Как звонится симистор: Как проверить диод и тиристор. 3 простых способа » сайт для электриков

Содержание

Как проверить симистор мультиметром: как прозвонить

Любая схема электрического прибора состоит из полупроводниковых элементов, которые имеют различные функциональные назначения. Симистор является базовой радиодеталью в электрических схемах. Он исполняет роль управляемого ключа. Во время технического обслуживания или ремонта каждая деталь перед впайкой в плату требует опробования, поэтому важно знать, как проверить симистор мультиметром.

Устройство симистора и предназначение

Симистор — это разновидность полупроводниковых тиристоров. Может иметь открытое или закрытое состояние. От тиристоров он отличается тем, что способен пропускать ток и в прямом, и в обратном направлении. Ток проходит только в том случае, когда на управляющий контакт подается сигнал. Основные силовые выводы симистора называются анодом и катодом.

Для управления нагрузкой в узле электрической схемы основные контакты подключаются последовательно. Если токовый импульс не поступает на управляющий вывод, симистор находится в закрытом состоянии. Соответственно, нагрузка отключена. При поступлении управляющего импульса с нагрузки на вывод ключа он открывается в оба направления. В отличие от тиристора симистор не требует подачи постоянного импульсного управления. Открытое состояние элемента будет сохраняться до тех пор, пока основные контакты находятся под нагрузкой. В этом случае ток удержания должен превышать определенную величину. Этот параметр напрямую зависит от марки детали.

Тестирование элемента

Существует несколько способов проверки симистора на работоспособность. Для самого простого понадобится только лишь мультиметр, а для более сложных измерений — автономный источник питания или тестовая схема. С помощью тестера проверка происходит с использованием знаний, основанных на принципе работы симистора. Диагностика мультиметром не сможет определить все характеристики элемента, но вполне достаточной будет для первичного тестирования работоспособности.

Простую проверку можно осуществить, используя лампочку и элемент питания. Для этого одна клемма батарейки подключается на управляющие и рабочие выводы симистора, а вторая — на цоколь лампочки. Вывод элемента соединяется с центральным контактом осветителя. В этом случае переход должен быть открыт, тогда лампочка загорится. Если же ещё до подачи напряжения на управляющий вывод осветительное устройство загорелось, то это говорит о том, что симистор неисправен, а его переходы пробиты. Такой элемент можно дальше не проверять, так как он неисправный.

Интересно по теме: Как проверить стабилитрон.

Проверка тестером

Для проведения тестов подойдёт прибор любого типа действия, но при этом необходимо, чтобы значения выдаваемого им тока хватило для переключения элемента. Поэтому более предпочтительным будет использование аналогового прибора. Например, чтобы проверить тестером BTB12-800CW, понадобится обеспечить ток порядка 30 мА, а для BTB16-700BW этот показатель должен быть равен 15 мА.

Также понадобится обратить внимание на состояние батарейки, стоящей в тестере. В цифровом устройстве на экране не должен высвечиваться значок замены батарейки, а в аналоговом при закорачивании щупов друг на друга стрелка должна указывать на ноль.

Использование симисторов в электрических цепях

Симисторы используются для коммутации цепей переменного тока (равномерной и сглаженной подачи питания на нагрузку). Это упрощает сложность многих электрических схем, так как дает возможность управлять небольшим напряжением высоковольтного питания. Иногда этот элемент используется как электромеханическое реле.

Если во время ремонта под рукой не оказалось симистора, его можно заменить двумя тиристорами. Их необходимо подобрать, исходя из таких параметров:

  • Напряжение включения — минимальное напряжение, при котором элемент проводит электроток.
  • Ток управления.
  • Обратный ток — величина обратного напряжения.
  • Время установки на включение.

В случае замены деталей схему необходимо переделать на питание двух управляющих выводов.

Характеристики

Симистор имеет несколько параметров, которые можно расположить по порядку убывания важности (лучше сказать, частоты использования) следующим образом:

  • Напряжение обратного пробоя, Uобр, В;
  • Напряжение закрытого состояния, Uзс, В;
  • Ток открытого состояния средний, Iос, А;
  • Время включения, tвк, мкс;
  • Время выключения, tвык, мкс;
  • Ток открытого состояния импульсный, Iос, А;
  • Ток закрытого состояния, Iзс, мА;
  • Обратный ток, Iобр, мА;
  • Напряжение открытого состояния, Uос, В;
  • Управляющее напряжение, Uупр, В;
  • Ток управления, Iупр, мА;
  • Скорость нарастания напряжения, dU/dt, В/мкс;
  • Скорость нарастания тока, dI/dt, А/мкс.

Вольт-амперная характеристика триака

Обратите внимание! Параметр «напряжение обратного пробоя» означает максимальное напряжение, которое способен выдержать симистор или тринистор без выхода из строя. Напряжение закрытого состояния характеризует только динисторный эффект.

Принцип работы

Чтобы открыть симистор, необходимо подать на его силовые выводы номинальное напряжение, а на управляющий электрод кратковременный импульсный ток удержания. Рабочие параметры радиоэлемента должны соответствовать маркировке на корпусе.

В цепях переменного напряжения к аноду подключается питание, к катоду — нагрузка. Ток удержания на управляющем электроде зависит от чувствительности радиодетали. Например, если пропускание симистора 5 Ампер, то обычный элемент откроется, когда на него придет управляющий сигнал величиной 100 мА (2% от питания). Более чувствительный симистор может работать при токе удержания 5 мА (0.1% от питания). Также важную роль играет способ управления. Он бывает 2 типов:

  • Фазоимпульсным — на управление подается определенная величина тока.
  • Амплитудно-импульсным — кратковременные токовые импульсы управления.

При использовании второго способа в схему нужно включать генератор импульсов или его простейшие аналоги.

В цепях постоянного напряжения к аноду подключается плюсовой вывод питания, к катоду – минусовый вывод нагрузки. Если в открытом состоянии управляющий электрод отключить от положительного потенциала постоянного напряжения, он продолжит работать. В цепях с переменным напряжением симистор отключится за счет частоты смены периодов.

Преимущества и недостатки

Каждая радиодеталь имеет назначение и выполняет определенные задачи в узлах. Важно то, как элемент будет использоваться в схеме, и на какой базе деталей она будет собрана. Симистор имеет ряд достоинств, которые выделяют его относительно тиристора.

Преимущества:

  • Отсутствие физических контактов, что делает включение питания плавным.
  • Надежность.
  • В узлах постоянного напряжения требует только кратковременного питания управляющего контакта.
  • Низкая стоимость.
  • Простота в использовании.

Среди недостатков следует выделить сильное нагревание детали. Поэтому при использовании симисторов требуется установка радиатора для отвода тепла.

Использование

Жесткие характеристики, низкая стоимость, универсальность, позволяет использовать симиторы в промышленности и быту. Их можно встретить:

  • В лампах для освещения.
  • Дрелях, шуруповертах.
  • Станках с ЧПУ.
  • Регуляторах напряжения.
  • Пылесосах.
  • Электрических печках.
  • Мультиварках.
  • Насосных станциях.
  • Компрессорах.

И это далеко не весь перечень. Симиторы исполняют роль управления электропривода переменного напряжения. Используются в схемах регулировки мощности, релейно-контакторных схемах, преобразователях частоты. В современном мире их можно встретить на каждом шагу.

Проверка симистора на исправность

Перед заменой или впайкой детали в плату ее необходимо проверить. Несправный элемент может не только мешать схеме работать, но и сжечь другие радиодетали. Современные марки симисторов легко перепутать с тиристорами. Отличить их по внешнему признаку довольно сложно. Корпус и расположение выводов идентично. Отобрать нужные детали можно только по маркировке: ТС — тиристорный-симистор, КУ или Т — триак.

Перед проверкой симистора мультиметром необходимо разобраться с распиновкой выводов. Делается это по цоколевке отдельной серии. В интернете или литературе следует найти нужный элемент, а марку можно посмотреть на корпусе. Символы довольно маленькие, рекомендуется использовать лупу. Зная расположение контактов, исправность детали можно проверить за 2 минуты.

Способы проверки

Симисторы могут быть высоковольтными (силовыми). Такие используются на распределительных участках. Слаботочные радиоэлементы предназначены для впайки в платы. Существует 4 способа проверки:

  • Цифровым мультиметром.
  • На стенде.
  • С помощью батарейки-лампочки.
  • Тиристорным тестером.

