Компрессора виды: Классификация компрессоров: типы, виды, описание

Содержание

Классификация компрессоров: типы, виды, описание

Компрессорные установки представляют собой специальное оборудование, широко используемое в различных технологических процессах в химической, металлургической, газовой, строительной и других отраслях промышленности.

Сегодня практически ни одна сфера производства не обходится без использования подобного оборудования, которое может быть классифицировано по области применения:

  • общего назначения;
  • энергетические;
  • нефтехимические и другие.

Сегодня данное оборудование представлено в широком спектре моделей, вариантов исполнения и назначения. Каждый тип компрессора имеет свои конструктивные особенности, индивидуальные технические и рабочие характеристики, исходя из которых необходимо выбирать тот или иной тип компрессора. Для этого необходимо знать, какие бывают компрессоры и их основные характеристики.

Классификация компрессоров – основные виды оборудования

Современные компрессоры имеют несколько различных классификаций, среди которых наиболее значимым является подразделение оборудования на типы в зависимости от конструктивных особенностей и принципа действия компрессоров.

В первую очередь необходимо отметить два основных типа компрессоров:

  • объемные;
  • лопастные установки.

Здесь Вы можете ознакомиться с каталогом компрессоров, реализуемых ООО ГК «ТехМаш».

Лопастной компрессор — это оборудование, работа которого основана на динамическом принципе действия. В данном типе установок увеличение давления осуществляется благодаря взаимодействию потока воздуха с решетками лопастей, одна из которых вращающаяся, а другая неподвижная. Оборудование лопастного типа в свою очередь подразделяются на следующие виды компрессоров:

  • центробежные;
  • радиально-осевые;
  • осевые.

Однако наибольшей популярностью пользуются компрессоры объемного типа. Сжатие воздуха в устройствах данного типа происходит в специальных рабочих камерах. Попеременное сообщение камер с входом и выходом компрессора, а также периодическое изменение их объема приводит к изменению давления воздуха. Классификация установок объемного вида разделяется по форме и типу рабочих деталей компрессорных установок и принципу их действия. Так, объемные компрессоры могут быть следующих типов:

  • роторные;
  • поршневые.

Установки поршневого типа стали особенно популярны благодаря сочетанию таких преимуществ, как удобство эксплуатации, высокие рабочие характеристики, длительный срок службы, небольшие габариты и многое другое. При этом данный вид компрессоров отлично подходит для любых видов работ с широким диапазоном значения необходимого давления.

Основными рабочими элементами поршневых компрессоров являются электропривод, крышка цилиндра, регулятор давления и ресивер. Создание необходимого давления воздуха в оборудовании данного типа происходит благодаря поступательным движениям поршня. Поршневые компрессоры имеют свою классификацию и подразделяются на:

  • двойного или одинарного действия;
  • масляные и безмасляные;
  • угловые, горизонтальные, вертикальные;
  • с различным количеством цилиндров.


Другой вид объемных компрессоров – роторные установки, главной особенностью которых является наличие вращающихся сжимающих элементов. Данные виды компрессоров могут быть как промышленными, так полупромышленными или же бытовыми. Их рабочие параметры, условия и особенности эксплуатации подходят для проведения технологических процессов на любых предприятиях и в различных сферах деятельности.

К категории роторных установок относятся следующие виды компрессоров:

  • Винтовое оборудование – такие установки оснащены ведущим и ведомым роторами, вращающимися по направлению друг к другу. Данный принцип вращения приводит к уменьшению пространства между корпусом и роторами, что и обеспечивает увеличение давления. Главным преимуществом данного типа компрессоров является возможность их использования в условиях интенсивной эксплуатации.
  • Спиральные компрессоры – обладают смещенной неподвижной и подвижной спиралями. Установлены они специальным образом, создавая полости с постоянно изменяющимся в них объемом.
  • Роторно-пластинчатые установки – главным элементом таких установок является установленный в корпусе со смещением с центра ротор с пластинами. Перемещение пластин может происходить в радиальном направлении.
  • Жидкостно-кольцевые – в корпусе, который частично заполнен жидкостью, находится ротор с фиксированными лопатками.

Классификация компрессоров исходя из особенностей их конструкции и принципа действия — не единственная. Так, по способу охлаждения компрессоры бывают с воздушным или же жидкостным охлаждением. Существует классификация и по приводному двигателю – от газовой турбины, двигателя внутреннего сгорания и электродвигателя.

Кроме того, классификация компрессоров также может быть различной в зависимости от уровня конечного давления:

  • установки с низким уровнем давления;
  • давление среднего уровня;
  • оборудование со сверхвысоким давлением.

Выбор необходимого компрессорного оборудования зависит от требований, предъявляемых к установкам, условий и особенностей эксплуатации, типа проводимых работ и других характеристик.

Типы компрессоров

 

Компрессор

Компрессор, устройство для сжатия и подачи воздуха или другого газа под давлением. Степень повышения давления в К. более 3. Для подачи воздуха с повышением его давления менее чем в 2-3 раза применяют воздуходувки, а при напорах до 10 кн/м2 (1000 мм вод. cm.) — вентиляторы. К. впервые стали применяться в середине 19 в., в России строятся с начала 20 в. Основы теории центробежных машин были заложены Л. Эйлером, теория осевых компрессоров и вентиляторов создавалась благодаря трудам Н. Е. Жуковского, С. А. Чаплыгина и других учёных. По принципу действия и основным конструктивным особенностям различают компрессоры поршневые, ротационные, центробежные, осевые и струйные.Компрессоры также подразделяют по роду сжимаемого газа (воздушные, кислородные и др.), по создаваемому давлению рн (низкого давления — от 0,3 до 1 Мн/м2, среднего — до 10 Мн/м2 и высокого — выше 10 Мн/м2), по производительности, то есть объёму всасываемого Vвс (или сжатого) газа в единицу времени (обычно в м3/мин) и другим признакам.
Компрессоры также характеризуются частотой оборотов n и потребляемой мощностью N.

Поршневой компрессор в основном состоит из рабочего цилиндра и поршня; имеет всасывающий и нагнетательный клапаны, расположенные обычно в крышке цилиндра. Для сообщения поршню возвратно-поступательного движения в большинстве поршневых компрессоров имеется кривошипно-шатунный механизм с коленчатым валом. Поршневые компрессоры бывают одно- и многоцилиндровые, с вертикальным, горизонтальным, V- или W-oбразным и другим расположением цилиндров, одинарного и двойного действия (когда поршень работает обеими сторонами), а также одноступенчатого или многоступенчатого сжатия. Действие одноступенчатого воздушного поршневого компрессора заключается в следующем. При вращении коленчатого вала 1 соединённый с ним шатун 2 сообщает поршню 3 возвратные движения. При этом в рабочем цилиндре 4 из-за увеличения объёма, заключённого между днищем поршня и крышкой цилиндра 5, возникает разрежение и атмосферный воздух, преодолев своим давлением сопротивление пружины, удерживающей всасывающий клапан 9, открывает его и через воздухозаборник (с фильтром) 8 поступает в рабочий цилиндр.

При обратном ходе поршня воздух будет сжиматься, а затем, когда его давление станет больше давления в нагнетательном патрубке на величину, способную преодолеть сопротивление пружины, прижимающей к седлу нагнетательный клапан 7, воздух открывает последний и поступает в трубопровод 6. При сжатии газа в К. его температура значительно повышается. Для предотвращения самовозгорания смазки компрессор оборудуются водяным (труба 10 для подвода воды) или воздушным охлаждением. При этом процесс сжатия воздуха будет приближаться к изотермическому (с постоянной температурой), который является теоретически наивыгоднейшим (см. Термодинамика). Одноступенчатый компрессор, исходя из условий безопасности и экономичности его работы, целесообразно применять со степенью повышения давления при сжатии до b = 7-8. При больших сжатиях применяются многоступенчатые компрессоры, в которых, чередуя сжатие с промежуточным охлаждением, можно получать газ очень высоких давлений — выше 10 Мн/м2. В поршневых компрессорах обычно предусматривается автоматическое регулирование производительности в зависимости от расхода сжатого газа для обеспечения постоянного давления в нагнетательном трубопроводе.
Существует несколько способов регулирования. Простейший из них — регулирование изменением частоты вращения вала.

Ротационные компрессора имеют один или несколько роторов, которые бывают различных конструкций. Значительное распространение получили ротационные пластинчатые компрессоры, имеющие ротор 2 с пазами, в которые свободно входят пластины 3. Ротор расположен в цилиндре корпуса 4 эксцентрично. При его вращении по часовой стрелке пространства, ограниченные пластинами, а также поверхностями ротора и цилиндра корпуса, в левой части К. будут возрастать, что обеспечит всасывание газа через отверстие 1. В правой части компрессора объёмы этих пространств уменьшаются, находящийся в них газ сжимается и затем подаётся из компрессора в холодильник 5 или непосредственно в нагнетательный трубопровод. Корпус ротационного компрессора охлаждается водой, для подвода и отвода которой предусмотрены трубы 6 и 7. Степень повышения давления в одной ступени пластинчатого ротационного компрессора обычно бывает от 3 до 6.

Двухступенчатые пластинчатые ротационного компрессоры с промежуточным охлаждением газа обеспечивают давление до 1,5 Мн/м2. Принципы действия ротационного и поршневого компрессоров в основном аналогичны и отличаются лишь тем, что в поршневом все процессы происходят в одном и том же месте (рабочем цилиндре), но в разное время (из-за чего и потребовалось предусмотреть клапаны), а в ротационном К. всасывание и нагнетание осуществляются одновременно, но в различных местах, разделенных пластинами ротора. Известны другие конструкции ротационного компрессора, в том числе винтовые, с двумя роторами в виде винтов. Для удаления воздуха с целью создания разрежения в каком-либо пространстве применяют роторные водокольцевые вакуум-насосы. Регулирование производительности ротационного компрессора осуществляется обычно изменением частоты вращения их ротора.

Центробежный компрессор в основном состоит из корпуса и ротора, имеющего вал 1 с симметрично расположенными рабочими колёсами. Центробежный 6-ступенчатый К. разделён на три секции и оборудован двумя промежуточными холодильниками, из которых газ поступает в каналы 12 и 13. Во время работы центробежного компрессора частицам газа, находящимся между лопатками рабочего колеса, сообщается вращательное движение, благодаря чему на них действуют центробежные силы. Под действием этих сил газ перемещается от оси компрессора к периферии рабочего колеса, претерпевает сжатие и приобретает скорость. Сжатие продолжается в кольцевом диффузоре из-за снижения скорости газа, то есть преобразования кинетической энергии в потенциальную. После этого газ по обратному направляющему каналу поступает в другую ступень компрессора и т.д. Получение больших степеней повышения давления газа в одной ступени (более 25-30, а у промышленных К. — 8-12) ограничено главным образом пределом прочности рабочих колёс, допускающих окружные скорости до 280-500 м/сек. Важной особенностью центробежных компрессоров (а также осевых) является зависимость давления сжатого газа, потребляемой мощности, а также кпд от его производительности. Характер этой зависимости для каждой марки компрессора отражается на графиках, называемых рабочими характеристиками. Регулирование работы центробежных компрессоров осуществляется различными способами, в том числе изменением частоты вращения ротора, дросселированием газа на стороне всасывания и др.

