Лампа накаливания 100 вт технические характеристики: Лампа накаливания: технические характеристики, устройство

Содержание

Лампа накаливания: технические характеристики, устройство

Обеспечить комфорт и уют в доме невозможно без организации хорошего освещения. С такой целью наиболее часто сейчас используются лампы накаливания, которые можно применять в различных условиях сети (36 Вольт, 220 и 380).

Виды и характеристики

Лампа накаливания общего назначения (ЛОН) – это современное устройство, источник искусственного видимого светового излучения с низким КПД, но ярким свечением. Свое название она получила из-за наличия в корпусе специального тела накала, которое изготавливается из тугоплавких металлов или угольной нити. В зависимости от параметров этого тела определяется срок службы светильника, цена и прочие характеристики.

Фото — модель с вольфрамовой нитью

 

Несмотря на разные мнения, считается, что первым изобрел лампу ученый из Англии Деларю, но его принцип накаливания был далек от современных норм. После исследованиями занимались разные физики, впоследствии, Гебель презентовал первую лампу с угольной нитью (из бамбука), а после Лодыгин запатентовал первую модель из углеродной нити в вакуумной колбе.

В зависимости от конструктивных элементов и типа газа, защищающего нить накаливания, сейчас существую такие виды ламп:

  1. Аргоновые;
  2. Криптовые;
  3. Вакуумные;
  4. Ксенон-галогенные.

Вакуумные модели являются самыми простыми и привычными. Получили свою популярность из-за низкой стоимости, но вместе с этим они имеют наименьший срок службы. Стоит отметить их простоту замены, ремонту не поддаются. Конструкция имеет следующий вид:

Фото — конструкция вакуумных ламп

 

Здесь 1 – это, соответственно, вакуумная колба; 2 — вакуумная или наполненная специальным газом, емкость; 3 — нить; 4, 5 — контакты; 6 — крепежи для нити накаливания; 7 — стойка лампы; 8 — предохранитель; 9 — цоколь; 10 — стеклянная защита цоколя; 11 — цокольный контакт.

Аргоновые лампы ГОСТ 2239-79 по яркости очень отличаются вакуумных, но практически полностью повторяют их конструкцию. Они имеют больший срок годности, нежели привычные. Это обязано тем, что нить из вольфрама защищена колбой с нейтральным аргоном, который противостоит высоким температурам горения. Как результат, источник света более яркий и долговечный.

Фото — аргоновый ЛОН

 

Криптовую модель можно распознать по очень высокой световой температуре. Она светится ярким белым светом, поэтому иногда может вызывать боль в глазах. Высокий показатель яркости обеспечен криптоном – высоко-инертным газом, у которого высокая атомная масса. Его применение позволило значительно уменьшить вакуумную колбу, но при этом не терять яркость источника света.

Галогенные светильники накаливания получили большую популярность благодаря своей экономной работе. Современная энергосберегающая лампа поможет не только сократить расходы на оплату электрической энергии, но и уменьшить траты на покупку новых моделей для освещения. Производство такой модели осуществляется на специализированных заводах, как и утилизация. Предлагаем для сравнения изучить потребляемую мощность перечисленных выше аналогов:

  1. Вакуумные (обычные, без газа или с аргоном): 50 или 100 Вт;
  2. Галогеновые: 45—65 Вт;
  3. Ксеноновые, галогено-ксеноновые (комбинированные): 30 Вт.

Благодаря небольшому размеру, наиболее часто электрические ксеноновые и галогеновые осветители используют как автомобильные фары. У них высокое сопротивление и отличная долговечность.

Фото — ксенон

 

Классификация ламп производится не только исходя из наполняющего газа, а также, в зависимости от типов цоколей и назначения. Существуют такие виды:

  1. G4, GU4, GY4, и прочие. Галогеновые модели накаливания отличают патроны-штекеры;
  2. E5, E14, E17, E26, E40 – наиболее распространенные типы цоколей. В зависимости от номера, могут быть узкими и широкими, классифицируются по возрастанию. Первые люстры изготавливались именно под такие контактирующие части;
  3. G13, G24 производители используют эти обозначения для люминесцентных осветителей.
Фото — формы ламп и типы цоколей

 

Достоинства и недостатки

Сравнение отдельных видов светильников накаливания позволит выбрать наиболее подходящий вариант, исходя из того, какая нужна мощность и световая отдача. Но у всех перечисленных видов светильников есть общие достоинства и недостатки:

Плюсы:

  1. Доступная цена. Стоимость многих ламп находится в пределах 2 у. е.;
  2. Быстрое включение и выключение. Это наиболее значимый параметр в сравнении с энергосберегающими лампами с долгим включением;
  3. Маленькие размеры;
  4. Простая замена;
  5. Широкий выбор моделей. Сейчас есть декоративные светильники (свеча, ретро-завиток и другие), классические, матовые, зеркальные и прочие.

Минусы:

  1. Высокая потребляемая мощность;
  2. Негативное воздействие на глаза. В большинстве случаев от него поможет матовая или зеркальная поверхность колбы лампы накаливания;
  3. Низкая защита от перепадов напряжения. Для обеспечения нужного уровня используется блок защиты для лампы накаливания, он подбирается в зависимости от типа;
  4. Короткий эксплуатационный период;
  5. Очень низкий коэффициент полезного действия. Большая часть электрической энергии уходит не на освещение, а на нагрев колбы.

https://www.youtube.com/watch?v=ET-u92BP968

Параметры

Технические характеристики любой модели обязательно включают в себя: световой поток лампы накаливания, цвет свечения (или цветовая температура), мощность и срок службы. Сравним перечисленные типы:

Тип Световой поток, Люмен Световая температура Срок службы, часов
Вакуумная, без газа 300–1600 Теплая, холодная (синяя, желтая, белая), в зависимости от типа колбы — 2000—4500 градусов 1000
Аргоновая 200–8400 Также, как и в вакуумных
1500
Ксеноновая, галогеновая 14000–44000 Холодная, от 4500 4000
Криптоновая 500–10000 Холодная, от 4000 2000
Фото — цветовая температура

 

Из всех перечисленных типов только галогенки можно отнести к энергосберегающим моделям. Поэтому многие хозяева стремятся заменить все источники света в своем жилище на более рациональные, к примеру, на диодные. Соответствие светодиодных ламп накаливания, сравнительная таблица:

Параметр Вакуумный тип, без газа Галогеновая, ксеноновая Аргоновая Светодиод
Уровень нагрева колбы Высокий Нормальный Высокий Низкий
Стойкость к внешним воздействиям Разбивается при падении Очень хрупкая Разбивается Крепкая
Мощность (Вт) 75 15
45
10
Световой поток (Люмен) 600 700 800 800

Для лучшего объяснения энергозатрат предлагаем изучить соотношение ватт к люменам. Например, лампа дневного света, с вольфрамовой нитью накаливания 100 Вт – люмен 1200, соответственно, 500 Вт – более 8000.

Мощность лампы с аргоновым наполнителем, Ватт Мощность люминесцентной модели, Вт Мощность светодиодного светильника, Вт Световой поток, Люмен
20 5-7 2-3 250
40 10-13 4-5 400
60 15-16 8-10 700
75 18-20 10-12 900
100 25-30 12-15 1200
150 40-50 18-20 1800

При этом, часто использующаяся в производственных и бытовых условиях, люминесцентная модель, имеет похожие характеристики на ксеноновую. Благодаря таким характеристикам есть возможность обеспечить плавное включение ламп накаливания. Для этого используется специальный прибор – диммер для ламп накаливания.

Такой регулятор можно собрать своими руками, если есть схема, подходящая под Вашу лампу. Сейчас большой популярностью пользуются аналоги обычных вариантов, но с зеркальным напылением – рефлекторная модель Philips, импортные Osram и другие. Купить фирменную лампу накаливания можно в специализированных фирменных магазинах.

Световой поток лампы накаливания 100 ватт и других световых приборов

Искусственный свет сопровождает людей уже многие тысячи лет. Дольше всего использовался свет пламени костра. Затем он был заменен пламенем свечей. До появления первого источника света, основанного на электричестве, на протяжении долгого времени ни одно жилище не обходилось без свечного светильника. С освоением электроэнергии первым источником света стала лампа накаливания.

Ниже пойдет речь о том, как:

  • эволюционировала лампа накаливания и усовершенствовался ее световой поток;
  • появлялись новые конструкции на основе накала тела за счет электрического сопротивления электрическому току;
  • увеличивалась светоотдача ламп накаливания по мере появления новых технических решений;
  • и о некоторых других особенностях источников света.

Простейший электрический излучатель света

Появившийся после освоения электроэнергии первый электрический источник света по сути повторил свечу. Просто вместо пламени как результата химической реакции появился углеродный элемент, который тоже сгорает, но уже от воздействия электричества, и не нуждается в кислороде. Световая отдача целого светильника с множеством свечей теперь заменялась светом одной единственной лампочки. Довольно долго световая отдача ламп накаливания на бытовом уровне оценивалась в свечах. Например, о лампочках накаливания 36 Вт, 40 Вт или 60 Вт говорили: лампочка в 36, 40 или в 60 свечей.

Томас Эдисон – изобретатель лампы накаливания

Позднее электрическая мощность и  измеряемый в люменах световой поток стали главными параметрами, по которым оценивалась световая отдача электрических источников света. После того как первые угольные электрические лампы отгорели свое, стало ясно, что такой горячий источник света можно эффективно усовершенствовать. Если устранить контакт с воздухом излучателя света, его характеристики существенно улучшатся. Станет возможным:

  • продление срока эксплуатации;
  • увеличение температуры нагрева излучателя;
  • увеличение яркости, поскольку световая отдача увеличивается вслед за температурой.

Была придумана колба с откачанным воздухом и небольшим количеством инертного газа. Но подлинным прорывом стала замена углерода на вольфрамовую спираль. Была достигнута максимальная температура нагрева светового излучателя на основе металлов и соответственно получена близкая к своему максимуму световая отдача для них. Последнее до сегодняшнего дня улучшение ламп накаливания связано с применением специальных добавок на основе галогенов. Они добавляются в колбу и электрохимическим путем восстанавливают спираль. При этом ее стало возможно нагревать до еще более высокой температуры.

Устройство лампочки накаливания

Конструктивные разновидности

За все время своего существования лампы накаливания воплотились в многочисленных моделях. Их размеры и внешний вид на сегодняшний день довольно разнообразны. Сейчас выпускаются как совсем миниатюрные лампочки накаливания с размерами колбы со спичечную головку, так и большие мощные «солнца» для теплиц и других помещений, а также открытых пространств. Мощность таких «солнечных» источников света измеряется киловаттами. Существуют лампы накаливания, запитываемые от электросети 20 киловатт.

   
Миниатюрная лампочка Очень мощная и большая лампа

И несмотря на преимущества люминесцентной лампы и несомненные достоинства светодиодных излучателей, лампочки накаливания продолжают занимать заметное место среди источников света. Ведь световой поток люминесцентных ламп вне зависимости от каких-либо усовершенствований остается с линейчатым спектром, который не соответствует естественному освещению. А большая светоотдача светодиодов при совсем незначительной потребляемой мощности лишена тепла.

Спектр излучения разных световых источников

С целью воздействия на спектральный состав света путем увеличения амплитуды интенсивности на определенных диапазонах длины волны, а также для получения заданной направленности применяются определенные конструктивные изменения. Главным образом они затрагивают колбу. Разные части ее поверхности покрываются амальгамой, применяются разные сорта стекла, например матовое или цветное. Так широкой популярностью пользуется синяя лампа, для местного согревания применяемая в медицинских целях. Также широко известна красная лампа, применяемая во время проявления фотопленки и фотобумаги.

Разные ламповые колбы
 
с отражателем красная для фото синяя медицинская

Незаменимые труженики

Лампы накаливания по-прежнему являются реальными заменителями солнечного света. При этом они почти не выделяют ультрафиолета, вредного для многих живых организмов, длина волны которого менее 400 нанометров. Зимой при пониженной температуре для нормальной жизнедеятельности растений, животных и человека нужны свет и тепло. Лампа накаливания совмещает в себе и то, и другое. При этом большой ресурс наиболее долговечных светодиодных ламп может быть сопоставим с продолжительностью работы лампочек накаливания.

Например, продолжительность работы лампы накаливания 100 Вт составляет примерно 1 000–2 000 часов. Но если при помощи диммера уменьшить напряжение, подаваемое на лампочку, и мощность ее при этом снизится до 75 ватт, эта лампа будет светить годами. Безусловно, световой поток лампы накаливания 100 ватт заметно больше, чем при ограничении ее мощности на уровне 75 Вт. Но если стоит вопрос об использовании светодиодных ламп в первую очередь по причине их долговечности, лампочка накаливания, работающая не в полную силу, вполне может выиграть такой «тендер».

После появления первых источников электрического света было придумано много разных световых излучателей. Однако экономность всегда была и остается одним из самых важных критериев в любом вопросе. В том числе и в светотехнике. Поэтому такой показатель источников света как лм/Вт (люмен/ватт) является одним из основных. В связи с этим интересно посмотреть величины этого показателя для разных световых излучателей (в таблице далее).

