Как сделать из 12 вольт 36 вольт: Преобразователь напряжения (бустер) из 24 в 36 вольт: продажа, цена в Москве. инверторы от «интернет-магазин Мотосамокат»

Содержание

Понижающий преобразователь напряжения с выходным током до 20А

Понадобился мне для одного из проектов мощный понижающий преобразователь напряжения и решил я его перед применением немного протестировать.
Небольшой осмотр, тесты, выводы.

На самом деле задача у меня была получить ток до 40А при напряжении 4.8-5 вольт, причем нагрузку можно разделять и можно использовать 2 преобразователя по 20А. Но рисковать заказывая сразу пару не очень хотелось и решил взять для начала на пробу один.

К слову, вообще это уже второй такой заказанный преобразователь, некоторое время назад я уже пытался его заказать, но прислали вариант на 10А и самое обидное то, что заметил я это уже когда прошли все сроки защит. Пришлось повторить заказ, но уже в другом магазине.

Упаковка простейшая, конверт и антистатический пакет, преобразователь компактный, размеры 60х52х28мм.

Заявленные параметры (со страницы товара)
Входное напряжение: от 6 В до 40 В постоянного тока (от 10 В до 40 в предлагается)

Выходное напряжение: 1,2 В до 36 В постоянного тока
Выходной ток: 20А (макс. ), 15А (рекомендуется)
Эффективность: 95% (24В до 12В, 20А)
Выходная пульсация: ≤ 50 мВ
Способ подключения: терминал
Защита от короткого замыкания: самовосстановление (не может долгое замыкание)
Размер: 60x53x27 мм/2,36×2,08×1,06″

Внешне выглядит относительно аккуратно, ничего не болтается, не висит, радиаторы прикручены небольшими винтиками, а не висят на выводах компонентов. Есть четыре крепежных отверстия.

1. Со стороны входа имеется винтовой клемник, выключатель и светодиод индикации включения. Выключатель коммутирует сигнал управления ШИМ контроллером, клемник так себе, какой-то «жиденький»
2. Со стороны выхода такой же терминал, рядом два подстроечных резистора для установки выходного напряжения и ограничения тока.

3. Входные конденсаторы 2шт 470мкФ 50 вольт
4. Выходные конденсаторы 3шт 270мкФ 35 вольт с закосом «под фирму», хотя вполне может статься что и оригинал, сложно так сказать.
5, 6. Преобразователь с синхронным выпрямлением, соответственно на радиаторах установлены два полевых транзистора, а не транзистор + диодная сборка. Транзисторы одинаковые — NCE8290, N-канальные, 82В 90А 8.5мОм, что в принципе даже неплохо.

Компоновка не сильно плотная, но тем не менее, не очень удачная, конденсаторы стоят впритирку к силовому дросселю, который в работе обычно довольно сильно греется.

ШИМ контроллер, операционный усилитель, шунт и остальная мелочь находится снизу платы.

Справа вверху виден ШИМ контроллер — LM25116, ниже шунт 4мОм и ОУ для усиления сигнала с него — LM321

Из ключевых особенностей ШИМ контроллера — синхронное выпрямление, встроенный драйвер с током до 3.5А, питание до 42 вольта, настраиваемое ограничение тока и выходное напряжение в диапазоне 1.21-36 вольт.

Если коротко, весьма интересный контроллер.

В даташите имеется схема типового включения, но собственно здесь ничего необычного, виден как контроллер, так и силовые транзисторы, а также токоизмерительный шунт. Отмечу что в даташите есть два примера включения и в обоих контроллер и силовая часть питаются от разных источников, у обозреваемого преобразователя источник один, что также допускается, но диапазон входного напряжения при этом ограничен максимальным для контроллера, т.е. 42 вольта.

В реальности с выходным напряжением все немного похуже.
1, 2. Если минимальное в общем-то соответствует заявленному, хотя без нагрузки и болтается в идапазоне примерно 1.24-1.45 вольта.

3. То вот максимально я смог получить только 30 вольт.
4. При том что на входе было установлены максимально заявленные в описании 40 вольт, так что это не ограничение из-за входного напряжения, а не совсем корректно рассчитанный делитель обратной связи.

Потребление вы выключенном состоянии практически нулевое. Во включенном, но без нагрузки в диапазоне 12-24 вольта ток около 20мА, но при входных 36 заметно поднимается и составляет уже 60мА. Измерение в данном случае грубое, но не думаю что это критично.

Ограничение тока работает, но минимум можно выставить только около 700мА, максимум что смог проверить, 12.2А, выше не стал поднимать, предохранители к мультиметру стоят дорого. При некоторых значениях тока преобразователь тихонько пищал.

Далее шла проверка точности поддержания напряжения при токах нагрузки от 5 до 20А. Для начала выставил на выходе 5 вольт.

И затем измерил выходное напряжение при токах 5, 10, 15 и 20А. Мультиметр был подключен к проводникам печатной платы под клеммником.
В диапазоне токов 0-20А просадка напряжения составила 0.12 вольта. Не скажу что это плохо, но при малых выходных напряжениях уже заметно.

Такая же проверка, но при выходном 12 вольт, входное было 24 вольта.
Сначала без нагрузки

Затем при токах 5, 10, 15 и 20А.
Имеем ту же разницу в 0.12 вольта, предположу что имеется проблема с корректностью разводки печатной платы.

Пока гонял преобразователь в разных режимах и делал фото для обзора, заметил что появился нагрев и был удивлен что температура довольно высокая, хотя не сказал бы что предварительные тесты заняли много времени.

Кроме того, обратил внимание на заметную зависимость КПД от входного напряжения, а точнее, от разницы вход/выход.
Для примера на входе 12 вольт, на выходе 5 вольт и ток 20А, при этом преобразователь потребляет 114.5Вт.

При 24 вольта по входу уже 117.3Вт, а если поднять входное до 36 вольт, то еще больше, 121.6Вт.
Т.е. при выходном 5 вольт 20А и изменении входного напряжения в диапазоне 12-36 вольт имеем от 114.5 до 121.6Вт.
В моем случае входное будет 10-14 вольт, потому все нормально, но возможно кому-то будет критично.

КПД измерялся в нескольких режимах, ниже три графика для выходного 5 вольт и входного 12, 24 и 36 вольт, по горизонтали ток нагрузки от 2.5 до 20А кратно 2.5А.

Результаты довольно грубые так как входная мощность оценивалась по показаниям блока питания, а значит влияло падение на проводах от него к преобразователю, думаю реально КПД примерно на 1% выше.

Здесь также три графика, но в других режимах, пара с выходным 12 вольт и входным 24 и 36 вольт, а также вариант с выходным 24 вольта и входным 36 вольт (верхний график).


Отмечу что в тесте 36-24 вольта был ток нагрузки 15А и соответственно выходная мощность почти 360Вт при максимальной заявленной 300Вт.

Как я писал ранее, преобразователь ощутимо греется, для проверки я провел тест при выходном напряжении 5 вольт, входном 12 вольт и токах нагрузки 10 и 15А. Отмечу что этот один из наиболее оптимальных режимов, в других нагрев может быть еще больше.
1. На момент начала теста преобразователь был уже немного прогрет.
2. Через 20 минут при токе 10А нагрев в пределах нормы.
3. Еще через 20 минут при токе 15А нагрев стал более заметным, максимальную температуру имел входной транзистор — 106 градусов.

По результатам теста рекомендую либо ограничивать выходной ток, либо подумать об активном охлаждении.

Пульсации.
В общих чертах очень даже неплохо, я как-то ожидал худшего.
Выходное напряжение 5 вольт, входное 12.
1. Без нагрузки
2, 3, 4. При токах 5, 10 и 20А

На самом деле в спектре пульсаций присутствовали «иголки», но так как тест производился с насадкой на измерительный щуп (1мкФ+0. 1мкФ), то их не видно.
Ниже осциллограмма с прямым включением щупа при токе 20А и соотношении вход выход 12-5.

Те же токи нагрузки, 5, 10 и 20А, но соотношение вход/выход другое, слева 30-5 вольт, справа 24-12 вольт.

Если присмотреться к вышеприведенным осциллограммам, то думаю можно заметить что «горизонт завален», т.е. каждый последующий импульс выше или ниже предыдущего.
Меня заинтересовал этот момент и я увеличил время развертки в итоге получив такую вот не очень приятную картинку. Видно что общий размах пульсаций около 80мВ, проявляется такое при выходном напряжении 12 вольт и выше, а также при токах около 15А и более, нижняя осциллограмма сделана при выходном напряжении 12 вольт, входном 24 вольта и токе 15А.

Под конец обзора сравнительное фото других преобразователей в том же формфакторе, посередине повышающий, справа понижающий, но на 10А. Думаю также написать небольшие обзоры, если кому-то интересно.

В качестве итогов скажу, что в общих чертах преобразователь работает, но есть довольно много замечаний.
1. Нагрев, более 15А с него длительно не снять без дополнительного охлаждения, но это указано в описании. Но даже 15А это уже работа близко к предельным значениям, особенно при большой разнице вход/выход.
2. Регулировка тока только от 0.7А

3. Выходное напряжение до 30 вольт при заявленных 36.
4. Входные конденсаторы низкого качества.
5. Клемники хилые, особенно под заявленные 20А.

Если коротко, то производитель взял в общем-то неплохую элементную базу, но в итоге получил средненький преобразователь, думаю что часть проблем кроется в ошибках трассировки.

На этом пока все, надеюсь что было полезно.

Светодиодные понижающие трансформаторы 220 — 12/24/36 вольт

Типы комплектующих:

Показаны первые 12 товаров из 17 штук.


Светодиодный понижающий трансформатор 12/24/36 вольт предназначен для подключения к бытовой электросети (220 вольт) светодиодных ламп и ленты, рассчитанных на пониженное напряжение (12V, 24V, 36V) постоянного или переменного тока.

Каждый из представленных светодиодных трансформаторов 220 — 12 обеспечивает стабильное выходное напряжение 12V, что гарантирует долгий срок службы подключённого светодиодного оборудования. Также имеется несколько моделей электромагнитных трансформаторов на 24 и 36 вольт.

Как определить нужную мощность понижающего трансформатора?

Выбрать трансформатор очень просто: сложите мощности всех низковольтных источников света, которые Вы собираетесь подключить к трансформатору, и к полученному числу добавьте 20%. В результате вы получите минимальную номинальную мощность необходимого светодиодного трансформатора.

Диапазон мощностей имеющихся у нас в продаже понижающих трансформаторов позволяет подобрать трансформатор для любого случая.

Понижающие трансформаторы 12 вольт. Разные виды и ракурсы.

Мы не рекомендуем производить установку трансформатора в местах с повышенной влажностью и/или температурой, например, в сауне или бассейне.

Зачем трансформатор, если проще установить лампы на 220 вольт?

Возможно, что и проще, но мы всегда рекомендуем по возможности устанавливать светодиодные лампы на 12 вольт в паре с 12-и вольтовым трансформатором постоянного тока.

Первичные затраты у Вас не увеличатся, так как лампы на 12 вольт стоят дешевле своих 220-и вольтовых аналогов, и эта разница покрывает цену трансформатора.

Но при этом Вы получаете существенный плюс — надёжность. Светодиодные лампы работают долго, но срок службы 12-и вольтовых светодиодных ламп, как правило, ещё больше, т.к. они дополнительно защищены (от электронных шумов и бросков напряжения в электросети) внешним мощным понижающим трансформатором.

Как купить?

В нашем интернет-магазине Вы можете выбрать и купить светодиодный понижающий трансформатор 220 — 12/24/36 вольт любой мощности от 12 до 500 ватт — просто положите нужную модель в корзину и оформите заказ.

Мы осуществляем доставку по России и СНГ.

42 Вольта вместо 12 — это нужно? Да это просто необходимо.

Даже современные автомобили, имеют бортовое напряжение в 12 вольт, пришедшее на транспорт с далёких 50 — 60 годов прошлого века. И всех водителей, да и производителей транспортных средств тоже, вроде бы этот привычный всем вольтаж устраивает. Но наверное многие водители замечали, что только стоит включить например подогрев сидений, или обычные фары, и тут же обороты холостого хода начинают падать. Тут всё довольно просто — необходимую мощность, которая требуется для нормальной работы электрических потребителей, можно получить только забрав её от двигателя. И не все водители знают, что для владельца автомобиля, такое превращение механической энергии в электрическую, выходит попросту говоря в выхлопную трубу, вместе с дополнительными литрами сожжённого топлива. И чем больше электропотребителей и мощнее они, тем больше топлива сжигается, сжигая деньги владельца.