Осевой компрессор имеет ротор 4, состоящий обычно из нескольких рядов рабочих лопаток 6. На внутренней стенке корпуса 2 располагаются ряды направляющих лопаток 5. Всасывание газа происходит через канал 3, а нагнетание через канал 1. Одну ступень осевого компрессора составляет ряд рабочих и ряд направляющих лопаток. При работе осевого компрессора вращающиеся рабочие лопатки оказывают на находящиеся между ними частицы газа силовое воздействие, заставляя их сжиматься, а также перемещаться параллельно оси К. (откуда его название) и вращаться. Решётка из неподвижных направляющих лопаток обеспечивает главным образом изменение направления скорости частиц газа, необходимое для эффективного действия следующей ступени. В некоторых конструкциях осевых К. между направляющими лопатками происходит и дополнительное повышение давления за счёт уменьшения скорости газа. Степень повышения давления для одной ступени осевого К. обычно равна 1,2-1,3, т. е. значительно ниже, чем у центробежных К., но кпд у них достигнут самый высокий из всех разновидностей К. Зависимость давления, потребляемой мощности и кпд от производительности для нескольких постоянных частот вращения ротора при одинаковой температуре всасываемого газа представляют в виде рабочих характеристик. Регулирование осевых К. осуществляется так же, как и центробежных. Осевые К. применяют в составе газотурбинных установок (см. Газотурбинный двигатель). Техническое совершенство осевых, а также ротационных, центробежных и поршневых К. оценивают по их механическому кпд и некоторым относительным параметрам, показывающим, в какой мере действительный процесс сжатия газа приближается к теоретически наивыгоднейшему в данных условиях.

Струйные компрессора по устройству и принципу действия аналогичны струйным насосам. К ним относят струйные аппараты для отсасывания или нагнетания газа или парогазовой смеси. Струйные компрессора обеспечивают более высокую степень сжатия, чем струйные насосы. В качестве рабочей среды часто используют водяной пар. Основные типы компрессоров, их параметры и области применения показаны в табл. Типы компрессоров и их характеристика

Тип компрессора Предельные параметры Область применения
Поршневой VВС = 2-5 м3/мин РН = 0,3-200 Мн/м2 (лабораторно до 7000 Мн/м2) n = 60-1000 об/мин N до 5500 квт Химическая промышленность, холодильные установки, питание пневматических систем, гаражное хозяйство.
Ротационный VВС = 0,5-300 м3/мин РН = 0,3-1,5 Мн/м2 n = 300-3000 об/мин N до 1100 квт Химическая промышленность, дутье в некоторых металлургических печах и др.
Центробежный VВС = 10-2000 м3/мин РН = 0,2-1,2 Мн/м2 n = 1500-10000 (до 30000) об/мин N до 4400 квт (для авиационных — до десятков тысяч квт) Центральные компрессорные станции в металлургической, машиностроительной, горнорудной, нефтеперерабатывающей промышленности
Осевой VВС = 100-20000 м3/мин РН = 0,2-0,6 Мн/м2 n = 2500-20000 об/мин N до 4400 квт (для авиационных — до 70000 квт) Доменные и сталелитейные заводы, наддув поршневых двигателей, газотурбинных установок, авиационных реактивных двигателей и др.

 

Лит.: Шерстюк А. Н.,Компрессорры, М.-Л., 1959; Рис В. Ф., Центробежные компрессорные машины, 2 изд., М.- Л., 1964; Френкель М. И., Поршневые компрессоры, 3 изд., Л., 1969: Центробежные компрессорные машины, М., 1969. Е. А. Квитковская.

Виды воздушных компрессоров и их особенности

Воздушный компрессор — это устройство, которое сжимает и подает воздух под давлением. Они используются практически в любом промышленном производстве, при этом работая в разных условиях и с разными целями. Однако один и тот же вид компрессора воздуха явно не может использоваться для всего комплекса возможных задач. В этой статье мы разберем основные виды воздушных компрессоров и их особенности. При выборе воздушного компрессора важно подробнее узнать об их разновидностях, чтобы не переплатить за лишние опции. 

 

Отличия винтового компрессора от поршневого

Ключевым критерием является принадлежность компрессора к поршневым или же к винтовым. Между ними огромная разница относительно принципа работы. Поршневой компрессор сжимает воздух с помощью возвратно-поступательных движений поршня в цилиндре. В винтовом компрессоре сжатие происходит в процессе одновременного вращения двух роторов, находящихся друг напротив друга. 

Несмотря на высокую цену винтовых компрессоров, главным их преимуществом является энергоэффективность и гораздо более долгий срок работы. 

Вопрос о том, какой из этих двух видов лучше, слишком объемный. И поэтому мы написали об этом отдельный материал.

 

Конструкция винтового и поршневого компрессора 

Отличия масляного компрессора от безмасляного

Масло в компрессорах используется в качестве смазочного компонента. Для большинства нужд подойдет масляный компрессор, где попадание частиц масляного конденсата в воздух неизбежно. Но в некоторых отраслях промышленности присутствие масляных частиц в сжатом воздухе недопустимо. Отрасли, в которых необходимы именно безмасляные компрессоры: медицинская, химико-лабораторная и другие.

 

Отличия компрессора с прямым приводом и с ременным приводом 

Виды приводов компрессоров — это еще один параметр для классификации. Существует три основных: ременной, прямой и прямой с частотной регулировкой.

 

Компрессор воздуха с ременным приводом прост в эксплуатации и отличается низкой стоимостью. Обычно такие компрессоры  устанавливают на производстве без высоких нагрузок. Большой плюс компрессора с ременным приводом — возможность регулировки производительности и давления.  

 

Прямой привод устанавливают на компрессоры с высокой производительностью. Благодаря низким энергопотерям, у такого оборудования максимально большой КПД — 99,9%. Компрессор с данным видом привода отлично переносит тяжелые условия эксплуатации и редко ломается. Главный его минус — большая цена по сравнению с компрессорами другого типа. Но для производств, где постоянно требуются большие объемы сжатого воздуха, воздушный компрессор с прямым приводом будет незаменим.

 

На сегодняшний день совершенным типом привода компрессора является прямой привод с частотной регулировкой. Он имеет все те же преимущества, что и обычный прямой привод, но еще и обладает гораздо большей энергоэффективностью. Частотник отвечает за возможность отрегулировать производительность и максимальное давление.

 

Ременной и прямой привод — отличия

 

Оснащение ресивером и осушителем

Некоторые воздушные компрессоры оснащают ресивером и осушителем. Данные модели отлично подходят компактным производствам.

 

Компрессор Ekomak DMD CRD со встроенным осушителем и ресивером

 

Ресивер выполняет функцию равномерной подачи воздуха, накапливает его чтобы снизить пиковые нагрузки при подключении одновременно нескольких потребителей, а также снижает вибрацию двигателя. Еще одна важная функция ресивера — ощутимое охлаждение сжатого воздуха и очистка его от конденсата.

 

Наличие осушителя в конструкции винтового воздушного компрессора только усилит эффект охлаждения и очистки воздуха от различных частиц. 

 

Выводы: виды компрессоров воздуха

В этой статье мы разобрали самые популярные способы классифицировать воздушные компрессоры и выделили следующие виды:

  • Группа 1. Винтовые и поршневые;
  • Группа 2. Маслянные и безмасляные;
  • Группа 3. С ременным приводом, прямым приводом и с прямым приводом с частотным регулированием;
  • Группа 4. С ресивером и без ресивера;
  • Группа 5. С осушителем и без осушителя.
В нашем интернет-магазине продаются компрессоры всех видов и для любых целей. Обращайтесь к нам для подбора компрессора — наши инженеры подберут оборудование с учетом ваших требований и ответят на любой технический вопрос.

 

Основные виды компрессоров

Основные виды компрессоров

Многие отрасли современного промышленного производства являются потребителями сжатых газов и воздуха. В металлургии сжатый воздух и кислород необходим для выплавки чугуна и производства стали. В технологических процессах химических предприятий сжатые газы до значительных давлений являются исходным сырьем для производства сложных органических соединений. Для получения сжатого газа или воздуха, а также для их подачи до потребителя применяются специальные машины – компрессоры.

Классификацию компрессоров производят по ряду отличительных признаков, однако по конструктивному признаку компрессоры можно разделить на 4 основные группы. Это поршневые компрессоры, ротационные, центробежные и осевые. Поршневые и ротационные относятся к классу объемных компрессоров. А центробежные и осевые к лопастным.

Поршневые компрессоры

Рассмотрим принцип действия поршневого компрессора. Процесс сжатия и перемещения газов в поршневом компрессоре происходит за счет изменения рабочего объема цилиндра. Так при движении поршня вправо – в цилиндр поступает газ. Когда поршень займет  крайнее положение, всасывающий клапан закрывается. Теперь поршень двигается влево и газ сжимается. Когда давление достигнет заданной величины, открывается нагнетательный клапан и сжатый газ поступает в сеть.

Производительность поршневого компрессора зависит от ряда факторов, важнейшим из них является рабочий объем цилиндра. На теоретической диаграмме он определяется крайними положениями хода поршня. Однако действительный объем будет меньше, т.к. в конце нагнетания между поршнем и крышкой цилиндра остается расстояние, заполненное сжатым газом. Его принято называть вредным, т.к. процесс сжатия всасывания запаздывает из-за расширения газа, оставшегося во вредном пространстве.  Следовательно, объем всасываемого газа будет меньше объема описываемого поршнем, а это отрицательно сказывается на производительности компрессора. Отношение отрицательного объема газа к теоретическому называется объемным коэффициентом. Действительную производительность поршневого компрессора определяют по формуле:

V’’’: V’= λ

V=ifsn λ

Где i – число всасывающих объемов,
f- площадь поршня,
s- ход поршня,
n- число оборотов вала в минуту,
λ  — объемный коэффициент.

Давление создаваемое в поршневых компрессорах зависит от числа ступеней. На данной схеме представлен 3-ступенчатый компрессор простого действия. В первой ступени происходит сжатие, затем газ охлаждается и всасывается во 2-ую ступень, после очередного охлаждения газ всасывается в 3-ю ступень. И охлажденный нагнетается в сеть. Для многоступенчатого сжатия газа применяются также компрессоры с дифференциальными поршнями. Многоступенчатое сжатие газов и промежуточное охлаждение их обеспечивает снижение конечной температуры, увеличение объемных коэффициентов, уменьшение затрачиваемой удельной работы.  

Ротационные компрессоры

Ротационные компрессоры относятся к машинам непрерывного действия. Перед вами схема одноступенчатого ротационного компрессора. Его основным рабочим органом является ротор, оснащенный выдвижными пластинами. По отношению к корпусу, ротор устанавливается эксцентрично, вследствие чего между корпусом и ротором образуется серповидная зона. Пластина захватывает газ в области всасывания и перемещает его в серповидной зоне, где он сжимается и поступает в сеть. Равномерность подачи сжатого газа, простота конструкции, отсутствие клапанов, а также возможность применения высокоскоростных приводов обеспечивает широкое использование машин данного типа.

Производительность ротацинно-пластинчатого компрессора определяют по формуле.

V=2eRl βzn λ0

Где e – эксцентриситет,
R – радиус корпуса,
L – длина пластин,
β – угол между пластинами,
z- число пластин,
n – число оборотов ротора в минуту,
λ0 – объемный коэффициент лежащий в пределах. λ0=0,5 – 0,8

Помимо ротационно-пластинчатых к семейству роторных компрессоров следует отнести 2-х роторные компрессоры разных конструкций, в том числе шестеренчатый и винтовой компрессор.