Самый простой и доступный способ — это проверка мультиметром, так как этот прибор есть у каждого радиолюбителя. Сначала следует заняться распиновкой контактов. Цоколевку современных радиоэлементов можно отыскать в интернете. У симистора наименование контактов условное. Анод или катод может быть основным выводом или управляющим электродом. Для определения цоколевки деталей необходимо:

  1. На листе бумаге начертить вид сверху элемента с тремя выводами.
  2. Мультиметр установить в режим прозвонки. Подвести щупы к паре контактов. Симистор находится в закрытом состоянии, соответственно анод и катод не должны прозваниваться.
  3. Поменять полярность щупов. Сигнал при этом должен отсутствовать.
  4. Определив нужную пару выводов, их надо подписать на схеме буквами «А» и «К».
  5. После определения анода и катода третьим выводом будет управляющий электрод. Подписать его следует как «У».
  6. На корпусе поставить точку маркером или корректором, чтобы случайно не перепутать, где верх, а где низ.

Имея цоколевку, проверить симистор мультиметром не составит большого труда. Если деталь уже эксплуатировалась или хранилась в нерабочем состоянии, ее необходимо подготовить. Ведь силовые выводы могли окислиться. Из-за этого измерения будут неточными. Поэтому выводы надо почистить перед тем, как прозвонить симистор мультиметром.

Проверка радиоэлемента осуществляется в такой последовательности:

  1. Проверить на пробивание p-n переход. Щупы мультиметра следует приложить к силовым выводам. Если симистор исправен, на табло прибора должна высветиться 1. Ноль свидетельствует о пробитии перехода. На некоторых тестерах цифры могут заменяться буквами, например, OL обозначают большое сопротивление, что также свидетельствует о исправности радиоэлемента. В нерабочем состоянии симистор закрыт, поэтому сопротивление p-n перехода большое и сигнал не проходит. Соответственно переход не пробит.
  2. Проверить управляющий электрод. Тестер надо переключить на режим измерения сопротивления (диапазон до 2 тыс. Ом). Приложить щупы прибора к управляющему электроду и катоду. На табло должно появиться около 500 Ом. В разных моделях симистора это значение может меняться на 100–300 единиц. Затем щупы надо приложить к аноду и управляющему электроду. На табло должна появиться «1». У исправного элемента эти контакты не должны прозваниваться.
  3. Проверить открытие p-n перехода. Щупы поместить на силовые контакты, подать номинальное напряжение. Если на табло появится «0», значит, симистор открывается. Эту процедуру необходимо делать быстро. Кратковременное номинальное напряжение не может выработать достаточное количество тока, чтобы долго держать переход в открытом состоянии.

Последнюю проверку следуют проводить только в особых случаях, когда нельзя перепаивать радиодетали по несколько раз. Для стандартных ситуаций это делать не обязательно. Для удобства проверки радиодеталей кончики щупов тестера рекомендуется заточить.

Из-за чего тиристор не имеет открытое состояние

Особенность состоит в том, что мультиметры не вырабатывают величины тока, достаточного для функционирования тиристоров по «токам удержаний». Данные элементы проверены быть не смогут. Но на остальных пунктах проверки можно определить исправен ли полупроводниковый прибор. При изменении мест полярности — проверку осуществить невозможно. Благодаря этому можно убедиться в том, что на приборе отсутствует обратный пробой.

Используя мультиметр, можно также выполнить проверку чувствительности прибора. Для этого нужно сделать перевод переключателя на тестере в режим омметра. Съем измерений осуществляется по заранее описанным методикам. Главное, каждый раз менять показатели чувствительности на приборе. Начинать следует с пределов измерений воль.

Чувствительный тиристор, если отключить управляющий ток, продолжает сохранять открытые состояния, что будет фиксироваться тестером. Далее увеличивается предел измерений до значения «х10». После изменения величина тока на щупе прибора уменьшится.

В случае, если управляющий ток был отключен, но переход не был закрыт, то проводим увеличение предела измерений до того момента, пока тиристор сработает по удерживающему току.

Примечательно, что при меньшем токе удержания, чувствительность тиристора больше. Проверяя детали, которые идут в одной партии (или имеют одинаковые характеристики), стоит отдавать предпочтение более чувствительным элементам. Такие тиристоры обладают более гибкими возможностями управления, что влияет на расширение их области применения. При освоении принципа проверки тиристоров, можно также понять, как проверить симистор мультиметром.

В процессе прозвонки следует учитывать, что полупроводниковые ключи обладают симметричной двусторонней проводимостью.

Проверка без выпаивания

Проверить симистор мультиметром не выпаивая рекомендуется в тех случаях, когда нет паяльника под рукой или в схеме множество одинаковых элементов. Этот метод также применяется для многослойных плат. Дорожки контактов нельзя перегревать, неисправные детали проверяются на месте. Перед проверкой необходимо отключить коммутаторы и выходящие дорожки. Лишние элементы могут негативно повлиять на результат. Оставить нужно только питание и нагрузку. Затем внимательно изучить схему, так как к симистору могут подключаться предохранители, способные разрывать цепь.

Переключить на тестере режим измерения сопротивления (до 2 тыс. Ом.). На плате тяжело рассмотреть маркировки элементов, поэтому приходится использовать метод попарного измерения. Когда симистор находится под нагрузкой, анод и катод должны прозваниваться. Контакты определяются условно. Надо подвести щупы и сделать замеры, сравнивая показатели. Проверить исправность согласно таблицам, представленным ниже.

В таблицах «А» — это анод, «К» — катод, «У» — управляющий электрод. Параметры указаны приблизительные. В зависимости от модели могут колебаться в дипазоне от 100 до 200 Ом.

Симистор — универсальный полупроводниковый элемент, который нашел широкое применение в производстве и быту. Его проверка мультиметром является простым и доступным способом. Чтобы добиться максимальной точности измерений, надо внимательно следовать инструкциям.

Как проверить симистор

Привычка проверять все элементы пред пайкой приходит с годами. Проверить симистор можно при помощи мультиметра и при помощи небольшой проверочной схемы с батарейкой и лампочкой. В любом случае надо сначала разобраться, как располагаются выводы на вашем приборе. Сделать это можно по цоколевке каждой конкретной серии.

Для этого в поисковик забиваем маркировку, которая есть на корпусе. В некоторых случаях можно добавить «цоколевка». Если есть русскоязычные описания, будет несколько проще. Если на русском информации нет, придется искать в интернете. Заменяем слово «цоколевка» словом «datasheet». Иногда можно ввести русскими буквами «даташит».

Пример цоколевки. Все можно понять и без знания языка

С мультиметром

Проверка мультиметром симистора основана на принципе его работы. Берем обычный мультиметр, ставим его в положение прозвонки. Силовые выходы между собой должны звониться в обоих направлениях. Прикасаемся щупами к выходам Т1 и Т2. На экране должны высвечиваться цифры. Это сопротивление перехода. Если поменять щупы местами, сопротивление может измениться, но ни обрыва, ни короткого быть не должно.

Проверяем мультиметром

Зато между затвором и силовыми выходами должен быть «обрыв» (бесконечно большое сопротивление). То есть, «звониться» они не должны при любом расположении щупов. Проверив сопротивление между разными выводами, можно сделать вод о работоспособности симистора.

Для проверки симистора без мультиметра придется собрать простенькую проверочную схему с питанием от девятивольтовой батарейки «Крона». Нужны будут три провода длиной около 20 см. Провода желательно гибкие, многожильные. Проще, если они будут разных цветов. Лучше всего красный, синий и любой другой. Пусть будет желтый.

Синий разрезаем пополам, припаиваем лампочку накаливания на 9 В (или смотрите по напряжению, которое выдает ваша батарейка). Один кусок провода на резьбу, другой — на центральный вывод с нижней части цоколя. Чтобы работать было удобнее, на каждый провод лучше припаять «крокодилы» — пружинные зажимы.

Как проверить симистор без мультиметра

Собираем схему. Подключаем провода в таком порядке:

  • Красный одним концом на плюс кроны, вторым — на вывод Т1.
  • Синий — на минус кроны и на Т2.
  • Желтый провод одним краем цепляем к затвору G.

После того как собрали схему, лампочка не должна гореть. Если она горит, симистор пробит. Если не горит, проверяем дальше. Свободным концом желтого провода кратковременно прикасаемся к Т2. Лампочка должна загореться. Это значит, что симметричный тиристор открылся. Чтобы его закрыть, надо коснуться проводом вывода Т1. Если все работает, прибор исправен.