Из таблицы получается, что по показателю лм/Вт из всех современных источников света лампы накаливания наименее эффективны. Но есть факторы, которые еще на многие годы обеспечат этим устройствам востребованность в определенных нишах светотехнического рынка:

  • простота их конструкции;
  • по-настоящему теплый свет;
  • неожиданная долговечность, легко получаемая с помощью диммеров.

Как сравнить светодиодную лампу и лампу накаливания / Хабр

Какую светодиодную лампу мы имеем правом назвать лампой прямой замены лампы накаливания мощностью 60 Вт, 75 Вт, 100 Вт…?


Минимальное значение светового потока ламп накаливания бытового и аналогичного общего освещения типовых мощностей устанавливает «ГОСТ Р 52706-2007 Лампы накаливания вольфрамовые…». Ориентироваться в этом солидном документе помогут следующие ориентиры:

1) Тип цоколя: Е27. Или подробнее – Е27/27, что означает резьбовой цоколь Эдисона с максимальным диаметром резьбы 27 мм и полной длиной 27 мм.

2) Напряжение питания 230 В. В России с 2003 года номинальное напряжение в сети переменного тока в соответствии с ГОСТ 29322-92 составляет общеевропейские 230 В. В седьмом издании ПУЭ, издание которого завершилось в том же 2003-м году, исправление внести не успели, и многие до сих пор уверены, что «в розетках 220 В».


Лампы накаливания предназначены для работы в сети переменного тока 230В.

3) Световой поток – «H», то есть соответствующий биспиральным лампам. Иные не производятся. (Но так как моноспиральные лампы никто не отменял, если дело дойдет до суда, производитель будет защищаться, указывая на световые потоки моноспиральных ламп «N».)


Развитая поверхности биспирали: конвективный тепловой поток к стенкам колбы в пересчете на единицу светоизлучающей поверхности нити меньше – КПД больше.

4) Типовой световой поток определяется для лампы с прозрачной колбой. Молочное покрытие колбы, оправдывающее снижение светового потока на 20% от номинала в расчет не принимается. При нормальной эксплуатации попадание в поле зрения человека такого яркого объекта как нить накаливания или молочная колба должно быть исключено. Лампа накаливания с молочной колбой – некий компромисс при использовании в декоративных светильниках без светорассеивателя и защитного угла, и ее световой поток не может быть ориентиром.


Для ламп накаливания с молочной колбой допускается снижение светового потока на 20% от номинала, но это значение не может быть ориентиром для энергосберегающей лампы вне зависимости от типа колбы.

5) Снижение светового потока ламп накаливания во время эксплуатации при сравнении не учитывается, так как характерно для любых источников, в том числе светодиодных. В этом отношении непродолжительность времени жизни лампы накаливания является ее достоинством, так как вынуждает регулярно заменять источник света на новый с номинальным световым потоком.


Испаряющийся вольфрам оседает на стенках колбы и со временем снижает световой поток лампы, но короткий срок жизни лампы накаливания определяет частое обновление источника света, и восстановление светового потока осветительного прибора до номинального.

Итак: минимальные значения светового потока для ламп, соответствующих перечисленным требованиям из ГОСТ Р 52706-2007:

Из таблицы следует, что светодиодная лампа со световым потоком 600 лм не является эквивалентом лампы накаливания 60 Вт, а 1000 лм – не является эквивалентом лампы накаливания 100 Вт. Даже если производитель проводит сравнение с существующими только на бумаге моноспиральными лампами.

График заивисимости для всего диапазона 25…200 Вт:

И крупнее актуальный участок 60…100 Вт.

Если задаться вопросом – какой же лампе соответствует произвольный световой поток, либо воспользуемся приведенным выше графиком, либо посчитаем отношение светового потока к потребляемой мощности для ламп накаливания.

Видно, что с ростом мощности эффективность ламп накаливания растет, но в диапазоне 60-100 Вт, в котором находится большинство эксплуатируемых сегодня ламп накаливания и их аналогов, световая отдача незначительно отличается от среднего значения 12,5 лм/Вт. И для грубой оценки лампы с световым потоком, например, 860 лм можно провести несложные расчеты 860 лм / 12,5 лм/Вт=68,8 Вт и сказать что данная лампа является эквивалентом лампы накаливания мощностью ориентировочно 70 Вт. Но поскольку бытовой лампы такой мощности не существует, а до эквивалента 75 Вт лампа не дотягивает, корректно называть данную лампу эквивалентом лампы накаливания мощностью 60 Вт.

_______________

Лампа на заглавной иллюстрации с номинальным световым потоком 710 лм и мощностью 6 Вт куплена мной десять дней назад в киоске около проходной завода «Лисма» за 190р. А затем обсуждена на метрологической сессии III Светотехнического форума, где саранские специалисты подтвердили корректность заявленных характеристик ламп этой серии.
Лампа куплена после экскурсии по заводу, где нам показали производство ламп накаливания, объемы продаж которых в последнее время растут в связи с отказом населения от энергосберегающих (но не деньгосберегающих) КЛЛ. Очевидно, что в связи с быстрым падением цен на светодиодные лампы при их высокой надежности (я окончательно отказался от КЛЛ в пользу светодиодных около трех лет назад, и с тех пор в моем доме из полутора десятков светодиодных ламп не вышла из строя ни одна), спрос на лампы накаливания вскоре снова упадет. И поэтому Лисма в традиционный стеклянный корпус (себестоимостью 4р. 50 коп.) ставит миниатюрный драйвер и светодиодные «нити». Получается светодиодная лампа идентичная по внешнему виду, габаритам и массе лампе накаливания, на замену которой предназначена. И она действительно эквивалентна световому потоку лампы накаливания 60 Вт.

Пост написан, чтобы ответить на ваши вопросы, собрать комментарии и пожелания, и с учетом замечаний рецензентов быть опубликованным в №4 за 2015г журнала «Светотехника». До этого момента публикация данной информации в любом другом светотехническом издании «не является подлинной» ). После публикации вместо этих строчек появиться ссылка.

Технические характеристики света ☆ VAMVIDNEE

В предыдущей статье мы рассмотрели технический свет. На очереди технические характеристики света. Тем более сейчас такое большое разнообразие сочетаний этих характеристик, что легко растеряться. Это вам не выбрать между лампочкой в 40 Ватт и в 60, как было в прошлом веке.

Обычно и сейчас мы выбираем светильники и лампочки по мощности. Можно назвать это основной характеристикой света. Во времена ламп накаливания больше и выбирать ничего не надо было. И сейчас думая о светильниках мы выбираем те, которые дадут нам комфортное количество света.

В идеале необходимый уровень мощности светильников рассчитывают специалисты, ведь надо учитывать много данных: темные ли стены, какие еще источники света есть или будут в помещении, какого типа лампы будут использоваться, какие углы распространения света, что именно надо выделить. Но чтобы вы понимали, о чем говорят специалисты и хоть немного разбираться в том, что написано в каталоге, мы проведем небольшой “ликбез”.

Почему же стало сложнее выбирать освещение в целом и лампочки в частности? 

В наше время используются несколько типов ламп (лампы накаливания, галогеновые, люминисцентные, светодиодные), и есть светильники с уже встроенными лампами. С самого начала и цоколь (компонент электрических ламп, обеспечивающий электрический контакт в месте крепления лампы и возможность безопасной замены) был один – E27, как он сейчас обозначается. Потом появился E14 (“миньон” по-старинке). Со временем типов цоколей стало еще больше. Чтобы разбираться во всем многообразии представляем сводную таблицу на основе лампочек Paulmann.

Среди знающих людей всё больше поклонников приобретают светодиодные источники освещения. Они экономичнее галогеновых и тем более ламп накаливания, так как при меньшей потребляемой мощности выдают больше света.  Ими заменяют и обычные лампы в стандартных подвесных или потолочных светильниках или бра, торшерах. Если производитель указал максимальную мощность лампочки в 40Вт, то можно поставить светодиодную на 20Вт, а светить она будет примерно, как лампа накаливания 100Вт. Конечно же и в технических светильниках используются чаще светодиоды.

К достоинствам их можно отнести и длительный срок службы, слабый нагрев лампы, что позволяет их использовать в бумажных светильниках и не бояться, что дети обожгутся.

В отличие от люминесцентных ламп, содержащих ртуть и требующих специального обращения и утилизации, светодиоды не содержат ртути и являются безопасными для окружающей среды.

Недостаток же в основном один – несколько более высокая стоимость таких ламп по сравнению с традиционными лампами. Но это компенсируется длительностью работы без замены. При этом можно выбрать разную цветовую температуру. Иногда даже в одном приборе можно регулировать температуру света. Еще немного о недостатках в конце статьи.

У тех, кто раньше не сталкивался со светодиодами, возникает непонимание, как выбирать лампочку по потребляемой мощности. В случаях с лампами накаливания все знают, как светит лампа в 40Вт и в 100Вт. Но светодиодные потребляют меньше энергии, и поэтому указанное на коробке количество Ватт(W) меньше, чем у ламп накаливание при том же уровне освещенности. Что вводит в заблуждение неподготовленного покупателя. Такая характеристика, как световой поток – едина для разных видов ламп и измеряется в люменах (lm).

Говоря простыми словами, световой поток – это количество света, которое дает светильник. Стоит уточнить, что световой поток светодиодов по отдельности может существенно отличаться от светового потока светильников в сборе.

Таблица покажет взаимосвязь светового потока от мощности на примере галогеновых и ламп накаливания Paulmann. У разных производителей эти данные могут отличаться, но для общего понимания можно пользоваться ей.

Есть еще одна важная характеристика, о которой мало задумываются. Это индекс цветопередачи (Ra или CRI). Данный параметр источника определяется его способностью максимально точно передавать цвета освещаемого объекта. Чем выше CRI, тем ближе к «истинным» цветам предметы в этом свете. Лучшего результата вы добьетесь, используя лампы с индексом цветопередачи от 80 Ra и выше.

Особенно это важно для салонов красоты, магазинов с одеждой, чтобы человек выглядел красивее с правильным цветом лица. Этот параметр так же важен на кухне  – отличный CRI обеспечит еде наиболее естественный (и, вероятно, более аппетитный) цвет.

С низким Ra(CRI) лампы можно помещать в подвалах, технических помещениях, где правильная цветопередача не очень важна. Зачем они вообще нужны – с низким индексом?  В светодиодных светильниках действует закон: чем выше индекс, тем меньше световой поток. Поэтому если цветопередача не сильно важна, можно получить более светлую лампу за меньшие деньги.

Эталонами служат лампы накаливания и галогеновые лампы. Их можно брать без опасений. Но как уже упоминалось, светодиодные энергоэффективнее и сейчас используются чаще. При их покупке нужно обязательно обращать внимание на индекс цветопередачи.

Что же такое температура света? Учёные давно установили, что каждый цвет имеет свою «температуру», которая измеряется в Кельвинах (К).  При освещении одного и того же предмета светодиодными лампами с различной цветовой температурой, этот предмет будет иметь разные оттенки.

Этот параметр указывают на упаковках ламп. Важно помнить, что чем больше температура, тем «холоднее» свет испускаемый источником. Это видно в приведенной ниже таблице.

Для определённых зон в доме или квартире, а также под конкретные ситуации (для гостиной — приём гостей, романтический ужин и т. д.) подбирают источники света с соответствующей цветовой температурой.

В жилых помещениях цветовая температура обычно начинается около 2700K для теплых ламп накаливания и достигает 3500K, что близко к люминесцентному освещению (для сравнения, свеча чуть меньше 2000K).
Цветовые температуры более 3500K обычно оставляют для коммерческих помещений (4000K), больниц (5000K и выше – очень яркий белый) или других вспомогательных помещений, где требуется сверхъяркий свет (прямой солнечный свет – 4700K, поэтому представьте, насколько яркой показалась бы лампочка 3700K). Чтобы превратить ночь в день, используют прожекторы с цветовой температурой от 6000 до 7000 Кельвинов.

Еще одна характеристика, важная именно в техническом свете – это угол падения света.

Иначе еще называют “угол рассеивания”. Эта величина может относиться как к источнику в целом, так и конкретно к светодиодной лампе.

В светодиодной лампе содержится некоторое количество кристаллов, их можно располагать по-разному, создавая как узконаправленный поток света, так и рассеянный. Угол светового пучка светодиодной лампы так же зависит от ее формы.

Подбирают угол распространения света в зависимости от расположения и назначения светильника.

Так как мы говорим о техническом свете, то для встроенных светильников подходят неширокие пучки — угол 40-60°, но лучше не больше 50°.

Если использовать технический свет для подсветки картин, предметов интерьера, угол можно взять больше – 50-60°. Для декоративной подсветки с узконаправленными пучками света подойдут модели с углом рассеивания 30-40°. Для уличного освещения — подсветки дорожек, декоративной подсветки — подходят источники света с широким углом рассеивания — от 180°.