Рассмотрим принцип действия винтового компрессора несколько подробнее. В корпусе винтового компрессора вращаются 2 ротора – ведущий и ведомый. Поверхности роторов выполнены в виде винтов и находятся в зацеплении. При этом выступы ведущего заполняют впадины ведомого. Во время вращения роторов газ из области всасывания попадает во впадины ведомого ротора. Заполняя последовательно эти впадины по всей длине, выступы ведущего ротора осуществляют сжатие газы и вытесняют его в нагнетательную полость.

 


Типы компрессоров — компрессорные, азотные, насосные станции

Компрессор – это установка для повышения давления и перемещения газов в различных системах трубопроводов.

Типы компрессоров, используемые в современной промышленности и строительстве, весьма многообразны. Можно различать компрессоры по разным характеристикам, но наиболее часто применяемая классификация основана на технологии работы и устройстве компрессора:

  • объемный компрессор;
  • динамический (лопастной) компрессор

Также еще можно выделить следующие типы компрессоров в зависимости от:

  • сферы применения – общего назначения, энергетические, химические;
  • сжимаемого газа – кислородные, азотные, воздушные и т.д.;
  • конечного давления: вакуум-компрессоры, сверхвысокого, высокого, среднего низкого давления; 
  • способа отвода тепла – с воздушным или водяным охлаждением;
  • двигателя – электрический или ДВС;
  • размера – портативные и стационарные.

Динамические типы компрессоров отличаются тем, что сжатие газа происходит в результате взаимодействия потока газа с подвижными и неподвижными лопастями ротора. В осевом лопастном компрессоре поток газа идет вдоль оси вращения, такой тип компрессора используется в авиации.

В центробежном лопастном компрессоре в рабочем колесе поток газа поворачивается в радиальном направлении, такой тип компрессора широко используется в перекачивающих и вентиляционных системах.

Но наиболее широко в составе современных производственных и инженерных комплексов используются объемные компрессоры, основанные на принципе изменения давления газа за счет изменения объема рабочих камер.

Объемные типы компрессоров бывают следующие:

  1. Поршневые – давление изменяется за счет возвратно-поступательных движений поршня:
    • одинарного действия,
    • двойного действия,
    • с масляной смазкой, сухого трения,
    • с различным числом цилиндров,
    • с различным расположением цилиндров,
    • плунжерные.
  2. Винтовые – давления изменяется за счет движения винтов.
  3. Пластинчато-роторные – давление газа изменяется за счет движения ротора с платинами в радиальном направлении:
    • жидкостно-кольцевые – давление газа изменяется за счет движения погруженного в жидкость ротора с лопатками,
    • спиральные – давление газа изменяется за счет изменения объема движущимися спиралями.

Компрессоры это машины для сжатия газа и пара. В этих машинах ступень сжатия обеспечивает компрессию рабочего тела. Рисунок, который находится ниже,даёт общее представление о классификации типов компрессоров.


Рис. 1 Обзор основных типов компрессоров

Виды компрессоров — Сведение и мастеринг

4.9 / 5 ( 35 голосов )

Вы когда-нибудь задумывались почему так много различных плагинов компрессоров и все они имеют своё звучание? Так вот, в эпоху аналоговых приборов динамической обработки звука каждый из производителей искал свои пути по сжатию сигнала. А зависело это от типа электронной схемы, встроенной в устройство. Рассмотрим в данной статье эти виды устройств и их отличия.

 

В предыдущей теме (Компрессоры. Введение) мы с вами рассмотрели понятие «компрессор», узнали какие они бывают и описали особенности его использования на практике. Единственное о чем ещё необходимо было сказать — это об умеренности использования этой обработки в своих проектах. Во-первых, слишком большая компрессия может вызывать различные неприятные для слуха артефакты. А также полностью «убить» динамику вашего трека, сделав его очень скучным. Во-вторых, в каждом из стилей компрессия применяется по разному.

Например: в классической музыке компрессия почти не применяется; в джазовой, как и в классической важно сохранение динамического диапазона, поэтому она используются очень аккуратно и не часто; в современной очень активно и бывает с довольно экстремальными настройками (рок-музыка).

Перейдем к рассмотрению основных видов:

Оптический компрессор

В основе схемы его компрессии находится лампочка и фотоэлемент. Главная особенность прибора заключается в том, что он не очень быстро успевает реагировать на входной сигнал, и поэтому делает его довольно гладким, с естественным сжатием. Оптические компрессоры довольно часто применяется для вокала и баса. Одним из классических видов является Teletronix LA-2A, показанный на рисунке.

Транзисторный компрессор

Его ещё называют FET-компрессор (Field Effect Transistor). В его схеме основным является полевой транзистор, который может очень быстро обработать входящий сигнал. Его очень часто применяют на ударной установке (различных барабанах). Классическим видом транзисторного компрессора является UA 1176 (на рисунке).

 VCA-компрессор

VCA (Voltage Controlled Amplifier) — усилитель управляемый напряжением. Он считается одним из лучших барабанных компрессоров и имеет много настраиваемых параметров. Одним из классических примеров является dbx 160, который использовался почти во всех крупных записях в конце 1970-х и в течение 1980-х годов. За счет того, что VCA-компрессоры могут быть довольно агрессивными их часто применяют в рок-музыке на бочке, а также на малом барабане.

 

 

Vari-Gain-компрессор

Этот вид компрессора имеет переменный коэффициент усиления. Он очень гладко и прозрачно обрабатывает входной сигнал, поэтому его очень часто применяют на мастер-шине для «склеивания» микса. Другими плагинами добиться такого же эффекта очень трудно. В виниловую эпоху одним из самых популярных Vari-Gain-компрессоров являлся Fairchild (на рисунке показаны  PuigChild 660 одноканальный и 670 двухканальный  компрессор).

 

 

 

Все виды перечисленных компрессоров в аналоговую эпоху стоили очень дорого и их могли себе позволить только большие звукозаписывающие студии. Но сейчас в цифровом мире все они  реализованы в виде плагинов. Это не только дешевле, но и намного проще в применение, так как вы сразу можете услышать результат своих действий и решить какой из компрессоров лучше работает в конкретной ситуации.

 

Всем удачи в своих проектах и подписывайтесь на RSS моего блога, чтобы не пропустить следующие статьи по динамической обработки звука.

 


Переход к следующей части: Способы обработки звука. Динамическая обработка. Компрессоры (часть 2) — основные параметры компрессора. 

Похожие записи

5 / 5 ( 18 голосов ) Что такое эффект — distortion? Принцип действия эффекта, применение в проектах, известные исполнители,…

5 / 5 ( 18 голосов ) Фазометр — полезный прибор для проверки аудиоматериала. Зачем нужен и в каких случаях…

5 / 5 ( 20 голосов ) Полезно изучать звучание инструментов и быстро находить, эквализировать проблемные области при сведении трека.…

5 / 5 ( 19 голосов ) Сейчас на рынке так много отличных устройств задержки, что можно легко потеряться в…

5 / 5 ( 24 голоса ) Что это за эффект — овердрайв? Какой принцип действия устройства? Применение, исполнители, примеры…

Виды компрессоров | Типы компрессоров

       Здравствуйте! По назначению компрессоры подразделяются на воздушные и газовые (кислородные) машины. Наиболее распространенными являются поршневые компрессоры и турбокомпрессоры (осевые и центробежные). Поршневые компрессоры имеют шатунно-кривошипный механизм и работают, как и поршневые двигатели внутреннего сгорания, при невысоком числе оборотов, что не позволяет проектировать их на большую производительность. Поэтому поршневые компрессоры применяются при расходе газа не более 2—2,5 м3/с.

     Турбокомпрессоры нецелесообразно проектировать на небольшую производительность, так как при снижении высоты лопаток возрастают внутренние аэродинамические потери. Кроме того, при большом конечном давлении значительно увеличивается число ступеней в турбокомпрессоре, поэтому их применяют при давлении до 1—1,2 МПа и производительности более 1 м3/с.

      Различают поршневые компрессоры простого и двойного действия. В установках двойного действия сжатие происходит в обеих полостях цилиндра при движении поршня как в прямом, так и в обратном направлениях, что позволяет повысить производительность компрессора, не увеличивая числа цилиндров (рис. 1.). При давлении до 0,5—0,6 МПа применяют одноступенчатые компрессоры, а при более высоком давлении — двухступенчатые (до 3 МПа) и многоступенчатые.

     Многоступенчатое сжатие с промежуточным охлаждением воздуха повышает экономичность установки. Кроме того, в процессе сжатия температура воздуха не должна превышать 140—160° С, так как при более высокой температуре возможно воспламенение (взрыв) паров масла, которые содержатся в воздухе. По расположению цилиндров поршневые компрессоры подразделяют на горизонтальные и вертикальные. Для передвижных установок целесообразным является V-образное расположение цилиндров.

      На работу поршневого компрессора существенное влияние оказывает так называемое вредное пространство, которое остается в цилиндре после окончания подачи воздуха в сеть (поршень не доходит до упора). Находящийся во вредном пространстве газ при движении поршня в обратном направлении будет расширяться по адиабате 3—4 (рис. 2.), и всасывающий клапан откроется только после снижения давления в цилиндре ниже атмосферного ра (точка 4). В результате количество засасываемого в цилиндр воздуха уменьшается на величину ∆V. Влияние вредного пространства зависит от давления p1 в конце сжатия. При некотором значении p1 точки 2 и 3 и адиабаты сжатия 1—2 и расширения 3—4 совпадут, воздух будет сжиматься до объема вредного пространства Vв.п и снова расширяться, а подача воздуха в сеть, пропорциональная длине изобары 2—3, будет равна нулю.

      Поршневые компрессоры подают воздух неравномерно, поэтому для уменьшения пульсации давления устанавливается ресивер, представляющий собой резервуар, снабженный предохранительными клапанами. Компрессоры имеют промежуточные воздухоохладители рекуперативного типа, масловлагоотделители, фильтры и ряд других элементов, входящих в системы смазки, автоматики.

      Наиболее экономичным способом регулирования производительности компрессоров является изменение числа оборотов. Однако для поршневых компрессоров такое регулирование не получило широкого распространения, так как электропривод на переменном токе, который часто применяется в этих условиях, не позволяет с помощью простых средств плавно изменять число оборотов. Регулирование производительности поршневых компрессоров может осуществляться дросселированием при всасывании, временным переводом компрессора в режим холостого хода, а также изменением объема вредного пространства.

      Центробежные и осевые турбокомпрессоры имеют ряд преимуществ по сравнению с поршневыми установками. Они работают при высоких числах оборотов и, следовательно, более компактны, не имеют изнашивающихся частей, воздух не загрязняется парами масла, что делает их взрывобезопасными; их удобно соединять с турбиной или электродвигателем. Однако в турбокомпрессорах трудно получить высокое давление, особенно при низкой производительности. Для уменьшения производительности нужно снижать число оборотов, что значительно уменьшает величину конечного давления. Наиболее низкие степени сжатия получаются в осевых компрессорах (примерно 1,15—1,35), поэтому их целесообразно применять для подачи больших количеств воздуха при давлении до 0,4 МПа.

       На рис. 3. показана ступень центробежного турбокомпрессора. Здесь 1- рабочее колесо, 2-лопатки, 3- диффузорные каналы. Компрессор состоит из 3—6 и более таких ступеней. Промежуточные охладители, уменьшающие работу сжатия, располагаются между отдельными группами ступеней.

