания на кожу и глаза. В случае попадания в глаза немедленно промыть большим количеством воды и обратиться к врачу. Наденьте подходящие перчатки. Используйте в хорошо вентилируемом помещении. Храните в недоступном для детей месте. Пожалуйста, загрузите паспорта безопасности материалов здесь ->



Люди, которые купили это, также купили эти:

Chevrolet Volt Touch Up Paint & Chip Repair Kit

Гарантия 100% соответствия цвета
Выберите производителя

или производителя

Выберите модель

Выберите модель

Набор для ретуши со 100% совпадением цветов для вашего Chevrolet Volt.

Чувственные линии, динамичный профиль, скульптурные боковые стороны и новая фирменная светодиодная подсветка … Chevrolet Volt с первого взгляда соблазняет вас стилем.

Гарантия соответствия цвета краски для всех марок и моделей

Безупречные профессиональные результаты благодаря высококачественным решениям для смешивания и полировки

Понятные, простые и удобные инструкции

Комплект принадлежностей

Три размера на выбор

Проблема каменной крошки и дорожной сыпи

Дорожная сыпь — это повреждение, которое каменные осколки и песок наносят транспортным средствам, когда они взлетают с дороги и ударяются о кузов, оставляя неприятную сыпь в виде царапин от краски.

Что такое краска Chipex Chevrolet Volt для ретуши?

Chipex Chevrolet Volt Touch up Paint — наиболее эффективное и доступное средство от дорожной сыпи на рынке.

Таблица цветов Chevrolet Volt

Найдите код цвета краски для вашего Chevrolet Volt по году выпуска вашего автомобиля и введите его в наш инструмент поиска цветовых кодов краски для ретуширования, чтобы найти идеальное соответствие цвета краски Chipex.

Почему Chipex ™ лучше традиционных методов?

Chipex предлагает уникальную гарантию соответствия цвета за счет синхронизации предоставляемой краски с цветовым кодом вашего автомобиля.
Chipex ™ идеально подходит для людей с меньшим опытом работы в домашних условиях благодаря четким инструкциям, готовой к нанесению краске и полному набору аксессуаров, включенных в каждый набор. Бесшовная, потрясающая поверхность
Chipex ™ устраняет царапины от краски и отпадает необходимость в полной повторной окраске.
Ремонт, проводимый профессиональными компаниями по устранению царапин, намного дороже, чем Chipex, но не более эффективен.

Как использовать автомобильную краску для ретуши

Узнайте больше о том, как использовать краску для ретуши для Chevrolet Volt

Купить сейчас

Используйте стрелки влево / вправо для навигации по слайд-шоу или проведите пальцем влево / вправо при использовании мобильного устройства

3M Chevrolet Volt 2016 Clear бюстгальтер Precut комплект защитной пленки для краски

Это прозрачный бюстгальтер, который вы хотите на своем Chevrolet Volt

Непревзойденная точность и материалы профессионального уровня.

Этот прозрачный комплект для защиты краски бюстгальтера для вашего Chevrolet Volt — лучшее вложение, которое вы можете сделать, чтобы защитить краску от сколов и камней.

Что делает этот прозрачный комплект бюстгальтера лучшим?

Все .

Лучшая защитная пленка, которую можно купить за деньги

Пленка 3M Scotchgard широко считается лучшей пленкой для этого применения, но знаете ли вы, что защитная пленка Scotchgard бывает нескольких классов?

Кроме того, на глаз практически невозможно отличить высший сорт пленки Scotchgard от низшего.

В компании Paint Protection Guys мы используем наивысший доступный сорт — 3M Scotchgard PRO Series . Это то, что вам нужно в машине.

Специальная прецизионная резка на нашей первоклассной машине для легкой установки

Нет ничего более неприятного, чем невозможность установить комплект для защиты от краски после ожидания его доставки по почте.

Вот как сделать так, чтобы этого не произошло:

Мы используем ту же базу данных прозрачных выкроек автомобильных бюстгальтеров, что и у местных дилеров и розничных установщиков.

Наш резак для пленки имеет точность до 0,1 мм, и в результате наши комплекты для точной резки получают массу похвал и довольных клиентов.

Бесплатная приоритетная доставка в США и Канаду

Бесплатная и быстрая доставка по США и Канаде.