Конечно, про потолочные люстры тоже стоит упомянуть. В них можно устанавливать светодиодные лампочки с шириной светового потока 60-90°. С матовыми плафонами не страшен и более рассеянный свет. Для настольных ламп лучше все же угол 50-60°.

Для обеспечения нормальной равномерной освещенности (то есть, без каких-либо теневых секторов) световые конусы от отдельных излучателей должны пересекаться приблизительно на уровне 75-80 см от поверхности (например, для гостиных – от пола, для кухонь – от разделочного стола). Также по общим (рекомендованным специалистами) стандартам на освещаемой поверхности световые окружности должны перекрывать друг друга приблизительно на ⅓ диаметра.  Например в гостиной 3 х 4,5 м (со стандартной высотой потолка 2,6 м), встроенные источники с углом излучения 40° должны устанавливаться на расстоянии 1,5 метра друг от друга.

Из этого следует, что чем ниже потолок, тем больший угол распространения света надо использовать. В противном случае либо поверхность будет освещена неравномерно (отдельными световыми кругами), либо придется значительно сократить расстояние между источниками, что в свою очередь приведет к увеличению их количества.

Отдельный интерес представляет правильно освещение на кухне. Часто делают ошибку, размещая потолочные светильники за спиной готовящего человека.

Если задаете себе вопрос, какой светильник выбрать в ванну или установить на улице, то стоит обратить внимание еще на одни загадочные буквы на коробке с лампочкой или светильником – IP. Этот параметр показывает степень водозащиты источника. По полезным картинкам от Paulmann легко определить, какой IP куда лучше подойдет.

При всех плюсах у светодиодных источников света есть и слабые места: пульсация и диммируемость.

Не все светодиодные светильники и лампочки диммируются, и те что, диммируются стоят дороже. На это надо обращать внимание, если важна способность управлять мощностью света с помощью диммера.

Опасность же для здоровья может представлять пульсация ламп. Она есть у всех ламп, но лучше, если она меньше 5%. Больше 30% считается вредной для здоровья. И если вам оно дорого, ищите на упаковке информацию о пульсации. Если есть слова “без пульсации”, скорей всего пульсация у таких ламп меньше 5%. Если нет такой информации вообще, вероятно пульсация больше нормы, или надо тестировать лампочку. В интернете можно найти способы сделать это без пульсометра – с помощью обычной пишущей ручки или смартфона. Но если есть возможность, лучше не рисковать и покупать лампочки подороже известных производителей.

Изображения взяты на просторах интернета, некоторые данные – Википедия.

Борьба за потребителя: люмены или ватты

Журнал «Электротехнический рынок», №5-6, 2014. 

Электронный портал: www.elec.ru


Артём КОГДАНИН
директор компании LEDEL

Дмитрий СМОЛИН, 
соучредитель компании «ВИЛЕД Светотроника», 
разработчик

Дмитрий ЦЕЛОБАНОВ, главный конструктор ГК «Вартон»

Дмитрий ХОДЫРЕВ, начальник отдела технического продвижения «БЛ ТРЕЙД»

Вадим ПАВЛОВ,
старший инженер-светотехник компании «Световые Технологии»

Марк ВАЙНТРАУБ, технический эксперт компании Feron

Алексей ВАСИЛЬЕВ, независимый эксперт рынка светотехники

Дмитрий ЗАЙЦЕВ
продакт-менеджер компании Navigator

Так уж повелось, что одним из главных критериев выбора в пользу того или иного современного источника света, будь то светодиодные или энергосберегающие лампы, служит показатель эквивалентной потребляемой мощности, соответствующей аналогам, основанным на традиционных технологиях (лампы накаливания или люминесцентные). В то же время первое, на что нужно обратить внимание при выборе — это световой поток. Некоторые производители часто замалчивают о существовании этого показателя, указывая лишь равноценность обычной лампе, сознательно ее завышая. Такое положение дел объясняется отсутствием единого стандарта эквивалентов мощности для разных источников света. Как результат — «анархия» на упаковках и зачастую обманутые ожидания потребителя.

Что делать в сложившейся ситуации?

Вадим ПАВЛОВ, 
старший инженер-светотехник компании «Световые Технологии»:

— Прежде всего, необходимо всеми возможными способами увеличивать светотехническую грамотность людей, принимающих решения при покупке световых изделий. К сожалению, профессионалов, отличающих величины освещенности и светового потока, яркости и силы света, не так уж много. Неправильно утверждать, что есть какая-либо главная характеристика, на которую необходимо обращать внимание при выборе светильника. Грамотный специалист никогда не выберет светильник, основываясь только на световом потоке или его мощности, ведь имеется целый список технических параметров, таких как светораспределение, КПД, тип источника света и т.д. Представим банальную ситуацию: вы покупаете фотоаппарат, не являясь специалистом в области фотографии. Отбросив цены в сторону, вы смотрите на его характеристики, а именно, берете паспорт (или datasheet) и начинаете банальное сравнение параметров. И отнюдь не факт, что вы понимаете, что означает та или иная характеристика, но при этом стараетесь осознать, что лучше, а что нет, т.е. самообучаетесь. То же самое можно сказать и про светильники — нет необходимости разбираться во всех тонкостях светотехники, но крайне важно представлять, что такое световой поток, тип светораспределения и КПД. Тогда у недобросовестных производителей, указывающих недостоверную информацию о своих продуктах, будет меньше шансов Вас обмануть.

Алексей ВАСИЛЬЕВ, 
независимый эксперт рынка светотехники:

— Поставщикам и производителям нужно вести разъяснительную работу, хотя, на первый взгляд, это им не выгодно. Как показывают последние события на российском рынке светотехники, снижение цен за счет понижения планки качества в итоге оборачивается против тех, кто так поступает. Сегодня вы на светодиодной лампе, которая светит, как 25-ваттная лампа накаливания, напишете, что она эквивалентна 40-ваттной лампе. А завтра найдутся люди, которые продадут такую же лампу по той же или меньшей цене, как 60-ваттную. Объяснить своим клиентам, почему нужно покупать именно у вас, вы не сможете, потому что тогда придется признать, что и вы их обманывали. Лучше объяснять потребителю, что вы ведете себя с ним по-честному, указывая световой поток, когда ваши конкуренты сообщают только невесть как вычисленную «эквивалентную мощность».

Дмитрий ХОДЫРЕВ, 
начальник отдела технического продвижения «БЛ ТРЕЙД»:

— Безусловно, эту ситуацию необходимо корректировать. Но прежде, несколько слов в защиту производителей: зачастую, они указывают ватты вместо люменов не для того, чтобы всех обмануть, а чтобы помочь потребителю сделать выбор. Потребитель пока что разбирается в ваттах значительно лучше, чем в люменах. Увы, это так: светотехника — один из подразделов электротехники, и уж коли в электротехнике разбираются далеко не все потребители, то, что говорить о светотехнике в целом.

В п. 1 ст. 10 Закона РФ «О защите прав потребителя» сказано: «Изготовитель (исполнитель, продавец) обязан своевременно предоставлять потребителю необходимую и достоверную информацию о товарах (работах, услугах), обеспечивающую возможность их правильного выбора». Световой поток, безусловно, относится к техническим характеристикам, сравнение которых и позволяет выбрать лампу или светильник для определенного применения

Однако эта вынужденная мера все-таки не оправдывает производителей, поэтому на нас лежит задача обучения участников рынка. В частности, мы стараемся выкладывать массу статей и материалов на нашем сайте, не связанных напрямую с нашей продукцией, а именно с целью просвещения.

Естественно, в дополнение к ваттам в светодиодной светотехнике обязательно надо указывать люмены, и большинство производителей к этому переходят. Здесь встает уже другая проблема — достоверность и корректность предоставляемых данных. На первый план выходят вопросы сертификации и измерений в специализированных лабораториях, которые любой уважающий себя производитель должен иметь на каждый свой тип светильника.

Марк ВАЙНТРАУБ, 
технический эксперт компании Feron:

— Для того чтобы развиваться или даже просто оставаться на рынке, необходимо комплексно подходить к проблеме — контролировать качество, следить за объективностью информации на упаковках, помогать информированию потребителя. Переход от ватт к люменам, скорее всего, должен произойти сам собой. Хотя стоит отметить, что на сегодня потребитель уже привык к сравнению с лампами накаливания, ведь для рядового покупателя все же важнее простота покупки, чем идеальная точность. Да и рынок сейчас очень быстро пробежал по дорожке от ламп накаливания к КЛЛ и теперь уже к светодиодам. Но светодиоды ведь тоже не стоят на месте, эффективность растет даже не с каждым годом, а значительно интенсивнее. Соответственно и понимание такого термина как люмены (а возможно и люмены на ватт, как мера эффективности) рано или поздно придет, но очень скоро этого ждать не стоит.

Дмитрий ЦЕЛОБАНОВ, 
главный конструктор ГК «Вартон»:

— При выборе осветительного прибора не так просто обозначить «главную характеристику», на которую стоит обращать внимание. Для одних значение будет иметь мощность, если ограничены ресурсы сети, для других — световой поток, если требуется достижение определенного уровня освещенности. Третьи же оценивают габариты или, например, устойчивость прибора к перепадам температур. Стандартных эквивалентов мощности не существует, по крайней мере, в России. Однако производители выводят их исходя из общепринятых правил соответствия источников света: эквивалент мощности «эквивалент светового потока. Поясню, лампа накаливания 100 Вт дает световой поток 1350 лм, чтобы подобрать LED-аналог, выбираем светодиодную лампу с наиболее близким значением светового потока, например, 1350 «1270, что по мощности соответствует 12 Вт. Следовательно, лампа накала 100 Вт «12 Вт светодиодной лампы по световому потоку. Действительно, недобросовестные производители умалчивают о некоторых характеристиках и сознательно завышают показатели. С таким подходом к ведению бизнеса они долго не задержатся на рынке, но покупателям все равно нужно быть более бдительными и при необходимости самостоятельно высчитывать значимые параметры. Мало кто знает, как это сделать, хотя на самом деле все довольно просто. Согласно сложившейся практике, крупные производители указывают в характеристиках и световой поток (лм), и мощность (Вт). Отношение светового потока к мощности (лм/Вт) является показателем световой отдачи, которая приводит разные типы источников света к единому знаменателю и позволяет их объективно сравнивать. Нормальная световая отдача светодиодов на массовом рынке 80-120 лм/Вт, именно это нужно учитывать при выборе светодиодных источников света.

Дмитрий СМОЛИН, 
соучредитель компании «ВИЛЕД Светотроника», разработчик:

— Последние пять лет в нашей стране наблюдается устойчивое развитие рынка систем светодиодного освещения, научные разработки успешно конвертируются в бизнес, но для стихийно развивающейся отрасли не успевает сформироваться законодательная база. В условиях стремительного развития технологий, просветительскую роль должны взять на себя производители современных источников света. Именно на производителей, экспертов рынка, носителей уникальных знаний о продукте и новых технологиях, ложится миссия формирования информационной, нормативной базы. Для этой цели производители должны объединить свои усилия, выработать общий подход для изменения принятых у потребителя стандартов, влияющих на выбор при приобретении осветительных приборов. Другая проблема в том, что не все производители готовы пройти эти серьезные изменения, не всем выгодно открыто говорить об эффективности осветительных приборов. Например, производители люминесцентных ламп никогда не пойдут на то, чтобы рассказать потребителю об особенностях светильников. Дело в том, что эффективность светового потока люминесцентных ламп через несколько дней эксплуатации снижается почти на 30%. Например, в первый день работы светильник имеет 80 Лм/Вт, а через три дня уже 56 Лм/Вт. Это же касается коэффициента мощности, люминесцентные лампы бытового применения имеют низкий coscp, что негативно сказывается на работе трансформаторов на электростанциях.

Какой путь вам видится более предпочтительным: оставить в прошлом ватты, приучая к люменам, или выработать стандарт по определению эквивалентной мощности для сопоставления новых и традиционных источников света, чтобы не обманывать потребителя? Может быть, другой вариант?

Артем КОГДАНИН, 
директор компании LEDEL:

— Многие годы для обозначения эффективности лампочек успешно использовались именно ватты. Все потребители знают, что лампочка в 40 Вт — тусклая, а в 100 Вт — достаточно яркая для освещения средней комнаты. Но сейчас на рынке такое количество разных источников света, что потребители просто теряются. Поэтому внедрение каких-либо новых стандартов энергоэффективности в бытовом сегменте не будут оправданы. Сейчас важнее, чтобы данные на упаковках проверялись, например, Роспотребнадзором, а производители несли ответственность за эту информацию. Сейчас покупатели выбирают источники света по цене, потому что остальные показатели для них неинформативны. Если спросить у прохожего, сколько люмен дает ваша люстра, то он скорей всего даже не поймет о чем речь. Но все знают, сколько ватт в лампочках люстры. Поэтому, я считаю, что эквивалентный показатель потребляемой мощности пока нужно оставлять.