     На рис. 4. приведена схема осевого компрессора. Рабочие лопатки 1 крепятся на роторе 2 барабанного типа. Неподвижные направляющие лопатки 3 служат для изменения направления потока воздуха. В направляющих аппаратах происходит частичное или полное превращение кинетической энергии потока в потенциальную энергию давления (в реактивных компрессорах этот процесс частично осуществляется в каналах рабочих лопаток). К. п. д. осевых компрессоров достигает 90—93%, тогда как у центробежных он составляет 83— 85%.

Однако при уменьшении производительности к. п. д. компрессоров быстро падает. Кроме того, вследствие большой крутизны характеристики осевых компрессоров зона устойчивой работы лежит в пределах 70—100% от номинальной производительности, поэтому их целесообразно применять при постоянном режиме работы, близком к оптимальному. Осевые нагнетатели нашли широкое применение в газотурбинных установках, авиационных реактивных двигателях, в доменном производстве.

     В металлургии привод мощных турбокомпрессоров производится с помощью паровых турбин, что позволяет регулировать режимы их работы, изменяя число оборотов. Менее экономичными способами регулирования являются применение поворотных направляющих лопаток и дросселирование воздуха при всасывании. Для создания условий устойчивой работы турбокомпрессоры имеют противопомпажную защиту, которая при снижении расхода воздуха поддерживает производительность в допустимых пределах, сбрасывая часть сжатого воздуха в атмосферу. Исп. литература: 1) Теплотехника, под редакцией А.П.Баскакова, Москва, Энергоиздат, 1982. 2) Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,»Вышейшая школа», 1976.


Руководство по покупке: типы компрессоров | Мастерская Компрессора

Правильный воздушный компрессор для вас

Существует так много типов и моделей воздушных компрессоров, что легко запутаться. И помимо множества моделей и размеров, есть дополнительные опции, такие как сушилки и фильтры.

Не волнуйтесь. Как только вы знаете, что искать, : покупка подходящего воздушного компрессора — это довольно простой и понятный процесс .

Чтобы принять правильное решение, мы должны знать:

  1. Лучший воздушный компрессор типа для нашего применения.
  2. Требуемое давление .
  3. Требуемая мощность (расход) воздушного компрессора.
  4. Дополнения и опции ..

Здесь в основном представляют интерес два типа воздушных компрессоров: винтовой воздушный компрессор и поршневой воздушный компрессор с возвратно-поступательным движением. очень важно выбрать правильный тип для вашей ситуации. Я дам вам несколько основных практических правил, чтобы вы могли быть уверены, что купите правильный тип.

Затем есть давление и мощность компрессора. Все дело в размере и мощности.

Слишком маленький воздушный компрессор не справится со своей задачей, но слишком большой компрессор может быть еще хуже (подумайте о потраченных впустую деньгах на слишком дорогом компрессоре, более высоких затратах на техническое обслуживание, более высоких затратах на энергию).

Наконец, нам нужно решить, нужны ли нам дополнительные принадлежности, такие как осушители сжатого воздуха, фильтры и тому подобное.

Я расскажу об этих моментах один за другим.

Но сначала давайте поговорим об основах: давлении воздуха и мощности компрессора.

Какой тип воздушного компрессора мне нужен?

Два самых популярных типа воздушных компрессоров:

  • Поршневой воздушный компрессор
  • Винтовой воздушный компрессор

Другие типы включают спиральные, турбо, пластинчато-роторные компрессоры, но они в основном используются для конкретных применений. На данный момент вы можете забыть о них, давайте сосредоточимся на двух основных типах воздушных компрессоров: поршневом компрессоре и роторно-винтовом компрессоре.

Компрессор поршневой

Поршневой компрессор сжимает воздух с помощью одного или нескольких цилиндров / поршней. Поршни перемещаются вверх и вниз (= совершают возвратно-поступательное движение) внутри цилиндров для сжатия воздуха. Для подробного объяснения посетите мою страницу поршневого воздушного компрессора.

Поршневые компрессоры:

  • Может быть от низкого до очень высокого давления (7 — 1000 бар или 100 — 15000 фунтов на кв. Дюйм)
  • Малоемкость
  • Предназначены для периодического использования

Поршневые компрессоры — это относительно небольшие компрессоры.Они развиваются примерно до 10 л.с. (или 7 кВт). Их часто можно найти или использовать для:

  • Мастерские
  • Гаражи
  • Сделай сам / в домашних условиях
  • Малые предприятия
  • Строительные работы (гвоздезабиватели и др.)

Я расскажу о различиях и преимуществах одноступенчатых и двухступенчатых и дуплексных воздушных компрессоров в руководстве по покупке поршневого воздушного компрессора).

Компрессор винтовой

Винтовой компрессор сжимает воздух двумя винтами (роторами), которые вращаются в противоположном направлении внутри корпуса. Воздух попадает между роторами и сжимается. Для подробного объяснения посетите мою страницу роторного винтового компрессора.

Винтовые компрессоры:

  • Низкое давление (7-15 бар или 100-215 фунтов на кв. Дюйм)
  • Высокая вместимость
  • Предназначены для непрерывного использования (24 часа в сутки)

Винтовые компрессоры — большие промышленные машины. Они начинаются с мощности примерно от 10 л.с. (7 кВт) и достигают более 1000 л.с. (700 кВт). Самая большая машина, над которой я работал, — это воздушный компрессор мощностью 2000 л.с. (1500 кВт)!

Как узнать, какой тип воздушного компрессора вам подходит

Купите поршневой компрессор , когда вам нужно небольшое количество воздуха и вы не используете сжатый воздух постоянно (например, в мастерской для пневматических инструментов).Если у вас ДЕЙСТВИТЕЛЬНО есть большие инструменты, которым требуется много воздуха (но вы используете их только время от времени), лучше установить больший ресивер сжатого воздуха, чем покупать поршневой компрессор большего размера или даже винтовой компрессор.

Если ваш компрессор простаивает более 60% времени, часто лучше приобрести поршневой компрессор. Поршневые компрессоры не боятся стоять на месте (даже предпочитают не работать все время). Но имейте в виду, что когда вы ДЕЙСТВИТЕЛЬНО используете воздушный компрессор, мощность поршневого компрессора достаточно велика.

Если вам нужно высокое давление (выше 1500 фунтов на кв. Дюйм), поршневой компрессор — единственный выход. Винтовые компрессоры работают с максимальным давлением около 150 фунтов на кв. Дюйм (10 бар).

Купите винтовой компрессор , если вам нужен воздух постоянно. Если у вас есть большая мастерская, где все время используется сжатый воздух, или если у вас есть завод с одной или несколькими машинами, использующими сжатый воздух.

Винтовые компрессоры не любят стоять на месте; это делает их ржавыми и старыми.

Поршневые и винтовые компрессоры

Поршневой Винтовой поворотный
Давление [psi] до 15000 фунтов на кв. Дюйм (1000 бар) До 15 бар (215 фунтов на кв. Дюйм)
Объем [куб. Фут / мин] от 1 до 70 куб. Футов в минуту от 20 до 500 куб. Футов в минуту и ​​выше
Использование Мастерская, подрядная работа, на дому, поделки Крупные цеха промышленного назначения
Примечания Для периодического использования.Не против стоять на месте Для постоянного использования. Лучше всего, когда он работает 24 часа в сутки, 7 дней в неделю.

Покупка воздушного компрессора

К настоящему времени у вас должно быть довольно хорошее представление о:

  • Какой тип воздушного компрессора подходит вам
  • Необходимое давление
  • Емкость, которая вам нужна.

Теперь пора найти для вас идеальный воздушный компрессор!

Я создал для вас два руководства по покупке: руководство по покупке поршневого воздушного компрессора и руководство по покупке винтового воздушного компрессора.


Самый простой способ найти идеальный поршневой воздушный компрессор!

Щелкните здесь, чтобы ознакомиться с моим руководством по взаимным покупкам. Показывает:

  • Разница между одноступенчатыми, двухступенчатыми и дуплексными воздушными компрессорами.
  • Будет ли приобретен агрегат с ременным или прямым приводом.
  • Что такое рабочий цикл и почему это важно.
  • Плюсы и минусы различных марок и моделей, имеющихся на рынке.

Кроме того, я создал обзор , отсортированный по давлению и мощности, для всех производителей поршневых воздушных компрессоров мэра .

Перейти к руководству по покупке поршневого компрессора


Самый простой способ найти идеальный винтовой компрессор!

Щелкните здесь, чтобы ознакомиться с моим руководством по покупке винтового компрессора. Показывает:

  • Как сэкономить огромное количество энергии в долгосрочной перспективе (большое дело!)
  • Необходимые вам опции (частотно-регулируемый привод, осушители воздуха, наполнители, конденсатоотводчики и т. Д.).
  • Плюсы и минусы различных марок и моделей, имеющихся на рынке.

Кроме того, я создал обзор , отсортированный по давлению и мощности, всех производителей винтовых воздушных компрессоров мэра .

Перейти к моему руководству по покупке винтового компрессора

Так много типов воздушных компрессоров. Какая разница?

Какие существуют различные типы воздушных компрессоров?

Существует два основных принципа сжатия воздуха или газа: сжатие с принудительным вытеснением и динамическое сжатие.

К компрессорам прямого вытеснения относятся:

  • Компрессоры поршневые (поршневые)
  • Спиральные компрессоры (двухроторные)
  • Винтовые компрессоры (однороторные)

Динамические компрессоры, также называемые центробежными компрессорами, работают при постоянном давлении вместо потока. Вот принципы, лежащие в основе каждой из этих технологий.

Компрессоры вытеснения

Компрессоры прямого вытеснения имеют полость, через которую в машину поступает объем газа при атмосферном давлении.Затем эта камера становится меньше, уменьшая объем и в то же время увеличивая давление газа.

Например, в поршневых компрессорах поршень перемещается вверх по цилиндру, сужая пространство над ним, что означает, что давление воздуха должно увеличиваться, чтобы он мог поместиться в меньшую полость.

Поршневые компрессоры могут включать несколько ступеней сжатия для достижения желаемого давления, что делает их особенно подходящими для применений с высоким давлением.Имеются как смазываемые, так и безмасляные конструкции со специальными конструкциями и способными сжимать газы, отличные от воздуха.

В двухроторном компрессоре (винтовом или зубчатом) воздух улавливается и герметизируется (обычно с помощью масла, но иногда с помощью воды, специального тефлонового покрытия или чрезвычайно малых допусков) между профилями охватываемого и охватывающего ротора. По мере того как роторы вращаются и зацепляются, воздух проталкивается вдоль роторов в все меньшее и меньшее пространство, и, опять же, давление будет увеличиваться, позволяя заданному объему воздуха помещаться в полости в камере сжатия.

Есть несколько типов компрессоров с одним ротором — лопастные, жидкостные и спиральные. Atlas Copco предлагает спиральные компрессоры SF в качестве основного предложения в этой категории. Однако некоторые из наших вакуумных насосов также используют эту технологию… но наоборот. В спиральном компрессоре один ротор спиральной формы колеблется относительно такой же неподвижной спирали, и по мере того, как эти спирали движутся друг относительно друга, полость, удерживающая воздух между ними, становится все меньше. Это уменьшение объема заставляет фиксированный объем всасываемого воздуха увеличивать давление. Объемные компрессоры

иногда называют компрессорами с постоянным потоком, поскольку компрессор будет производить одинаковый поток при заданных оборотах двигателя, независимо от давления на выходе.