Скажу более точно: на каждые сто ватт электрической энергии, расход топлива увеличивается на 170 грамм (миллилитров). Нетрудно подсчитать, сколько лишнего топлива сожрёт ваша машина или мотоцикл, если нашпиговать их например автозвуком, мощностью в 500 или 1000 ватт. И я знаю, что многие рассмеются в лицо и с удовольствием согласятся жечь лишний бензин или соляру, лишь бы слушать качественную и громкую музыку — я и сам такой. Но цель этой статьи в другом.

Начнём с того, что если всего лишь сэкономить какие то жалкие 100 ват электроэнергии, то конструкторам можно будет снизить вес автомобиля аж на 50 килограмм !!! Я имею в виду ватты, которые автомобиль потребляет от электрических потребителей, установленных на заводе, а не от потребителей, установленных самим водителем при тюнинге. И стремление завлечь покупателя комфортом в автомобиле, заставляет конструкторов оборудовать машины всё новыми и новыми энерго-потребителями. Подогрев зеркал, сидений, стёкол, антено и стеклоподъёмники, различные электронные блоки системы впрыска, ESP, ABC, системы навигации и климатические электроустановки, электрический усилитель руля, и ещё много чего. И о некоторых новейших электрических потребителях, я уже писал на моём блоге, например: электрическая помпа системы охлаждения, турбина с электродвигателем крыльчатки, аккумулятор с подогревом, или электропривод тормозов. Всё это скоро появится на серийных машинах.

И если совсем недавно, обычная серийная машина среднего класса девяностых -двухтысячных годов, потребляла от 800 до 1500 ватт электромощности, то сегодняшние среднеклассовые автомобили потребляют уже от 3000 до 7000 ватт !!!

А европейские законы, даже заставили конструкторов установить в современные автомобили электрический подогрев в катализатор, который потребляет 1,5 киловатт !!! электроэнергии, и примерно столько же мощности теряется в проводах по пути к подогревателю. Если посчитать (исходя из 170 мл на 100 ватт, как написано выше) сколько лишнего топлива сжигается из-за подогрева катализатора, то становится непонятным, чего хотят добиться «зелёные»???

И как я уже говорил выше, всё же не стоит экономить например на удовольствии от музыки или комфорта (ведь за удовольствие не жалко платить), но вот чтобы при этом не сжигать бессмысленно топливо, нужно непременно искать выход.

А выход есть.

Ведь известно, что основная потеря электромощности происходит в проводах (я об этом написал выше, сколько теряет в проводах подогреватель катализатора). Это простые законы физики, и напомню, что у каждого провода (проводника) имеется некоторое электрическое сопротивление R. И выделяющаяся в этом проводнике мощность, будет равна произведению I²·R. Но с сопротивлением R почти ничего нельзя сделать. Можно конечно, если заменить медь проводника на серебро (только вот сколько будет стоить такая машина), да и увеличить сечение проводника тоже не выход (возрастёт и масса и цена, и сечение проводов в автомобилях итак уже по самое «нехочу»).

Но вот зато изменить силу тока I, весьма привлекательно, ведь в формуле сила тока стоит в квадрате (I²), а это значит, что если мы снизим портребляемый ток в 3 раза, то потери уменьшатся аж в 9 раз !!! Как говорится простая математика и никакого мошенничества.

Так от чего же зависит величина силы тока?

У любого портребителя электрической энергии мощность вычисляется как произведение U·I, а буква U — это напряжение сети автомобиля. А значит, при одинаковой мощности к примеру подогревателя сиденья, этот подогреватель будет потреблять в 3 раза меньший электрический ток, если напряжение его питания увеличить в 3 раза. Не пойму только, как это конструкторам транспортных средств, до сих пор не пришло в голову поменять 12 вольт на 36 (просто потребителей на машине было мало в те годы). Это нужно было сделать ещё тогда в далёкие 50 — 60-е годы, когда переходили с 6 на 12 вольт! Хотя и было в те годы мало потребителей на машине, но ведь тенденция их роста была очевидна.

И если мы возьмём 3 батареи по 12 вольт каждая и соединим их перемычками, то в сумме получится всего 36 вольт, но ведь это только в то время, когда машина простаивает в гараже. Стоит только завести двигатель, и получим 42 вольта (ведь 12 вольт при работе мотора повышается до 14 вольт).

42 ВОЛЬТА.

42 ВОЛЬТА — это стандарт будущего бортового напряжения земного транспорта. И хочу заменить, что не следует полагать, будто бы вскоре придётся впихивать под капот 3 батареи, которые займут в 3 раза больше пространства под капотом и они будут в 3 раза тяжелее нынешнего 12-вольтового аккумулятора. Совсем нет. Потому что потребляемый к примеру электростартером электрический ток, уменьшится во столько же раз, и мы сможем установить у себя под капотом аккумулятор, ёмкостью всего 20 А/ч !!! Единственное отличие такой батареи от нынешней 12-ти вольтовой — это количество банок: их будет не шесть, а в три раза больше — 18 !!!

Новый стандарт поможет легче осуществить внедрение систем управления не механически, а по проводам (система Drive by wire). Эта система будет устанавливаться даже в самых важных и ответственных узлах автомобиля: тормоза, рулевое управление и подача газа. И чтобы повысить надёжность этих узлов, от которых зависит безопасность водителя и окружающих, нужно будет установить два совершенно независимых источника элктроэнергии на борту автомобиля (как на самолётах). Проще говоря, на маломощных приборах можно будет оставить 12 вольтовую сеть, а на других более мощных потребителях установить сеть в 42 вольта. Это позволит к тому же не тратится водителям на адаптеры, если они захотят установить в машину 12 вольтовые мониторы телевизоров, компьютеров, навигаторов, телефонов и других маломощных приборов.

И напоследок скажу, что новые автомобили с 42 вольтовым напряжение на борту уже колесят по дорогам. Например новая машина (семёрка) от БМВ, была выпущена в 2001 году, и напряжение у неё на борту в 42 вольта. Кстати, даже наш отечественный завод, уже выпустил уникальный генератор, напряжение от которого можно выбрать, подключившись к одной из трёх колодок: 14, 28 и 42 вольта. Но об этом в следующей, вот этой небольшой статье.

LED CENTRAL – светодиодная лента 36 вольт

Освещение с помощью светодиодов было изобретено еще в начале прошлого столетия. Если быть точным в 1907 году. Тогда оно не получило должного распространения. Зато спустя почти 100 лет, в конце XX века данный тип освещения стал пользоваться популярностью.

Потребители смогли оценить демократичную цену LED-систем, экономичность их применения, высокий ресурс функционирования, в сравнении с обычными лампами. Диапазон применения светодиодов более широк, чем простых ламп накаливания. Они способны эффективно функционировать даже при очень высоких и низких температурах от +60-ти до -50-ти градусов. Это делает возможным их применение даже в самых суровых условиях климата.

На сегодняшний день, самое востребованное LED-изделие – лента в 36 вольт.

Сферы использования:

  • создание уникальных рекламных вывесок;
  • оформление различных интерьеров, фасадов;
  • в качестве подсветки незаметных конструкций.

Лента 36 вольт – печатная плата, с дорожками, проводящими ток. Они отделены друг от друга на фиксированное расстояние светодиодами. Лента представлена в двух вариантах: одноцветном и многоцветном.

Есть функция регулирования яркости. Встроены контроллеры, которые управляются вручную или автоматически. Данная LED-лента работает от напряжения в размере 36 вольт. Можно подключить к простой сети в 220. В этом случае потребуется блок питания в качестве преобразователя.

Наш интернет-магазин предлагает приобрести светодиодную ленту. У нее масса преимуществ:

  • прочность;
  • стойкость к механическим воздействиям;
  • не издает звуков при работе.

Кроме того в работе светодиодных систем отсутствует мерцание, вредное человеческого глаза. Сразу же после включения – светит на полную мощность. Разогрев не требуется.

Мы предлагаем вам приобрести ленты 36 вольт в нашем виртуальном магазине на выгодных условиях. У нас всегда широкий, обновляемый ассортимент приборов для освещения. Все они четко соответствуют мировым стандартам качества. Наши Клиенты имеют полное право на качественное обслуживание, исключительно высокого уровня. В нашей компании работают опытные консультанты, которые готовы в любое время предоставить необходимую информацию, проконсультировать возникшим вопросам.

Мы предлагаем удобные способы по оплате продукции. Для оптовиков – отдельные выгодные условия, в том числе, быстрые доставки товаров на территории всей страны.

Приобретая товар у нас, Вы можете быть уверены в высоком качестве продукции по демократичной стоимости.

Позвоните нам по телефону +7 (495) 150 70 06, +7 (499) 181 00 94 или оставьте заявку на сайте IntraLED, приезжайте к нам по адресу: ул. Сельскохозяйственная, 30/1 оф. 2. Поможем купить трековые светильники, светодиодную ленту, прожекторы и блоки питания по максимально выгодной цене. Сделаем ваш дом уютным и светлым!

36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус

В прошлом обзоре блока питания я затронул тему того, как выбрать правильный блок питания. Если честно, то я немного не ожидал, что эта тема окажется такой нужной. Меня спрашивают и о других нюансах выбора, принципах работы и о алгоритме поиска неисправностей.

В этом обзоре я постараюсь ответить на большую часть этих вопросов, а также возможно затрону тему новых вопросов 🙂

Начну с того, что для одного из моих ближайших проектов потребовался блок питания на 36 Вольт 10 Ампер. Вернее потребовалось их два, и заказал их два, но так как они абсолютно одинаковые, то и обзор будет на один блок.

Для чего и зачем я пока писать не буду, уж извините, но этот блок питания мы разберем ‘по винтикам’.

Как всегда, сначала упаковка.

Пришли блоки питания (помимо общей упаковки) в обычных картонных коробках белого цвета, опознавательные знаки на упаковке отсутствовали, просто две большие коробки.

На вид абсолютно одинаковые, впрочем я бы скорее удивился если бы они были разными 🙂

Основное отличие импульсных блоков питания от тех, которые используют 50Гц трансформаторы — размер. Второе отличие — цена.

50Гц трансформатор на такую мощность будет иметь гораздо большие размеры и хоть он по конструкции намного проще, но будет иметь большую цену, так как содержит больше меди и железа.

Кроме того импульсные БП имеют больший КПД, потому в последнее время получили большое распространение, хотя ‘железные’ трансформаторы отличаются большей надежностью.

Но стоит учитывать, что брендовые БП имеют обычно еще большую сложность и цену, так как имеют хорошую элементную базу, фильтры питания, корректоры мощности и т.п, потому чаще люди пользуются более простыми вариантами от небольших китайских фирм.

Один из таких блоков питания мы и рассмотрим в этом обзоре.

Если до этого мы рассматривали блоки питания небольшой мощности, то в этот раз я расскажу про довольно мощный вариант БП мощностью 360 Ватт, хотя на фоне вариантов Бп мощностью 800-2000 Ватт и он кажется ‘малышом’.

Как я выше писал, импульсные БП имеют чаще небольшие размеры.

Данный блок питания имеет высоту примерно как у коробка спичек — 49мм. Длина блока питания 215мм, ширина — 114мм.

На одной из боковых граней корпуса присутствует маркировка:

S-360-36

Мощность блока питания 360 Ватт

Выходное напряжение — 36 Вольт

Максимальный выходной ток — 10 Ампер

Входное напряжение — 110/220Вольт +/-15%

На второй стороне присутствует переключатель диапазона входного напряжения, в наших странах неактуальный и даже вредный, так как переключив в режим 110 Вольт и включив в стандартную сеть 220-230 Вольт мы получим скорее всего громкий бах.

Я обычно при ремонте таких БП сразу выкусываю этот переключатель, просто в целях безопасности.

Сверху корпуса установлен небольшой вентилятор. При таких мощностях блоки питания уже крайне редко делают с пассивным охлаждением, мне такие попадались всего несколько раз, но из-за сложности конструкции они имеют уже очень высокую цену, потом очень мало распространены.

Рядом присутствует надпись, указывающая, что вентилятор управляется автоматически в режиме вкл/выкл в зависимости от температуры.

Немного забегая вперед скажу, что никакой автоматики нет, без нагрузки он вращается медленно, но стоит хоть чуть чуть нагрузить БП, обороты сразу возрастают до штатных независимо от температуры.

В прошлом обзоре я писал, что блоки питания, рассчитанные на большой выходной ток, обычно имеют разделенные клеммы для подключения нагрузки. Так сделано в этом БП, здесь установлено по три клеммы на плюсовой и минусовой контакты.

Входные клеммы стандартны — Фаза, ноль, заземление.

Также слева установлен светодиод индикации работы блока питания и подстроечный резистор для корректировки выходного напряжения.

Клеммник имеет защитную крышку, которая открывается на 90 градусов, а в закрытом состоянии защелкивается. У меня есть привычка разбирать БП перед первым включением. Делаю я это в целях безопасности, так как бывали разные случаи.