ДмитрийХОДЫРЕВ, 
начальникотделатехническогопродвижения «БЛТРЕЙД»:

— Мое личное мнение таково. Всегда нужно оперировать объективными показателями, а не опираться на сравнения и аналогии, отсылки к прошлому. Удава нужно измерять в метрах, а не в попугаях. К тому же счетчики электроэнергии пока что фиксируют расходы в кВт/ч, а не в люменах, поэтому мощность должна оставаться обязательной информацией.

Марк ВАЙНТРАУБ, 
технический эксперт компании Feron:

— Частично на этот вопрос мы уже ответили, к люменам когда-нибудь мы придем. Сегодня у потребителя есть понимание ватт в терминах ламп накаливания, поэтому он все равно будет отталкиваться от привычной ваттности. Пока он еще не пришел к пониманию того, что такое люмен — будем приравнивать новые ватты к ваттам накаливания, но это же все будет очень условно, как мы уже сказали соотношение люмен/ватт — это не жесткая зависимость и у разных светодиодов она разная. Ввод стандартов по определению эквивалентной мощности тоже, скорее всего, ничего не даст, тогда нужно вводить и контроль, а зная степень контроля сегодня тех же люменов, указываемых на упаковках, становится понятно, что мы здесь говорим об очень отдаленном будущем.

Дмитрий ЗАЙЦЕВ, 
продакт-менеджер компании Navigator:

— Чтобы потребитель четко понимал, какую энергосберегающую лампу выбрать, отдавать предпочтение, конечно же, следует люменам, но и о Ваттах забывать не стоит, так как энергосберегающий источник света оценивают по эффективности — показатель лм/Вт. Именно эту величину потребитель должен понимать, исходя из информации, представленной на упаковке.

Дмитрий ЦЕЛОБАНОВ, 
главный конструктор ГК «Вартон»:

— Ватты в прошлом оставить нельзя, они дают понимание потребления электричества источником света. Это необходимо знать, чтобы грамотно подобрать другие элементы системы освещения (диммер, трансформатор и т.д.) или высчитать общие энергозатраты, которые нужны при проектировании. Разрабатывать искусственные стандарты не имеет смысла, в то время как уже существует готовая база. Можно использовать все тот же показатель светоотдачи (лм/Вт), который помогает увидеть реальную картину.

Вадим ПАВЛОВ, 
старший инженер-светотехник компании «Световые Технологии»:

— Выработка стандартов для сопоставления новых и традиционных источников света не слишком поможет клиенту при выборе продукта. Например, для люстры, в которой раньше использовались лампы накаливания мощностью 100 Вт, а теперь их планируется заменить на компактные люминесцентные лампы мощностью 50 Вт, все более-менее понятно — сокращается потребляемая мощность при сохранении параметров освещенности. А как же быть с более мощными источниками, например, с ДНаТ 250 или 400 Вт? Или со светодиодными источниками света больших мощностей? Писать фразу о том, что данный источник света аналогичен нескольким десяткам ламп накаливания некорректно. Необходимо предоставить покупателю полный список технических характеристик, а он в свою очередь выберет для сравнения только те, которые ему необходимы.

Алексей ВАСИЛЬЕВ, 
независимый эксперт рынка светотехники:

— У нас до сих пор действуют еще советские ГОСТы на маркировку ламп и светильников, которые в реальности не применяются, так как они безнадежно устарели. Если будут приняты современные редакции этих стандартов и в них однозначно будет прописана обязанность производителя или поставщика указывать на упаковке светильника (лампы) световой поток, то проблема будет решена.

Как реализовать то, что вы предлагаете?

Дмитрий СМОЛИН, 
соучредитель компании «ВИЛЕД Светотроника», разработчик:

— Для начала необходимо создать авторитетные некоммерческие организации, ассоциации, которые в рекомендательном порядке предложат производителям указывать на коробках эффективность осветительного прибора — сколько люменов приходится на одни ватт, коэффициент мощности (coscp) осветительного прибора. Также на коробках, этикетках необходимо расшифровывать основные термины, рассказывать о том, почему необходимо выбирать осветительный прибор по характеристикам света, а не только по его мощности.

Дмитрий ХОДЫРЕВ, 
начальник отдела технического продвижения «БЛ ТРЕЙД»:

— Ввести законодательный запрет на использование светотехнической продукции не прошедшей испытания в одной из сертифицированных светотехнических лабораторий: в России их достаточно, например, ВНИСИ или Архилайт. Это обяжет производителей указывать достоверные данные, а потребитель сможет сравнивать и выбирать. Ведь сейчас от недобросовестной конкуренции страдают, в первую очередь, производители качественного товара и в результате к конечному потребителю попадает брак и контрафакт Конечно же эта ситуация нуждается в регулировании и необходима для повышения качества продукции на рынке. Речь, в конце концов, идет об освещении, а это и безопасность, и зрительный комфорт. Это вопрос выживания современного общества и экономить на нем нельзя

Марк ВАЙНТРАУБ, 
технический эксперт компании Feron:

— Что конкретно делать мы уже сказали — рынок отрегулирует и оздоровит себя сам. Компаниям же необходимо работать над качеством, четкостью предоставляемой информации и просвещением потребителя, и это со временем даст плоды. Возможно, контролирующие процедуры тоже подтянутся, но это уже будет такая, поддерживающая санация, защищающая общий организм светотехнического рынка.

Дмитрий ЦЕЛОБАНОВ, 
главный конструктор ГК «Вартон»:

— Нужно обязать производителей LED-продукции указывать на упаковке лм/Вт. К сведению, в США уже работают нормативы, которые регламентируют минимальную светоотдачу осветительного прибора. Россия и ЕС тоже идут к этому. Есть спорные моменты — касательно технических параметров приборов, мест их применения и условий эксплуатации и т.д, но все эти вопросы решаемы.

Дмитрий СМОЛИН, 
соучредитель компании «ВИЛЕД Светотроника», разработчик:

— Для начала необходимо создать авторитетные некоммерческие организации, ассоциации, которые 
в рекомендательном порядке предложат производителям указывать на коробках эффективность осветительного прибора — сколько люменов приходится на одни ватт, коэффициент мощности (coscp) осветительного прибора. Также на коробках, этикетках необходимо расшифровывать основные термины, рассказывать о том, почему необходимо выбирать осветительный прибор по характеристикам света, а не только по его мощности.

Артем КОГДАНИН, 
директор компании LEDEL:

— Здесь есть несколько вариантов решения проблемы. У всех электрических приборов есть показатель энергоэффективности, например, у стиральных машин это обозначения «А», «В», «С» и т.д. Никто из потребителей на самом деле не знает, что именно означают эти буквы, но все знают, что «А» — это лучше, чем «В». Я думаю, такой же показатель нужно ввести и для источников света. Мало того, эти показатели должны быть расшифрованы прямо на упаковке. При этом маркироваться товары должны специальным органом, а не самим производителем. Если говорить об удобстве конечных потребителей, то лучшим вариантом будет аккредитация товаров, которые попадают на прилавки. Тогда будет понятно, что 100 лм/Вт — это хороший показатель энергоэффективности, 120 лм/Вт — это очень хороший показатель, а 150 люмен с ватта — самый лучший светильник. Но нужно понимать, что технологии не стоят на месте. Эффективность светильников и светодиодов растет, и сегодняшние обозначения становятся неактуальными.

Дмитрий ЗАЙЦЕВ, 
продакт-менеджер компании Navigator:

— Чтобы осуществить данное нововведение, необходимо на законодательном уровне прописать энергосберегающие эквиваленты ламп накаливания. Эти показатели можно взять из ГОСТа, где указано, какое количество люменов должно быть у той или иной лампы накаливания, и контролировать соответствие данных характеристик информации на упаковке. Таким образом, чтобы не ввести потребителя в заблуждение, на упаковку необходимо наносить номинальную мощность, тип лампы накаливания, которую заменяет данный источник света, и количество люменов, которые должны соответствовать ГОСТу.

Вадим ПАВЛОВ, 
старший инженер-светотехник компании «Световые Технологии»:

— На каждое светотехническое изделие должен иметься технический паспорт или так называемый datasheet, в котором подробно указаны различные характеристики продукта. Также важно обращать внимание на наличие сертификатов соответствия, тем самым появляется возможность защитить клиента от недобросовестных производителей, которые массово внедряют продукцию с искусственно завышенными светотехническими параметрами, и тем самым вводят в заблуждение людей без профильного технического образования.

Редакция журнала 
«Электротехнический рынок»

Источник: Журнал «Электротехнический рынок», №5-6, 2014. 

Светодиодные лампы для дома. Как выбрать , технические характеристики, устройство

Содержание:

В последние десятилетия можно наблюдать настоящий бум на рынке светотехнической продукции. Новые светоизлучающие приборы становятся все более экономичными. Большими скачками увеличивается срок их службы. Новейшие разработки в области источников света мгновенно осваиваются промышленностью.

Казалось совсем недавно на рынок пришли так называемые «энергосберегающие» компактные люминесцентные лампы. Эти источники света экономичнее ламп накаливания, как минимум, в четыре раза. А срок их службы в десять и более раз дольше, чем у лампочки Ильича. На появление энергосберегающих ламп отреагировал не только рынок. Правительства многих стран, стремясь снизить энергоемкость ВВП, ввели ограничения на выпуск ламп накаливания большой мощности.

Спустя всего несколько лет после появления на рынке компактных люминесцентных ламп светотехническая промышленность стала активно предлагать новые источники света – светодиодные лампы. Технические характеристики этих источников света настолько превышают возможности компактных люминесцентных ламп, что многие специалисты предрекают скорое вытеснение энергосберегающих ламп с рынка.

Рис1

Для того чтобы читатель мог сделать осознанный выбор светодиодных ламп, в этом материале мы постараемся рассказать об их устройстве, технических характеристиках и преимуществах перед другими источниками света.

Как устроена светодиодная лампа

Большинство светодиодных ламп бытового применения имеют габариты и форму, мало отличающиеся от габаритов и формы обычных ламп. Светодиодные лампы выпускаются под любые виды патронов. Наиболее часто можно встретить лампы, рассчитанные под обычный резьбовой патрон Эдисона Е14 или Е27. Поэтому замена ламп накаливания или энергосберегающих ламп на светодиодные не вызывает ни каких затруднений.

Источниками света в светодиодных лампах являются сверхяркие светодиоды (LED). Светодиоды представляют собой полупроводниковые приборы, которые при протекании через них постоянного электрического тока испускают свет. LED бывают монохромными и, так называемыми, «белыми».

Монохромные светодиоды излучают свет одного цвета. Промышленность выпускает красные, зеленые, синие, оранжевые, инфракрасные, ультрафиолетовые и другие LED. В светодиодных лампах обычно используются красные, зеленые и синие светодиоды, собранные в один RGB модуль (RGB – английская аббревиатура названий цветов). Особенность RGB модулей состоит в том, что изменяя яркость свечения каждого монохромного LED можно получить множество оттенков света.

Рис2

Сверхяркие белые светодиоды представляют собой пластинку полупроводника, размещенную на металлической подложке. Подложка служит радиатором для отвода избыточного тепла от кристалла. Полупроводниковый кристалл «белого» светодиода излучает свет синей части спектра. Для преобразования синего света в белый на пластину наносится композиция из нескольких люминофоров. Изменяя состав люминофоров можно получать различные оттенки белого цвета. Сверхяркие белые светодиоды могут излучать свет различных оттенков в диапазоне от желтовато-теплого до голубовато-холодного. На рисунке показано устройство светодиодной лампы со сверхьяркими белыми светодиодами.

Рис3

Светодиодные лампы могут быть выполнены как на основе белых светодиодов, так и с применением RGB LED. Во втором случае имеется возможность регулировки цветов и оттенков излучаемого света.

Как уже упоминалось, светодиоды работают на постоянном токе. Падение напряжения на приборе в рабочем режиме не превышает 3 – 3.5 вольт. Поэтому применяя различные виды соединений LED (последовательное, параллельное) можно создавать светоизлучающие приборы, питающиеся от низковольтных источников постоянного тока, например аккумуляторов. Для питания от обычной сети переменного тока в светодиодные лампочки встраивают электронные преобразователи напряжения (драйверы). Современные драйверы могут работать в широком диапазоне сетевых напряжений без заметного изменения яркости свечения ламп. Это качество LED ламп особенно полезно в местах с нестабильной сетью электроснабжения.

Важной особенностью LED является то, что их рабочая температура не превышает 60 – 70о С. Поэтому светодиодные лампы являются наименее пожароопасными по сравнению с другими типами ламп. С другой стороны поддержание температуры в заданных пределах требует эффективного отвода тепла от кристаллов светодиодов. Осуществить эффективное охлаждение без металлических радиаторов невозможно. Поэтому, если вам предстоит выбрать светодиодные лампы для дома, обратите внимание на наличие радиатора в конструкции лампы и ее вес. Часто недобросовестные производители, в целях экономии, имитируют наличие радиатора с помощью пластмассовых элементов оформления корпуса осветительного прибора. Такие «левые» лампы весят намного меньше, чем лампы той же мощности от авторитетных производителей.