Динамические компрессоры

Это немного интереснее — подумайте о турбомоторах и реактивных двигателях! В производстве сжатого воздуха вы вряд ли найдете слишком много эжекторных или осевых компрессоров, потому что обычно они используются для полетов с двигателями.Однако радиальные динамические компрессоры определенно представляют для нас интерес, и их чаще называют центробежными или турбокомпрессорами. В динамическом компрессоре повышение давления достигается за счет ускорения газа с помощью крыльчатки, а затем замедления быстро движущегося воздуха в диффузоре и улитке для преобразования кинетической энергии в давление. Вы обычно найдете центробежные или турбокомпрессоры, используемые в химической и нефтехимической промышленности, производстве электроэнергии, промышленных газах, на заводах по производству стали или стекла и даже на заводах по производству удобрений, фактически везде, где требуются большие объемы воздуха.

Качество воздуха: безмасляные и масляные воздушные компрессоры с впрыском

Atlas Copco предлагает широкий ассортимент продукции и может удовлетворить любые потребности в сжатом воздухе. Так почему бы нам не начать с качества воздуха, основными категориями которого являются маслозаполненные / маслозаполненные технологии и безмасляные компрессорные технологии. Большинство воздушных компрессоров на рынке полагаются на масло в камере сжатия для смазки, уплотнения и охлаждения, но, конечно, это означает, что часть масла будет смешиваться с воздухом, и микроскопические капли масла пройдут через машину и остановятся. в сети — и, в конечном итоге, в процессе или продукте.

В некоторых доступных решениях для безмасляного воздуха используются компрессоры с впрыском масла и группы фильтров, но отсутствие масла на них не может быть гарантировано на 100%. Если ваш технологический процесс не допускает контакта масла с продуктом, то безмасляный компрессор — единственный способ гарантировать, что нет возможности загрязнения маслом. Проще говоря, безмасляный компрессор гарантирует, что масло или смазка не попадут в зону сжатия компрессора.Метод сжатия будет аналогичным по своей природе, но безмасляный компрессор предназначен для использования альтернативных методов уплотнения, чтобы гарантировать, что масло не может попасть в пространство сжатия. С точки зрения стоимости безмасляные компрессоры в первую очередь дороже, но их эксплуатационные расходы обычно ниже с точки зрения расходных материалов, таких как сменные фильтрующие элементы, и, конечно же, нет риска загрязнения продукта. Atlas Copco является пионером в области безмасляных компрессоров, а также первым из крупных производителей компрессоров, соответствующих классу 0 ISO 8573.1, гарантирующий безмасляный воздух.

Компрессоры с фиксированной скоростью и компрессоры с регулируемой скоростью

Мы слышали об этом, но почему технология привода с регулируемой скоростью (VSD) экономит энергию по сравнению с фиксированной скоростью? Проще говоря, разгадка кроется в названии! Компрессоры с фиксированной скоростью работают на одной фиксированной скорости и очень эффективны при работе полностью под нагрузкой 100% времени, когда двигатель работает и вырабатывается сжатый воздух.Неэффективность наступает, когда агрегат разгружается и (перестает производить воздух). Хотя в конечном итоге компрессор остановится, он некоторое время тратит на вращение двигателя и использование энергии, на самом деле ничего не производя, и, следовательно, тратит энергию впустую. VSD или, если быть точным, привод с регулируемой скоростью вращения, вращает двигатель в зависимости от необходимого количества воздуха: если потребность увеличивается, то двигатель ускоряется, если потребность уменьшается, двигатель замедляется и использует только необходимую энергию. для производства необходимого воздуха — следовательно, энергия не тратится впустую.Фактически, VSD может снизить потребление энергии до 35% или даже 50%, в зависимости от технологии VSD. Поэтому определенно стоит провести аудит использования воздуха, чтобы увидеть, можно ли снизить потребление энергии с помощью компрессора VSD.

Ознакомьтесь с более подробным сравнением технологии сжатого воздуха с фиксированной и регулируемой скоростью.

В конце концов, на рынке существует потребность в сочетании обеих технологий в зависимости от требований к воздуху для данной области применения.

Мы надеемся, что этот краткий обзор дает некоторое представление о сжатии воздуха, процессе, который часто упускается из виду, но от которого во многом зависит производство. Получите помощь в выборе компрессора.

Типы компрессоров кондиционирования воздуха | Компрессоры переменного тока

Внутри каждого кондиционера находится компрессор. Компрессор играет очень важную роль в сжатии хладагента, когда он поступает в машину, для повышения его температуры.После нагрева газ выходит из компрессора и попадает в конденсатор, чтобы можно было начать процесс охлаждения. Хотя все компрессоры переменного тока выполняют одну и ту же работу, они работают по-разному и имеют разные плюсы и минусы.

Поршневой компрессор кондиционера

Поршневой компрессор — самый популярный тип компрессора кондиционера. Поршень сжимает воздух, перемещаясь вверх и вниз внутри цилиндра. Когда поршень движется вниз, он создает эффект вакуума, который всасывает хладагент.По мере продвижения вверх газ сжимается и перемещается в конденсатор. Поршневой компрессор кондиционера очень эффективен, так как кондиционеры могут иметь до восьми цилиндров внутри компрессора.

Спиральный компрессор переменного тока

Спиральные компрессоры для кондиционирования воздуха, такие как этот компрессор LG, появились раньше на рынке. Они содержат одну неподвижную катушку, называемую свитком, в центре устройства, а затем еще одну катушку, которая вращается вокруг нее. Во время этого процесса вторая спираль подталкивает хладагент к центру и сжимает его.Спиральные компрессоры быстро становятся такими же популярными, как поршневые компрессоры, потому что у них меньше движущихся частей и, следовательно, они более надежны.

Винтовой компрессор переменного тока

Винтовой компрессор чрезвычайно надежен и эффективен, но в основном он используется в больших зданиях, где имеется большое количество воздуха, требующего постоянного охлаждения. Винтовой компрессор кондиционера содержит два больших винтовых ротора, которые перемещают воздух от одного конца к другому. По мере прохождения хладагента через компрессор пространство становится меньше, и он сжимается.

Роторный компрессор кондиционера

Ротационные компрессоры

маленькие и тихие, поэтому они популярны в местах, где шум является проблемой. Внутри компрессора кондиционера этого типа находится вал с несколькими прикрепленными к нему лопастями. Вал с лопастями вращается внутри градуированного цилиндра, следовательно, проталкивая хладагент через цилиндр и одновременно сжимая его.

Центробежный компрессор кондиционера

Последний тип компрессора кондиционера — центробежный компрессор.Как следует из названия, он использует центробежную силу для втягивания газообразного хладагента, а затем быстро вращает его с помощью крыльчатки для его сжатия. Центробежные компрессоры кондиционирования воздуха обычно предназначены для очень больших систем отопления, вентиляции и кондиционирования воздуха.

Теперь, когда вы знаете различные типы компрессоров для кондиционирования воздуха, вы можете выбрать тот, который, по вашему мнению, будет наилучшим образом соответствовать вашим потребностям с точки зрения надежности и эффективности. Чтобы узнать больше о любом из наших компрессоров переменного тока, свяжитесь с нами сейчас.

4 типа аудиокомпрессоров, о которых вам нужно знать

Узнайте о компрессорах VCA, оптических компрессорах, компрессорах на полевых транзисторах и ламповых компрессорах. Услышьте разницу с аудио примерами.

Компрессор — это устройство, которое уменьшает динамический диапазон аудиосигнала, делая менее значительным различие между громкими и тихими частями сигнала. Эта концепция достаточно проста, но сжатие, применяемое одним компрессором, не обязательно дает те же результаты, что и сжатие, применяемое другим компрессором.

Исходя из мира цифрового звука, это может показаться немного странным. Почему один компрессор звучит иначе, чем другой? Разве все они не делают одно и то же?

Что ж, аппаратные компрессоры разбиты на различные топологии (типы), которые используют уникальные внутренние конструкции. Основываясь на топологии, к которой принадлежит компрессор, вы можете сделать несколько предположений о характере, который он придает сжатому сигналу.

Например, один тип компрессора может обеспечивать «четкие» и «прозрачные» результаты, в то время как другой может применять сжатие таким образом, чтобы получить «толстый» и «сливочный» обработанный сигнал.

Компании-разработчики плагинов часто создают эмуляции плагинов аппаратного компрессора, которые предоставляют вам звук известных аппаратных компрессоров в вашей DAW. Даже если у вас нет аппаратного компрессора, у вас может быть одна или несколько эмуляций плагинов аппаратного компрессора.

Знакомство со звуком компрессии, типичным для различных топологий компрессоров, позволит вам принимать более обоснованные решения при выборе компрессора при микшировании и мастеринге вашей музыки.

Четыре типа компрессоров, с которыми вам следует ознакомиться, включают компрессоры VCA, оптические компрессоры, компрессоры на полевых транзисторах и ламповые компрессоры. В статье Ника Месситта «4 типа аналогового сжатия — и почему они важны в цифровом мире» он углубляется в элементы дизайна, уникальные для этих различных типов компрессоров.

Статья Месситта носит несколько технический характер, поэтому я обобщил и упростил для вас основные выводы. Я хочу, чтобы вы могли решить, когда имеет смысл использовать компрессор из одной топологии по сравнению с другой.Кроме того, мы рассмотрим несколько популярных аппаратных компрессоров и компании, которые лучше всего имитируют.

1. Компрессоры VCA

Компрессоры VCA или компрессоры с усилителями, управляемыми напряжением, используют управляющий сигнал для определения того, применяется ли к аудиосигналу уменьшение усиления. Это одни из наиболее распространенных типов компрессоров, которые часто включают в себя все элементы управления, которые вы привыкли видеть на плагинах компрессоров, такие как атака, релиз, порог, соотношение, а иногда и колено.

Рисунок 1: Компрессор VCA со стереошиной G Comp 500 от Solid State Logic .

Как правило, компрессоры VCA обеспечивают очень точный уровень управления и предсказуемое и чистое звучание. Компрессоры VCA не только являются популярным выбором для вокала, но и часто используются для мастеринга из-за прозрачности, которую они, как правило, обеспечивают.

API 2500+ Stereo Bus Compressor — это популярный компрессор VCA, который включает уникальную функцию «THRUST», которая помещает фильтр перед его детектором RMS.Этот фильтр наполняет каждую октаву одинаковой энергией вместо половины энергии следующей самой низкой. В результате получается «резкий» звук, в котором отсутствуют нежелательные эффекты «накачки», которые часто обеспечивают другие компрессоры.

Еще одна уникальная функция, которую вы найдете в API 2500+, — это возможность переключения между двумя типами режимов сжатия, включая старый и новый. При переключении в старый режим API 2500+ использует тип сжатия с обратной связью, при котором детектор размещается после VCA.При включенном режиме New компрессор использует компрессию с прямой связью, помещая детектор перед VCA, что приводит к более быстрой реакции на переходные процессы.

Возможно, одним из самых популярных компрессоров VCA, используемых для создания «резкого», «резкого» и «огромного» звука миксов, является Solid State Logic (SSL) G Comp. Этот компрессор разработан по образцу легендарного модуля центральной секции из аналоговой консоли SSL G-Series 1980-х годов. Вы, несомненно, слышали, как оригинальное устройство использовалось на стереошине бесчисленных хитов.