Внутри данного БП на вид все нормально, за исключением небольшого нюанса, который я заметил сразу. Дело в том, что выходной дроссель имеет большие размеры и почти касается верхней крышки, это не очень безопасно. Током конечно не убьет, но БП может пострадать, я бы рекомендовал проложить дополнительную изоляцию между дросселем и крышкой. Такой проблемой страдают многие недорогие блоки питания, так что это не косяк данного блока.

Как я писал выше, охлаждается блок питания посредством небольшого вентилятора.

Судя по маркировке, вентилятор имеет размеры 60х15мм, т.е. 60мм это длина и ширина, а 15мм — толщина.

Вентилятор рассчитан на 12 Вольт. к сожалению здесь применен недорогой вентилятор, кроме того имеющий подшипники скольжения и если вы планируете применить где нибудь такой БП, то для длительной беспроблемной работы я бы заменил его на что нибудь более правильное.

Я уже как то писал в своих обзорах, что чаще всего применяю вентиляторы фирмы Sunon, на мой взгляд у них довольно высокое качество и надежность.

Из хорошего можно сказать то, что вентилятор в данном БП довольно тихий, что очень хорошо.

Силовые полупроводники прикручены к алюминиевому корпусу блока питания через небольшие теплораспределяющие проставки.

Мне не очень нравится подобный вид крепления полупроводников, но так делают почти все. например в блоках питания фирмы Менвелл транзистор крепится точно также, правда там в целях безопасности на него одет резиновый колпачок.

Так как данный блок питания двухтактный, то высоковольтных транзисторов два, а не один.

Выходной диод один, хотя на плате присутствует место под установку второго, подключаемого параллельно первому. Второй устанавливается в блоках, рассчитанных на меньшее напряжение и больший ток, но никто не мешает поставить и здесь второй, но это уже скорее доработка, а измерения покажут, имеет ли смысл данная операция.

Осмотр закончили, включаем и производим небольшую проверку.

Цель данной проверки, выяснить пределы регулировки выходного напряжения и вставить на выходе БП то напряжение, на которое он рассчитан, ну или то, которое необходимо.

1. при включении БП показал на выходе 36.8 Вольта.

2. минимальное напряжение, которое можно выставить — 34.53, я рассчитывал, что минимальный порог будет ниже, для моего применения придется дорабатывать.

3. А вот максимальный порог сильно удивил. Когда крутил, то даже стало немного не по себе. 52.3 при штатном 36. Ожидал что БП накроется, пока я фотографирую, но все прошло нормально, хотя я не рекомендую выставлять такое напряжение на выходе, чаще нормальным считается +/-10% от штатного.

4. Выставляем на выходе 36 Вольт. Судя по диапазону перестройки уже можно понять, что регулировка очень грубая, потому мне пришлось немного помучаться чтобы выставить ровно 36 Вольт, хотя в реальной жизни это смысла не имеет и сделано было только для обзора 🙂

Разбираем блок питания дальше.

Транзисторы довольно неплохо прилипли к своей пластинке, отдирать их не хотелось потому я открутил и теплораспределительную пластинку 🙂

К плате особых нареканий не возникло, обычная недорогая сборка, бывало и хуже, но бывало и лучше, по пятибальной шкале на 3 балла.

Но один дефект все таки нашел, была не очень хорошая пайка одного из контактов трансформатора. Непропай в данном месте ни к чему фатальному бы не привел, но расстроил.

Дорожки. по которым течет значительный ток, дополнительно пролужены припоем.

Естественно я начертил схему данного БП, делал я это только для обзора, так как схемотехнику этих блоков питания знаю хорошо и обычно в схеме не нуждаюсь, но возможно кому нибудь будет полезно, так как такая схема (с некоторыми небольшими изменениями) используется в большинстве БП такой мощности.

Но хотя я и знаю хорошо эту схемотехнику, перечерчивать схему по плате было не очень удобно и заняло больше времени, чем я планировал.

Схема практически повторяет схему классического компьютерного блока питания и как показала практика, является очень ремонтопригодной.

На схеме присутствует шунт для измерения тока, на схеме его сопротивление указано как 0.1 Ома, но на самом деле при прозвонке он скорее был ближе к перемычке.

Дальше я решил немного рассказать о том, как вообще работают такие блоки питания, тем более что многие узлы являются типичными для почти всех импульсных блоков питания.

На этой блок схеме обозначены основные узлы импульсного блока питания. Правда сейчас задающий генератор и схема управления выполняются в одной микросхеме, а иногда микросхема содержит с высоковольтный транзистор.

Иногда по входу импульсного блока питания устанавливают Корректор Коэффициента Мощности, а в мощных БП он является обязательным, если БП соответствует европейским нормам, но об этом я расскажу как нибудь в другой раз, так как в недорогих БП он почти не встречается.

На основании этой блок схемы я дальше и буду рассказывать об этом БП, но для начала немного теории о процессах, происходящих в импульсном блоке питания.

Ключевое в работе импульсного блока питания, это принцип ШИМ стабилизации, правда стоит отметить, что вполне существуют и импульсные блоки питания без этого, но они являются не стабилизированными, т. е. выходное напряжение зависит от мощности нагрузки и входного напряжения.

ШИМ регулирование это изменение соотношения времени включенного состояния коммутирующего элемента к выключенному состоянию.

Если на графике, то выглядит это так:

Если ‘на пальцах’, то я недавно объяснял в личке этот принцип стабилизации, попробую повторить здесь.

Многие наверное помнят задачки типа — через одну трубу в бассейн поступает вода со скоростью х литров в минуту, через другую выливается со скоростью Y литров в минуту.

Вот на этом принципе я и объясню как это работает.

Для начала представим, что существует очень большая емкость (электрическая сеть), маленькая емкость (конденсатор выходного фильтра питания), ну и всякие мелочи для переправки воды из одного места в другое.

На бочке установлен кран, через него вода убегает к потребителю, ну или энергия в нагрузку.

Пополнять бочку мы можем только определенное количество раз в минуту (бывают альтернативные варианты, но о них пока не будем), например 100 раз.

Наша задача, поддерживать уровень воды в бочке всегда постоянным.

Так как пополнять может только определенное количество раз в минуту, то значит пополнять придется разными объемами.

К примеру если потребление маленькое, то будет достаточно обычных чашек, а если кран открыли на полную, то придется использовать ведра.

В ШИМ регулировке это означает меньшую или большую ширину открытого состояния силового элемента.

Если кран закрыт, то пополняем бочку наперстками, есть же еще испарение (утечки, нагрузка цепи обратной связи т.п.) которое надо компенсировать 🙂

Используя узел обратной связи, контроллер отслеживает напряжение на выходе блока питания и подстраивает мощность, передаваемую в нагрузку так, чтобы напряжение на выходе БП оставалось неизменным.

Кстати, таким способом можно сделать обратную связь по чем угодно.

Например в драйверах светодиода контроллер следит за током.

Можно следить за температурой, подстраивая скорость вентилятора, за освещением, регулируя яркость лампочки и т. д. и т.п.

На этой диаграмме показано:

1. Ток в цепи трансформатора (условно)

2. Сигнал управления ключевым транзистором

3. Напряжение на выходном конденсаторе.

Существует довольно много топологий построения импульсных блоков питания, я нарисовал несколько самых распространенных.

Немного расскажу о них.

1. Обратноходовый преобразователь. Применяется там, где хорошо иметь большой диапазон входного напряжения и небольшая мощность (до 100-150 Ватт). Скорее всего Бп вашего планшета или монитора применена именно эта схема.

2. Полумостовой преобразователь. Также очень распространенная схемотехника. Думаю что я буду не сильно далек от истины, если скажу, что в 95% компьютерных БП применена именно такая схемотехника. Ее преимущества — большая мощность при относительно простой схемотехнике, меньший размер трансформатора, так как трансформатор применяется без зазора, в отличии от первого варианта.

3. Двухтактный преобразователь (PushPull- Тяни-Толкай). Данная схема в сетевых блоках питания применяется крайне редко, зато она нашла широкое применение в инверторах недорогих блоков бесперебойного питания.

4. Мостовой преобразователь. Так сказать ‘расширенная’ версия полумостового. Преимущества — большая мощность, ток через силовые ключи в два раза ниже чем в полумостовой.

Также такая схема применяется в более сложных блоках бесперебойного питания.

Существует еще несколько топологий, но они являются производными от приведенных выше, и менее распространены, потому не вошли в данную статью.

В этот раз я также начертил цветной вариант схемы обозреваемого блока питания, где цветом обозначил основные узлы, о которых говорил выше.

Как я писал, некоторые цвета мне тяжело назвать правильно, потому буду уточнять.

Красный — Входной фильтр питания, диодный мост, силовой узел.

Красно-фиолетовый (слева внизу) — Узел управления мощными транзисторами инвертора.

Зеленый — Микросхема- ШИМ контроллер и ее ‘обвязка’.

Синий — Выходной выпрямитель, дроссель и конденсатор фильтра

Голубой — Цепь контроля выходного тока

Фиолетовый — Узел контроля выходного напряжения

Желто-рыжий — Узел блокировки преобразователя при снижении напряжения на выходе.

В этой схеме нет привычного элемента, который был на всех прошлых схемах — оптрона. Дело в том, что здесь ШИМ контроллер питается от выходного напряжения. первоначальный запуск бока питания происходит благодаря резисторам R8 и R14. Такой принцип применялся в компьютерных БП АТ стандарта, с приходом АТХ стандарта контроллер стал питаться от источника питания дежурного режима и эти резисторы исключили из схемы.

Дальше я покажу большую часть узлов и элементов на примере конкретного блока питания.

Начнем с сетевого фильтра.

В этом БП он есть, это уже хорошо, так как в дешевых компьютерных БП вместо него ставят просто перемычки, но в дорогих он может быть и многоступенчатым. Здесь средний вариант между этими двумя.

По входу блока питания установлен предохранитель и ограничитель пускового тока — NTC терморезистор (термистор).

Также присутствует Х2 конденсатор для уменьшения помех, излучаемых блоком питания, в сеть.

Двухобмоточный синфазный дроссель намотан довольно толстым проводом, хотя размеры при такой мощности могли сделать бы и побольше.

Входной диодный мост KBU808 рассчитан на 8 Ампер 800 Вольт.

В фильтре питания присутствуют как Y конденсаторы, так и один обычный, высоковольтный.

Но в данном случае применение обычного высоковольтного вместо конденсатора Y типа безопасно, так как если БП не заземлен, то даже при его пробое выход БП будет все равно подключен через Y конденсатор, а если БП заземлен, то тем более ничего не будет 🙂

Конденсаторы входного фильтра питания промаркированы как 680мкФх250 Вольт.

Если верить маркировке, то в принципе их емкость достаточна, а напряжение выбрано даже с запасом.

Но реальность оказалась несколько другой, емкость конденсаторов всего 437мкФ, что при последовательном соединении дает всего около 220мкФ. Мало, хоть в принципе и терпимо.

Большая емкость дает больший срок жизни конденсаторов, меньшие пульсации и добавляет запаса по входному напряжению в сторону уменьшения напряжения.

Я думаю потом их заменить на что то поприличнее, но пока не нашел подходящих, так как данные конденсаторы имеют высоту 35мм, максимум можно попробовать установить 40мм, а большинство найденных мною конденсаторов имеют высоту 45мм.

На плате выделено место под конденсатор большего диаметра, так что ‘будем искать’ 🙂

Узел ШИМ контроллера и инвертора.

В качестве ШИМ контроллера применена ‘классика жанра’, KA7500, которая является почти полным аналогом TL494, наверное самого распространенного ШИМ контроллера, соперничать с ним по популярности может разве что uc384x.

Силовые ключи инвертора — MJE13009

К сожалению теплораспределительная пластина прижимается к корпусу без пасты. Тестирование показало, что проблем из-за этого не возникает, но я бы для успокоения души все таки нанес термопасту. Узел выходного трансформатора, выпрямителя и конденсаторов фильтра. Выходной диод — SF3006PT, это 30 Ампер 400 Вольт диод, что для 10 Ампер блока питания более чем достаточно.

Как я выше писал, рядом есть место для второго диода, потому в принципе можно немного улучшить характеристики, но на самом деле прирост КПД будет мизерным.

Выходной дроссель.

Здесь он выполняет несколько другую функцию чем в обратноходовых блоках питания, из-за этого и такие большие размеры. Скажу лишь что его размеры соответствуют заявленной мощности блока питания. Кроме его высоты замечаний нет.

Конденсаторы выходного фильтра.

Производитель поставил три конденсатора по 1000мкФ 63 Вольта.

Обычно я говорю, что емкость выходного конденсатора должна быть равна 1000мкФ на каждый ампер выходного тока. В двухтактных блоках питания требования менее жесткие, и даже бренды ставят такую же (а иногда и меньшую) емкость при таком токе, правда в их оправдание могу сказать, что в брендовых БП конденсаторы стоят лучшего качества.