Характеристики светодиодных ламп

Характеристики любых ламп можно условно разделить на эксплуатационные и светотехнические.

К эксплуатационным характеристикам можно отнести световую отдачу и срок службы прибора. По эксплуатационным характеристикам светодиодным лампам практически нет равных.

Световая отдача это величина излучаемого светового потока в расчете на один ватт затраченной электроэнергии. Для светодиодных ламп световая отдача составляет 100 – 150 лм/Вт. Для сравнения: у ламп накаливания эта величина не превышает 15-ти, а у люминесцентных ламп 40 – 60 лм/Вт. Если выразить этот параметр через коэффициент полезного действия, то у лучших образцов LED КПД может приближаться к 30 – 40%.

Что касается срока службы LED, то он может составлять до 50 000 часов непрерывной работы. Срок службы светодиодных ламп не зависит от количества включений и отключений. Для сравнения: у ламп накаливания срок службы составляет 1000 часов, а у компактных люминесцентных ламп он равен примерно 10 – 15 тысяч часов. Следует добавить, что под сроком службы LED производители подразумевают не утрату работоспособности прибора, а снижение световой отдачи на 10 – 15%. То есть, по истечении гарантийного срока яркость свечения лампы немного уменьшится, но она продолжит работать.

Основными светотехническими характеристиками ламп являются:

  • индекс (коэффициент) цветопередачи;
  • цветовая температура;
  • коэффициент пульсаций светового потока.

Индекс цветопередачи (CRI) сложная светотехническая характеристика, во многом основанная на субъективном восприятии цвета человеком. Не вдаваясь в подробности методик измерения индекса можно сказать, что он показывает, насколько восприятие цвета предмета при искусственном освещении отличается от восприятия цвета при естественном освещении. Хорошим считается коэффициент цветовой передачи равный 80 единиц, отличным – 90.

Цветовая температура указывает, цвета какой части спектра преобладают в световом потоке лампы. Цветовая температура измеряется в градусах Кельвина. Диапазон значений цветовой температуры светодиодных ламп составляет от 2700К до 8000К. Заметим, что между цветовой температурой и коэффициентом цветопередачи источника света существует определенная зависимость.

Коэффициент пульсаций светового потока зависит от пульсаций напряжения питающего лампу. Этот коэффициент показывает, на сколько процентов отличаются световые потоки при максимальной и минимальной яркости свечения. Большой коэффициент пульсаций существенно влияет на утомляемость человека. У светодиодных ламп коэффициент пульсаций обычно не велик, так как они питаются от источников постоянного напряжения.

Как правильно выбрать светодиодную лампу

Когда люди спрашивают, как выбрать светодиодную лампу? Их в первую очередь интересует, какой мощности она должна быть. Этот вопрос можно решить двумя способами. Если вам известен световой поток лампы подлежащей замене, то нужно выбирать светодиодную лампу, выдающую такой же световой поток. Величина светового потока обычно указывается на упаковке или в инструкции по эксплуатации. Если световой поток старой лампы вам неизвестен, то можно разделить ее электрическую мощность на коэффициент пересчета. Для лампы накаливания этот коэффициент можно считать равным 8, а для энергосберегающей лампы можно применить коэффициент 2. То есть если мы меняем лампу накаливания мощностью 100 Вт, то нам подойдет светодиодная лампа мощность 100:8≈12.

Второй момент, на который следует обращать внимание, выбирая светодиодные лампы для дома, это световая температура. Для освещения общего применения можно порекомендовать лампы со световой температурой 2700К –3500К. Такая световая температура считается нейтральной и наиболее комфортна для человеческого глаза. Лампы декоративной подсветки могут иметь другую световую температуру в зависимости от функций, которую они выполняют.

Что касается индекса цветопередачи, то его лучше выбирать в районе 80 – 90. А вот коэффициент пульсаций должен быть минимально возможным. Во всяком случае, он не должен превышать 20%.

Выбирая светодиодные лампы для дома, лучше отдавать предпочтение изделиям фирм, которые имеют устойчивую репутацию на рынке. Так же можно обращать внимание на лампы малоизвестных производителей, которые при изготовлении своей продукции используют светодиоды известных фирм из Германии, Южной Кореи или Японии.

Приобретая светодиодные лампы для дома нужно обращать внимание на возможность работы лампы совместно с регулятором освещенности (диммером) или выключателем с подсветкой. К сожалению, многие модели лишены такой возможности и из-за этого могут возникнуть казусы в виде периодических вспышек светодиодной лампочки в отключенном состоянии.

В заключение нужно сказать, что переход на светодиодные лампы действительно дают реальную экономию. Недаром энергетики предприятий и коммунальных служб массово переходят на светодиодные источники света.

Лампа накаливания технические характеристики

Лампы накаливания общего назначения (ДОН) в настоящее время являются наиболее массовыми источниками света. Они предназначены для работы в сетях переменного тока частотой 50 Гц с номинальным напряжением 220 В. Средняя продолжительность горения ламп — 1000 часов.

В обозначении лампы буквы и цифры означают:

В — вакуумная;
Б — биспиральная с аргоновым наполнением;
БО — биспиральная с аргоновым наполнением в опаловой колбе;
Г — моноспиральная с аргоновым наполнением;
РН — лампы накаливания различного назначения;
220—230 — диапазон напряжения сети, В, в котором рекомендуется эксплуатировать лампу;
100 — мощность лампы, Вт.

Таблица 1. Технические характеристики ламп накаливания

*Возможно изготовление ламп в опаловых колбах.

*Возможно изготовление с цоколями В 22d.

Примечание. D — диаметр колбы; L — высота лампы.

Производитель: ОАО ‘Лисма” (Мордовия).

Лампы накаливания зеркальные

Зеркальные лампы накаливания (лампы-светильники) предназначены для освещения помещений с высокими пролетами, подсветки витрин и рекламы, используются при фото- и киносъемках и для других целей. Пространственное распределение светового потока лампы определяется формой колбы, на внутреннюю поверхность которой нанесено зеркальное покрытие. Зеркальные лампы накаливания выпускаются с концентрированной (ЭК), широкой (ЗШ), и косинусной (Эд) кривой светораспределения.

Зеркальные лампы типа ИКЗ являются высокоэффективным источником инфракрасного излучения и применяются для обогрева молодняка животных, в технологических процессах сушки продуктов, лаков, красок и других целей.

Таблица 2. Технические характеристики ламп накаливания типа ЭК и ИКЗ

Лампа накаливания – первый электрический осветительный прибор, играющий важную роль в жизнедеятельности человека. Именно она позволяет людям заниматься своими делами независимо от времени суток.

По сравнению с остальными источниками света такое устройство характеризуется простотой конструкции. Световой поток излучается вольфрамовой нитью, расположенной внутри стеклянной колбы, полость которой заполнена глубоким вакуумом. В дальнейшем для увеличения долговечности вместо вакуума в колбу стали закачивать специальные газы — так появились галогеновые лампы. Вольфрам — термостойкий материал с большой температурой плавления. Это очень важно, поскольку для того, чтобы человек увидел свечение, нить должна сильно нагреться за счет проходящего через нее тока.

История создания

Интересно, что в первых лампах использовался не вольфрам, а ряд других материалов, включая бумагу, графит и бамбук. Поэтому, несмотря на то, что все лавры за изобретение и усовершенствование лампы накаливания принадлежат Эдисону и Лодыгину, приписывать все заслуги только им — неправильно.

Писать о неудачах отдельных ученых не станем, но приведем основные направления, к которым прилагали усилия мужи того времени:

  1. Поиски лучшего материала для нити накаливания. Нужно было найти такой материал, который одновременно был устойчив к возгоранию и характеризовался высоким сопротивлением. Первая нить была создана из волокон бамбука, которые покрывались тончайшим слоем графита. Бамбук выступал в качестве изолятора, графит — токопроводящей среды. Поскольку слой был малым, то существенно возрастало сопротивление (что и требовалось). Все бы хорошо, но древесная основа угля приводила к быстрому воспламенению.
  2. Далее исследователи задумались над тем, как создать условия строжайшего вакуума, ведь кислород — важный элемент для процесса горения.
  3. После этого нужно было создать разъемные и контактные компоненты электрической цепи. Задача усложнялась из-за использования слоя графита, характеризующегося высоким сопротивлением, поэтому ученым пришлось использовать драгоценные металлы — платину и серебро. Так повышалась проводимость тока, но стоимость изделия была чересчур высока.
  4. Примечательно, что резьба цоколя Эдисона используется и по сей день — маркировка E27. Первые способы создания контакта включали пайку, но при таком раскладе сегодня говорить о быстро заменяемых лампочках было бы сложно. А при сильном нагреве подобные соединения быстро бы распадались.

В наше время популярность подобных ламп падает в геометрической прогрессии. В 2003 году в России была увеличена амплитуда питающего напряжения на 5 %, к сегодняшнему дню этот параметр составляет уже 10 %. Это привело к сокращению срока эксплуатации лампы накаливания в 4 раза. С другой стороны, если вернуть напряжение на эквивалентное значение вниз, то существенно сократится отдача светового потока — до 40 %.

Вспомните учебный курс — еще в школе преподаватель физики ставил опыты, демонстрируя, как увеличивается свечение лампы при повышении силы тока, подающегося на вольфрамовую нить. Чем выше сила тока, тем сильнее выброс излучения и больше тепла.

Принцип действия

Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.

Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр — несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.

Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.

Строение

Обычная лампа состоит из следующих конструктивных элементов:

  • колба;
  • вакуум или инертный газ, закачиваемый внутрь нее;
  • нить накала;
  • электроды — выводы тока;
  • крючки, необходимые для удерживания нити накала;
  • ножка;
  • предохранитель;
  • цоколь, состоящий из корпуса, изолятора и контакта на донышке.

Помимо стандартных исполнений из проводника, стеклянного сосуда и выводов, существуют лампы специального назначения. В них вместо цоколя используются другие держатели или добавляется дополнительная колба.

Предохранитель обычно изготавливается из сплава феррита и никеля и помещается в разрыв на одном из выводов тока. Зачастую он расположен в ножке. Его основное предназначение — защита колбы от разрушения в случае обрыва нити. Связано это с тем, что в случае ее обрыва образуется электрическая дуга, приводящая к плавлению остатков проводника, которые попадают на стеклянную колбу. Из-за высокой температура она может взорваться и вызвать возгорание. Впрочем, долгие годы доказали низкую эффективность предохранителей, поэтому они стали эксплуатироваться реже.

Колба

Стеклянный сосуд используется для защиты нити накаливания от окисления и разрушения. Габаритные размеры колбы подбирают в зависимости от скорости осаждения материала, из которого производится проводник.

Газовая среда

Если раньше вакуумом заполнялись все без исключения лампы накаливания, то сегодня такой подход применяют лишь для маломощных источников света. Более мощные устройства заполняются инертным газом. Молярная масса газа влияет на излучение тепла нитью накаливания.

В колбу галогенных ламп закачиваются галогены. Вещество, которым покрыта нить накала, начинает испаряться и взаимодействовать с расположенными внутри сосуда галогенами. В результате реакции образуются соединения, которые повторно разлагаются и вещество вновь возвращается на поверхность нити. Благодаря этому появилась возможность повысить температуру проводника, увеличив коэффициент полезного действия и срок эксплуатации изделия. Также такой подход позволил сделать колбы более компактными. Недостаток конструкции связан с изначально малым сопротивлением проводника при подаче электрического тока.

Нить накала

По форме нить накаливания может быть разной — выбор в пользу той или иной связан со спецификой лампочки. Зачастую в них применяют нить с круглым сечением, закрученную в спираль, гораздо реже — ленточные проводники.

Современная лампа накаливания работает от нити из вольфрама или осмиево-вольфрамового сплава. Вместо обычных спиралей могут закручиваться биспирали и триспирали, что стало возможным за счет повторного закручивания. Последнее приводит к уменьшению теплового излучения и повышению КПД.

Технические характеристики

Интересно наблюдать за зависимостью световой энергии и мощности лампы. Изменения не линейны — до 75 Вт световая отдача увеличивается, при превышении — снижается.

Одно из преимуществ таких источников света – равномерное освещение, поскольку практически во всех направлениях свет излучается с одинаковой силой.

Еще одно достоинство связано с пульсированием света, которое при определенных значениях приводит к значительной утомляемости глаз. Нормальным значением считают коэффициент пульсации, не превышающий 10 %. Для ламп накаливания параметр максимум достигает 4 %. Самый худший показатель — у изделий мощностью 40 Вт.

Среди всех доступных электрических осветительных приборов лампы накаливания нагреваются сильнее. Большая часть тока преобразуется в тепловую энергию, поэтому прибор больше похож на обогреватель, чем на источник света. Световая отдача находится в диапазоне от 5 до 15 %. По этой причине в законодательстве прописаны определенные нормы, запрещающие, к примеру, использовать лампы накаливания более 100 Вт.

Обычно для освещения одной комнаты достаточно лампы на 60 Вт, которая характеризуется небольшим нагревом.