2. Оптические компрессоры

Оптические компрессоры, или опто-компрессоры, полагаются на светозависимый резистор и источник света, определяющие способ применения сжатия. Входной сигнал оптического компрессора освещает источник света — чем мощнее входной сигнал, тем ярче будет светить свет. Когда источник света загорается, резистор заставляет компрессор применять сжатие, а когда источник света тускнеет, степень сжатия уменьшается.

Об оптических компрессорах следует помнить, что материалы, используемые в их конструкции, сильно влияют на их поведение. Один тип источника света может светиться быстрее, чем другой, в то время как что-то столь же простое, как материал, из которого сделан резистор, также может изменить способ применения сжатия.

Как заявляет Мессит, «… чем сильнее вы воздействуете на оптический компрессор, тем быстрее может быть его начальное время восстановления, но наклон к нормальному несжатому звуку не будет падать линейно.Он будет «изгибаться». Так что, если схема дает снижение усиления на 10 дБ, первые пять децибел могут высвободиться гораздо быстрее, чем следующие пять ».

В результате оптические компрессоры, как правило, звучат довольно музыкально и «плавно». Для управления резкими переходными процессами оптический компрессор, вероятно, не лучший выбор для большинства звукорежиссеров. Впрочем, оптические компрессоры неплохо дополняют баллады и фолк-вокал.

Universal Audio Teletronix LA-2A — широко известный электрооптический компрессор / лимитер с ламповой схемой, которая применяет снижение усиления с нулевым увеличением гармонических искажений. Когда вы посмотрите на LA-2A, вы заметите, что основные элементы управления состоят только из ручки Gain, ручки Peak Reduction и переключателя Compress (соотношение 3: 1) / Limit (соотношение 100: 1). Нет никаких элементов управления атакой, высвобождением или порогом.

Рисунок 2: Электрооптический компрессор Teletronix LA-2A компании Universal Audio .

Способ, которым LA-2A применяет сжатие, сильно зависит от программы. Когда сильные сигналы проходят через компрессор, вы можете ожидать длительного времени восстановления, а когда слабые сигналы проходят через компрессор, вы можете ожидать короткого времени восстановления.Невозможность расчета LA-2A — это именно то, что делает его желанным.

Если вы не хотите тратить более 4000 долларов на LA-2A, Warm Audio и Klark Teknik разработали свой собственный компрессор на основе этого культового устройства за небольшую часть стоимости. Чтобы получить доступный практический опыт, стоит подумать об этих эмуляциях.

Еще один популярный оптический компрессор находится в полосе канала Avalon VT-737sp Tube Channel Strip. Этот компрессор часто используется для сжатия вокала в стиле поп, хип-хоп и R&B.Его использовали Jay-Z, Dr. Dre, Babyface, Beyonce, Eric Clapton и даже The Rolling Stones.

VT-737sp обычно называют «глянцевым», и, поскольку это наиболее часто используемый вокальный компрессор в моем арсенале микширования, я могу это подтвердить. Когда я соединяю свой Shure SM7B с этой полосой каналов, мне нужно выполнить очень небольшую обработку, чтобы получить этот безупречный звук «радио-качества».

3. Компрессоры на полевых транзисторах

Компрессоры на полевых транзисторах или компрессоры на полевых транзисторах используют транзисторные схемы.Они быстро реагируют на проходящий через них сигнал, к тому же они довольно резкие, красочные и яркие.

По словам Месситте, в Интернете ведутся споры о различиях между компрессорами VCA и компрессорами на полевых транзисторах. Однако он утверждает, что «В компрессоре VCA транзистор размещен внутри интегральной схемы (ИС), которая реагирует на напряжение вашего входящего сигнала. Однако полевой транзистор работает с электрическим полем в целом, и изменения коэффициента усиления являются результатом электрических зарядов в дополнение к напряжению .”

На практике компрессоры на полевых транзисторах обладают чрезвычайно коротким временем атаки, но они имеют тенденцию вносить цвет и искажения в сигнал, к которому вы их применяете, особенно во время работы. Для мастеринга это обычно не то, что вам нужно, но компрессоры FET, как правило, подходят для широкого спектра агрессивного рока и рэп-вокала.

Возможно, самым популярным компрессором на полевых транзисторах всех времен является ограничивающий усилитель 1176, который был впервые представлен на рынке в конце 1960-х годов. Этот компрессор имеет молниеносное время атаки и восстановления и обеспечивает яркий, настоящий и энергичный звук.

Одной из характерных особенностей 1176 является то, что когда вы одновременно нажимаете все четыре кнопки регулировки соотношения сторон, результат получается агрессивным и музыкальным. Перевод 1176 в это состояние обычно называют «полностью кнопочным режимом» или «британским режимом».

За прошедшие годы было выпущено более 13 ревизий и вариаций 1176 — каждая ревизия по-своему уникальна.Если вы хотите узнать больше о различиях, эта статья Universal Audio содержит исчерпывающий обзор каждой версии. Переиздание Universal Audio 1176LN — это то, что вы, скорее всего, найдете сейчас в магазинах, но вы можете выследить предыдущие версии 1176, выполнив поиск на таких сайтах, как Vintage King.

4. Трубные компрессоры

Наконец, есть трубчатые компрессоры. Неудивительно, что компрессоры этого типа полагаются на лампы, чтобы приручить динамику.Некоторые компрессоры используют лампы для окрашивания проходящего через них сигнала, но ламповые компрессоры специально используют лампы во время процесса уменьшения усиления. Ламповые компрессоры также имеют тенденцию обеспечивать медленную реакцию на переходные процессы по сравнению с другими типами компрессоров.

Fairchild 670 (стерео) и Fairchild 660 (моно) — два самых востребованных компрессора в мире, в которых используется 20 ламп и стоит более 50 000 долларов! Они доставляют невероятное шелковистое тепло и будут чувствовать себя как дома на вокале, гитарах, барабанах или в вашем микс-автобусе.

Флагманский компрессор Variable Mu Stereo Compressor Limiter от Manley Lab — это незаменимый компрессор шины микширования для многих инженеров. Он обеспечивает исключительную прозрачность, плавное снижение усиления и теплое гармоническое содержание без заметных артефактов сжатия.

Выбор первого аппаратного компрессора

Если вы ищете невероятно универсальный аппаратный компрессор, я лично рекомендую EL8 Distressor от Empirical Lab. Он может обеспечить скорость VCA, индивидуальность полевого транзистора, теплоту оптики или окраску лампового компрессора — в зависимости от используемых вами настроек.Мастер на все руки, Distressor — это первый аппаратный компрессор, который многие аудиоинженеры включают в свои студии.

EL8 Distressor — это компрессор с цифровым управлением, в котором используется 100% аналоговая схема, что обеспечивает существенный теплый винтажный аромат. Когда вы включаете компрессор в режиме Dist 2, вы применяете к сигналу ламповые искажения 2-й гармоники, в то время как в режиме Dist 3 применяется 3-е гармоническое искажение — аналогично ленточному искажению.

Вы также можете соединить два источника бедствия вместе для обработки стереосигналов.Поскольку формирование этой связи просто включает в себя подключение нескольких кабелей, вы можете начать с одного дистрессора, а затем интегрировать дополнительный дистрессор позже, если позволяет бюджет.

Присоединяйтесь к группе Black Ghost Audio на Facebook, чтобы общаться с музыкантами и продюсерами, которые хотят работать в сети, и оплачивать ваши услуги фрилансера. Оставьте комментарий ниже, если у вас есть какие-либо вопросы по этой статье. Мы всегда будем благодарны за ваши отзывы!

4 типа аналогового сжатия — и почему они важны в цифровом мире

Да еще статья о сжатии! Но этот немного другой.Это скорее урок истории с некоторыми полезными выводами, которые помогут вам в вашей современной практике микширования.

Если вы управляли компрессорами только в форматах плагинов, то можно было бы простить, если бы вы думали, что их работа — дело простой математики — связки двоичных файлов, действующих в компьютерном согласовании. Многие современные графические интерфейсы, часто отображающие сигнал, когда он достигает порогового значения, в виде легко читаемого графика, помогают укрепить это восприятие.

А как насчет тех причудливых компрессоров , с которыми мы иногда сталкиваемся? Эти эмуляции 1176, LA2A, Fairchilds, DBX 160 и тому подобное? А как насчет винтажного компрессора iZotope, который, кажется, ведет себя иначе?

Вы, несомненно, заметили, что эти компрессоры fancy реагируют по-разному; черт возьми, у некоторых из них даже нет элементов управления атакой и отпусканием, как в самых ранних компрессорах. Некоторые из них даже технически не являются компрессорами; они лимитеры или даже усилители уровня !

Как насчет штатного плагина компрессора в DAW, например Logic Pro? Имитирует всевозможные компрессоры! FET? VCA? Опто?

Что все это значит?!?

Если вы новичок в игре, вы, вероятно, наткнулись на такие компрессоры, поигрались с некоторыми ручками и надеялись на лучшее. Я знаю, что определенно знал, поэтому я стремился узнать об их различиях.

Я считаю, что важно понимать эти различия даже здесь, в нашем цифровом мире, поскольку их понимание помогает нам делать более быстрый, эффективный и, в конечном итоге, лучший выбор.

Итак, мы поговорим о компрессорах. В частности, четыре вида аналоговых компрессоров . У нас может не быть места, пропускной способности или, откровенно говоря, объема внимания, чтобы вдаваться в подробности схемотехники, но мы собираемся оставить вас с тем, что, по мнению автора, является существенным выводом; Поступая таким образом, мы стремимся превратить этот урок истории в простую цель: сделать ваше следующее решение о сжатии более осознанным.

VCA сжатие

Это, возможно, наиболее часто используемый фенотип компрессора в материальной вселенной. Он имеет тенденцию поддерживать все элементы управления, которые вы привыкли видеть (атака, выпуск, порог, соотношение, а иногда и колено). VCA означает «усилитель с регулируемым напряжением», тип механизма, который можно найти во многих музыкальных приложениях. Вот один: если вы видели группы VCA в Pro Tools и Logic, они получили свое название от той же технологической концепции, которая используется в компрессорах VCA.А именно, управляющий сигнал определяет, понижен ли уровень.

В случае фейдера VCA на аналоговой консоли управляющий сигнал (которым вы перемещаете фейдер VCA) «сообщает» всем дорожкам в группе об уменьшении уровня на равную величину. Однако в VCA-компрессоре сигнал разделяется через микросхему IC (другое полупроводниковое устройство) на детекторный тракт (который контролирует эффект сжатия) и выходной тракт (который вы слышите).

Этим каналом управления можно управлять с помощью множества параметров, которые заставляют эти процессоры работать точно: атака, восстановление, порог, соотношение и изгиб часто настраиваются как тройник, что делает процесс более детализированным, чем другие компрессоры, как общее правило (всегда есть исключения).Результат может быть нелинейным — во многих случаях логарифмическим — но он все же предсказуем и надежен, чего не всегда можно добиться от других компрессоров.

Компрессоры

VCA можно найти на планках каналов SSL, компрессорах API и оборудовании от Rupert Neve Designs. Многие инженеры любят их за предсказуемость и повторяемость. Вы довольно часто видите их в мастер-автобусе, на группах инструментов, на гитарах, басах, барабанах и даже на вокале.