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.


Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.


Схема для проверки тиристоров и симисторов
Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

принцип работы, проверка и включение, схемы. С помощью элемента питания и лампочки

В электронных схемах различных приборов довольно часто используются полупроводниковые устройства – симисторы. Их применяют, как правило, при сборке схем регуляторов. В случае неисправности электроприбора может возникнуть необходимость проверить симистор. Как это сделать?

Зачем нужна проверка

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Разновидности тиристоров

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

Управление работой тиристоров осуществляется двумя способами:

  • подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
  • подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.

По принципу работы эти приборы различаются на три вида.

Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.

Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.

Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.

Запираемые тиристоры – тринисторы и симисторы, которые закрываются при подаче на контакт управляющего электрода тока обратной полярности, нежели та, которая вызвала его открытие.

С помощью тестера

Проверка работоспособности симистора мультиметром или тестером основана на знании принципа работы этого устройства. Конечно же, она не даст полной картины состояния детали, так как невозможно определить рабочие характеристики симистора без сборки электрической схемы и проведения дополнительных измерений. Но часто вполне достаточно будет подтвердить или опровергнуть работоспособность полупроводникового перехода и управления им.

Чтобы проверить деталь, необходимо использовать мультиметр в режиме измерения сопротивления, то есть как омметр. Контакты мультиметра присоединяются к рабочим контактам симистора, при этом значение сопротивления должно стремиться к бесконечности, то есть быть очень большим.

После этого соединяется анод с управляющим электродом. Симистор должен открыться и сопротивление должно упасть почти до нуля. Если все так и произошло, скорее всего, симистор работоспособен.

При разрыве контакта с управляющим электродом симистор должен остаться открытым, но параметров мультиметра может быть недостаточно, что бы обеспечить так называемый ток удержания, при котором прибор остается проводимым.

Устройство можно считать неисправным в двух случаях. Если до появления напряжения на контакте управляющего электрода сопротивление симистора ничтожно мало. И второй случай, если при появлении напряжения на контакте управляющего электрода сопротивление прибора не уменьшается.

С помощью элемента питания и лампочки

Существует вариант прозвона симистора простейшим тестером, представляющим собой разорванную однолинейную цепь с источником питания и контрольной лампой. Еще для проверки понадобится дополнительный источник питания. В качестве его может быть использован любой элемент питания, например типа АА с напряжением 1,5 В.

Прозванивать деталь нужно в определенном порядке. В первую очередь необходимо соединить контакты тестера с рабочими контактами симистора. Контрольная лампа при этом гореть не должна.

Затем необходимо подать напряжение между управляющим и рабочим электродами с дополнительного источника питания. На рабочий электрод подается полярность, соответствующая полярности подключенного тестера. При подключении контрольная лампа должна загореться. Если переход симистора настроен на соответствующий ток удержания, то лампа должна гореть и при отключении дополнительного источника питания от управляющего электрода до момента отключения тестера.

Так как прибор должен пропускать ток в обоих направлениях, для надежности можно повторить проверку, изменив полярность подключения тестера к симистору на противоположную. Надо проверить работоспособность прибора при обратном направлении тока через полупроводниковый переход.

Если до подачи напряжения на управляющий электрод контрольная лампа загорелась и продолжает гореть, то деталь неисправна. Если при подаче напряжения контрольная лампа не загорелась, симистор также считается неисправным, и использовать его в дальнейшем нецелесообразно.

Симистор, смонтированный на плате, можно проверить, не выпаивая его. Для проверки необходимо только отсоединить управляющий электрод и обесточить всю схему, отключив ее от рабочего источника питания.

Соблюдая эти простейшие правила, можно произвести отбраковку некачественных или отработавших свой ресурс деталей.

Радиоконструктор р егулятор мощности на симисторе № 009,

В радиолюбительской практике часто случается, что паяльник на 40 Ватт сильно перегревается, жало обгарает, а на 25 Ватт не хватает мощности пропаять или необходимо уменьшить мощность нагревательного прибора, изменить яркость свечения лампы накаливания, снизить обороты коллекторного двигателя, электрической дрели, подключить к сети напряжением 220 вольт нагрузку, рассчитанную на напряжение 110 вольт, уменьшить напряжение на вторичной обмотке трансформатора. Тогда на помощь придёт симисторный регулятор мощности. Принцип его работы основан на изменении времени открытого состояния (фазово-импульсном управлении) симистора (симистор — это двунаправленный тиристор или «триак»). Это можно увидеть и понять, сравнив графики рис.1 полного периода сетевого напряжения на входе (верхний график) симистора и на выходе (нижний график). В определённый момент происходит отсечка симистором каждой полуволны сетевого напряжения и в результате в нагрузку поступает только часть мощности. Принципиальная схема регулятора мощности с фазово-импульсным управлением показана на рис. 2 . Он собран по классической схеме на симметричном динисторе DB3 на 32V (VD3) и симисторе ТС106-10-4 (отечественного производства 10 ампер 400 вольт) или импортных аналогах ВТ136-600, ВТ134-600 (4А, 600В), ВТ137-600 (8А, 600В), ВТ138-600 (12А, 600В), ВТ139-600, ВТА16-600 (16А, 600В) (VD4). При каждой полуволне сетевого напряжения конденсатор С1 заряжается током, протекающим через резисторы R2, R3. Когда напряжение на нем достигает 32 В, динистор открывается и конденсатор С1 быстро разряжается через резистор R4, динистор VD3 и управляющий электрод симистора. Таким образом, происходит управление симистором: когда напряжение на условном аноде симистора (верхний по схеме вывод) положительное, управляющий импульс тоже положительный, а при отрицательном напряжении — отрицательной полярности. Значение мощности в нагрузке, зависит от того, как долго симистор будет включен в течение каждого полупериода сетевого напряжения. Момент включения симистора определяется пороговым напряжением динистора и постоянной времени (R2 + R3), C1. Чем больше сопротивление переменного резистора R2, тем длительнее промежуток времени, в течение которого симистор находится в закрытом состоянии, тем меньше мощность в нагрузке. Схема обеспечивает практически полный диапазон регулирования выходной мощности — от 0 до 99 %. При подключении переменного резистора R2, необходимо учесть то, что увеличение выходной мощности происходит с уменьшением сопротивления переменного резистора. Цепь, образованная диодами VD1, VD2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без нее характеристика управления регулятором имеет гистерезис . Например, яркость лампы накаливания, используемой в качестве нагрузки, при увеличении выходной мощности изменяется скачком от нуля до 3…5% от максимальной яркости. Суть этого явления заключается в следующем: при большом сопротивлении резистора R2, когда напряжение на конденсаторе С1 не превышает 30 В, динистор не открывается в течение всего полупериода сетевого напряжения и выходная мощность равна нулю. При этом к моменту перехода сетевого напряжения через «ноль» напряжение на конденсаторе имеет нулевое значение и в следующем полупериоде значительную часть времени конденсатор разряжается. Если сопротивление резистора R2 уменьшать, то после того, как напряжение на конденсаторе начнет превышать порог срабатывания динистора, конденсатор будет разряжен в конце полупериода и в следующем полупериоде сразу же начнет заряжаться, поэтому в новом полупериоде динистор откроется раньше. Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и тем самым устраняет эффект скачкообразного начального увеличения мощности в нагрузке. Резистор R4 ограничивает максимальный ток через динистор примерно до 0,1 А и замедляет процесс разрядки конденсатора С1. Тем самым обеспечивается относительно большая длительность импульса, достаточная для надежного запуска симистора VD4 даже при значительной индуктивной составляющей нагрузки. При указанных на схеме номиналах резистора R4 и конденсатора С1 длительность импульса управления равна 130 мкс. Значительную часть этого времени через управляющий электрод симистора протекает ток, достаточный для открывания симистора.

Симметричный динистор 32V (VD3) обеспечивает одинаковость угла открывания симистора в обеих полуволнах сетевого напряжения. Следовательно, описываемый регулятор не будет выпрямлять сетевое напряжение, поэтому во многих случаях может быть применен даже для управления нагрузкой, подключенной к нему через трансформатор. Падение напряжения на симисторе VS1 равно примерно 2 В, поэтому при нагрузке мощностью более 100 Вт симистор необходимо установить на соответствующий теплоотвод (радиатор). Максимальная мощность нагрузки не должна превышать возможности симистора (4 А = 800 Вт, 8 А = 1600 Вт, 10 А = 2 КВт, 12 А = 2,4 КВт, 16 А = 3,2 КВт, 40 А = 8 КВт).