Также на фото попал токовый шунт и видно, что для более сильноточных вариантов есть место для дополнительных шунтов.

Здесь с емкостью все в порядке. Практически соответствует заявленной. После осмотра я скрутил все обратно, только не привинчивал верхнюю крышку и перешел к этапу тестирования под нагрузкой.

Стенд у меня остался тем же, что и в предыдущие разы и состоит из:

Электронной нагрузки

Мультиметра

Бесконтактного термометра

Осциллографа

Ручки и бумажки 🙂

Правда в этот раз мне пришлось снять верхнюю крышку с электронной нагрузки, так как боялся что она будет перегреваться на такой мощности.

В основном тестирование проходило как и в прошлые разы, за исключением того, что для измерения температуры мне приходилось на ходу снимать верхнюю крышку. Из-за этого некоторые значения измеренных температур будут чуть завышенными так как БП успевал чуть подогреваться без принудительного охлаждения.

1. Режим холостого хода, напряжение выставлено 36.03 вольта, пульсации практически отсутствуют.

2. Ток нагрузки 2 ампера, напряжение чуть поднялось и составило 36.06 вольта, пульсации в норме.

1. Ток нагрузки 4 Ампера, выходное напряжение поднялось еще немного, пульсации в норме.

2. Ток нагрузки 6 Ампер, выходное напряжение 36.09 Вольта, это очень хороший результат, пульсации при этом всего 50мВ

1. Ток нагрузки 8 Ампер, выходное напряжение почти неизменно, пульсации выросли до 75мВ, но все равно остаются низкими для такого тока.

2. Ток нагрузки 10 Ампер, выходное напряжение поднялось до 36.12 Вольта, отличный результат, изменение от исходного всего 0.3%. Пульсации выросли до 100мВ, на мой взгляд ничего страшного, особенно с учетом того, что БП выдает 360 Ватт и 100мВ это всего 0.25-0.3%

Для примера, если бы это был БП на 12 Вольт, то эквивалент пульсаций равнялся бы 30мВ.

К сожалению последний тест длился всего 15-16 минут из привычных мне 20, на электронной нагрузке сработала защита от перегрева и отключила нагрузку 🙁

Дав нагрузке немного остыть, я решил ради эксперимента продолжить тест, но уже при 12 Ампер токе, проверять так проверять 🙂

Решение провести это эксперимент я принял потому, что компоненты БП имели температуру далекую от максимальной.

Но увы, проработал так БП максимум минуту, я сделал фото, снял осциллограмму, но потом последовал очень тихий щелчок (хотя на фоне воя вентиляторов нагрузки может и не такой тихий), малюсенькая вспышка в районе силовых ключей и БП затих 🙁

Правда у меня было маленькое подозрение, что виновата электронная нагрузка, она в определенной ситуации, при перегреве, могла закоротить выход БП (если сначала сработала защита на том радиаторе, где расположен датчик тока), хотя до такой температуры за минуту она прогреться не успела бы, но в любом случае БП не выдержал 🙁

Осциллограмма перед выходом из строя.

Видно что напряжение пульсаций находится вполне в норме. Но меня расстраивают более высокочастотные пульсации, вызванные скорее всего ‘звоном’ в силовых цепях, как по мне, это одна из возможных причин выхода из строя, но утверждать не буду.

Измерение теплового режима работы проходило как всегда, 20 минут прогрев, измерение температур, повышение тока на одну ступень и т. д.

Полученные результаты можно понять из таблицы. Верхняя строка цифр — измерение температур на холостом ходу, заодно я проверил что термометр показывает одинаковые значения на разных компонентах.

В качестве небольшого бонуса я немного опишу методику поиска неисправности и ремонта конкретно этого БП и принципов поиска неисправности для основной массы поломок остальных.

Поломали, ремонтируем

Вообще, буквально недавно меня спрашивали о алгоритме поиска неисправности, на что я ответил —

Может даже имеет смысл написать такую статью, правда пока не знаю к чему ее привязать, разве что специально спалить БП :))))
Как в воду глядел 🙂

В данном случае поломка оказалась не очень сложной, да и вообще я выше писал, что данный тип БП очень ремонтопригоден.

Здесь даже предохранитель остался цел 🙂

Для начала я должен предупредить, что при ремонте импульсного БП приходится работать с цепями имеющими высокое напряжение и имеющими непосредственную связь с сетью 220 Вольт. По правилам техники безопасности блок питания должен при этом питаться через развязывающий трансформатор, чтобы обеспечить гальваническую развязку с сетью 220 Вольт.

Первым делом при поиске неисправности производят общий осмотр, это очень важный этап, иногда позволяющий локализовать место поломки.

Также немаловажно знать, после чего вышел из строя БП.

1. Новый БП, чаще при работе или КЗ в нагрузке — силовые цепи.

2. Старый БП, если перед поломкой были проблемы с запуском. Либо перед поломкой его отключили от сети (для БП работающих постоянно) — конденсаторы выходного фильтра. Такая поломка чаще всего ‘тянет’ за собой и высоковольтную часть, в низковольтной части чаще всего все остается исправным.

3. Старый БП, но предохранитель цел и даже есть попытки запуска — чаще всего виновата потеря емкости конденсатора фильтра питания ШИМ контроллера, обычно встречается на БП небольшой мощности собранных по обратноходовой схеме.

Дальше немного по компонентам.

Предохранитель цел — значит скорее всего цел и диодный мост, но на маломощных Бп роль предохранителя может сыграть обмотка входного дросселя.

Предохранитель сгорел — скорее всего дело плохо, но есть варианты

1. Если на входе БП есть защитный варистор и подали больше 300 Вольт, то чаще все решается заменой варистора и предохранителя.

2. Варистора нет, либо он цел. Вот тут скорее всего дело худо, проверяем — диодный мост и высоковольтный транзистор (или транзисторы если их два).

Чаще всего диодный мост выходит из строя только при сгорании высоковольтных транзисторов, сам по себе выходит из строя очень редко.

Следующий этап, проверяем высоковольтный транзистор, лучше его выпаять, так как если вышел из строя диодный мост, то это может давать ложное КЗ.

Если транзистор имеет КЗ хотя бы между двумя выводами из трех, то он умер. Если транзисторов два, то с вероятностью 99% умер и второй, менять лучше парой.

В моем случае так вышло. что транзисторы имели пробой между коллектором и базой, потому предохранитель остался цел так как не было КЗ по цепи высоковольтного питания. Это довольно редкий случай, чаще имеем КЗ между всеми тремя выводами.

Если транзистор сгорел, то проверяем резистор подключенный к выводу базы, так как чаще всего сгорает и он. Вывод эмиттера также может быть подключен к токоизмерительному резистору, обычно мощный и стоит рядом, проверяем и его.

В моем случае я имел два сгоревших транзистора и два резистора.

Следующий этап, подбор замены.

Если есть родные либо их можно купить, то отлично, если нет, то ищем замену.

При поиске замены сначала определяем что за транзисторы стояли, и ищем документацию на них. после этого ищем варианты, которые есть в наличии/продаже и сравниваем их характеристики.

У транзисторов, которые стояли в импульсном блоке питания обращаем внимание на следующие ключевые характеристики. Вообще влияет еще коэффициент передачи по току и граничная частота. Первый параметр лучше иметь похожий на тот что был в сгоревшем, второй если будет больше, то лучше. У полевых транзисторов надо смотреть на емкость затвора (Input Capacitance), чем меньше, тем лучше.

В моем случае транзисторы биполярные, потому и демонстрировать буду на их примере.

Я привел три варианта, родной — подходящий вариант — неподходящий вариант.

Хотя в неподходящем варианте критичны последние два параметра.

В моем случае родных не было, но были транзисторы с ‘доноров’.

Резисторы подобрать проще, если нет подходящего номинала, то можно соединить несколько штук параллельно или последовательно. Но у меня были подходящие резисторы.

Резисторы сгорели очень аккуратно, сразу даже и не заметишь маленькую трещину в покрытии. Не было ни дыма и особого шума, разве что маленькая вспышка. Перед заменой транзисторов желательно сначала проверить остальные компоненты рядом с ними иначе замененные компоненты ожидает судьба предыдущих.

Конкретно по этой схеме. Диоды параллельно коллектору и эмиттеру не сгорают никогда (по крайней мере я такого не видел), диоды в базе иногда сгорают, но в данном случае стоят довольно мощные диоды (чаще ставят мелкие 4148) и они остались целы. Конденсатор также выжил, выходят из строя здесь они редко, резистор межу коллектором и базой также можно не проверять, но стоит проверить резистор между базой и эмиттером.

Трансформатор — довольно надежный компонент и чем мощнее, тем надежнее, но у меня бывали случае межвиткового КЗ у мелких трансформаторов, причем обычным мультиметром это определить сложно или вообще невозможно.

После замены деталей неплохо проверить ШИМ контроллер. Первым у этих микросхем страдает внутренний стабилизатор напряжения 5 Вольт. Для проверки подаем питание 10-20 Вольт на микросхему (я подключился к конденсатору фильтра питания микросхемы) и измеряем напряжение между минусом питания и 14 выводом.

220 Вольт пока не подаем.

На фото питание в норме.

Если интересно, то можем подключиться к задающему генератору и посмотреть на красивую ‘пилу’ 🙂

Ее наличие означает, что задающий генератор микросхемы работает.

После этого можно проконтролировать прохождение управляющих импульсов к силовым транзисторам.

Кстати. Если БП работал долго, то из-за высыхания емкости конденсатора фильтра питания микросхемы (или высыхания конденсатора в Бп дежурного режима АТХ БП), она могла выйти из строя.

Иногда выход из строя выходных транзисторов тянет за собой и два управляющих транзистора, на схеме это Q2, Q3. Кроме них обычно ничего из строя не выходит.

Данный БП не даст управляющие импульсы на мощные транзисторы пока не ‘обойти’ защиту от пониженного напряжения на выходе, я это сделал закоротив эмиттер и коллектор транзистора Q5.

Если все в порядке, то между эмиттером и базой будет примерно такая картинка:

Все, на этом основная часть ремонта закончена.

Промываем плату от остатков флюса, я всегда рекомендую это делать, как минимум из-за культуры ремонта.

С лицевой стороны платы ремонт ‘выдают’ только отечественные резисторы.

Заодно я немного приподнял транзисторы, чтобы они лучше прижимались.

Для проверки я всегда включаю БП через лампу накаливания. Это позволяет сократить количество походов в магазин за деталями 🙂

Лампу я использую мощностью 150 Ватт, она включается последовательно с сетью и при нормальной работе должна только моргнуть немного при включении.

В штатном режиме на холостом ходу она даже не накаляется, менее мощная лампа может немного накаляться, но на грани различимости, это также нормально.

Включаем, проверяем, все работает 🙂

Некоторые дополнения.

Если вы заметили, что ваш блок питания требует ‘прогрева’ перед включением и это время постепенно увеличивается, то следует проверить конденсаторы БП, так как если затянуть с этим, то все может закончиться выходом из строя высоковольтного транзистора и часто микросхемы ШИМ контроллера.

Выходной диод БП выходит из строя редко, но лучше его проверить, обычно это можно сделать даже не выпаивая его из платы.

С переходом на импульсные блоки питания самая частая поломка — выход из строя электролитических конденсаторов, причем иногда емкость он может иметь нормальную, но внутреннее сопротивление сильно увеличивается.

Для общего развития я добавил для скачивания неплохую книгу по импульсным блокам питания.

Резюме.

Плюсы

Блок питания выдал заявленную мощность

Тепловой режим работы в норме

Небольшой уровень пульсаций

Наличие нормального фильтра по входу 220 Вольт

Отличная стабильность выходного напряжения

Хорошая ремонтопригодность

Минусы

Проблемы с надежностью при перегрузке или коротком замыкании

Конденсаторы входного фильтра имеют заниженную емкость

Нет заявленного автоматического управления вентилятором.

Низкое качество выходных конденсаторов

Мое мнение. Меня очень расстроило то, что блок питания вышел из строя, хотя это и произошло при мощности выше заявленной, но это говорит об отсутствии либо некорректной работе защиты от перегрузки. Но в то же время обрадовал температурный режим блока питания, даже при максимальной мощности никакие компоненты не перегревались, хотя выходящий воздух имел легкий запах нагретых компонентов, но это частая особенность новых блоков питания.

Но даже при том, что я спалил этот блок питания, могу сказать, что он имеет неплохой потенциал и если его не перегружать, то будет работать. В основном это связано с отработанностью данной схемотехники, здесь тяжело что то накосячить, хотя проблемы с надежностью вылезли 🙁

В будущем я думаю его немного доработать и надеюсь что в ближайшем времени вы увидите его (хотя скорее их) в одном из моих устройств, там же будет и описание доработки.