При рассмотрении спектра излучения и сравнении его с естественным освещением можно сделать два важных замечания: световой поток таких ламп содержит меньше синего и больше красного света. Тем не менее, результат считается приемлемым и не приводит к утомлению, как в случае с источниками дневного света.

Эксплуатационные параметры

При эксплуатации ламп накаливания важно учитывать условия их использования. Их можно применять в помещениях и на открытом воздухе при температуре не менее –60 и не более +50 град. Цельсия. При этом влажность воздуха не должна превышать 98 % (+20 град. Цельсия). Устройства могут работать в одной цепи с диммерами, предназначенными для регулирования световой отдачи за счет изменения интенсивности света. Это дешевые изделия, которые могут быть самостоятельно заменены даже неквалифицированным человеком.

Существует несколько критериев для классификации ламп накаливания, которые будут рассмотрены ниже.

В зависимости от эффективности освещения лампы накаливания бывают (от худших к лучшим):

  • вакуумные;
  • аргоновые или азот-аргоновые;
  • криптоновые;
  • ксеноновые или галогенные с установленным отражателем инфракрасного излучения внутрь лампы, что увеличивает КПД;
  • с покрытием, предназначенным для преобразования инфракрасного излучения в видимый спектр.

Намного больше разновидностей ламп накаливания, связанных с функциональным назначением и конструктивными особенностями:

  1. Общее назначение — в 70-х гг. прошлого столетия они назывались «нормально-осветительными лампами». Самая распространенная и многочисленная категория — изделия, применяемые для общего и декоративного освещения. С 2008 года выпуск таких источников света существенно сократился, что было связано с принятием многочисленных законов.
  2. Декоративное назначение. Колбы таких изделий выполняются в форме изящных фигур. Чаще всего встречаются свечеобразные стеклянные сосуды с диаметром до 35 мм и сферические (45 мм).
  3. Местное назначение. По конструкции идентичны первой категории, но питаются от уменьшенного напряжения — 12/24/36/48 В. Обычно применяются в переносных светильниках и приборах, освещающих верстаки, станки и т. п.
  4. Иллюминационные с окрашенными колбами. Зачастую мощность изделий не превышает 25 Вт, а для окрашивания внутренняя полость покрывается слоем неорганического пигмента. Гораздо реже можно встретить источники света, наружная часть которых окрашивается цветным лаком. В таком случае пигмент очень быстро выцветает и осыпается.

  1. Зеркальные. Колба выполнена в специальной форме, которая покрыта отражающим слоем (к примеру, методом распыления алюминия). Данные изделия используются для перераспределения светового потока и повышения эффективности освещения.
  2. Сигнальные. Их устанавливают в светосигнальные изделия, предназначенные для отображения какой-либо информации. Характеризуются низкой мощностью и рассчитаны на продолжительную эксплуатацию. На сегодняшний день практически бесполезны из-за доступности светодиодов.
  3. Транспортные. Еще одна обширная категория ламп, используемых в транспортных средствах. Характеризуются высокой прочностью, устойчивостью к вибрациям. В них применяют специальные цоколи, гарантирующие прочное крепление и возможность быстрой замены в стесненных условиях. Могут питаться от 6 В.
  4. Прожекторные. Высокомощные источники света до 10 кВт, характеризующиеся высокой световой отдачей. Спираль укладывается компактно, чтобы обеспечить лучшую фокусировку.
  5. Лампы, применяемые в оптических приборах, — к примеру, кинопроекционная или медицинская техника.

к содержанию ↑

Специальные лампы

Также существуют более специфические разновидности ламп накаливания:

  1. Коммутаторные — подкатегория сигнальных ламп, применяемых в коммутаторных панелях и выполняющих функции индикаторов. Это узкие, продолговатые и малогабаритные изделия, имеющие параллельные контакты гладкого типа. За счет этого могут помещаться в кнопки. Маркируются как «КМ 6-50». Первое число указывает на вольтаж, второе — ампераж (мА).
  2. Перекальная, или фотолампа. Данные изделия используются в фототехнике для нормированного форсированного режима. Характеризуется высокими световой отдачей и цветовой температурой, но малым сроком эксплуатации. Мощность советских ламп достигала 500 Вт. В большинстве случаев колба матируется. Сегодня практически не используются.
  3. Проекционные. Применялись в диапроекторах. Высокая яркость.

Двухнитевая лампа бывает нескольких разновидностей:

  1. Для автомобилей. Одна нить используется для ближнего, другая — для дальнего света. Если рассматривать лампы для задних фонарей, то нити могут использоваться для стоп-сигнала и габаритного огня соответственно. Дополнительный экран может отсекать лучи, которые в лампе ближнего света могут слепить водителей встречных автомобилей.
  2. Для самолетов. В посадочной фаре одна нить может использоваться для малого света, другая — для большого, но требует внешнего охлаждения и непродолжительной эксплуатации.
  3. Для железнодорожных светофоров. Две нити необходимы для повышения надежности — если перегорит одна, то будет светиться другая.

Продолжим рассматривать специальные лампы накаливания:

  1. Лампа-фара — сложная конструкция для подвижных объектов. Используется в автомобильной и авиационной технике.
  2. Малоинерционная. Содержат тонкую нить накаливания. Применялась в звукозаписывающих системах оптического типа и в некоторых видах фототелеграфа. В наше время используется редко, поскольку есть более современные и улучшенные источники света.
  3. Нагревательная. Применяется в качестве источника тепла в лазерных принтерах и копирах. Лампа имеет цилиндрическую форму, закрепляется во вращающемся металлическом валу, к которому прикладывается бумага с тонером. Вал передает тепло, что приводит к расплыванию тонера.

к содержанию ↑

Электрический ток в лампах накаливания преобразуется не только в видимый для глаза свет. Одна часть идет на излучение, другая трансформируется в тепло, третья — на инфракрасный свет, который не фиксируется зрительными органами. Если температура проводника составляет 3350 К, то КПД лампы накаливания составит 15 %. Обычная лампа на 60 Вт с температурой 2700 К характеризуется минимальным КПД — 5 %.

Коэффициент полезного действия усиливается степенью нагрева проводника. Но чем выше будет нагрев нити, тем меньше срок эксплуатации. К примеру, при температуре 2700 К лампочка просветит 1000 часов, 3400 К — в разы меньше. Если повысить напряжение питания на 20 %, то свечение усилится в два раза. Это нерационально, поскольку срок эксплуатации сократится на 95 %.

Плюсы и минусы

С одной стороны, лампы накаливания являются самыми доступными источниками света, с другой – характеризуются массой недостатков.

  • низкая стоимость;
  • нет необходимости в применении дополнительных приспособлений;
  • простота использования;
  • комфортная цветовая температура;
  • устойчивость к повышенной влажности.
  • недолговечность — 700–1000 часов при соблюдении всех правил и рекомендаций по эксплуатации;
  • слабая световая отдача — КПД от 5 до 15 %;
  • хрупкая стеклянная колба;
  • возможность взрыва при перегреве;
  • высокая пожарная опасность;
  • перепады напряжения существенно сокращают срок эксплуатации.

Лампа накаливания Arihant 100 Вт 100 Вт, цоколь: E27, 10 рупий / штука

Лампа накаливания Arihant 100 Вт 100 Вт, цоколь: E27, 10 рупий / шт | ID: 20914238733

Спецификация продукта

Торговая марка Arihant
Мощность 100 Вт
Базовый тип E27
Цветовая температура 008000
Материал корпуса Алюминий
Коробка 150 шт.

Описание продукта

Используя наших опытных и квалифицированных специалистов, мы активно предлагаем нашим уважаемым клиентам модную линейку ламп накаливания 100 Вт по доступным ценам.

Заинтересовал этот товар? Получите последнюю цену у продавца

Связаться с продавцом

Изображение продукта


О компании

Год основания 2002

Юридический статус Фирмы Физическое лицо — Собственник

Характер бизнеса Производитель

Количество сотрудников До 10 человек

Годовой оборот Rs.50 лакх — 1 крор

Участник IndiaMART с августа 2014 г.

GST07AAEPJ3549F1ZU

Основанная в 2002 году, Arihant Enterprises является ведущим производителем ламп , ламп CFL, светодиодных ламп, корпусов светодиодных ламп и т. Д. . Ассортимент предлагаемой нами продукции отличается высочайшим качеством, что вызывает доверие клиентов. Мы рассматриваем возможность прохождения каждого готового продукта через строгие процессы проверки, чтобы гарантировать, что поставки, производимые нашим клиентом, являются абсолютно безупречными.

Видео компании

Вернуться к началу 1

Есть потребность?
Получите лучшую цену

1

Есть потребность?
Получите лучшую цену

% PDF-1.3 % 5 0 obj > эндобдж xref 5 142 0000000016 00000 н. 0000003515 00000 н. 0000003775 00000 н. 0000005072 00000 н. 0000005120 00000 н. 0000005192 00000 н. 0000005240 00000 п. 0000005314 00000 н. 0000005361 00000 п. 0000005408 00000 н. 0000005455 00000 н. 0000005502 00000 н. 0000005549 00000 н. 0000005596 00000 н. 0000005643 00000 п. 0000005690 00000 н. 0000005750 00000 н. 0000005799 00000 н. 0000005847 00000 н. 0000005895 00000 н. 0000005943 00000 н. 0000005990 00000 н. 0000006037 00000 н. 0000006084 00000 н. 0000006131 00000 п. 0000006178 00000 п. 0000010655 00000 п. 0000015206 00000 п. 0000019361 00000 п. 0000019780 00000 п. 0000020305 00000 п. 0000024468 00000 п. 0000025073 00000 п. 0000025443 00000 п. 0000025772 00000 п. 0000026344 00000 п. 0000031016 00000 п. 0000035434 00000 п. 0000035843 00000 п. 0000040332 00000 п. 0000045423 00000 п. 0000045769 00000 п. 0000046025 00000 п. 0000046062 00000 п. 0000046256 00000 п. 0000046512 00000 п. 0000046549 00000 п. 0000046611 00000 п. 0000046677 00000 п. 0000046751 00000 п. 0000046817 00000 п. 0000046891 00000 п. 0000046957 00000 п. 0000047039 00000 п. 0000047109 00000 п. 0000047339 00000 п. 0000047376 00000 п. 0000047790 00000 н. 0000047920 00000 п. 0000048124 00000 п. 0000048320 00000 н. 0000048373 00000 п. 0000048426 00000 п. 0000048488 00000 н. 0000048541 00000 п. 0000048594 00000 п. 0000048707 00000 п. 0000051300 00000 п. 0000051679 00000 п. 0000055598 00000 п. 0000056101 00000 п. 0000056386 00000 п. 0000059358 00000 п. 0000059806 00000 п. 0000061768 00000 п. 0000062131 00000 п. 0000063140 00000 п. 0000063452 00000 п. 0000063691 00000 п. 0000065840 00000 п. 0000066237 00000 п. 0000068874 00000 п. 0000069270 00000 п. 0000069374 00000 п. 0000069469 00000 п. 0000069624 00000 п. 0000069722 00000 п. 0000069817 00000 п. 0000069959 00000 н. 0000070042 00000 п. 0000070137 00000 п. 0000070280 00000 п. 0000070356 00000 п. 0000070451 00000 п. 0000070594 00000 п. 0000070693 00000 п. 0000070794 00000 п. 0000070914 00000 п. 0000071067 00000 п. 0000112948 00000 н. 0000131204 00000 н. 0000131477 00000 н. 0000131694 00000 н. 0000131901 00000 н. 0000132108 00000 н. 0000132328 00000 н. 0000132525 00000 н. 0000132735 00000 н. 0000182206 00000 н. 0000183224 00000 н. 0000197554 00000 н. 0000215684 00000 н. 0000216643 00000 н. 0000224182 00000 н. 0000230562 00000 н. 0000236848 00000 н. 0000246822 00000 н. 0000256406 00000 н. 0000268683 00000 н. 0000278250 00000 н. 00002

00000 н. 0000304353 00000 п. 0000312416 00000 н. 0000312680 00000 н. 0000312972 00000 н. 0000313303 00000 н. 0000313544 00000 н. 0000313867 00000 н. 0000314146 00000 н. 0000314460 00000 н. 0000314753 00000 н. 0000315456 00000 н. 0000317395 00000 н. 0000319081 00000 н. 0000321708 00000 н. 0000324315 00000 н. 0000324563 00000 н. 0000326496 00000 н. 0000326730 00000 н. 0000326945 00000 н. 0000327160 00000 н. 0000003136 00000 п. b] 8э0).tg + 2 [ɠ $ C0Cwm7 [VvkJ1_5 궖 yqLTLr3gTc8 (Qi {[! e62`,
iF 0

Выбор правильной лампы | Умный дом |

Появление более эффективных технологий освещения привело к большему выбору и значительному энергопотреблению экономия. В то же время то, что раньше было простой рутинной покупкой, стало намного сложнее. Это не значит, что это должно быть сложно, и, глядя на позитивную сторону, большинство этих новых лампочек прослужат намного дольше, чем традиционные лампы накаливания, поэтому вы не так часто найдете их в своем списке покупок.В этом разделе мы рассмотрим каждое из основных соображений, связанных с выбором правильной лампы для каждого из ваших основных осветительных приборов.