При включении схемы в сеть 220 вольт необходимо строго соблюдать правила техники безопасности! Все элементы схемы находятся под смертельно опасным напряжением! Категорически запрещается касаться любыми частями тела элементов схемы. При установке радиатора симистора, необходимо между симистором и радиатором установить изолирующую теплопроводящую прокладку, а на крепящий винт (саморез) одеть фторопластовую изолирующую втулку и плотно прижать симистор к радиатору. Не смотря на то, что вал переменного резистора гальванически не связан с его выводами, обязательно на вал необходимо установить пластиковую изолирующую ручку, так как при поломке подвижного контакта резистора не исключается возможность электрического контакта вала с выводами резистора.

Настоящая схема имеет недостаток — при работе симистора в режиме отсечки, на его выходах появляются помехи. Если эти помехи оказывают влияние на другую аппаратуру, необходимо установить в схему помехоподавляющую цепочку R2, C6 (в комплект набора входят, но изначально в схему не устанавливаются). Если этой цепочки будет недостаточно, необходимо включать схему в сеть через сетевой фильтр (рис. 5 ). Этот фильтр можно взять из неисправного блока питания компьютера, использовав дроссель, состоящий из двух одновременно (бифилярно) намотанных обмоток на ферритовом кольце и параллельно подключенного конденсатора с рабочим напряжением не менее 400 вольт. На рис. 3 показаны три возможных вида маркировки выводов симистора (все они аналогичны). На отечественном ТС106-10 выбито наверху справа и слева от крепёжного отверстия, «старая маркировка»: К — катод, А — анод, У.Э.- управляющий электрод, новая: А1 — первый анод, А2 — второй анод, У — управляющий электрод.

Конструктор выпускается в двух исполнениях: пакет и коробка, выбирается перед тем как положить в корзину.

ПАКЕТ: Содержание набора 009

1. Симистор ВТ137 (8А),
2. Печатная плата,
3. Диоды 1N4007 (2 шт.),
4. Динистор DB3,
5. Резисторы:
R1 — 100 кОм (Кч/Ч/Ж),
R2 — 100 кОм (переменный),
R3 — 1 кОм (Кч/Ч/Кр),
R4 — 270 Ом (Кр/Ф/Кч),
R5 — 1,5 кОм Кч/Зел/Кр),
R6 — 100 Ом (Кч/Ч/Кч).
6. Конденсаторы:

С2 — 0,068мкФ (Uраб. не менее 400 В),

8. Монтажный провод,
9. Схема и описание.

КОРОБКА: Содержание набора 009

1. Симистор ВТ138 (12А),

2. Печатная плата,

3. Диоды 1N4007 (2 шт.),

4. Динистор DB3,

5. Резисторы:

R1 — 100 кОм (Кч/Ч/Ж),

R2 — 100 кОм (переменный),

R3 — 1 кОм (Кч/Ч/Кр),

R4 — 270 Ом (Кр/Ф/Кч),

R5 — 1,5 кОм Кч/Зел/Кр),

R6 — 100 Ом (Кч/Ч/Кч).

6. Конденсаторы:

С1 — 0,47 мкФ (не менее 250 В),

С2 — 0,068мкФ (U раб. не менее 400 В),

7. Пластиковая ручка для переменного резистора,

8. Радиатор для симистора,

9. Изолирующая прокладка и втулка,

10. Винт М3 (гайка М3 отдельно или в радиаторе),
11. Монтажный провод,

12. Схема и описание.

ВЫПУСК 009.

Регулятор мощности симисторный 220 В, 2 КВт.

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.


Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене – р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.


Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • U DRM (U ПР) – максимально допустимый уровень напряжения при прямом включении.
  • U RRM (U ОБ) – максимальный уровень обратного напряжения.
  • I DRM (I ПР) – допустимый уровень тока прямого включения
  • I RRM (I ОБ) – допустимый уровень тока обратного включения.
  • I Н (I УД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.


Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.


Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.


Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.


Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 – 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.


Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 – 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

В последнее пора настоящий ренессанс переживают резисторные и транзисторные регуляторы мощности. Они самые неэкономичные. Повысить КПД регулятора можно так же, как и регулятора включением диода (см.рисунок). При этом достигается более удобный предел регулирования (50-100%). Полупроводниковые приборы можно разместить на одном радиаторе. Ю.И.Бородатый, Ивано-Франковская обл. Литература 1.Данильчук А.А. Регулятор мощности для паяльника / /Радиоаматор-Электрик. -2000. -№9. -С.23. 2.Риштун А Регулятор потужности на шести деталях //Радиоаматор-Электрик. -2000. -№11. -С.15….

В нагрузку данного простого регулятора можно включать лампы накаливания, нагревательные устройства различного типа и проч., по соответствующие применяемым тиристорам. Методика настройки регулятора, содержится в подборе переменного регулирующего резистора. Однако, лучше всего подобрать такой потенциометр, последовательно с постоянным резистором, чтобы напряжение на выходе регулятора изменялось в максимально возможных широких пределах. А.АНДРИЕНКО, г.Кострома….

Для схемы «Простой регулятор мощности»

Индуктивная нагрузка в цепи регулятора предъявляет жесткие требования к схемам менеджмента симисторов- синхронизация системы менеджмента должна осуществляться непосредственно от питающей сети сигнал должен иметь длительность равную интервалу проводимости симистора. На рисунке приведена схема регулятора удовлетворяющего этим требованиям в котором используется сочетание динистора и симистора Постоянная времени (R4 + R5)C3 определяет угол запаздывания отпирания динистора VS1 а значит и симистора VS2 Перемещением ползунка переменного резистора R5 регулируют мощность потребляемую нагрузкой. Конденсатор С2 и резистор R2 используются для синхронизации и обеспечения длительности сигнала менеджмента Конденсатор СЗ перезаряжается от С2 после переключения так как в конце каждого полупериода на нем оказывается напряжение обратной полярности. Для защиты от помех создаваемых регулятором введены два Фильтра R1C1 — в цепь питания и R7C4 — в цепь нагрузки. Для налаживания устройства нужно резистор R5 поставить в положение максимального сопротивления и резистором R3 установить минимальную мощность на нагрузке Конденсаторы С1 и С4 типа К40П-2Б на 400 В конденсаторы С2 и СЗ типа К73-17 на 250 В Диодный мост VD1 можно сменить диодами КД105Б Выключатель SA1 рассчитан на ток не менее 5 A. В.Ф.Яковлев, г.Шостка, Сумская обл. …

Для схемы «РЕГУЛЯТОР МОЩНОСТИ С ОБРАТНОЙ СВЯЗЬЮ»

Для схемы «Усилитель мощности на 144 МГц»

Для схемы «Симисторный регулятор мощности»

Предлагаемое устройство (рис.1) представляет собой фазовый мощности, способный работать с нагрузкой от нескольких ватт до единиц киловатт. Эта конструкция представляет собой переработку ранее разработанного устройства . Применение иной элементной базы позволило упростить силовой узел конструкции, повысить надежность и улучшить эксплуатационные характеристики регулятора. Как и в прототипе, в этом регуляторе имеется плавная и ступенчатая регулировка поступающей на нагрузку мощности. Кроме того, в любой момент (не трогая ручки регулятора) устройство можно перевести в режим работы, когда на нагрузку поступает почти 100% мощности. При этом практически отсутствуют радиопомехи. Силовой ключ построен на мощном VS2. Минимальная мощность подключаемой нагрузки может быть от 3 до 10 Вт. максимальная (1.5 кВт) ограничена типом используемого симистора, условиями его охлаждения и конструкцией помехоподавляющих дросселей. Регулятор сварочника на то125-12 На маломощных транзисторах VT3. VT4 собран аналог однопереходного транзистора, который армирует короткие импульсы, открывающие маломощный высоковольтный тиристор VS1. Мощность, поступающая на нагрузку, зависит от сопротивления переменного резистора R6. Открывшийся маломощный тиристор, в свою очередь, открывает мощный симистор VS2. Через открывшийся симистор на нагрузку поступает напряжение питания.Чтобы иметь вероятность, например, на пора уменьшить яркость свечения лампы или температуру паяльника. а потом вернуться к прежнему установленному значению, на микросхеме DD1 построен узел ступенчатого менеджмента мощностью. При первом нажатии на кнопку SB1 триггер DD1.2 переключается, на выходе 1 DD1.2 появляется большой логический уровень напряжения («Г), транзистор VT2 открывается и шунтирует цепь ограничения амплитуды сетевого напряжения V…