Вся информация о ремонте основана на личном опыте. Вообще разнообразие причин поломок и методов определения неисправности гораздо больше, чем я описал, но боюсь что все описать очень тяжело и будет ну совсем большая статья.

Преобразователь 220 на 24 вольта постоянного тока

  • Мощность 300 Вт
  • Входное напряжение 24 В (21 – 30 В)
  • Синусоидальное выходное напряжение 220 В, 50 Гц
  • Мощность 300 Вт
  • Входное напряжение 24 В (21 – 30 В)
  • Синусоидальное выходное напряжение 220 В, 50 Гц
  • Защита от переполюсовки
  • Мощность 1 500 Вт
  • Входное напряжение 24 В (21 – 29 В)
  • Синусоидальное выходное напряжение 220 В, 50 Гц
  • Мощность 1 500 Вт
  • Входное напряжение 24 В (19 – 30 В)
  • Синусоидальное выходное напряжение 220 В, 50 Гц
  • Дополнительный вход внешнего управления, в т. ч. для СКУ (BMS)
  • Мощность 3 000 Вт
  • Входное напряжение 24 В (21 – 29 В)
  • Синусоидальное выходное напряжение 220 В, 50 Гц

Каждый представленный в данном разделе каталога СибКонтакт инвертор способен преобразовать постоянное напряжение 24 В в переменное 220В частотой 50 Гц. Данные приборы нашли широкое применение в сфере альтернативной энергетики (они преобразуют ток, накапливаемый в солнечных батареях и ветрогенераторах). Часто преобразователи напряжения 24/220 V покупают для оснащения спецтехники, грузового транспорта, тягачей. В ассортименте продукции СибКонтакт также представлены устройства, предназначенные для водного транспорта: пассажирских судов, яхт, теплоходов, катеров.

Преимущества преобразователей напряжения DC-AC нашего производства

СибКонтакт – опытный разработчик оборудования для резервного и автономного электропитания. Наряду с другой продукцией, мы также выпускаем преобразователи напряжения DC-AC с разными техническими характеристиками. Отдельной линейкой представлены инверторы 24/220 V мощностью от 300 до 6000 Вт.

Обращаем ваше внимание, что все инверторы СибКонтакт имеют сертификаты соответствия. К настоящему моменту инверторы серии ИС1 нашего производства получили Сертификат об одобрении от Российского Речного Регистра. Приборы, используемые для обеспечения напряжения 220 В на водном транспорте, обладают повышенными показателями электробезопасности и надёжности.

Все инверторы СибКонтакт оснащены несколькими степенями защиты. Это обеспечивает более продолжительный срок службы самих преобразователей, аккумуляторов, а также подключенной техники.

Выгодные условия сотрудничества

Мы реализуем изготавливаемое оборудование через сайт, фирменный магазин (г. Новосибирск), а также разветвленную партнёрскую сеть. Вы можете заказать инверторы СибКонтакт в любом регионе России. Компания активно сотрудничает как с представителями В2В, В2G-рынков, так и с частными покупателями. На заказы крупными партиями действует оптовый прайс-лист.

Также к вашим услугам – собственный сервисный центр СибКонтакт. Вы можете сдать на гарантийное обслуживание устройства, приобретенные у любого из наших партнёров.

предназначен для подключения к бытовой электросети (220 вольт) светодиодных ламп и ленты, рассчитанных на пониженное напряжение (12V, 24V, 36V) постоянного или переменного тока.

Каждый из представленных светодиодных трансформаторов 220 – 12 обеспечивает стабильное выходное напряжение 12V, что гарантирует долгий срок службы подключённого светодиодного оборудования. Также имеется несколько моделей электромагнитных трансформаторов на 24 и 36 вольт.

Каталог трансформаторов 220 – 12 вольт

Как определить нужную мощность понижающего трансформатора?

Выбрать трансформатор очень просто: сложите мощности всех низковольтных источников света, которые Вы собираетесь подключить к трансформатору, и к полученному числу добавьте 20%. В результате вы получите минимальную номинальную мощность необходимого светодиодного трансформатора.

Диапазон мощностей, имеющихся у нас в продаже понижающих трансформаторов 220 – 12/24/36 вольт, позволяет подобрать трансформатор для любого случая.

Понижающие трансформаторы 12 вольт. Разные виды и ракурсы.

Мы не рекомендуем производить установку трансформатора в местах с повышенной влажностью и/или температурой, например, в сауне или бассейне.

Зачем трансформатор, если проще установить лампы на 220 вольт?

Возможно, что и проще, но мы всегда рекомендуем по возможности устанавливать светодиодные лампы на 12 вольт в паре с 12-и вольтовым трансформатором постоянного тока. Первичные затраты у Вас не увеличатся, так как лампы на 12 вольт стоят дешевле своих 220-и вольтовых аналогов, и эта разница покрывает цену трансформатора. Но при этом Вы получаете существенный плюс – надёжность. Светодиодные лампы работают долго, но срок службы 12-и вольтовых светодиодных ламп, как правило, ещё больше, т.к. они дополнительно защищены (от электронных шумов и бросков напряжения в электросети) внешним мощным понижающим трансформатором.

Где купить понижающий трансформатор 220 – 12/24/36 вольт?

В нашем интернет-магазине Вы можете выбрать и купить понижающий трансформатор 220 – 12/24/36 вольт. Мы осуществляем доставку по России и СНГ.

Вы спрашивали – мы отвечали

  • Здравствуйте! Подскажите, если в 2-х комнатную квартиру установить встроенные потолочные светодиодные светильники, то насколько далеко можно разнести местоположения трансформаторов и светодиодных ламп?
    Не повлияет ли удалённость трансформатора от светодиодной лампы на срок службы и работу последней, если расстояние между ними составляет 10-15 метров?
    Обычно рекомендуется не превышать 5 метров длины от трансформатора до лампы.
  • Рассматриваю вопрос установки трансформатора 220/12 и использования светодиодных ламп в помещении парилки и помывочной комнаты в бане. Подскажите, есть ли у трансформаторов гальваническая развязка? Возможно ли их применение в таких условиях?Нет, трансформаторы нельзя использовать в помещениях с повышенной влажностью.
  • Здравствуйте, не подскажете, как правильно подключить трансформатор ps200w?Клеммы всех трансформаторов 220-12 подписаны одинаково.
  • У меня в люстре стоят 12 ламп галогеновых 12v цоколь G4. Хочу заменить галоген на LED.
    При замене галогенок (12шт х 20ватт) на LED (12шт х 2 ватт) хочу поменять трансформатор на понижающий 220 -12 вольт постоянного тока.
    Хватит ли мне трансформатора 30 ватт или запас нужно делать больше? Спасибо большое.
    Если речь идёт о наших светодиодных лампах G4 на 2 ватта, то трансформатора такой мощности заведомо хватит.
  • Для 50 светильников со светодиодными лампами 5вт какой мощности нужен понижающий трансформатор?Мощность трансформатора рассчитать просто: нужно сложить мощности всех подключённых светодиодных ламп и увеличить .
  • У меня установлен трансформатор на 150 Ватт, к нему подключено 4 точечных светильника по 35 Вт (4х35=140Вт). Хочу заменить лампы на LED. Мощность ламп будет, например 4х3=12 Ватт. Вопрос: что делать с трансформатором?Мы уже отвечали на подобный вопрос, но касательно ламп с цоколем G4.
  • У меня в квартире установлено много галогеновых ламп на 12 вольт. Это лампы с отражателем диаметром 50мм и маленькие пальчиковые лампы, цоколь у них, кажется, G4. При замене этих ламп на LED G4 нужно ли мне будет менять установленные понижающие трансформаторы?Если у Вас установлены старые электронные трансформаторы (их легко опознать – они всегда маленькие, трансформатор на 50 .

Задайте свой вопросРАСПРОДАЖА! Цены снижены до 60%! Подходят для:Светодиодные лампы Е27 на 12, 24, 36, 48 вольтСветодиодная лента 12 вольтСветодиодные прожекторы 12 вольт, 12V – 24VРасстояние от трансформатора до ленты или лампыВопросы покупателей Вы спрашивали – мы отвечалиНаши ответы на несколько сотен самых распространённых вопросов: как не ошибиться при выборе, как правильно подключить, решения проблем. Популярные статьи

  • Чем грозит покупка дешевых светодиодных ламп?Зачем платить больше, если лампу той же мощности можно на рынке купить дешевле? Мы купили на рынке три дешёвые лампы, разобрали их и покажем Вам, что Вы реально получите вместе с подобными «изделиями».
  • Что такое светодиодная лампа?Короткий ответ на этот вопрос и несколько слов о наших светодиодных лампах ТАУРЭЙ.
  • Недостатки светодиодных лампУ светодиодных ламп есть и недостатки. Для кого-то они могут оказаться существенными.
  • Температура света – что это?Популярно о цветовой температуре, что это такое, и как получилось, что свет измеряется в градусах.

Новости и акции

  • 05.06.2019Ожидается поступление светодиодных матриц и прожекторов мощностью до 500 ватт с белым нейтральным светом, для сетей 110/127/220 вольт и для 12-24 вольт.
  • 22. 11.2018Новая продукция – линейка цветных светодиодных прожекторов на 220 и 12-24 вольт: синие, жёлтые, зелёные и красные.
  • 02.10.2018Очередное поступление низковольтных светодиодных ламп Е27 на 12, 24, 36 вольт мощностью от 3 до 12 ватт.
    Новые мощные прожекторы на 500 ватт.
  • 01.10.2018Новая продукция – линейка низковольтных светодиодных прожекторов на 12-24 вольт пополнилась моделями на 60 ватт. Также в продаже новые драйверы на 70 и 80 ватт.
  • 28.09.2018Поступление новых недорогих светодиодных ламп Е27 на 24/36/48 вольт. Две модели бренда «Край Света» на 8 и 10.5 ватт.

Трансформатор 220 на 24 вольта где применяется? На самом деле устройства данного типа необходимы для различных электроприборов, которые способны работать от сети в 24 В. Для этого постоянный ток от розетки 220 В нужно преобразовать. С этой целью подбираются трансформаторы.

К оборудованию на 24 В относятся компрессоры, распределители и также электродвигатели. Также многие приводы работают от сети с напряжением 220 В. В данном случае важно отметить, что трансформаторы выпускаются различной мощности. На сегодняшний день на рынке представлены модели даже на 20 Вт. Однако есть очень мощные модификации, которые активно используются на производстве.

Устройство простого трансформатора

Основным элементом трансформатора является реле. Непосредственно катушки устанавливаются с различными обмотками. Магнитопроводы имеются с сердечниками. По параметру проводимости тока они довольно сильно различаются. Также важно упомянуть, что в некоторых модификациях предусмотрены специальные расширители. В данном случае многое зависит от параметра рабочей частоты.

Изоляторы в трансформаторах предназначены для защиты сердечника от перегрузок. Для выпрямления постоянного тока в устройствах устанавливаются трансиверы. Выпускаются они ортогонального и подстроечного типа.

Понижающие модификации

Понижающий трансформатор с 220 на 24 вольта часто встречается с мощностью от 100 Вт. Используются устройства данного типа, как правило, для электроприводов. Магнитопроводы с реле у многих моделей имеются с ленточными сердечниками. Также важно отметить, что обмотки в устройствах на 3 кВт устанавливаются концентрические. Однако на рынке представлены модификации с трехслойными аналогами. Всего выводов у понижающих устройств имеется два.

Некоторые модификации выпускаются с клеммами. Весит понижающий трансформатор 220 на 24 вольта не более 5 кг. По параметру проводимости тока модели довольно сильно различаются. В данном случае необходимо учитывать тип трансивера. Отечественные трансформаторы в основном продаются с ортогональными аналогами. Однако зарубежные компании отдают предпочтение подстроченным трансиверам. Показатель перегрузки тока у моделей в среднем составляет 5,5 А. Некоторые устройства выпускаются с переключателями для регулировки фазы.

Тороидальные модели

Трансформатор тороидальный 220 на 24 вольта отличается тем, что в нем предусмотрен компаратор. За счет указанного элемента осуществляется изменение тактовой частоты от сети. Также важно упомянуть о том, что многие устройства оснащены стабилитронами. Магнитопроводы в аппаратах устанавливаются обычные.

Непосредственно обмотки для трансформаторов используются концентрического типа. Применяются данные устройства чаще всего для двигателей небольшой мощности. Также они подходят для многих типов компрессоров. Регуляторы в устройствах, как правило, отсутствуют. Изоляторы применяются композитного типа. В среднем параметр проводимости тока у моделей не превышает 50 мкСм. В свою очередь перегрузку аппараты с мощность 80 Вт способны выдерживать в 3 А.