При покупке новых ламп обязательно обращайте внимание на этикетку «Факты об освещении», которая требуется на большинстве распространенных ламп с винтовым креплением. Знак ENERGY STAR поможет идентифицировать высококачественные энергоэффективные КЛЛ и светодиодные лампы. Чтобы соответствовать требованиям, лампы должны соответствовать спецификациям по энергопотреблению, светоотдаче, сроку службы лампы и другим рабочим характеристикам. Ищите ENERGY STAR, чтобы убедиться, что вы получаете лампы, которые были протестированы и сертифицированы на соответствие широкому спектру требований к рабочим характеристикам.Полный список ламп ENERGY STAR доступен на сайте energystar.gov.

Световой поток

Привычные значения мощности, которые мы все использовали для выбора лампочек с детства, устаревают с постепенным отказом от традиционных ламп накаливания и более широким внедрением ламп, которые используют очень разное количество энергии для обеспечения аналогичного уровня света. Хотя большинство производителей маркируют свои галогенные лампы накаливания, КЛЛ и светодиодные лампы эквивалентной мощностью лампы накаливания — 40 Вт, 60 Вт, 75 Вт и 100 Вт, полезно знать, как разные мощности отражаются в светоотдаче (или люменах).В дальнейшем люмен заменит мощность в качестве ключевой характеристики для определения правильных лампочек. В этом есть большой смысл; в конце концов, когда вы покупаете лампочку, вы стремитесь получить определенное количество света, а не предписанное энергопотребление. Приведенная ниже таблица поможет вам подобрать лампы накаливания с альтернативными технологиями, чтобы получить такой же уровень освещенности.

Эквивалентная мощность лампы
Традиционная лампа накаливания Типичный световой поток Галогенная лампа накаливания Компактный люминесцентный светодиод
ВАТТ ЛЮМЕН ВАТТ ВАТТ ВАТТ
40 450 29 9-13 6-8
60 800 43 13–15 9-11
75 1,100 53 18–25 13-15
100 1,600 72 23–30 18-20
150 2,600 30–52

Эффективность

КПД лампы накаливания, называемый КПД, выражается в светоотдаче в люменах на ватт потребляемой энергии.В то время как традиционные лампы накаливания дают около 15 люмен на ватт (lpw), галогенные лампы накаливания обеспечивают около 20 lpw. КЛЛ представляют собой скачок в эффективности, предлагая от 55 до 65 литров в неделю. По состоянию на 2017 год светодиоды могут поддерживать 78–130 л / Вт в зависимости от продукта и области применения, и ожидается дальнейшее повышение эффективности.

Цветовая температура

Оттенок белого света, излучаемого лампой, называется коррелированной цветовой температурой — ищите значение, указанное в Кельвинах (K) на упаковке лампы.Более низкие значения Кельвина (в диапазоне от 2700K до 3000K) соответствуют более теплому свету, сравнимому с обычной лампой накаливания, которая усиливает желтые и красные тона. Лампы с более высокими значениями (обычно 3500K, 4100K, 5000K и 6500K) излучают более холодный белый свет, который усиливает синий и зеленый цвета. Эти лампы часто называют лампами естественного белого света или лампами дневного света. В следующей таблице поясняются некоторые термины, которые могут встретиться на упаковке лампы. Попробуйте несколько раз с семьей и выберите, что вам больше нравится.Например, вам может понравиться «мягкий белый» для вашей гостиной и «холодный белый» для вашей ванной комнаты. Если в магазине, в котором вы ищете, недостаточно широкий выбор, предложите ему предложить больше предложений и попробуйте где-нибудь еще. Настраиваемые светодиодные светильники позволяют пользователю регулировать цветовую температуру в широком диапазоне, поэтому вы можете регулировать цветовую температуру для разных настроений или времени суток, как при использовании диммера для управления светоотдачей. Настольные и торшеры, а также потолочные светильники с такой возможностью становятся все более доступными.

Другие соображения

Срок службы лампы. Ожидаемый срок службы может быть важным фактором при выборе ламп для труднодоступных светильников, а также ламп, которые используются нечасто. Светодиоды и КЛЛ имеют долгий ожидаемый срок службы: от 10 000 до 25 000 часов для светодиодов и от 8 000 до 10 000 часов для КЛЛ. Эти долговечные лампы действительно окупятся в наиболее часто используемых светильниках, а также в светильниках с высокими потолками или в других неудобных местах. Галогенные лампы накаливания обычно работают в течение 1000 часов; Версии с увеличенным сроком службы могут работать до 3000 часов.Выберите долговечные светодиоды для наиболее часто используемых светильников. Менее дорогие светодиоды с более коротким сроком службы (около 10 000 часов) — хороший выбор для туалетов или других помещений, где свет редко включается дольше нескольких минут. Короткие рабочие циклы могут отрицательно сказаться на сроке службы КЛЛ, поэтому они не подходят для этих пространств.

Затемнение. Практически все лампы накаливания и большинство светодиодных ламп имеют регулировку яркости. Что касается светодиодов, убедитесь, что диммер совместим с выбранной вами лампой.Никогда не используйте КЛЛ с диммерами, если лампочка не помечена как регулируемая.

Прочность. Светодиоды — отличный вариант для фонарей, фар и уличных фонарей для пешеходных дорожек. Они не только потребляют очень мало энергии и служат дольше, они также обладают ударопрочностью и ударопрочностью, а их характеристики не ухудшаются из-за низких температур или влажности.

Декоративное освещение . Во время праздников большинство коммунальных предприятий испытывают значительный всплеск потребления электроэнергии из-за освещения рождественских елок, дворов и других украшений.Это означает большее загрязнение воздуха и больше ваших денег для коммунальных предприятий. Светодиодные гирлянды в настоящее время широко доступны во многих формах и размерах, в белом цвете или в различных цветах, включая многоцветные и меняющие цвет наборы, что обеспечивает более прочную и низкоэнергетическую альтернативу. Они могут стоить дороже, но по оценкам одного коммунального предприятия в Калифорнии, использование светодиодных ламп обойдется вам всего в 0,45 доллара в течение курортного сезона, по сравнению с 5 долларами за миниатюрные струнные лампы накаливания и 75 долларов за большие струнные лампы накаливания!

Экологические преимущества. Один светодиод мощностью 10 Вт, используемый вместо галогенной лампы накаливания мощностью 43 Вт, сэкономит около 800 кВтч за весь срок службы. Эта единственная замена устранит выбросы в 1000 фунтов диоксида углерода, 4-6 фунтов диоксида серы и в среднем 8 мг ртути. Если ваша электроэнергия вырабатывается на угольной электростанции — как и половина всей электроэнергии, производимой в США, сокращение выбросов будет почти вдвое.

Экономия
долларов за счет перехода на энергоэффективные лампы
Заменить галогенную лампу накаливания 43 Вт на: Экономия после 1 года Экономия после 2-го года Экономия после 3-го года Экономия после 5-го курса Экономия после 10-го года обучения
13 Вт CFL:
Свет горит 2 часа в день $ 1.11 5,21 долл. США 9,32 $ $ 16,03 $ 35,06
Свет горит 4 часа в день 5,21 долл. США $ 11.92 $ 20,14 35,06 долл. США $ 68,62
Свет горит 8 часов в день $ 11.92 $ 29,85 $ 41,77 $ 68,62 $ 140,24
Свет горит 12 часов в сутки 20 долларов.14 $ 41,77 $ 61.91 $ 100,68 $ 207,37
9-ваттный светодиод:
Свет горит 2 часа в день $ (0,55) $ 3,91 $ 8,36 $ 15,77 $ 36,54
Свет горит 4 часа в день 3,91 $ 11,31 $ 20 долларов.22 $ 36,54 $ 76,57
Свет горит 8 часов в день 11,31 $ $ 27,63 $ 43.94 $ 76,57 $ 158,14
Свет горит 12 часов в сутки $ 20,22 $ 43.94 69,19 $ 115,11 $ $ 238,21
Допущения
Галогенная лампа накаливания CFL светодиод
Мощность лампы (люмен) 750 825 800
Срок службы лампы (часы) 1000 10000 25000
Стоимость лампы ($) $ 1.50 $ 3,00 $ 5.00
Стоимость электроэнергии 11,9 ¢ / кВтч 11,9 ¢ / кВтч 11,9 ¢ / кВтч

Экономика. Поскольку высокоэффективные лампочки экономят электроэнергию и служат дольше, они являются выгодным вложением средств. Чтобы рассчитать свой доход, вам нужно посмотреть как на закупочные, так и на эксплуатационные расходы, чтобы получить общие затраты на жизненный цикл. Вы можете удивиться, узнав, что эксплуатация ламп накаливания стоит намного дороже, чем их покупка.Например, когда вы тратите доллар на галогенную лампу накаливания мощностью 53 Вт (эквивалентную традиционной лампе накаливания на 75 Вт), вы обязуетесь потратить около 5 долларов США на электроэнергию (по 11,9 ¢ / кВтч) сверх этого ожидаемый срок службы лампы — 750 часов. В регионах с высокими ценами на электроэнергию вы можете потратить вдвое больше.

Со светодиодом вы можете потратить 5 долларов на покупку лампы, но в конечном итоге вы сэкономите деньги. Для того же светового потока светодиод будет стоить чуть больше 1 доллара.00 в электричестве, но экономия действительно начинает накапливаться, поскольку вы покупаете намного меньше ламп в течение ожидаемого срока службы светодиода 25 000 часов. Чем дольше используется конкретный осветительный прибор каждый день, тем быстрее окупится его высокоэффективная замена. Убедитесь сами в таблице выше. Даже с одним выключателем вы в течение первого года выйдете вперед по всем лампам, кроме наименее используемых. Только представьте, сколько денег вы сэкономите, если переключите все лампы на светодиоды или КЛЛ!

Готовы купить? Посетите торговую площадку Enervee Marketplace

Партнер

ACEEE, Enervee, упрощает поиск лучших предложений от ваших любимых розничных продавцов на самые энергоэффективные лампочки, отвечающие вашим потребностям.

Знаете ли вы? Энергоэффективные осветительные приборы доступны в широком диапазоне стилей для использования с КЛЛ, линейными люминесцентными лампами и светодиодами. Светильники, разработанные специально для использования с энергоэффективными лампами, будут распределять свет наиболее равномерно.

Лампы накаливания Обычные лампы и трубки

Лампы накаливания Обычные лампы и трубки — Philips

Теперь вы посещаете веб-сайт Philips, посвященный освещению.Вам доступна локализованная версия.

Продолжать

Сортировать по:

По умолчанию A-ZZ-ANewest

{{/ if_checkFilterType}} {{#if_checkFilterType displayType «checkbox»}}

{{отображаемое имя}}

{{#each filterKeys}} {{/каждый}}

b2b-li.d77v2-фильтры-развернуть

b2b-li.d77v2-фильтры-коллапс

{{/ if_checkFilterType}}

Закрывать Показать фильтры

Показать больше фильтров

Показать меньше фильтров

Выбранные критерии фильтрации не дали никаких результатов.Пожалуйста, настройте свои фильтры.

{{/если}} {{#if valueLadder}}

{{valueLadder.label}}

{{/если}} {{название}} {{totalProducts}} {{#if_compare 1 totalProducts}} продукты {{еще}} продукт {{/ if_compare}} {{#if wow}} {{Ух ты}} {{/если}}

Сортировать по:

По умолчанию A-ZZ-ANewest

Выбранные критерии фильтрации не дали никаких результатов.Пожалуйста, настройте свои фильтры.

  • Отметьте продукт, который хотите добавить

  • Отметьте продукт, который хотите добавить

  • Отметьте продукт, который хотите добавить

Отметьте продукт, который хотите добавить

© 2018-2021 Сигнифай Холдинг.Все права защищены.

Интернет-кампус ZEISS Microscopy | Лампы вольфрамово-галогенные

Введение

Источники света накаливания, включая более старые версии с вольфрамовой и углеродной нитью, а также новые, более совершенные вольфрамово-галогенные лампы, успешно использовались в качестве высоконадежных источников света в оптической микроскопии на протяжении многих десятилетий и продолжают оставаться одними из них. предпочтительные механизмы освещения для различных методов визуализации.Старые лампы, оснащенные вольфрамовой проволочной нитью и заполненные инертным газом аргоном, часто используются в студенческих микроскопах для светлопольного и фазово-контрастного изображения, и эти источники могут быть достаточно яркими для некоторых приложений, требующих поляризованного света. Вольфрамовые лампы относительно недороги (по сравнению со многими другими источниками света), их легко заменить, и они обеспечивают адекватное освещение в сочетании с диффузионным фильтром из матового стекла. Эти особенности в первую очередь ответственны за широкую популярность источников света накаливания во всех формах оптической микроскопии.Вольфрамово-галогенные лампы, наиболее совершенная конструкция в этом классе, генерируют непрерывное распределение света в видимом спектре, хотя большая часть энергии, излучаемой этими лампами, рассеивается в виде тепла в инфракрасных длинах волн (см. Рисунок 1). Из-за относительно слабого излучения в ультрафиолетовой части спектра вольфрамово-галогенные лампы не так полезны, как дуговые лампы и лазеры, для исследования образцов, которые необходимо освещать с длинами волн менее 400 нанометров.