Для схемы «Переключатель мощности паяльника»

Гениальное — просто . По сравнению с диодом переменный резистор не проще и ненадежнее. Но паяльник с диодом слабоват, а резистор позволяет работать без перекала и без недокала. Где взять мощный, подходящий по сопротивлению переменный резистор? Проще найти постоянный, а выключатель, применяемый в «классической» схеме, сменить на трехпозиционный (см.рисунок). …

Для схемы «Усилитель мощности 200 ВТ на базе TDA 7294»

AUDIO техникаУсилитель мощности 200 ВТ на базе TDA 7294ИМС TDA7294 разработана и изготовляется группой компаний SGS-THOMSON Microelectronics. Это одна из наиболееудачных микросхем УМЗЧ, обладающая не только большой отдаваемой мощностью (100 Вт) и высокой надежностью, но и обеспечивающая наиболее качественное (среди ИМС) звучание. При создании мощных УМЗЧ на биполярных транзисторах (и ИМС) возникает опасность вторичного пробоя, приводящего к выходу их из строя. Существующие системы защиты (SOA) при работе на реактивную нагрузку (реальную АС) теряют свою эффективность.Для обхода этих проблем на выходе TDA7294 применены мощные полевые транзисторы, у которых вторичный пробойотсутствует, а усиление напряжения выполняют как биполярные, так и полевые транзисторы.Совмещенная биполярно-полевая технология с высоковольтными мощными МОП-транзисторами получила фирменноеназвание BCD 100. на 144 МГцЮ.Гребнев (RA9AA)Корпус выполнен из стеклотекстолита толщиной 2 мм, к которому по всему периметру крепится радиатор. В дне корпуса произведено отверстие точно по размеру корпуса транзистора, который сидит на радиаторе, а днище основание набрано такой толщины, что эмитерные выводы транзистора ложаться на фольгу корпуса и прижимаются к нему латунными пластинками и винтами М3. Чтобы база и коллектор не касались «земли», под ними у корпуса транзистора фольга снята на 3 мм, а выводы слегка загнуты вверх.С2 и С3 крепяться вертикально на Г-стойках из латуни, которые являются заземлением роторов, С1 и С4 — на П-образных стойках из текстолита.Конструкция усилителяДетали:С1, С2, С3, С4 — 1КПВМ 1 (3…27пф).L1 — 3 витка проводом 0,8 мм, диаметр намотки 6 мм.L2 — 8 витков проводом 0,8 мм, диаметр намотки 5 мм, l=18мм.L3 — 4 витка шиной 2х0,7 мм, диаметр намотки 8 мм, l=16мм.L4 — 4 витка проводом 0,8 мм, диаметр намотки 15 мм (внутри катушки резистор R2).Транзистор КТ930А (30В, 2,4А), КТ931А (30В, 3А).При использовании транзистора КТ931А у L2 закорачивают 2 витка, в схему добавляются три конденсатора, показанные пунктиром. Подбирая эти емкости и L2 добиваются согласования РА….

На сегодняшний день существует достаточно много простых и не очень схем регуляторов мощности. Каждая приципиальная схема имеет свои преимущества и недостатки. Рассматриваемая сегодня выбрана мной не случайно. Итак, попал ко мне советский электрокамин (обогреватель) Мрия . Состояние его можно оценить по фото.

Рисунок 1 – общий первоначальный вид

Справа на верхней пластмассовой крышке имелось отверстие под ручку встроенного регулятора мощности, которого там не оказалось. По счастливой случайности мне через некоторое время попался рабочий экземпляр такого же камина. В качестве регулятора там оказалась на первый взгляд довольно сложная схема на двух тиристорах и множеством очень мощных резисторов. Её повторение не имело смысла, хотя у меня и есть доступ к практически любым советским радиодеталям, так как это обошлось бы в разы дороже, чем тот вариант, который изготовлен сейчас.

Для начала камин был подключён к сети напрямую, ток потребления оказался 5,6 А, что соответствует паспортной мощности камина 1,25 кВт. Но зачем тратить столько энергии, тем более что она не дешёвая, и не всегда нужно включать обогреватель на полную мощность. Поэтому было принято решение приступить к поискам мощного регулятора мощности. У себя в загашниках нашёл уже готовую схему от китайского пылесоса, на симисторе ВТА12-600 . Симистор, с его номинальным током 12 А, отлично мне подходил. Этот регулятор являлся фазовым, т.е. такой тип регуляторов пропускает не всю полуволну сетевого синусоидального напряжения, а только её часть, тем самым ограничивая мощность, подводимую к нагрузке. Регулировка осуществляется открытием симистора при нужном фазовом угле?


Рисунок 2 – а) обычная форма сетевого напряжения; б) напряжение, поданное через регулятор

Преимущества фазового регулятора :


— простота изготовления
— дешевизна
— лёгкая управляемость

Недостатки :

При простой схеме нормальная работа наблюдается только с нагрузками типа ламп накаливания
— при мощной активной нагрузке появляется неприятный гул (дребезг), который может возникать как в самом симисторе, так и на нагрузке (нагревательная спираль)
— создаёт множество радиопомех
— загрязняет электросеть

В итоге, протестировав схему регулятора из пылесоса, выявлено дребезжание спирали электрокамина.


Рисунок 3 – Вид внутри камина

Спираль имеет вид намотанной проволоки (материал определить не могу) на двух планках, залитой для фиксации на ребрах планок каким-то термостойким затвердителем. Возможно, дребезг мог вызвать его разрушение. Были предприняты попытки включить дроссель последовательно с нагрузкой, зашунтировать симистор RC-цепочкой (что является частичным спасением от помех). Но ни одна их этих мер не дала полного избавления от шума.

Было принято решение использовать другой тип регулятора – дискретный. Такие регуляторы открывают симистор на период целой полуволны напряжения, но количество пропущенных полуволн ограничивается. Например, на рисунке 3 сплошная часть графика – прошедшие сквозь симистор полуволны, пунктиром – не прошедшие, то есть в это время симистор был закрыт.


Рисунок 4 – Принцип дискретного регулирования

Преимущества дискретных регуляторов :


— меньший нагрев симистора
— отсутствие звуковых эффектов даже при достаточно мощной нагрузке
— отсутствие радиопомех
— отсутствие загрязнения электросети

Недостатки :

Возможны скачки напряжения (при 220В на 4-6 В при нагрузке 1.25 кВт), что может быть заметно на лампах накаливания. На остальной домашней технике этот эффект не заметен.

Выявленный недостаток проявляется тем заметнее, чем на меньший предел регулировки установлен регулятор. На максимуме нагрузки скачков совершенно нету. Как возможное решение данной проблемы возможно использование стабилизатора напряжения для ламп накаливания. На просторах интернета была найдена следующая схема, которая привлекала своей простотой и удобством управления.



Рисунок 5 – Принципиальная схема дискретного регулятора

Описание управления


При первом включении на индикаторе светится 0. Включение и отключение происходит одновременным нажатием и удержанием двух кнопок. Регулировка больше/меньше – каждой кнопкой по отдельности. Если не нажимать ни одну из кнопок, то после последнего нажатия через 2 часа регулятор отключится сам, индикатор будет моргать на ступени последнего рабочего уровня нагрузки. При отключении от сети запоминается последний уровень, который будет установлен при следующем включении. Регулировка происходит от 0 до 9 и далее от А до F. То есть всего 16 ступеней регулировки.


При изготовлении платы первый раз применил ЛУТ , и не правильно отзеркалил при распечатке, поэтому контроллер перевёрнут вверх-ногами Индикатор тоже не совпал, поэтому припаял его проводками. Когда рисовал плату, по ошибке разместил стабилитрон после диода, пришлось его впаять на другой стороне платы.

Как проверить симистор принцип работы схема включения справочник по симисторам отечественные и импортные

Триак либо симистор это полупроводниковый прибор, который предназначен для управления нагрузкой в сети переменного тока. Что такое симистор можно выяснить посмотрев его условно графическое изображение рис.1, вольт амперную характеристику (ВАХ) рис.2. и внутреннее размещение полупроводниковых слоёв рис.3. Если гласить по обычному, симистор представляет собой тиристор с 3-мя электродами: Силовой электрод 1 (Т1), Силовой электрод 2 (Т2) для пропускания переменного тока и затвор (G) — управляющий электрод. Симисторы российские были изобретены в городке Саранске на заводе «Электровыпрямитель» сначала 60-х годов. При опытах с полупроводниковыми слоями инженеры прирастили число слоев с 4 до 5 и нашли, что приобретенный пробный эталон способен пропускать электронный ток идиентично как в прямом, так и в оборотном направлении. Симистор таким макаром можно представить как два встречно-параллельно включенных тиристора.