Стандарт поставки:

3-4 рабочих дня в США
2-8 рабочих дней в Канаде
10-14 рабочих дней по всему миру

Что внутри:

1. Прозрачный автомобильный бюстгальтер Chevrolet Volt
2.Ракель аппликатора
3. Руководство по установке

Поставляется в усиленной жесткой трубке.

Предназначен для:

Год Марка Модель Накладка
2016 Шевроле Вольт LT Хэтчбек 4 двери
2016 Шевроле Вольт LTZ хэтчбек 4 двери
2016 Шевроле Вольт Премьер Хэтчбек 4-дверный
2017 Шевроле Вольт LT Хэтчбек 4 двери
2017 Шевроле Вольт Премьер Хэтчбек 4-дверный

Варианты цвета краски Chevy Bolt 2019 и Chevy Volt 2019

Варианты цвета краски Chevy Bolt 2019 и Chevy Volt 2019

Chevy имеет несколько вариаций гибридных моделей на рынке, но единственными двумя моделями Chevrolet, которые в настоящее время могут иметь хоть какое-то электрическое вождение, являются Chevy Bolt EV 2019 года и Chevy Volt PHEV 2019 года.

Сегодня мы рассмотрим разнообразие стилей моделей Bolt и Volt. Вот варианты расцветки Chevy Bolt 2019 года и Chevy Volt 2019 года!

Цвета кузова Chevy Bolt EV 2019

Красный оттенок Cajun

Зеленый туман металлик

Кинетический синий металлик

Мозаика Черный металлик

Темно-серый металлик

Удар

Серебристый ледяной металлик

Серый сланцевый металлик

Белый саммит

Chevy Bolt EV 2019 доступен в следующих цветах:

  • Красный оттенок Cajun
  • Зеленый туман металлик
  • кинетический синий металлик
  • Мозаика Черный металлик
  • Темно-серый металлик
  • Амортизатор
  • Серебристый ледяной металлик
  • Серый сланцевый металлик
  • Белый саммит

Цвета кузова Chevy Volt PHEV 2019

Красный оттенок Cajun

Зеленый туман металлик

Трико с переливающимся жемчугом

Мозаика Черный металлик

Тихоокеанский синий металлик

Сталь сатинированный металлик

Серебристый ледяной металлик

Белый саммит

Chevy Volt PHEV доступен в следующих цветах:

  • Красный оттенок Cajun
  • Зеленый туман металлик
  • Трикотаж с перламутровым эффектом
  • Мозаика Черный металлик
  • Тихоокеанский синий металлик
  • Сатин Сталь Металлик
  • Серебристый ледяной металлик
  • Белый саммит

Тест-драйв Chevy EV или PHEV в Нэшвилле, TN

Если вы хотите узнать больше о Chevy Bolt EV 2019 года или подключаемой гибридной модели Chevy Volt 2019 года, приходите к нам в дилерский центр Carl Black Nashville.Мы можем провести для вас экскурсию по любой модели Chevy на нашем складе и позволить вам испытать вашу выбранную модель, чтобы проверить, подходит ли она. Вы можете связаться с персоналом Carl Black Nashville через Интернет, по телефону или посетив наш дилерский центр, расположенный в Нэшвилле, штат Теннесси.

Сайт столкновения

GM включает коды окраски для ретуши, модели 2017 года, обновленные позиции — и видео-имитацию запчастей для вторичного рынка

Сайт столкновения GM включает коды окраски для ретуши, модели 2017 года, обновленные позиции и видео-имитацию запчастей для вторичного рынка
Джон Хюттер на
Деловая практика | Образование | Ремонтные работы | Технология

На веб-сайте оригинальных запчастей GM теперь есть руководства по ремонту кузовов для многих моделей 2017 года, коды подкраски, пересмотренные положения и, на десерт, шутливое видео, высмеивающее запасные части.

Базу данных цветовых кодов подкраски можно найти здесь. GM написала в пресс-релизе от 11 августа, что у него есть загруженные коды и упрощенный процесс поиска.

В мае менеджер по продажам оптовых дилеров General Motors Джон Эк сообщил аудитории Гильдии 21, что на сайте www.genuinegmparts.com скоро появится полный раздел с кодами краски, «то, в чем мы отчаянно нуждаемся в течение многих лет».