А вот где это может немного сбить с толку: технически можно сказать, что в большинстве компрессоров где-то в своей конструкции используются усилители управления напряжением.Тем не менее, обозначение VCA-компрессоров по-прежнему имеет особое значение в мире профессионального аудио, потому что в этих компрессорах усилитель, управляемый напряжением, размещен в интегральной схеме. Эта интегральная схема (или IC, как ее обычно называют) помогает с настраиваемыми аспектами компрессора, упомянутыми выше, а также с минимизацией нежелательных искажений.

Установка для записи с двухканальным ламповым VCA-компрессором

Оптическое сжатие

Этот, наверное, просто мой любимый — не обязательно для использования, а для описания.Почему? Потому что это зависит от света, а точнее, от светозависимых резисторов!

Но подождите, а что такое резистор? Чтобы правильно разобраться в этом, необходимо поговорить о природе электричества. Это привело бы к бурной дискуссии, которая утомила бы нас обоих, так что давайте пропустим науку и сразу перейдем к метафоре, обычно используемой для описания сопротивления, — воды, протекающей по трубе.

Только представьте себе: вода течет по трубе, и труба несет воду туда, куда ей нужно.

Пока все хорошо, правда?

Но что, если мы наденем на эту трубу колпачок с несколькими маленькими отверстиями? Да, вода может просачиваться только через отверстия, но сопротивление воды на другом конце этой трубы — ее давление — возрастает по мере того, как она накапливается. Таким образом, когда в научно-популярной статье о резисторах говорится, что «если вы убавляете громкость, вы фактически увеличиваете до сопротивления», эта метафора помогает нам понять, почему это так. Теперь мы начинаем видеть функцию резисторов в цепи компрессора — они помогают подавить сигнал, который нам нужно приручить.

Но как это влияет на звуковые характеристики оптических схем?

В оптическом компрессоре резисторы зависят от света: аудиосигнал питает световой элемент (например, светодиод), который попадает на светочувствительный резистор. Сопротивление этого светочувствительного элемента сообщает схеме сжатия, насколько и как быстро нужно ослабить звуковой сигнал.

Проблема в том, что это взаимодействие между источником света и резистором, хотя и происходит быстро, но не мгновенно.Кроме того, разные типы источников света излучают с разной скоростью, и резистор может реагировать по-разному в зависимости от материала, из которого он сделан. По этой причине звуковые характеристики оптического компрессора сильно зависят от типов материалов, используемых в его конструкции.

Но у них есть общее, независимо от производителя: атака и освобождение оптической схемы (по крайней мере, большую часть времени) определенно , а не линейная, часто с небольшой задержкой перед тем, как атака начнется, и дополнительные задержка по мере того, как релиз отпадает.

Например, чем сильнее вы ударяете по оптическому компрессору, тем быстрее может быть его начальное время восстановления, но наклон к нормальному несжатому звуку не будет падать линейно. Он будет «изгибаться». Таким образом, если схема дает вам 10 дБ снижения усиления, первые пять децибел могут высвободиться намного быстрее, чем следующие пять.

Этот элемент поведения — это то, на что вы можете повесить свою шляпу, когда дело доходит до большинства эмуляций подключаемых модулей: конкретное время, безусловно, будет меняться в зависимости от эмуляции, но атака и выпуск будут действовать таким образом, что а) часто медленнее, чем многие другие компрессоры, и б) более извилистые при запуске и остановке.

Поведение этих постоянных времени может привести к довольно музыкальному и часто плавному сжатию. В общем, вокал, ведущие линии и другие элементы, которые нуждаются в нематериальном «закруглении» (не столько в жестком сквоше, сколько в общем выравнивании или четкой поддержке), могут выиграть от оптических конструкций и оптических эмуляций. Он не так удобен для формирования переходных процессов, хотя, конечно, из этого правила есть исключения, учитывая большое разнообразие типов доступных источников света и резисторов.

Для меня оптическое сжатие — это поэтично, так как оно предполагает соединение света и звука. Это проясняет их волнообразные общие черты, раскрывая суть того, как они могут влиять друг на друга.

Попробуйте Music Production Suite Pro бесплатно и изучите компрессоры iZotope в Ozone Pro и Neutron Pro. Получите доступ к более чем 30 подключаемым модулям отраслевого стандарта, производственным курсам, пользовательским предустановкам и бесплатным пакетам образцов.

Сжатие полевого транзистора

Если вы когда-либо нажимали все кнопки на 1176 (мод или оборудование), то вы, мой друг, испытали славу сжатия FET.FET расшифровывается как «полевой транзистор», что вызывает вопрос… что такое транзистор?

Я просто скажу следующее: транзистор — это полупроводник, который может как усиливать, так и ослаблять сигнал в соответствии с настройками, которые вы набираете (слово «транзистор» технически означает «передатчик» и «резистор»).

Многие люди задаются вопросом о разнице между сжатием FET и VCA. Действительно, во всей сети существует путаница относительно различия, причем некоторые говорят, что FET — это классификация подмножества VCA.

Однако в транзисторах есть фундаментальное различие: в компрессоре VCA транзистор размещен внутри интегральной схемы (ИС), которая реагирует на напряжение вашего входящего сигнала. Однако полевой транзистор работает с электрическим полем в целом, и изменения коэффициента усиления являются результатом электрических зарядов в дополнение к напряжению .

Безусловно, это сложная и запутанная вещь. Но знайте это: обозначение между FET и VCA имеет значение, потому что одним из самых известных и широко используемых компрессоров всех времен является компрессор на полевых транзисторах — ранее упомянутый UREI 1176.Компрессоры на полевых транзисторах, такие как 1176, обладают чрезвычайно коротким временем атаки, хотя и не без цвета. Я стараюсь избегать эмуляций полевых транзисторов при мастеринге, но накладываю их на гитары и барабаны.

Они часто имеют конструкцию обратной связи, которая способствует программно-зависимому характеру достигнутой компрессии (например, вы когда-нибудь видели ручку порога на 1176? Потому что я не видел). Мы поговорим о проектах с обратной связью / прямой связью немного позже, после того, как рассмотрим…

Обратная связь и прямая связь

Некоторые компрессоры VCA, такие как API 2500 и процессор Master Buss от Rupert Neve Designs, имеют переключаемую схему обратной связи / прямой связи, что подводит нас к другому обсуждению, а именно, что, черт возьми, означает обратная связь или прямая связь даже с ?

Признаюсь, мне потребовалось много разглядывать схемы, чтобы самому понять это, так что не волнуйтесь, если вас смущает следующее:

Видите ли, аналоговые компрессоры разделяют сигнал на две части, как обсуждалось выше — схему детектора и окончательный аудиотракт. На компрессоре с прямой связью детектор получает тот же сигнал, который в конечном итоге будет срабатывать. Довольно прямолинейно. (Эй, это каламбур …)

Не так с компрессором с обратной связью — его цепь питается сигналом, который уже прошел через работу компрессора ; по сути, он считывает уже сжатый сигнал. Это дает, возможно, более «плавное» сжатие, но все же управляемое.

Меня поразил эффект машины времени; как сигнал может сжаться с уже сжатым сигналом из будущего? Если подчиняться законам физики, не приведет ли такое сжатие к более медленному времени атаки, по крайней мере, с сильно слышимым сжатием? И все же 1176 — это компрессор обратной связи, способный быстро и быстро атаковать.

Оказывается, это не проблема — ваша музыка в электрическом мире мгновенно разделяется между трактом детектора и звуковым выходным трактом.

Компрессия «Дельта-Мю»

Торговая марка Manley как «Vari-Mu» и обнаруженная в почтенном Fairchild, компрессоры «delta-mu» основаны на трубках. Действительно, повторно смещенная лампа становится механизмом, с помощью которого компрессор знает, когда — и на сколько — уменьшить усиление.

Термин Дельта-Му ни в коем случае не универсальный, но мне он нравится, потому что он включает в себя греческие буквы, которые мы используем для «изменения» и «выгоды» (т.е., уменьшение усиления), а также греческий — причудливый.

Как работает эта схема? Давайте пропустим пьянящую науку и остановимся на том, что я считаю наиболее важным предложением: по мере того, как сигнал, питающий эти компрессоры, увеличивается, фактический ток, подаваемый на решетку их лампы, уменьшается, что приводит к снижению общего уровня. Другими словами, трубка — это главный двигатель, приводящий в действие уменьшение усиления; другие компрессоры — я смотрю на вас, оптический LA2A — могут иметь в своей конструкции лампы, но это для цвета; они не полагаются на саму лампу, чтобы укротить динамику.

Конечно, это сильное упрощение, и здесь играет роль множество других факторов. Для вас важен вариант использования — звук. Слова, описывающие этот вид сжатия, часто включают «гладкий», «густой» и «кремовый»; это связано, по моей оценке, с двумя факторами: качеством ламповой схемы (то есть приятным искажением ламп), а также программным затуханием, достигаемым этим видом сжатия (они очень реагируют на подачу материала). их).Такие компрессоры, как известно, справляются со значительным снижением усиления до того, как нарастут нежелательные артефакты.

Эти компрессоры особенно подходят для «липких» шин микширования, поскольку переходные процессы обычно обрабатываются музыкально, а не железным кулаком; тогда как компрессоры VCA и FET могут помочь вам исправить ситуацию, но они больше похожи на легкое похлопывание по спине.

С другой стороны, интересно отметить следующее: каждый компрессор, за исключением VCA, имеет тенденцию иметь своего дочернего элемента; на этих дочерних плакатах один или несколько элементов управления, как правило, заметно отсутствуют, но элемент управления меняется в зависимости от модели. LA2As, LA3As и многие из их клонов не могут похвастаться константами атаки / восстановления, и они являются оптосами. 1176 не дает вам порогового параметра, это полевой транзистор. Ни у Fairchild, ни у Vair-Mu нет регуляторов соотношения, и это дельта-му. Компрессоры VCA здесь выделяются, и они часто могут похвастаться всеми элементами управления.

Конечно, есть исключения — например, вы увидите опто-компрессоры с параметрами атаки / выпуска как в аппаратном, так и в программном мире. Но если вы видите компрессор в своей DAW, с которым вы не знакомы, и случайно замечаете, что он выглядит как одна из тех знаковых частей, упомянутых выше, есть хороший шанс, что вы можете использовать то, что отсутствует в контрольном наборе, как сокращение, чтобы сказать вам с чем вы работаете.

Заключение

Мой коллега недавно спросил меня, почему я пишу эту статью. Он сказал, что все, что действительно имеет значение, — это звук, а не технология. И в какой-то степени он может быть прав:

Вам не нужно знать, как работают фотоэлементы или какой световой элемент является обычным в современных оптических конструкциях, чтобы понять типичные характеристики срабатывания оптической модели и почему они подходят для определенных ситуаций. Точно так же вам не нужно знать, как компрессор с переменной mu использует саму лампу; вам просто нужно иметь в виду, насколько сильно может быть музыкальный компрессор этого типа.

Тем не менее, я считаю, что важно знать эти различия и понимать на базовом уровне, что они собой представляют. Почему? Потому что принципы, лежащие в основе этих типов сжатия, везде. Они не только повсюду в мире программного обеспечения — они повсюду являются хитами.