Основной особенностью за какую симистор стал обширно употребляться является его способность проводить ток в прямом направлении от анода к катоду и в оборотном (от катода к аноду) направлении. Так же в отличие от тиристора, симистор может управляться током отрицательной и положительной полярности меж управляющим (G) и силовым электродом (T1). Это свойство вольт-амперной свойства (ВАХ) симистора позволяет ему работать во всех секторах.

Симистор механизм работы

На управляющий электрод (G) подаётся низковольтный сигнал и симистор перебегает из закрытого состояния в открытое. Он начинает пропускать переменный ток. Симистор будет открыт если через затвор (G) проходит ток отпирания либо если U меж силовыми электродами Т1 и Т2 превзойдет определённую наивысшую величину. Симистор запирается если меняется полярность меж электродами Т1 и Т2 либо значение I рабочее меньше I удержания.

На практике для предотвращения неверных срабатываний симистора, которые могут быть вызваны пульсациями, создаваемыми движками, употребляют четырехкваднартные симисторы, которые имеют особые элементы защиты. Обычно ставят демпферную RC-цепь меж электродами Т1 и Т2 симистора. Как работает симистор c демпферной RC-цепью, да просто она ограничивает скорость конфигурации напряжения. Время от времени к RC-цепи добавляют индуктивность L, она ограничивает скорости конфигурации тока при коммутации. Невзирая на очевидные плюсы этих цепей у их имеются и минусы: удорожание симистора и уменьшение его надёжности. Все триаки (симисторы) становятся очень чувствительны при больших t работы. Увеличивая значение Uд можно уменьшить склонность к самопроизвольному включению при больших температурах.

Схема включения симистора или как проверить симистор

Характеристики симисторов — главным преимуществом симисторов перед электромеханическими устройствами в фактически огромном количестве переключений. Частота коммутации симистора равна частоте питающей сети, симистор коммутирует нагрузку на каждом полупериоде U сети. Ещё одним важным параметром симистора является отсутствие искрообразования, которым не могут похвалиться электромеханические коммутаторы. Это свойство делает фактически равными 0 электрические помехи симистора. Не считая того утраты на симисторе очень малы, в открытом симисторе они составляют от 1 до 2 вольт и не зависят от тока коммутации. Силовые симисторы в открытом состоянии выделяют огромную мощность, для её отведения употребляют симистор радиатор. Дополнительное место для симистор радиатор может серьёзно прирастить в стоимости схемное решение.

Предлагаем устройство для объяснения принципа работы симистора — управление яркостью лампочки накаливания. Как работает симистор в этой схеме — выполняет регулирование мощностью потребляемую нагрузкой, которое изменяет яркость свечения лампочки. Симистор механизм работы состоит в том, что чем больше амплитуда U управл, тем ранее происходит включение симистора и будет больше продолжительность импульса тока в лампе накаливания. При последнем левом по схеме положении движка переменного резистора R2 нагрузка станет всасывать полные «порции» мощности. Если регулятор R2 повернуть в обратную сторону, амплитуда управляющего сигнала окажется ниже порогового значения, симистор остается в закрытом состоянии и ток через нагрузку не потечет. Временная диаграмма напряжений даёт более четкое представление о механизме работы симистора. При включения схемы в сеть на вход поступает 220В а на затвор симистора поступает отрицательное U синуса. Когда его величина достигнет Uвключения, симистор откроется и ток потечет через нагрузку. Когда значение Uуправляющего станет ниже порога, симистор будет открыт из-за того, что Iнагрузки будет выше Iудержания симистора. Когда U на входе управления изменит свою полярность, симистор закроется.

Эта схема включения симистора обеспечивает пилообразную форму напряжение на нагрузке. Эта легкая схема способна не только лишь объяснить принцип работы симистора да и сможет управлять яркостью лампы накаливания либо температуру нагрева паяльничка.

Области внедрения симисторов достаточно пространна и повсевременно расширяется. Импортные симисторы стоят в пылесосах, дрелях с регулировкой частоты оборотов, кондюках и электронной кухонной утвари.

Ответом на вопрос как проверить симистор будет схема, которая на 100% гарантирует исправность симистора после проверки.

Завезенные из других стран симисторы, отечественные справочник

Для примера симисторы российские возьмём приборы КУ208, который является триодным с п-р-п-р структурой. Буквенное обозначение обозначает Uпостоянно, которое симистор выдерживает в закрытом состоянии:

симисторы отечественные с индексом А — 100 В,

симисторы российские с буквой Б — 200 В,

симисторы российские с буквой В — 300 В

симистор Г — 400 В.

симисторы завезенные из других стран справочник, представлен комплектующими компании NXP.

Обозначение завезенные из других стран симисторы справочник:

Компания NXP Semiconductors на сегодня один из ведущим производителем Hi-com симисторов, которые обширно употребляются в индустрии.

Компания выпускает более 100 привезенных из других стран симисторов

В большинстве случаев устройства на завезенные из других стран симисторы не нуждается в настройке и при правильном монтаже начинают работать после включения в сеть.

Лаконичный справочник по симистор оптронный российского производства

Тип симистор оптронный

Iоткр мах, А

I закр мах, мА

iвх, мах мА

Iу. отп мА

U откр мах, В

U экр мах В

МОС2А60-10 оптронный симистор

2

0.1

50

10

1.3

600

МОС2А60-5 оптронный симистор

2

0.1

50

5

1.3

600

MOC2R60-10 оптронный симистор

2

0.1

50

10

1.3

600

MOC2R60-15 оптронный симистор

2

0.1

50

15

1.3

600

МОС3010 оптронный симистор

0.1

60

15

3

250

МОС3011 оптронный симистор

0.1

60

10

3

250

МОС3012 оптронный симистор

0.1

60

5

3

250

МОС3021 оптронный симистор

0.1

60

15

3

400

МОС3022 оптронный симистор

0.1

60

10

3

400

МОС3023 оптронный симистор

0.1

60

5

3

400

МОС3041 оптронный симистор

0.1

60

15

3

400

МОС3042 оптронный симистор

0.1

60

10

3

400

МОС3043 симистор оптрон

0.1

60

5

3

400

МОС3О51 симистор оптрон

0.1

60

15

3

600

МОС3О52 симистор оптрон

0.1

60

10

3

600

МОС3О61 симистор оптрон

0.1

60

15

3

600

МОС3О62 симистор оптрон

0.1

60

10

3

600

МОС3ОбЗ симистор оптрон

0.1

60

5

3

600

МОС3081 симистор оптрон

0.1

60

15

3

800

МОС3082 симистор оптрон

0.1

60

10

3

800

МОС308З симистор оптрон

0.1

60

5

3

800

АОУ103А симистор оптронный

0.1

0.1

20

10

2

50

АОУ103Б симистор оптронный

0.1

0.1

50

10

2

200

АОУ103В симистор оптронный

0.1

0.1

20

10

2

200

T0125-12.5 симистор оптронный

12.5

30

80

1.4

100…1400

T0132-25 симистор оптронный

25

3

150

1.75

600…1200

T0132-40 симистор оптронный

40

3

150

1.75

600…1200

T0142-63 симистор оптронный

63

5

150

1.75

600…1200

T0142-80 симистор оптронный

80

5

150

1.75

600…1200

T0145-50 симистор оптронный

50

5

150

1.75

600…1200

Тип симистор оптронный U вх мах В dUоткр. dt dI/dt Rt U из кВ R из мОм t вкл мС температура рабочая МОС2А60-10 симистор оптронный