Масляные модели

Масляный трансформатор 220 на 12–24 вольта оснащается специальным теплообменником. Непосредственно для охлаждающей жидкости используются каналы. Сердечники во многих модификациях предусмотрены ленточного типа. Обмотки чаще всего применяются трехслойные. Отдельного внимания заслуживают реле. Устанавливаются они с различной проводимостью. В среднем для масляных конфигураций указанный параметр колеблется в районе 60 мкСм.

Катушки в устройствах устанавливаются с магнитопроводами. Непосредственно выводов для подключения оборудования имеется два. Некоторые конфигурации производятся с клеммами. Для электроприводов масляные устройства подходят идеально. Трансиверы во всех моделях устанавливаются лишь ортогонального типа.

Как сделать устройство своими руками?

Сделать трансформатор 220 на 24 вольта своими руками довольно сложно. В первую очередь для понижающей модификации потребуется большая катушка с хорошей проводимостью тока. Для того чтобы обеспечивать стабильную рабочую частоту, обмотка должна быть предусмотрена концентрического типа. Непосредственно для подключения оборудования применяются выводы, которые представляют собой просто проводники.

В данном случае расширители устанавливаются обычные. Использовать их можно от любого поломанного трансформатора. Если рассматривать модификации с переключателями, то для них придется делать отдельно стойку. Для того чтобы сбои не происходили часто, применяются изоляторы. В наше время наиболее надежными принято считать композитные аналоги.

Модель на 80 Вт

Трансформатор 220 на 24 вольта постоянного тока на 80 Вт больше всего подходит для обычных компрессоров. На производстве модели данного типа встречаются довольно редко. Расход электроэнергии у них незначительный, однако мощности для нормального электропривода однозначно не хватит. Магнитопроводы в устройствах применяются, как правило, с низковольтной обмоткой.

Сердечники при этом встречаются штампованного типа. Если рассматривать конфигурации с высокой проводимостью тока, то у них предусмотрены специальные компараторы. Однако чаще всего устанавливаются обычные отводы. Также существуют модели со стабилизаторами. В данном случае параметр перегрузки тока в среднем составляет 3,5 А. Переключатели у моделей на 80 Вт никогда не используются.

Устройство на 100 Вт

Трансформатор 220 на 24 вольта (100Вт) может применяться для электроприводов. Многие модификации оснащаются надежными системами защиты. Чаще всего производителями указывается маркировка ИП20. Все это говорит о том, что система заземления у модели применяется с композитными изоляторами. Если говорить про магнитопроводы, то они используются с вторичной обмоткой.

Довольно часто сердечники встречаются листового типа. Однако штампованных аналогов на рынке имеется много. По качеству листовым сердечникам они не сильно уступают. Проводимость тока у конфигураций на 100 Вт в среднем равняется 70 мкСм. Если говорить про перегрузки, то многое в данной ситуации зависит от производителя. Устройства с трансиверами встречаются редко. Однако трансформаторы на 100 Вт со стабилизаторами пользуются большим спросом.

Трансформатор на 120 Вт

Трансформатор 220 на 24 вольта на 120 Вт подходит для электродвигателей разной мощности. Сердечники во многих конфигурациях устанавливаются листового типа. Магнитопроводы, в свою очередь, имеются с высоковольтной обмоткой. Выводы в устройствах стандартно имеются в количестве двух. Некоторые модели производятся с клеммами для подключения к оборудованию. Системы охлаждения на сегодняшний день существуют различные. Однако чаще всего речь идет об обычном понижении температуры за счет циркуляции воздуха.

Катушки в трансформаторах часто устанавливаются на опорные кольца. В некоторых случаях у моделей есть расширители. Переключатели также используются в трансформаторах. Трансиверы применяются как ортогонального, так и подстроечного типа. В данном случае многое зависит от показателя рабочей частоты сети. Если она не превышает 40 Гц, то можно смело использовать ортогональные трансиверы. В противном случае для нормальной эксплуатации устройства подходят лишь подстроечные компоненты. Стабилизаторы применяются довольно редко.

Однодиапазонные устройства

Однодиапазонный трансформатор 220 на 24 вольта способен эксплуатироваться в сети с частотой ниже 45 Гц. В данном случае во всех моделях устанавливаются компараторы. За счет них показатель проводимости тока можно легко стабилизировать. Трансиверы встречаются в основном ортогональные. Непосредственно изоляторы уславливаются у моделей композитные. Магнитопроводы для преобразования тока применяются на высоковольтной обмотке. Катушки в данном случае обязательно имеются с опорными кольцами. Теплообменники у однодиапазонных трансформаторов отсутствуют.

Многодиапазонные модификации

Многодиапазонный трансформатор 220 на 24 вольта способен довольно просто использоваться от сети с частностью свыше 45 Гц. Скачки в системе происходят у моделей редко. За счет этого электрооборудование работает более качественно, и расход электроэнергии не сильно большой. Компараторы в таких модификациях имеются двухполюсного типа.

Проводимость тока у моделей превышает 80 мкСм. В свою очередь параметр перегрузки составляет обычно 5,5 А. Изоляторы в данном случае устанавливаются на отводах. Для избегания различных электромагнитных сбоев применяются переключатели. Теплообменники в конструкциях используются различной емкости. Для укрепления их применяются опоры и рейки. Система охлаждения у многих моделей предусмотрена жидкостного типа. Магнитопроводы используются с высоковольтной обмоткой.

Трансформаторы с диэлектриками

Модели с диэлектриками используются для компрессоров. На производстве устройства данного типа являются довольно востребованными. Они способны работать от однофазной цепи.

Также важно учитывать, что частотность моделей в среднем равняется 35 Гц. Таким образом, большие перегрузки тока происходят редко. Изоляторы в представленных моделях не применяются. Непосредственно диэлектрики устанавливаются возле магнитопровода.

Почему многие ноутбуки работают на 19 вольт?

Сейчас есть ноутбуки, которые используют внешние источники питания, рассчитанные на ровно 19 вольт. Это не кратно ничего подходящего. Меня много озадачивает.

Это не проектный вопрос, как он задан, но он имеет отношение к дизайну систем зарядки аккумулятора.

Резюме:

  • Напряжение немного больше, чем кратное полностью заряженному напряжению литий-ионной батареи — тип, используемый почти в каждом современном ноутбуке.

  • В большинстве ноутбуков используются литий-ионные аккумуляторы.

  • 19 В обеспечивает напряжение, которое подходит для зарядки до 4 последовательных литий-ионных элементов с использованием понижающего преобразователя для эффективного сброса избыточного напряжения.

  • Различные комбинации последовательных и параллельных ячеек могут быть размещены.

  • Можно использовать напряжения чуть ниже 19 В, но 19 В является полезным стандартным напряжением, которое будет соответствовать большинству возможных ситуаций.


Почти все современные ноутбуки используют литий-ионные (LiIon) аккумуляторы. Каждая батарея состоит как минимум из ряда литиевых элементов в последовательной «строке» и может состоять из нескольких параллельных комбинаций нескольких последовательных строк.

Литий-ионный элемент имеет максимальное зарядное напряжение 4,2 В (4,3 В для смелых и безрассудных). Для зарядки элемента 4,2 В требуется, по крайней мере, немного большее напряжение, чтобы обеспечить некоторый «запас» для работы электроники управления зарядкой. По крайней мере, может потребоваться дополнительно около 0,1 В, но обычно по крайней мере 0,5 В было бы полезно, и можно использовать больше.

Одна ячейка = 4,2 В
Две ячейки = 8,4 В
Три ячейки = 12,6 В
Четыре ячейки = 16,8 В
Пять ячеек = 21 В.

Обычно зарядное устройство использует импульсный источник питания (SMPS) для преобразования доступного напряжения в требуемое напряжение. SMPS может быть повышающим преобразователем (с повышением напряжения) или преобразователем Бака (с понижением напряжения) или переключаться с одного на другой по мере необходимости. Во многих случаях понижающий преобразователь можно сделать более эффективным, чем повышающий преобразователь. В этом случае, используя понижающий преобразователь, можно будет заряжать до 4 элементов подряд.

Я видел аккумуляторы для ноутбуков с

3 ячейки в серии (3S),
4 ячейки в серии (4S),
6 ячеек в 2 параллельных строках по 3 (2P3S),
8 ячеек в 2 параллельных строках по 4 (2P4S)

и при напряжении источника 19 В можно было бы заряжать 1, 2, 3 или 4 литиевых элемента последовательно и любое количество их параллельных цепочек.

Для ячеек с напряжением 16,8 В оставьте запас (19−16,8) = 2,4 В для электроники. Большая часть этого не нужна, и разница учитывается понижающим преобразователем, который действует как «электронная коробка передач», отбирая энергию при одном напряжении и выводя ее при более низком напряжении и, соответственно, более высоком токе.

С допустимым запасом 0,7 В, условно можно было бы использовать, скажем, 16,8 В + 0,5 В = 17,5 В от источника питания, но использование 19 В гарантирует, что этого достаточно для любой ситуации, и избыток не будет потрачен впустую, поскольку преобразователь понижающего напряжения преобразует напряжение вниз по мере необходимости. Падение напряжения, кроме аккумулятора, может происходить в SMPS-переключателе (обычно MOSFET ), SMPS-диодах (или синхронных выпрямителях), проводке, разъемах, резистивных токовых чувствительных элементах и ​​схемах защиты. Желательно как можно меньше капель, чтобы минимизировать потери энергии.

Когда ионно-литиевая батарея близка к полной разрядке, напряжение на ее клеммах составляет около 3 В. Насколько низки они могут разрядиться, зависит от технических соображений, связанных с долговечностью и емкостью. При 3 В / элемент 1/2/3/4 элементы имеют напряжение на клеммах 3/6/9/12 вольт. Долговечный преобразователь учитывает это пониженное напряжение для поддержания эффективности зарядки. Эффективная конструкция понижающего преобразователя может превышать 95% эффективности, и в такого рода применениях эффективность никогда не должна быть ниже 90% (хотя некоторые могут быть).


Я недавно заменил батарею для нетбука с 4 ячейками на расширенную версию с 6 ячейками. Версия с 4 ячейками работала в конфигурации 4S и версия с 6 ячейками в 2P3S. Несмотря на более низкое напряжение новой батареи, схема зарядки учитывала изменения, распознавая батарею и регулируя ее соответственно. Внесение такого рода изменений в систему, НЕ предназначенную для размещения батареи низкого напряжения, может нанести вред здоровью батареи, оборудования и пользователя.

Одна батарея 36 В или три батареи 12 В? Плюсы и минусы

Несколько лет назад, когда приложение требовало 36 вольт, лучшим вариантом было подключить три батареи на 12 В последовательно. Но теперь, когда на рынке появились батареи на 36 В, вы можете задаться вопросом, может ли использование всего одной батареи «плавать» вашу лодку лучше. (Буквально для тех, кому они нужны для питания троллинговых моторов!)

Вот пример. Допустим, вашему троллинговому двигателю или другому устройству требуется 36 вольт и 50 Ач.Вы можете заменить одну батарею на 36 В, 50 Ач, на три батареи на 12 В, 50 А · ч, соединенные последовательно. Но правильно ли это?

Это зависит от источника питания, типа используемой батареи и личных предпочтений. Во-первых, давайте посмотрим, как тип батареи может повлиять на ваш выбор.

Какой тип батареи 36 вольт вы используете?

Для некоторых типов батарей выбор между тремя батареями 12 В и одной батареей 36 В может иметь большее значение.Например, свинцово-кислотные батареи необходимо часто проверять и доливать дистиллированной водой, поэтому вы можете предпочесть следить за одной батареей вместо трех.

Но если вы выбрали литий, вы вообще откажетесь от обслуживания. Таким образом, обслуживание батарей не будет важным фактором, когда дело доходит до выбора между тремя батареями на 12 В или одной батареей на 36 В.

И если говорить о литии… как о новейшей технологии в производстве аккумуляторов, он превосходит во всех отношениях. И три батареи на 12 В, и одна литиевая батарея на 36 В обеспечивают питание в два раза дольше, чем обычные батареи.

Вот некоторые из других преимуществ, которые вы получаете, просто выбирая литий:

  • Не требует обслуживания.
  • Более быстрое время зарядки, чем у обычных батарей (2 часа или меньше).
  • Не содержит токсинов, не протекает и безопасно для хранения в помещении.
  • Три литиевые батареи 12 В или литиевая батарея 36 В будут весить на 70% меньше, чем аналогичные установки других типов батарей.
  • Сила тока остается постоянной, даже если срок службы батареи составляет менее 50%.
  • Скорость разряда, когда они не используются, составляет всего 2% в месяц (для свинцово-кислотных аккумуляторов ставка составляет 30%).