Коды, доступные сегодня, относятся к 1982 году (хотя только для Chevrolet S-10 и GMC S-15), и коды для двух цветов Chevrolet Volt 2017 года уже включены.Вы также можете увидеть, как отдел маркетинга сохранил цвета краски: указанная краска Chevy S-10 — «ярко-красная», а коды Chevy Volt включают такие вещи, как «You Drive Me Crazy Met».

Eck также в мае дразнил некоторые предстоящие заявления о позиции, а GM описал свои новые или пересмотренные заявления 11 августа как:

  • Рекомендует использовать новые оригинальные запчасти GM для ремонта структурных компонентов и деталей, а не утилизировать детали. Утилизированные детали поврежденных автомобилей могут не обеспечивать такой же ударопрочность, ремонтопригодность и защиту от коррозии.…
  • Предупреждает против «обрезки», практики разрезания и разделения двух автомобилей на части для ремонта при столкновении. Обрезка аннулирует Ограниченную гарантию GM на новые автомобили для каждой детали, участвующей в «зажиме», и может нарушить конструктивную целостность автомобиля.

GM также пересмотрела свое заявление о регулировке углов установки колес и добавила новые годы выпуска к своим позициям на ковриках (которые могут мешать педалям газа и тормоза) и повторной окраске алюминиевых колес. Не пропустите ни одну из них, особенно вырезки, запасные части и бумаги для выравнивания, поскольку они, кажется, привлекли наибольшее внимание.

OEM описал еще одно заявление, которое «напоминает потребителям и предприятиям, что имитация и контрафактные детали не покрываются заводской передаваемой гарантией GM, а также смежные детали и системы, которые выходят из строя из-за использования имитационных деталей». Нам не удалось найти этого на сайте, но это, безусловно, правда.

Хотя установка запасной части не аннулирует гарантию на автомобиль в соответствии с законом Магнусона-Мосса, OEM-производитель может аннулировать гарантию, если не-OEM-часть влияет на что-то еще.

GM сделал более юмористический снимок таких запасных частей сторонних производителей в новом видео, доступном на домашней странице сайта. В «Заменах» (см. Здесь) мужчина заменяет свою сбежавшую собаку кинкаджу, и за этим следуют махинации.

«Заменить вашего питомца диким экзотическим животным можно сравнить с установкой в ​​ваш автомобиль запасных частей оригинального оборудования без ГМО», — пишет GM на сайте. «Потеря сна, потеря ключей, поиск в постели недоеденных фруктов каждое утро — жизнь просто не будет такой, как раньше.”

Нажмите на изображение ниже, чтобы посмотреть видео:

«Это забавное видео об очень серьезной проблеме — потенциальном риске для наших клиентов, если на их автомобили будут установлены непроверенные листы и другие детали, которые могут столкнуться с препятствиями», — говорится в заявлении Экка 11 августа. магазин, уверенный, что их автомобиль был отремонтирован до аварийного состояния с использованием правильных процедур, деталей, процессов и проверок качества ».

Дополнительная информация:

Сайт оригинальных запчастей GM

Подлинные запчасти GM Поиск кода краски

Заявление о позиции GM

Видео «Замены»

Изображений:

General Motors заявила, что полностью обновила свою базу данных кодов окраски.Интерфейс показан на этом снимке экрана. (Скриншот с сайта www.genuineparts.com)

General Motors предоставила этот кадр из своего видео «The Replacements», в котором издеваются над послепродажными версиями деталей GM для столкновения. (Предоставлено General Motors)

Поделиться:

Связанные

Виридий Джоуль выбран победителем конкурса красок Chevy Volt

Chevrolet Volt 2011 года в цвете Viridian Joule — Щелкните выше, чтобы увидеть галерею изображений в высоком разрешении


Голоса поданы, подсчеты подведены и победитель определен: Виридианский Джоуль. будет официальным названием серебристо-зеленого оттенка, как видно на множестве Маркетинговый материал Chevy Volt за последнее десятилетие или около того.Итак, что означает виридианский джоуль? Мы позволим самому победителю, 40-летнему Дэвиду Томасу из Сэнфорда, штат Флорида, объяснить:

Я посмотрел на фото Volt на сайте конкурса и подумал, что он выглядит изумрудно по цвету, что привело к драгоценному камню, а затем к альтернативной, но подходящей игре с этим словом — джоуль.