1.3

400

125

3.75

1000

-40…

100

МОС2А60-5 симистор оптронный

1.3

400

125

3.75

1000

-40…

100

MOC2R60-10 симистор оптронный

1.5

400

125

3.75

1000

-40…

100

MOC2R60-15 симистор оптронный

1.5

400

125

3.75

1000

-40…

100

МОС3010 симистор оптронный

1.5

10

227

7.5

-40…

100

МОС3011 симистор оптронный

1.5

10

227

7.5

-40…

100

МОС3012 симистор оптронный

1.5

10

227

7.5

-40…

100

МОС3021 симистор оптронный

1.5

10

227

7.5

-40…

100

МОС3022 симистор оптронный

1.5

10

227

7.5

-40…

100

МОС3023 оптронный симистор

1.5

10

227

7.5

-40…

100

МОС3041 оптронный симистор

1.5

1000

340

7.5

-40…

100

МОС3042 оптронный симистор

1.5

1000

340

7.5

-40…

100

МОС3043 оптронный симистор

1.5

1000

340

7.5

-40…

100

МОС3О51 оптронный симистор

1.5

10

227

7.5

-40…

100

МОС3О52 оптронный симистор

1.5

10

227

7.5

-40…

100

МОС3О61 оптронный симистор

1.5

600

340

7.5

-40…

100

МОС3О62 оптронный симистор

1.5

600

340

7.5

-40…

100

МОС3063 оптронный симистор

1.5

600

340

7.5

-40…

100

МОС3081 оптронный симистор

1.5

600

340

7.5

-40…

100

МОС3082 оптронный симистор

1.5

600

340

7.5

-40…

100

МОС3083 оптронный симистор

1.5

600

340

7.5

-40…

100

АОУ103А симистор оптрон

2

5

-60…

70

АОУ103Б симистор оптрон

2

5

-60…

70

АОУ103В симистор оптрон

2

5

-60…

70

T0125-12.5 симистор оптрон

2.5

100

1.5

1000

100

-50…

110

T0132-25 симистор оптрон

2.5

20…100

40

0.7

2

-40…

100

T0132-40 симистор оптрон

2.5

20…100

40

0.47

2

-40…

100

T0142-63 симистор оптрон

2.5

20…100

40

0.3

3

-40…

100

T0142-80 симистор оптрон

2.5

20…100

40

0.24

3

-40…

100

T0145-50 симистор оптрон

2.5

20…100

40

0.36

3

-40…

100

справочник по симисторам — симисторы российские

тип симистора Iоткр мах А I закрмах А IупрА IудА I отк мах мА U открмах мВ U закрмах В Uу. от В

2N6071 4 30 2 200 2,5 справочник симисторов

2N6071A 4 15 2 200 2.5 справочник симисторов

2N6071В 4 15 2 200 2.5 симисторы справочник

2N6073 А 30 2 400 2.5 симисторы справочник

2N6073A А 15 2 400 2.5 симисторы завезенные из других стран

2N6073B А 15 2 400 2.5 симисторы завезенные из других стран

2N6075 А 30 2 600 2.5 симисторы завезенные из других стран

2N6075A А 15 2 600 2.5 симисторы завезенные из других стран

2N6075B А 15 2 600 2.5 симисторы завезенные из других стран

2N6342 8 2 40 1.55 200 2.5 симисторы завезенные из других стран

2N6343 8 2 40 1.55 400 2.5 симисторы завезенные из других стран

2N6344 8 2 40 1.55 600 2.5 симисторы завезенные из других стран

2N6345 8 2 40 1.55 800 2.5 симисторы завезенные из других стран

2N6346 8 2 40 1.55 200 2.5 импортные симисторы

2N6346 8 2 75 1.75 200 2.5 импортные симисторы

2N6346A 12 2 75 1.75 200 2.5 импортные симисторы

2N6347 8 2 40 1.55 400 2.5 импортные симисторы

2N6347 8 2 75 1.75 400 2.5 импортные симисторы

2N6347A 12 2 75 1.75 400 2.5 импортные симисторы

2N6348 8 2 40 1.55 600 2.5 импортные симисторы

2N6348 8 2 75 1.75 600 2.5 импортные симисторы

2N6348A 12 2 75 1.75 600 2.5 импортные симисторы

2N6349 8 2 40 1.55 800 2.5 импортные симисторы

2N6349 8 2 75 1.75 800 2.5 импортные симисторы

2N6349A 12 2 75 1.75 800 2.5 импортные симисторы

2У208А 5 5 0.5 150 250 2 100 7 симисторы российские

2У208Б 5 5 0.5 150 250 2 200 7 симисторы российские

2У208В 5 5 0.5 150 250 2 300 7 симисторы российские

2У208Г 5 5 0.5 150 250 2 400 7 симисторы российские

КУ208А 5 5 0.5 150 250 2 100 7 симисторы российские

КУ208Б 5 5 0.5 150 250 2 200 7 симисторы российские

КУ208В 5 5 0.5 150 250 2 300 7 симисторы российские

RAB Lighting RDLED4R12-50YY-S-B Remod 4 Round 12W 27K Dim Triac 50-Degree Spec Cone Black Ring —


В настоящее время недоступен.
Мы не знаем, когда и появится ли этот товар в наличии.
Цвет Чернить
Материал Металл
Тип отделки Матовая сталь
Тип источника света ВЕЛ
Источник питания Проводной электрический

  • Убедитесь, что это подходит введя номер вашей модели.
  • Высокоэффективная альтернатива лампам накаливания.
  • Встроенные потолочные зажимы делают установку быстрой и надежной для потолков толщиной до 1 1/4 дюйма.
  • Линза с наноструктурой устраняет «горячие точки», обеспечивая плавный и эффективный свет.
› См. Дополнительные сведения о продукте

3′-Монойодтиронина сульфат и триаксульфат являются метаболитами тироидных гормонов в развивающихся овцах

3′-T

1 S и TriacS RIA.

3′-T 1 S и 3 ′ — [ 125 I] T 1 S, а также TriacS и [ 125 I] TriacS были приготовлены по методу Eelkman-Rooda и соавторов. (10,11). 3′-T 1 S и TriacS в 0,025 н. NaOH (4 мг / мл) дополнительно очищали и количественно выделяли обращенно-фазовой ВЭЖХ с препаративной колонкой (Biochrom 1010 ODS; Regis, Morton Grove, IL). Продукты изократически элюировали смесью ацетонитрила и 20 мМ ацетата аммония, pH 4.0 (22:78 об. / Об.) При потоке растворителя 10 мл / мин. 3′-T 1 S и TriacS были выделены с чистотой> 99%, по оценке ВЭЖХ.

В РИА для 3′-T 1 S использовалось антитело 3′-T 1 S 3A-2, полученное от одного из трех новозеландских кроликов, иммунизированных 3′-T 1 S- Конъюгат БСА (2). В RIA для TriacS использовалось антитело D1-3 против конъюгатов TriacS-BSA. Каждого кролика иммунизировали эмульсиями из 1 мл раствора конъюгата, содержащего 2 мг БСА и равный объем полного адъюванта Фрейнда (Calbiochem, Сан-Диего, Калифорния), во множественные дорсальные подкожные участки.Бустерные инъекции, состоящие из 1 мл конъюгата и равного объема неполного адъюванта Фрейнда, продолжали с 6-недельными интервалами. Антитела со средним титром были обнаружены в сыворотках двух из трех кроликов через 3 недели после четвертой (3′-T 1 S) и шестой (TriacS) иммунизации. При конечном разведении 1:12 000 (в 1 мл 0,075 М барбитального буфера, pH 8,6 и 0,12% нормальной кроличьей сыворотки) антитело анти-3′-T 1 S связывало 35-45% от количества индикатора ( = 8,3 фмоль или 5 пг) 3 ‘- [ 125 I] T 1 S (аналогично для антитела TriacS, конечное разведение 1: 5000).Этанол существенно не ингибировал связывание 3 ‘- [ 125 I] T 1 S с антителом 3A-2 до конечной концентрации 22% (аналогично для антитела TriacS D1-3). Поэтому мы использовали этанольные (63%) экстракты сыворотки для измерения концентраций 3′-T 1 S и TriacS. Конечная концентрация этанола в анализах составляла 19%.