Три литиевые батареи 12 В и литиевая батарея 36 В

Итак, вы выбрали литий. А теперь перейдем к актуальному вопросу. Стоит ли использовать одну батарею 36 В для питания троллингового двигателя / другого приложения? Или три батарейки на 12В?

Правда оба варианта хорошо работают с литием! Таким образом, можно сказать, что единственные «за» и «против» основаны на потребностях конкретного приложения и личных предпочтениях. Вот разница между батареей на 36 В и батареей.три батареи на 12 вольт:

Плюсы и минусы использования трех литиевых батарей 12 В

Плюсы: Один из аргументов в пользу использования трех батарей по 12 штук в серии заключается в том, что если одна из них выйдет из строя, ее легко заменить. Кроме того, у вас будет больше гибкости при размещении батарей в вашем приложении. Это может быть полезно для тех, кто хочет распределить вес в лодке.

В отличие от батареи на 36 В, вам не понадобится специальное зарядное устройство для батарей 12 В. Они также могут помочь при запуске двигателя.

Минусы: Чем больше у вас батарей, тем больше у вас точек подключения. Вам придется смонтировать и подключить каждое из них, и каждое открытое соединение является потенциальным источником ненадежности.

Плюсы и минусы использования одной литиевой батареи 36 В

Плюсы: Самым очевидным преимуществом выбора одной батареи на 36 В является то, что она всего одна! Одна легкая батарея (если она литиевая) для установки и хранения. Всего один набор кабелей для подключения, меньше точек подключения, о которых нужно беспокоиться, и меньше беспорядка, о котором можно споткнуться.

Еще одним плюсом является тот факт, что батареи на 36 В работают по принципу «подключи и работай». Вам не нужно придумывать, как последовательно соединить три батареи 12 В для получения более высокого напряжения.

Но самым важным преимуществом для многих может быть то, что использование всего одной батареи на 36 В экономит место! Это отлично подходит для рыболовных судов, где важен каждый дюйм пространства. Это одна из причин, почему они популярны для использования с мощными троллинговыми двигателями.

Минусы: Вам понадобится специальное зарядное устройство для литиевой батареи на 36 В.Зарядные устройства 12 В более распространены на рынке, но они никуда не годятся.

Прочие соображения

А как насчет цены батареи на 36 В по сравнению с тремя батареями на 12 В? Будет ли один вариант вернуть вам больше с трудом заработанных денег, чем другой? Возможно нет. Хотя батареи на 12 В менее дороги, вам придется купить три из них, чтобы получить необходимую мощность. И если вам не понадобится новое зарядное устройство, стоимость батареи на 36 В будет лишь немного выше.

Суть в том, что оба варианта работают нормально.Нет большой разницы между использованием трех батарей 12 В или одной батареи 36 В с точки зрения преимуществ и недостатков, если вы используете литий. Выберите настройку, которая лучше всего подходит для вашего приложения и потребностей.

И еще одна хорошая новость: у нас есть оба варианта! Приобретите нашу новую литиевую батарею 36 В здесь или посмотрите литиевые батареи на 12 В здесь.

Узнайте больше о литиевых батареях здесь:

Батареи Часть 1 — 12 В, 24 В и 36 В

Это первая часть из трех частей, посвященных батареям.В этой статье мы объясняем, как соединить батареи в последовательную и параллельную цепи, чтобы получить необходимое напряжение и желаемые ампер-часы.

Первое, что следует помнить при работе с аккумуляторами и их настройке в различных конфигурациях, это то, что если вы не уверены в том, что делаете, обратитесь к электрику! Вокруг полно морских и автоэлектриков, и они смогут во всем разобраться в кратчайшие сроки. Просто убедитесь, что они используют луженые провода, переключатели, вилки, автоматические выключатели и т. Д., Подходящие для морской среды.

Эта статья будет представлять особый интерес для всех, кто собирается купить или владеет электрическим подвесным мотором. Электродвигатели бывают разных размеров: самые маленькие, как правило, на 12 вольт, большие, с большей тягой, обычно на 24 вольта, а есть действительно большие, которые обычно на 36 вольт.

Цепь серии

Теперь некоторые из вас могут подумать, что никогда не видели батарею на 36 вольт, и были бы совершенно правы. Если вам требуется 36 вольт, вам нужно будет соединить три 12-вольтовых батареи в последовательную цепь, чтобы получить более высокое напряжение.

Итак, в последовательной схеме мы можем увеличить напряжение на количество батарей. 3 x 12 вольт равны 36 вольт, или 2 x 12 вольт равны 24 вольту.

При соединении батарей в последовательную цепь вы увеличиваете только напряжение, а не доступные ампер-часы. Например, если бы использованные 12-вольтовые батареи были рассчитаны на 100 ампер-часов, общее количество ампер-часов для 36-вольтовой цепи все равно было бы 100 ампер-часов.

Цепь серии

Чтобы соединить батареи в последовательную цепь, подготовьте батареи, разъемы и кабели для батарей и убедитесь, что к батареям не подключены никакие приборы или что-либо еще.Возьмите соединительный кабель аккумулятора и протяните его от отрицательной клеммы одной батареи к положительной клемме другой батареи.

Чтобы запустить устройство с более высоким напряжением, подсоедините красный или положительный кабель к пустой положительной клемме на одной из батарей, и у вас должна остаться пустая отрицательная клемма на другой батарее, к которой вы будете подсоединять черный или отрицательный кабель.

Параллельная цепь

Параллельная цепь

Допустим, у вас есть 12-вольтовая батарея, которая проработает электричество в течение одного дня, но вы действительно хотели бы использовать ее в течение двух дней, прежде чем снова потребуется заряжать батареи. Если у вас есть две 12-вольтовые батареи на 100 ампер-часов и подключить их в параллельную схему, вы получите 12 вольт и 200 ампер-часов. Три 12-вольтовых батареи по 100 ампер-часов каждая в параллельной цепи, конечно же, дадут нам 12 вольт и 300 ампер-часов.

Чтобы подключить параллельную цепь, вам нужно еще раз убедиться, что к батареям ничего не подключено и что у вас есть разъемы и кабели под рукой.

Отсюда просто нужно подключить положительную клемму одной батареи к положительной клемме другой батареи и аналогично с отрицательной клеммой.Когда вы присоединяете прибор, вы просто присоединяете отрицательный (черный) кабель к отрицательной клемме, а положительный (красный) провод — к положительной клемме.

Можно ли использовать 3 батареи по 12 В в гольф-мобиле 36 В?

Если у вас есть тележка для гольфа 36 вольт , которая работает от шести батарей 6- вольт , , вы можете заменить их тремя батареями 12 вольт , которые часто проще найти.

Щелкните, чтобы увидеть полный ответ

Следовательно, можно ли использовать 3 батареи 12 В в гольф-мобиле 36 В?

Вы можете использовать 3 батареи / 12 В последовательно с по для создания источника питания 36 В . Однако этому источнику питания будет не хватать мощности по силе тока и возможности глубокого цикла. В результате будет иметь низкое время работы и сократит срок службы батареи . Батареи должны быть тележкой для гольфа конкретными батареями .

Кроме того, можно ли вставить 48-вольтовые батареи в 36-вольтовый гольф-мобиль? Да, но эффективно и просто. Однако, хотя и можно модернизировать эти автомобили до электронного управления скоростью на уровне 36V или 48V , я не рекомендовал бы и из-за затрат, связанных с переоборудованием. Вы можете купить современную тележку 48V за гораздо меньшие деньги, чем преобразование 36v в 48v .

Точно так же спрашивается, можно ли использовать гольф-кар на 12 вольтовых батареях?

A 12 вольт глубокого цикла аккумулятор обеспечивает питание для запуска и приведения в движение электрической тележки для гольфа . Поскольку электрические тележки для гольфа не имеют генератора для подзарядки аккумулятора в используют , как и в случае с грузовиками и легковыми автомобилями, необходима батарея глубокого цикла, чтобы тележка работала в течение долгого дня. по ходу.

Могу ли я использовать в гольфмобиле обычные батареи глубокого разряда?

Технический ответ: Да. Можно использовать морской аккумулятор вместо электрических аккумуляторов для гольф-каров . Обе они технически представляют собой гелевые свинцово-кислотные батареи , предназначенные для глубиной цикла , сообщает It Still Runs. Однако это сходство не означает, что они должны быть и взаимозаменяемы.

Glenn’s Golf Car Central — Gof Car Voltage

При установке фонарей, стереосистем или других аксессуаров на вашу тележку для гольфа необходимо знать напряжение вашей системы.Если вы знаете напряжение, то ваши аксессуары могут быть правильно подключены. ГАЗОВЫЕ АВТОМОБИЛИ ДЛЯ ГОЛЬФА

Все газовые гольф-кары имеют 12-вольтовые батареи, поэтому, просто подключив положительную и отрицательную клеммы, у вас будет правильное значение напряжения для любого аксессуара на 12 вольт.

АВТОМОБИЛИ ДЛЯ ГОЛЬФА

Электрические тележки для гольфа будут работать на 36 или 48 вольт. Обычно в гольф-карах бывает 6 аккумуляторов.Если это батареи на 6 вольт, у вас есть система на 36 вольт, а если у вас батареи на 8 вольт, у вас есть система на 48 вольт. Но как узнать, 6 или 8 вольт у батареи?

Ключевым моментом является подсчет количества ячеек в ваших батареях. Каждая ячейка на 2 вольта и имеет отверстие для заливки воды. Количество заливных отверстий равно количеству ячеек. Соответственно, если у вас есть 3 элемента (или отверстия для заполнения), умноженные на 2 вольта на элемент, у вас есть батарея на 6 вольт. Если у вас есть 4 элемента (или отверстия для заполнения), умноженные на 2 вольта на элемент, у вас есть батарея на 8 В.

После того, как вы узнаете напряжение ваших отдельных батарей, просто подсчитайте количество батарей, и вы получите напряжение системы!

УСТАНОВКА ДОПОЛНИТЕЛЬНЫХ ПРИНАДЛЕЖНОСТЕЙ НА 12 В В ЭЛЕКТРИЧЕСКОМ ГОЛЬФАРЕ

Существуют различные варианты подключения 12-вольтных электрических аксессуаров к вашей гольфмобиле. Ваши возможности также зависят от системы на 36 или 48 вольт.

СИСТЕМЫ НА 36 ВОЛЬТ

В системе на 36 В можно использовать 2 батареи для создания 12 В, необходимых для питания ваших аксессуаров.С помощью тестера напряжения найдите положительную и отрицательную клеммы на двух соседних батареях, которые будут обеспечивать 12 вольт. Хотя этот вариант подключения аксессуаров будет работать, имейте в виду, что две батареи, обеспечивающие питание вашего аксессуара, будут быстрее изнашиваться. Когда батареи в конечном итоге начинают выходить из строя, скорее всего, эти две батареи выйдут из строя раньше.

СИСТЕМЫ НА 48 ВОЛЬТ

Одной батареи на 8 В недостаточно для питания аксессуара на 12 В.А использование двух батарей на 8 В (16 В) обеспечит слишком большую мощность для вашего аксессуара. Этот вариант иногда работает временно, но ваш аксессуар обычно перегорает из-за чрезмерного напряжения. Такая ситуация требует установки редуктора напряжения.

РЕДУКТОРЫ НАПРЯЖЕНИЯ

Как упоминалось выше, могут возникнуть проблемы, связанные с установкой аксессуаров, использующих только две батареи из вашего шести аккумуляторного блока. Ответ на проблему — использовать все шесть ваших батарей.Конечно, это дает 36 или 48 вольт, что слишком много для любых аксессуаров. Тем не менее, редуктор напряжения эффективно снижает напряжение всего аккумуляторного блока до 12 вольт.

Аккумулятор 24 В, разъемы аккумулятора

Узнайте, как соединить две батареи на 12 В, чтобы получить одну батарею на 24 В. Это обычное приложение, необходимое для подачи питания на троллинговый двигатель, требующий 24 В. Некоторым более крупным троллинговым двигателям потребуется 36 вольт при последовательном соединении трех 12-вольтных батарей глубокого цикла.

Аналогично батареям для фонарей

Соединить вместе 2 или более 12-вольтовых батарей глубокого разряда очень просто и не страшно. Во-первых: задумайтесь — вы привыкли соединять 2 или более стандартных сухих элемента питания AA, AAA, C или D в серию, например, для фонарика. Некоторые фонарики вмещают 4-6 ячеек «D» встык. Это означает, что конец (+) касается конца (-) следующей батареи. Каждая батарея = 1,5 вольта. Фонарь, содержащий 6 ячеек «D», подает питание на источник света напряжением 9 вольт: вы складываете вольт вместе в этом приложении «Series». Если вы случайно закоротите элемент, случайно сделав что-то, что заставит положительный конец коснуться его отрицательного конца, с этими маленькими батарейками для фонарей обычно не будет фейерверков. Это большая разница с 12-вольтовыми автомобильными или морскими аккумуляторами — прикосновение (+) к (-) одной и той же батареи вызовет искры! Быть осторожен.