Многие инженеры определяют звук своего вокала с помощью комбинации полевого транзистора и оптической компрессии или которым требуется агрессивный VCA-компрессор на барабанной шине как для удара, так и для клея. У этих звуков есть отличительные черты, и нам, инженерам, платят за эти звуки. Понимание этих звуков позволяет нам быстрее достичь их, особенно в незнакомой обстановке, что часто может быть частью работы.

В инженерии главное — это эффективность, как и все остальное. Если у вас есть вокал, который вам нужен прямо перед вашим лицом, вы можете поиграть с компрессорами, сколько душе угодно. Или вы можете знать, что эмуляция компрессора FET может поставить вокал именно там, где он должен быть, и доставить вас туда намного быстрее. Выбор за вами — и теперь, когда вы прочитали эту статью, вы можете сделать этот выбор, имея в своем распоряжении несколько примерно набросков фактов.Что будет теперь, конечно, решать вам.

Различные типы холодильных компрессоров

Хотя каждый компонент системы охлаждения вносит важный вклад, именно компрессор сжимает газообразный хладагент и обеспечивает необходимую механическую энергию. Все остальные части полагаются на это.

Неудивительно, что компрессор стал предметом огромной изобретательности. С момента появления кондиционеров Carrier в 1915 году компрессоры прошли множество этапов развития.

За плечами почти столетия работы, неудивительно, что существует множество типов охлаждающих компрессоров, подходящих для различных применений. На коммерческом рынке широко используются три различных типа:

Кроме того, можно выбрать одну из трех архитектур компрессорной системы. Решение об архитектуре системы оказывает значительное влияние на то, насколько быстро и эффективно система может обслуживаться. Это также влияет на типы механических проблем, которым может быть подвержен компрессор.

Три типа компрессорных систем:

  • Открыть
  • Герметик
  • Полугерметичный

При сравнении компрессоров разных производителей вы неизбежно столкнетесь с этими параметрами. Правильный выбор для вас будет зависеть от вашей операционной среды, нагрузки и других факторов.

Давайте внимательнее посмотрим на современные компрессоры и чем они отличаются:

1. Поршневые (поршневые) компрессоры

Поршневой компрессор, как и Carrier 06ET275360, является самым простым и наиболее распространенным компрессором с самой длинной инженерной историей.Фактически, можно сказать, что большинство других достижений было попыткой улучшить поршневой компрессор. Но это не значит, что вы должны игнорировать это!

Поршневые компрессоры

доступны во всех типах конфигураций и всех размеров. Их поиск и установка более доступны по цене, чем большинство альтернатив. Поршневой компрессор требует постоянной смазки и чувствителен к любому проникновению жидкости на входе, что может привести к быстрому разрушению клапанов.

Как следует из названия, это поршневой компрессор прямого вытеснения, в котором поршни, приводимые в движение коленчатым валом, подают газы под высоким давлением.Регулярное обслуживание должно быть сосредоточено на поршнях, коленчатом валу и двигателе, чтобы предотвратить механический износ, который со временем влияет на производительность.

2. Винтовые компрессоры

Винтовой компрессор, такой как York DXS45, имеет один или два винтовых винта, вращающихся с высокой скоростью для сжатия газообразного хладагента. Двухшнековая конфигурация состоит из согласованных друг с другом роторов, которые тесно связаны в общем корпусе. Хладагент входит и выходит из компрессора через порты, а не через клапаны.

Поскольку сопрягаемые роторы имеют такие жесткие допуски, охлаждение и смазка имеют важное значение для срока службы системы. Масло может подаваться в компрессор в определенных точках для обеспечения смазки и герметизации зазоров между ротором и ротором и между ротором и корпусом. Отсутствие смазки может привести к серьезным повреждениям.

Винтовые компрессоры

известны своей отличной производительностью и имеют диапазон мощности от 20 кВт до 1200 кВт. Они крупнее поршневых компрессоров и требуют больше места.Правильная смазка может снизить рабочий шум, но винтовые компрессоры, как правило, работают громко, и их следует размещать соответствующим образом.

3. Спиральные компрессоры Спиральные компрессоры

, как правило, являются наиболее сложными компрессорами и впервые были введены в продажу в 1980-х годах. Спиральные компрессоры используют радиальное перемещение сопрягаемых деталей для уменьшения механического напряжения и оптимизации контактного усилия, даже если в компрессор попадают мелкие твердые частицы.

Пробка жидкости может автоматически удаляться от сопрягаемых компонентов и испаряться, что дает спиральным компрессорам значительно повышенную, но далеко не неограниченную устойчивость к жидкости.Утечка из газового кармана также снижается благодаря центробежным силам по сторонам спиралей во время работы.

Значительно уменьшенное количество деталей означает, что спиральный компрессор имеет меньше неисправностей и его легче обслуживать. При меньшем изменении крутящего момента двигатель более надежен, а мощность в целом выше. Стандартная выходная мощность составляет от 40 до 50 кВт, но несколько блоков можно объединить параллельно.

4. Открытые компрессоры

Открытый компрессор, такой как Carrier 5H80, — это компрессор, в котором двигатель и компрессор отделены друг от друга.Это позволяет использовать электрические, дизельные или газовые двигатели. Все части компрессора легко доступны для ремонта. В обмен на большую площадь основания открытая компрессорная система предназначена для обеспечения более высокой выходной мощности.

5. Герметичные компрессоры

В герметичной системе двигатель и компрессор заключены в герметично сварную оболочку. Система уплотнения не зависит от стыков и защищает ключевые компоненты от внешней среды. При этом герметичные компрессоры нельзя открывать для ремонта, а риск замены компенсирует низкие затраты.

5. Полугерметичные компрессоры

Полугерметичный компрессор уравновешивает преимущества открытой и герметичной архитектуры, заключая компрессор и двигатель в герметичную оболочку, но оболочку можно открыть, чтобы повлиять на ремонт. Система жидкостного охлаждения может быть встроена непосредственно в корпус для лучшего терморегулирования.

Точное соответствие компрессора вашим требованиям повышает эффективность и продлевает срок службы. Модернизированные коммерческие компрессоры доступны во всех типах и конфигурациях, что позволяет быстро и по значительно меньшей цене заменять устаревшие компрессоры без ущерба для производительности.

Типы воздушных компрессоров

Пришло время обновить вашу систему сжатого воздуха, но с учетом множества доступных опций, какой тип воздушного компрессора является лучшим выбором?

Когда дело доходит до промышленных воздушных компрессоров, понятие «лучший» зависит от конкретных требований вашей производственной среды, которые сильно различаются в зависимости от отрасли. Решение становится все труднее, поскольку многие покупки — это обязательство на протяжении десятилетий как для подразделения, так и для компании, у которой вы покупаете.Первым шагом в принятии решения является ознакомление с различными типами воздушных компрессоров, которые доступны.

Воздушные компрессоры делятся на две группы: объемные и динамические.

Положительное смещение

Компрессоры прямого вытеснения работают за счет нагнетания воздуха в камеру. Затем объем этой камеры уменьшается, что приводит к сжатию воздуха. Когда в камере достигается максимальное давление, открывается клапан, и воздух выпускается в выпускную систему.К этой категории относятся как ротационные, так и поршневые компрессоры.

Винтовые компрессоры обычно используются на заводах, требующих примерно 25-250 л.с., хотя некоторые современные машины могут достигать 600 л.с. В роторных компрессорах используются два взаимно зацепляющихся винтовых ротора (винта), чтобы нагнетать воздух в меньшее и меньшее пространство, создавая таким образом давление. Масло используется повсюду для смазки, уплотнения и поглощения тепла. Перед тем, как пригодный для использования воздух выходит из камеры, необходимо удалить масло. В этом процессе используются масляные фильтры, которые необходимо регулярно заменять. Хотя существуют безмасляные варианты, следовые количества обычно обнаруживаются в обычных винтовых компрессорах.

В поршневых компрессорах

поршень используется для уменьшения объема цилиндра и увеличения давления воздуха. Поршневые компрессоры одностороннего действия сжимают воздух только с одной стороны поршня, имеют очень низкую мощность (25 л.с. или меньше) и обычно используются в домашних условиях или в небольших автомобильных магазинах. Поршневые компрессоры двустороннего действия имеют камеры с обеих сторон поршня и имеют размеры от 40 до 1000 л.с.Хотя этот тип более мощный, чем их собратья одностороннего действия, он редко используется из-за необходимости частого обслуживания и дорогостоящего процесса производства. Оба типа этих компрессоров обычно шумны и имеют низкое качество воздуха, подходящие для нечувствительных сред.

Динамический

Компрессоры

Dynamic создают давление в воздухе с помощью вращающихся крыльчаток, которые ускоряют и замедляют воздух. Замедление или ограничение воздуха — это то, что вызывает повышение давления.Некоторые из этих компрессоров полностью безмасляные для работы в очень чувствительных средах. Осевые и центробежные компрессоры являются компрессорами с динамическим рабочим объемом.

Осевые компрессоры обычно не используются в промышленных условиях и традиционно используются в реактивных двигателях, скоростных судовых двигателях и малых электростанциях.

Центробежные компрессоры эффективно преобразуют энергию, используя серию ступеней, которые сжимают и охлаждают воздух, непрерывно протекающий через установку. Воздух втягивается в крыльчатку и ускоряется при движении наружу.Эта кинетическая энергия затем преобразуется в потенциальную, когда поток замедляется диффузором. На каждой стадии сжатия воздух охлаждается, а влага удаляется, чтобы повысить эффективность и качество воздуха. Этот непрерывный поток через несколько ступеней позволяет центробежным компрессорам преуспевать в более высокой производительности и лучше всего подходят для приложений с мощностью выше 250 л. с., но может достигать 6000 л.с. в более требовательных приложениях. Центрифуги также демонстрируют то преимущество, что они могут работать непрерывно в течение многих лет без значительного обслуживания.

Востребованным преимуществом центробежных компрессоров является их способность подавать безмасляный воздух, относящийся к классу 0 (согласно ISO 8573-1: 2010). На первый взгляд очевидные преимущества безмасляных компрессоров заключаются в снижении стоимости расходных материалов. Поскольку масло никогда не попадает в воздушный поток, фильтры после разгрузки компрессора отсутствуют. Кроме того, масло нужно менять только каждые два-три года, в отличие от 6-12 месяцев для маслозаполненного компрессора.

Преимущества

выходят за рамки простой минимизации затрат на техническое обслуживание и энергию — безмасляный воздух важен для производственного процесса в таких отраслях, как фармацевтика, продукты питания, электроника и текстиль, где риск попадания следов масла в готовый продукт неприемлем.

У каждого типа компрессора есть свои преимущества и недостатки, но начало исследования с твердым пониманием доступных вариантов имеет жизненно важное значение в процессе принятия решения. Мы приглашаем вас использовать калькулятор затрат на компрессор AirCompare℠, чтобы еще больше сузить ваши варианты и обнаружить потенциальную экономию, которую вы можете упустить в своей системе сжатого воздуха.

Как правильно выбрать воздушный компрессор

Выбор неправильного воздушного компрессора может стоить вашему предприятию сотни, если не тысячи долларов потерь энергии и производственного времени.Очень часто при выборе воздушного компрессора единственное, что думают о технических характеристиках, — это кубические футы в минуту или кубические футы в минуту воздушного потока, необходимого для установки. Не делайте той же ошибки. Загрузите нашу техническую документацию «Как выбрать правильный воздушный компрессор», чтобы узнать:

• Основные факторы при выборе воздушного компрессора.

Добавить комментарий

Ваш адрес email не будет опубликован.