Процедуры RIA 3′-T 1 S и TriacS, разработанные с использованием антисыворотки 3A-2 и D1-3, соответственно, были модификациями процедуры RIA, описанной ранее для измерения T 4 S и T 2 S в сыворотке крови (2,4).РИА 3′-T 1 S и TriacS проводили в двух или трех экземплярах в одноразовых стеклянных пробирках 10 × 75 мм, содержащих 0,053 М барбитальный буфер (pH 8,6), 0,07% азид натрия, 0,088% нормальную кроличью сыворотку и 19% этанол (содержащий либо неизвестное, либо стандартное количество немеченого 3′-T 1 S или TriacS). Стандартные кривые были построены с использованием от 1 до 1000 пг 3′-T 1 S (от 2,1 до 2,09 пмоль) или TriacS (от 1,4 фмоль до 1,43 пмоль), оптимального количества антитела 3A-2 или D1-3 (конечное разведение 1: 12 000 для 3A-2 и 1: 5000 для D1-3) и 18 000–22 000 имп / мин 3 ′ — [ 125 I] T 1 S или [ 125 I] симистор, в конечном объеме 1 мл.Пробирки тщательно перемешивали и инкубировали при 4 ° C в течение ночи. Затем добавляли достаточное количество ранее титрованного козьего антикроличьего гамма-глобулина (второе антитело). Пробирки перемешивали, инкубировали при 4 ° C в течение ночи и центрифугировали при 2000 g в течение 20 минут. Надосадочные жидкости тщательно аспирировали, и радиоактивность в осадках определяли количественно с использованием гамма-счетчика Isodata 20/20 (Isodata, Palatine, IL). Неспецифическое связывание (определенное в пробирках без добавления антител 3A-2 или D1-3) составляло <3% и вычиталось из количества связанных 3 '- [ 125 I] T 1 S или [ 125 I] TriacS .Графики стандартной кривой и другие расчеты были выполнены, как описано ранее (5,8).

Препараты для животных и образцы.

Западные смешанные по времени беременные овцы с двойными беременностями были получены с ранчо Небекер (Ланкастер, Калифорния) и адаптированы к нашим лабораторным условиям и пище. Животных изучали в следующие сроки беременности: 94 дня ( n, = 5), 110–111 день ( n, = 6), 130–131 день ( n, = 6) и 145 дней ( n. = 6).Этот срок беременности был выбран из-за различий в секреции и метаболизме гормонов щитовидной железы в этот период развития (12,13). Кроме того, были изучены сыворотки новорожденных (NB) ( n = 5) и взрослых (AD) ( n = 5) животных, включая беременных и небеременных овец.

Для оценки влияния гипотиреоза плода на уровни 3′-T 1 S и TriacS была отобрана группа из пяти овец (срок беременности 110–113 дней) с двойными плодами. Овцам вводили седативные препараты (1.2 мг атропина и 700 мг кетамина в / м), и была начата непрерывная инфузия кетамина (100 мг / ч) через яремный венозный катетер. После местной анестезии брюшной стенки (2% лидокаин) после среднего разреза пальпировали матку и части плода и идентифицировали головку плода. Была выполнена гистеротомия на шейке плода, которая была выведена наружу, чтобы избежать потери околоплодных вод. Шею плода инфильтрировали 1% лидокаином с последующим рассечением и полным удалением щитовидной железы (Tx).Разрез на шее закрыли, и со вторым плодом обращались аналогичным образом, за исключением того, что была проведена фиктивная операция, а щитовидная железа осталась нетронутой (контроль). Овцы лечились в течение 3 дней после операции оксациллином (2 г) и гентамицином (80 мг) внутримышечно в разделенных дозах. Плоды были исследованы через 13 дней после первичной операции. 13-дневный интервал от Tx до смерти был выбран на основе периода полувыведения T 4 в сыворотке плода овцы (24 ч) и во избежание долгосрочного воздействия Tx на количество клеток и массу тела (12–14 ).

Для получения сыворотки от плодов овцематок вводили седативные препараты, как описано ранее, и проводили спинальную и эпидуральную анестезию (5 мл 0,5% маркаина и 5 мл 2% лидокаина). После парамедианного разреза брюшной полости и гистеротомии каждый близнец был доставлен и немедленно умерщвлен передозировкой в ​​/ в. пентобарбитал натрия. После получения образцов от каждого плода овца была умерщвлена ​​аналогичным образом. Все эксперименты были одобрены Комитетом по использованию животных Медицинского центра Калифорнийского университета в Лос-Анджелесе.

Приготовление тестовой сыворотки.

Образцы перед анализом экстрагировали двумя объемами 95% этанола. Предварительные эксперименты показали, что эффективность экстракции 3′-T 1 S и TriacS в сыворотке составляла 90–98% и 88–95%, соответственно (среднее ± стандартная ошибка, 93 ± 4 и 91 ± 5, соответственно, в 6– 8 экспериментов с различными известными количествами немеченого 3′-T ( 1 ( S) или добавленного TriacS). Конечные значения концентрации 3′-T 1 S и TriacS не корректировались на эффективность извлечения.Предварительные эксперименты продемонстрировали, что иммунореактивные 3′-T 1 S и TriacS в этанольных экстрактах сыворотки плода и матери совместно хроматографируются с соответствующими синтетическими соединениями на ВЭЖХ.

Источники материалов.

3,3′-T 2 , 3 ‘, 5’-T 2 , DT 3 , T 3 , rT 3 , 3-монойодтиронин (3-T 1 ), 3′-T 1 , 3,5-дийодтироуксусная кислота (Diac), 3,3 ′, 5-трийодтироуксусная кислота (Triac), 3,3 ′, 5,5′-тетрайодтироуксусная кислота (Tetrac) и тироксин ( T 4 ) были приобретены в Henning-Berlin (Берлин, Германия).Тиронин (To), 3,5-T 2 , 3,3 ‘, 5-трийодтиропропионовая кислота (Triprop), монойодтирозин (MIT), дииодтирозин (DIT), BSA и 1-этил-3- (3-диметил -аминопропил) -карбодиимид были приобретены у Sigma Chemical Co. (Сент-Луис, Миссури). 3 ‘- [ 125 I] T 1 и [ 125 I] TriacS были приготовлены радиойодированием To и Diac, соответственно, с использованием метода, описанного ранее (15). T 4 S, T 3 S и rT 3 S были синтезированы по методике, описанной ранее (10,11).Хлорсульфоновая кислота, 99%, была приобретена у Aldrich Chemical (Милуоки, Висконсин).

Статистический анализ.

ANOVA использовали для многогрупповых сравнений. Если были обнаружены значительные различия, для сравнения контрольных или исходных средних значений и средних значений других групп использовали тест Даннета (16). Значимость была определена как p <0,05. Результаты представлены как среднее значение ± стандартная ошибка.

Тиратрикол — обзор | Темы ScienceDirect

Аналоги гормона щитовидной железы

Эпротиром (KB2115) — аналог гормона щитовидной железы, одно из группы соединений, разработанных для лечения заболеваний, отличных от гипотиреоза, таких как гиперхолестеринемия, ожирение, сердечная недостаточность, скелетные нарушения. ремоделирование, рак щитовидной железы, нарушение познавательной способности и аффективные расстройства [26].Он имеет умеренно более высокое сродство к изоформе рецептора трийодтиронина β (и опосредует гиполипидемическое действие гормона щитовидной железы) по сравнению с его сродством к изоформе рецептора трийодтиронина α в сердце.

Проблемы с этим подходом заключаются, во-первых, в том, что тиромиметические соединения, которые недостаточно специфичны для подмножеств действия гормонов щитовидной железы на отдельные ткани, могут вызывать тиреотоксические эффекты в тканях, для которых их действие не было рассчитано. Соединения, которые продемонстрировали эту проблему, включают трийодтироуксусную кислоту, которая предназначалась для подавления секреции тиреотропина [27], и дийодтиропропионовую кислоту, которая предназначалась для лечения сердечной недостаточности [28]; как повышенная частота сердечных сокращений в состоянии покоя, так и циркулирующие маркеры обновления костной ткани.Во-вторых, аналоги тироидных гормонов могут подавлять гипоталамо-гипофизарно-тиреоидную ось, что подтверждается агонистом ретиноидных рецепторов X бексаротеном [29], хотя это может быть полезно при некоторых формах тиреотоксикоза [30]. Новые аналоги, такие как эпротиром, собетиром и MB07344, обладают гиполипидемической эффективностью и могут быть более селективными, чем более ранние аналоги. Аналоги тироидных гормонов, которые являются антагонистами и поэтому могут быть полезны при лечении тиреотоксикоза, также разрабатываются [31].

В многоцентровом двойном слепом рандомизированном плацебо-контролируемом исследовании эпротирома по снижению концентрации холестерина ЛПНП в сыворотке крови у пациентов с гиперхолестеринемией, которые уже принимали симвастатин или аторвастатин, добавление плацебо или эпротирома 25, 50 или 100 мкг в день до лечения статинами в течение 12 недель приводило к снижению средних концентраций холестерина ЛПНП на 7%, 22%, 28% и 32% от исходного уровня [32]. Было такое же снижение концентрации аполипопротеина B, триглицеридов и липопротеина Lp (a).

Добавить комментарий

Ваш адрес email не будет опубликован.