Батарея 24 В — последовательное соединение

Используя тот же процесс, что и для фонарей с несколькими батареями, вы можете соединить две 12-вольтовые батареи глубокого цикла вместе, чтобы по сути сделать 24-вольтовую батарею, которая может питать 24-вольтовый аксессуар — например, троллинговый двигатель.В этом приложении используются батареи глубокого разряда, поскольку они предназначены для выдачи мощности с течением времени, в отличие от типичной стартерной батареи, которая предназначена для создания толчка мощности для запуска двигателя. Ниже приведена схема изготовления батареи на 24 В:

.

Провод какого размера?

Вам необходимо использовать более толстый провод, чем при подключении к батарее радиоприемников, скважинных насосов или эхолотов. Обратите внимание на провода, идущие от аккумулятора к стартеру двигателя вашего автомобиля.Или обратите внимание на провод, который выходит из вашего троллингового двигателя. Вы должны соответствовать этому размеру как можно ближе. Скорее всего, это будет калибр 6-8.

Используя ту же последовательность, вы можете настроить 36-вольтовую систему. На пресноводных рыболовных судах аккумуляторная система на 24 или 36 вольт чаще всего используется для питания троллингового двигателя. Не подключайте 3 батареи на 12 В для работы троллингового двигателя 24 В. Ваш троллинговый двигатель будет поврежден, если вы попытаетесь подключить 36 вольт, а ваш двигатель рассчитан только на 24 вольт.Внимательно прочтите инструкции. Некоторые новые для рынка троллинговые двигатели 2020 года могут работать от 24 или 36 вольт. Снова читайте внимательно.



Мы являемся аффилированным лицом Amazon. Если вы покупаете продукт, который мы рекомендовали, или другой продукт на Amazon, мы может получить небольшую комиссию. Наши сотрудники рекомендуют то, что у нас есть лично принадлежал, использовал / тестировал, исследовал или ловил рыбу с проверенными рыболовами, которые рекомендую их. Эти продукты не будут стоить вам дороже, чем размещен.


Параллельное соединение 12 В

Бывают случаи, когда вам требуется более продолжительное питание, но при этом необходимо поддерживать подачу только 12 вольт. Например, на больших судах с несколькими электрическими устройствами, требующими питания одновременно, вы увидите две, если не более батареи глубокого цикла, соединенные вместе. Вы можете выполнить это «параллельным соединением» двух или более 12-вольтных батарей. Это приложение также часто встречается в жилых автофургонах. Ниже представлена ​​схема того, как это можно сделать:


10 самых популярных страниц PFT для поиска



12В против24в против Аккумуляторы на 36 В и различные автомобильные системы

Кто помнит 6-вольтовые автомобильные аккумуляторы?

В большинстве автомобилей, произведенных в Северной Америке до 1950 года, использовались 6-вольтовые батареи. Это напряжение было адекватным, учитывая низкую потребляемую мощность транспортных средств в то время. Однако во время и после Второй мировой войны цены на медь росли, и в автомобилях было добавлено больше схем управления, двигателей и электронных устройств. К середине 1950-х годов автомобильные электрические системы на 12 В были нормой для новых автомобилей.

Более высокое напряжение экономило деньги и было более надежным.Закон Ома гласит, что для равной мощности в цепи удвоение напряжения уменьшает вдвое величину необходимого тока. Проще говоря, для более высокого тока требуются провода большего размера.

Таким образом, переход на 12 В означал, что для передачи энергии по транспортному средству требовалось меньше меди. Кроме того, достижения в области аккумуляторных технологий позволили создать 12-вольтовые батареи такого же размера, как и 6-вольтовые батареи.

Системы высокого напряжения имеют дополнительные преимущества:

  • Двигатели и другие электрические компоненты были изготовлены из меньшего количества меди.
  • Электрические реле и моторные щетки прослужили дольше.
  • Снижены падения напряжения из-за плохих соединений.
  • Свинцово-кислотные аккумуляторные батареи подвергаются меньшей нагрузке во время запуска двигателя.
  • Стартеры с более высоким крутящим моментом могут быть изготовлены для двигателей с более высокой степенью сжатия.

Нити лампы накаливания должны были быть толще, чтобы создавать такое же количество света, но поскольку в современных автомобилях используется мало ламп накаливания, если они вообще есть, этот вопрос является спорным.

Автомобильные системы на 24 В

Системы на 24 В имеют аналогичные преимущества перед системами на 12 В.Могут использоваться меньшие и более легкие жгуты проводов, электродвигатели того же размера более мощные, а влияние падений напряжения сводится к минимуму.

По этим причинам электрические системы высокого напряжения часто используются в коммерческих, промышленных и военных транспортных средствах. В этих автомобилях обычно используются дизельные двигатели с высокой степенью сжатия, поэтому требуются мощные стартеры. Повышается надежность за счет меньшего количества проблем с падением напряжения.

Легковые и грузовые автомобили потребительского уровня, даже с дизельными двигателями, не используют 24-вольтовые системы, главным образом потому, что недорогие батареи бывают 12-вольтовыми, поэтому потребуется два.Кроме того, большинство компонентов и аксессуаров для розничных автомобилей рассчитаны на питание от источника питания 12 В.

Транспортные средства и оборудование с напряжением 36 В

Системы с напряжением 36 и более высокого напряжения нередки в коммерческом и промышленном оборудовании. Такие высокие напряжения требуются для транспортных средств, которые используют электродвигатели для приведения в движение вместо двигателей внутреннего сгорания, потому что требования к электрическому току настолько высоки, что размеры кабелей могут быть смехотворно большими.

К этому классу оборудования относятся вилочные погрузчики, тягачи и автовозы.В гольф-карах и электромобилях также используются системы высокого напряжения. Обычно вместо свинцово-кислотных аккумуляторов используются несколько батарей глубокого цикла, которые заряжаются ежедневно.

Влияние систем высокого напряжения на характеристики генератора

Фактическим стандартом конструкции генератора переменного тока является генератор Lundell. Это не самая эффективная конструкция, но ее легко построить. Если, скажем, стандартный генератор Lundell на 14 В используется в системе с более высоким напряжением, его зависимость мощности от напряжения становится непрактичной при более высоких оборотах.

Генератор Lundell можно перемотать для правильной работы при более высоких напряжениях, увеличив количество обмоток статора при уменьшении размера провода, но менее дорогие методы, в которых используются дополнительные электронные схемы, преодолевают это ограничение более экономично. С помощью электроники можно даже создавать генераторы переменного тока на два напряжения.

Куда отсюда?

Вероятно, мы достигли плато напряжения для автомобилей и других транспортных средств. Были предложены системы с более высоким напряжением для личных автомобилей, но, несмотря на то, что автомобили имеют больше электронных функций, потребление энергии отдельными устройствами падает.Так что не ждите, что скоро появятся автомобильные аккумуляторы более высокого напряжения.

Если вам нужен генератор переменного тока для вилочного погрузчика, тягача, транспортного средства для перевозки персонала или любого другого промышленного транспортного средства, свяжитесь с нами сегодня.

Учебное пособие по преобразованию постоянного тока в постоянный


Преобразователи постоянного тока преобразуют мощность от одного источника постоянного напряжения в другое напряжение постоянного тока, хотя иногда на выходе бывает такое же напряжение. Обычно это регулируемые устройства, принимающие возможно изменяющееся входное напряжение и обеспечивающее стабильное регулируемое выходное напряжение до до предела расчетного тока (силы тока).Блоки переключения режимов полагаются на микропроцессоры для высокого КПД, меньших потерь и тепла. Конвертеры обычно используются для обеспечения электрической шумоизоляции или преобразования напряжения, или обеспечения стабильный уровень напряжения для чувствительного к напряжению оборудования. Доступны преобразователи постоянного тока для повышающих и понижающих приложений, а также изолированных и неизолированных конструкций.

Устройства переключения режима, которые ChargingChargers.com предлагает, имеют преимущества перед линейными конструкции.Эффективность переключения может быть выше, чем у линейного блока, что приводит к меньшему потери энергии при передаче, что означает меньшее количество тепла, меньшие компоненты и меньшее вопросы терморегулирования. Линейные типы могут использоваться в интегрированных конструкциях (встроенных в), и может быть дешевле в этом приложении, но режим переключения почти полностью заменены линейные блоки питания в большинстве ситуаций.

Понижающие преобразователи постоянного тока

Понижающие преобразователи постоянного тока в постоянный называются понижающими преобразователями.Типичный пример: быть преобразователем 24 в 12 вольт, имеющим диапазон входного постоянного напряжения от 20 до 30 вольт постоянного тока и выходное напряжение 13,8 вольт постоянного тока (В постоянного тока) при, скажем, 12 ампер (максимум). Вход Напряжение может быть просто некоторым доступным системным напряжением в этом диапазоне или 24-вольтовой батареей. система с колебаниями напряжения из-за степени заряда аккумулятора. Выход регулируется микропроцессором при 13,8 В постоянного тока в этом случае, что является типичным напряжением холостого хода для система батарей постоянного тока на 12 В и обычно приемлемый вход для устройства «12 В постоянного тока».


Некоторые примеры соотношений напряжений
ВХОД ВЫХОД
9–18 В постоянного тока 12,5 В постоянного тока
20–35 В постоянного тока 12,5 В постоянного тока
30-60 В постоянного тока 9036 В 9036 В 9036 Пост. 24 В постоянного тока

Понижающие преобразователи постоянного тока используются в военных, жилых домах или на море. с системным напряжением постоянного тока 24 вольт, и требуется регулируемый источник постоянного тока на 12 вольт для радиосвязи, сонара, эхолота, компьютеров и, конечно же, аудио или видеооборудование для развлечений.

Дисбаланс батарей и преобразователи постоянного тока

Почему бы не использовать отвод на 12 В, если система (например, 24 В) состоит из последовательное соединение батарей низкого напряжения (например, двух 12 В)? Батареи может (вероятно) стать несбалансированным по статусу напряжения / заряда. В параллельной конфигурации (положительный подключен к положительному, отрицательный к отрицательному), батареи будут выравнивать со временем и установятся на обычном напряжении.При последовательном подключении выравнивание состояние напряжения / заряда не является естественным состоянием. Система и любое зарядное устройство участвует, видит суммарное выходное напряжение, и зарядное устройство пытается поднять напряжение до заданного значения, которое указывает на полную зарядку, путем нажатия тока для выполнения этот. Незадействованная батарея, которая изначально имеет более высокое напряжение, достигнет его ‘полное напряжение заряда’ быстрее, но ток все еще проходит через зарядное устройство стремится поднять объединенное напряжение двух батарей до того же полного заряда уровень.В крайних случаях может произойти газообразование и перезарядка.

Преобразователь постоянного тока в равной степени потребляет от родительского напряжения и обеспечивает регулируемое выходное напряжение. Аккумуляторная батарея остается сбалансированной, обеспечивая надлежащий заряд. цикл и максимальное время автономной работы.

Повышающие преобразователи постоянного тока

Повышающие преобразователи постоянного тока в постоянный называются повышающими преобразователями. Типичный пример: быть преобразователем 12 в 24 вольт, имеющим диапазон входного постоянного напряжения от 11 до 15 вольт постоянного тока, и выход 24 вольт постоянного тока (В постоянного тока) при, скажем, 5 ампер (максимум).Приложение может быть частью военной техники, разработанной для системы 24 В, используемой в система на 12 вольт.

Преобразователи с изолированной и неизолированной изоляцией

Неизолированные преобразователи имеют общий минус и обычно очень подходят для типичное электронное приложение (радио, стерео, сонар и т. д.). Определенная безопасность Требования или опасные приложения могут потребовать изоляции входа для выхода. В изолированные преобразователи соответственно дороже неизолированных преобразователей.

Размер преобразователя

Преобразователи постоянного тока рассчитаны на мощность в ваттах, а некоторые также имеют защиту от скачков напряжения. Большинство устройств, используемых в приложениях постоянного тока, указывают свое потребление в ваттах или амперах. Устройства с двигателями или компрессорами, или при использовании конденсаторных пусковых цепей, может потребоваться скачок напряжения учет мощности. Большая часть электроники (радио, DVD, сонар, GPS и т. Д.) Не работает. Для преобразования ватт и ампер можно использовать следующие основные электрические формулы:

P = E x I Мощность = Вольт, умноженная на ток
или
Ватт = Вольт x Ампер
Ампер = Ватт / Вольт
Вольт = Ватт / Ампер

Итак, учитывая любые два значения выше, вы можете вычислить третье.Например, у вас есть стереосистема мощностью 60 Вт, рассчитанная на систему 12 В.

Добавить комментарий

Ваш адрес email не будет опубликован.