Нам нужна была дополнительная помощь, поэтому мы нашли слово виридиан. Так говорит Dictionary.com: стойкий голубовато-зеленый пигмент, состоящий из гидратированного оксида хрома .Хорошо. Понять Джоуля было не так уж сложно, но вот определение: единица электрической энергии, равная работе, совершаемой при пропускании тока в один ампер через сопротивление в один ом за одну секунду . Итак, вот оно.

Хотите узнать больше? Щелкните за перерывом, чтобы прочитать официальный пресс-релиз, и просмотрите галерею изображений ниже, чтобы увидеть больше видов виридианского джоуля. Chevrolet Volt.


[Источник: Chevrolet]

ПРЕСС-РЕЛИЗ

Житель Флориды победил в конкурсе цветов краски Chevrolet Volt
Потребители выбирают «Виридианский джоуль» в качестве победителя в названии цвета

2009-12-01

o Победителя определили потребители
o Около 3 000 потребителей проголосовали за свое любимое имя
o «Виридиан Джоуль» возглавил всех финалистов в голосовании потребителей с ноября.16
o Победитель объявлен сегодня в Лос-Анджелесе

ЛОС-АНДЖЕЛЕС — Дэвид Томас, 40 лет, из Сэнфорда, штат Флорида, выиграл национальный конкурс Chevrolet на название свинцового цвета краски Volt и возможность стать первым потребителем, испытавшим тест-драйв предсерийный Volt. На сайте chevroletvoltage.com около 3000 человек проголосовали за «Виридиановый джоуль» Томаса. Голосование закончилось в 8 утра по восточному времени, и Chevrolet объявил победителя в Лос-Анджелесе.

«Я посмотрел на фотографию Volt на веб-сайте конкурса и подумал, что он выглядел изумрудно по цвету, что привело к драгоценному камню, а затем к альтернативной, но подходящей игре с этим словом — джоуль (единица электрической энергии)», сказал Томас.

Несмотря на то, что на протяжении всего конкурса между тремя финалистами была близкая борьба, «Виридианский Джоуль» лидировал на протяжении всего периода голосования с 16 ноября по 1 декабря. Chevrolet также выбрала «EV-ergreen», предложенный 30-летним Девином Маккуарри из Сан-Хосе, Калифорния, и «EnvironmentMINT», представленный 30-летним Мэтью Вальбуэной из Ранчо Санта-Маргарита, Калифорния, в качестве финалистов. Около 300 голосов отделили «Viridian Joule» от занявшей второе место «EnvironmentMINT».

Томас отправился в Лос-Анджелес и присоединился к двум финалистам из Калифорнии для объявления.

«Это был интересный способ заинтересовать энтузиастов Chevrolet и Volt, пригласив их в процесс и назвав наш основной цвет, а название отражает новаторство технологии расширенного диапазона Volt», — сказала Мария Рорер, Global Volt и Global Marketing Директор Chevrolet. «Когда наши маркетинговые материалы Volt поступят в дилерские центры, вы увидите« Виридиан Джоуль »как официальное название серебряного корпуса с изумрудным оттенком».

Компания Chevrolet сократила число имен почти 13 000 до трех финалистов, оценив их по оригинальности, креативности и способности передать новаторство и дух Volt.Около 27 000 человек — или половина всех посетителей www.chevroletvoltage.com в период с 22 октября по 4 ноября — представили название цвета.

Торговый представитель компании, занимающейся наградами и промоушенами в районе Орландо, Томас родом из Юго-Восточного Мичигана и имеет семейные связи с автомобильной промышленностью. Он представил несколько названий цветов, но «Виридианский джоуль» не был его первой записью.

Chevy Volt — электромобиль с увеличенным запасом хода. Он разработан, чтобы проехать до 40 миль на электричестве без использования бензина и выбросов выхлопных газов.Когда литий-ионная батарея Volt разряжена, двигатель / генератор плавно работает, чтобы увеличить общий пробег до 300 миль перед дозаправкой или остановкой для подзарядки батареи.

Ожидается, что производство Volt начнется в конце 2010 года.

Добавить комментарий

Ваш адрес email не будет опубликован.