Несколько разновидностей вольфрамово-галогенных ламп в настоящее время являются источником освещения по умолчанию (и предоставляются производителем) для большинства микроскопов учебного и исследовательского уровня, продаваемых по всему миру.Они отлично подходят для исследования в светлом поле, микрофотографии и цифровой визуализации окрашенных клеток и срезов тканей, а также для многочисленных применений отраженного света для промышленного производства и разработки. В поляризованных световых микроскопах, используемых для идентификации частиц, анализа волокон и измерения двойного лучепреломления, а также в рутинных петрографических геологических приложениях, обычно используются вольфрамово-галогенные лампы высокой мощности для обеспечения необходимой интенсивности света через скрещенные поляризаторы.Стереомикроскопы также используют преимущества этого повсеместного источника света как в моделях начального, так и в продвинутых моделях. Для визуализации живых клеток с помощью методов усиления контраста (в основном дифференциального интерференционного контраста ( DIC ) и фазового контраста) в составных микроскопах проходящего света наиболее распространенным в настоящее время источником света является вольфрамово-галогенная лампа мощностью 100 Вт. . В долгосрочных экспериментах (обычно требующих от сотен до тысяч снимков) эта лампа особенно стабильна и при нормальных условиях эксплуатации подвержена лишь незначительным уровням временных и пространственных колебаний выходной мощности.

Первые коммерческие лампы накаливания с вольфрамовой нитью были представлены в начале 1900-х годов. Эти передовые нити, которые можно было наматывать, скручивать и эксплуатировать при очень высоких температурах, оказались гораздо более универсальными, чем их предшественники на основе углерода и осмия. Углеродные лампы страдают от быстрого испарения нити накала при температурах выше 2500 ° C, и поэтому для получения света с относительно низкой цветовой температурой (желтоватым) они должны работать при более низких напряжениях.Напротив, вольфрам имеет температуру плавления приблизительно 3380 ° C и может быть нагрет почти до этой температуры в стеклянной оболочке для получения света, имеющего более высокую цветовую температуру и срок службы, чем любой из предыдущих материалов, используемых для нити ламп. Основная проблема с вольфрамовыми лампами заключается в том, что во время нормальной работы нить накала постоянно испаряется с образованием газообразного вольфрама, который медленно уменьшает диаметр нити накала и в конечном итоге затвердевает на внутренней стороне стеклянной колбы в виде почерневшего, покрытого сажей отложений.Со временем мощность лампы уменьшается, поскольку остатки осажденного вольфрама на стенках внутренней оболочки становятся толще и поглощают все большее количество более коротких видимых длин волн. Точно так же потеря вольфрама из нити накала уменьшает диаметр, делая ее настолько тонкой, что в конечном итоге она выходит из строя.

Вольфрамово-галогенные лампы были впервые разработаны в начале 1960-х годов путем замены традиционной стеклянной колбы на кварцевую колбу с более высокими характеристиками, которая была уже не сферической, а трубчатой.Кроме того, внутри оболочки были запечатаны незначительные количества паров йода. Замена стекла с более низкой температурой плавления на кварцевое была необходима, потому что цикл регенерации галогена лампы (подробно описанный ниже) требует, чтобы оболочка поддерживалась при высокой температуре (превышающей допустимую для обычного стекла) для предотвращения образования галогеновых соединений вольфрама. от затвердевания на внутренней поверхности. Из-за новых компонентов эти усовершенствованные лампы первоначально назывались термином иодид кварца .Хотя лампы, содержащие галогены, представляли собой значительное улучшение по сравнению с обычными вольфрамовыми лампами, которые они заменили, новые лампы имели легкий розоватый оттенок, характерный для паров йода. Кроме того, кварц легко подвергается воздействию слабых щелочей, образующихся во время работы, что приводит к преждевременному выходу из строя самой оболочки. В последующие годы соединения брома заменили йод, и оболочка была изготовлена ​​из более новых сплавов боросиликатного стекла для производства вольфрамово-галогенных ламп с еще более длительным сроком службы и более высокой мощностью излучения.

Как обсуждалось ранее, в традиционных лампах накаливания испаренный газообразный вольфрам из нити накала переносится через паровую фазу и непрерывно осаждается на внутренних стенках стеклянной колбы. Этот артефакт затемняет внутренние стенки колбы и постепенно снижает светоотдачу. Чтобы поддерживать потери света на минимально возможном уровне, обычные вольфрамовые лампы накаливания помещают в большие колбы, имеющие достаточную площадь поверхности, чтобы минимизировать толщину осажденного вольфрама, который накапливается в течение срока службы лампы.Напротив, трубчатая оболочка в вольфрамово-галогенных лампах заполнена инертным газом (азотом, аргоном, криптоном или ксеноном), который во время сборки смешивается с небольшим количеством галогенового соединения (обычно бромистого водорода; HBr ). и следовые уровни молекулярного кислорода. Соединение галогена служит для инициирования обратимой химической реакции с вольфрамом, испаренным из нити, с образованием газообразных молекул оксигалогенида вольфрама в паровой фазе. Температурные градиенты, образующиеся в результате разницы температур между горячей нитью накала и более холодной оболочкой, способствуют перехвату и рециркуляции вольфрама в нить накала лампы посредством явления, известного как цикл регенерации галогена (проиллюстрирован на рисунке 2).Таким образом, испаренный вольфрам реагирует с бромистым водородом с образованием газообразных галогенидов, которые впоследствии повторно осаждаются на более холодных участках нити, а не накапливаются медленно на внутренних стенках оболочки.

Цикл регенерации галогена можно разделить на три критических этапа, которые показаны на рисунке 2. В начале работы оболочка лампы, заполняющий газ, парообразный галоген и нить накала изначально находятся в равновесии при комнатной температуре. Когда к лампе подается питание, температура нити накала быстро повышается до ее рабочей температуры (в районе 2500–3000 ° C), в результате чего также нагревается наполняющий газ и оболочка.В конце концов, оболочка достигает стабильной рабочей температуры, которая колеблется от 400 до 1000 C, в зависимости от параметров лампы. Разница температур между нитью накала и оболочкой создает температурные градиенты и конвекционные токи в заполняющем газе. Когда температура оболочки достигает примерно 200–250 ° C (в зависимости от природы и количества паров галогена), начинается цикл регенерации галогена. Атомы вольфрама, испаренные из нити накала (см. Рис. 2 (а)), вступают в реакцию с парами газообразного галогена и остаточными количествами молекулярного кислорода с образованием оксигалогенидов вольфрама (рис. 2 (б)).Вместо того, чтобы конденсироваться на горячих внутренних стенках оболочки, оксигалогенидные соединения циркулируют конвекционными токами обратно в область, окружающую нить, где они разлагаются, в результате чего элементарный вольфрам повторно осаждается на более холодных участках нити (рис. 2 (c)). ). После освобождения от связанного вольфрама соединения кислорода и галогенидов диффундируют обратно в пар, чтобы повторить цикл регенерации. Непрерывная рециркуляция металлического вольфрама между паровой фазой и нитью обеспечивает более равномерную толщину проволоки, чем это было бы возможно в противном случае.

Преимущества цикла регенерации галогенов включают возможность использования меньших по размеру конвертов, которые поддерживаются в чистом состоянии без отложений в течение всего срока службы лампы. Поскольку колба меньше, чем у обычных вольфрамовых ламп, дорогой кварц и родственные ему стеклянные сплавы могут быть более экономичными при производстве. Более прочные кварцевые оболочки позволяют использовать более высокое внутреннее давление газа, чтобы помочь в подавлении испарения нити накала, тем самым позволяя увеличивать температуру нити, что дает более световой выход, и смещает профили излучения, чтобы обеспечить большую долю более желательных длин волн видимого диапазона.В результате вольфрамово-галогенные лампы сохраняют свою первоначальную яркость на протяжении всего срока службы, а также преобразуют электрический ток в свет более эффективно, чем их предшественники. С другой стороны, вольфрам, испаренный и повторно осажденный в цикле регенерации галогена, не возвращается в исходное положение, а скорее скатывается на самые холодные участки нити, что приводит к неравномерной толщине. В конечном итоге лампы выходят из строя из-за уменьшения толщины нити накала в самых жарких регионах. В противном случае вольфрамово-галогенные лампы могут иметь практически бесконечный срок службы.

Ранние исследования показали, что добавление фторидных солей к парам, запечатанным внутри вольфрамово-галогенных ламп, дает на выходе самый высокий уровень видимых длин волн, а также осаждает переработанный вольфрам на участках нити накала с более высокими температурами. Это открытие вселило надежду на то, что вольфрамовые нити могут иметь более однородную толщину в течение значительного увеличения срока службы этих ламп. Кроме того, смещение выходного профиля излучения лампы для включения большего количества видимых длин волн было весьма желательно по сравнению с более низкими цветовыми температурами, обеспечиваемыми аналогичными лампами, имеющими альтернативные галогенные соединения (йодид, хлорид и бромид).К сожалению, было обнаружено, что фторидные соединения агрессивно воздействуют на стекло (обратите внимание, что плавиковая кислота обычно используется для травления стекла), что приводит к преждевременному разрушению оболочки. Таким образом, фторидные соединения не подходят для коммерческих ламп. Как следствие, обсуждаемые выше бромидные соединения по-прежнему являются предпочтительным реагентом для производства вольфрамово-галогенных ламп, но производители ламп продолжают исследовать применение новых смесей заполняющего газа и галогенов для этих очень полезных источников света.

Вольфрамово-галогенные лампы накаливания работают как тепловые излучатели, что означает, что свет генерируется путем нагрева твердого тела (нити накала) до очень высокой температуры. Таким образом, чем выше рабочая температура, тем ярче будет свет. Все лампы на основе вольфрама демонстрируют спектральные профили излучения, напоминающие профили излучения излучателя с черным телом, а спектральный профиль выходной мощности вольфрамово-галогенных ламп качественно аналогичен профилям ламп накаливания с вольфрамовой и углеродной нитью накаливания.Большая часть излучаемой энергии (до 85 процентов) находится в инфракрасной и ближней инфракрасной областях спектра, при этом 15-20 процентов попадают в видимую область (от 400 до 700 нанометров) и менее 1 процента — в ультрафиолетовых длинах волн. (ниже 400 нм). Мягкая стеклянная оболочка обычных ламп накаливания поглощает большую часть ультрафиолетового излучения, генерируемого вольфрамовой нитью, но оболочка из плавленого кварца в вольфрамово-галогенных лампах поглощает очень мало излучаемого ультрафиолетового света выше 200 нанометров.

Значительная часть электроэнергии, потребляемой накаленными вольфрамовыми проволочными волокнами, выводится в виде электромагнитного излучения, охватывающего диапазон длин волн от 200 до 3000 нанометров. Математически полное излучение увеличивается как четвертая степень температуры проволоки, что смещает спектральное распределение в сторону все более коротких (видимых) длин волн в колоколообразном профиле по мере увеличения температуры (см. Рисунки 1 и 3). Несмотря на то, что пиковые длины волн имеют тенденцию перераспределяться из ближнего инфракрасного диапазона ближе к видимой области с более высокими температурами нити накала, точка плавления вольфрама не позволяет большей части выходного излучения смещаться в видимую область спектра.При самых высоких практических рабочих температурах пиковое излучение составляет примерно 850 нанометров, при этом около 20 процентов общего выходного излучения приходится на видимый свет. Инфракрасные волны, составляющие большую часть выходного сигнала, должны рассеиваться как нежелательное тепло. В результате, по сравнению со спектром дневного света (5000+ K), излучаемого ртутными, ксеноновыми и металлогалогенными дуговыми лампами, в галогенидных лампах всегда преобладают красные участки спектра.

В случае идеального чернотельного радиатора воспринимаемая цветовая температура равна истинной (измеренной) температуре материала радиатора.Однако на практике общее излучение обычных источников излучения (таких как лампы накаливания) меньше, чем можно было бы ожидать от черного тела. Цветовая температура выражается в градусах Кельвина ( K ), в то время как фактическая измеренная температура более практично выражается в градусах Цельсия ( C ). Эти два числа различаются на 273,15 линейных единиц градусов, при этом значение Кельвина равно Цельсию плюс 273,15. Более высокие цветовые температуры соответствуют белее свету, который больше напоминает солнечный свет, тогда как более низкие цветовые температуры имеют тенденцию смещать цвета в сторону желтых и красноватых оттенков.Вольфрам не является истинным черным телом в том смысле, что полное испускаемое излучение меньше, чем могло бы наблюдаться в идеальном случае, однако вольфрам является лучшим излучателем (и более близко приближается к истинному черному телу) в более короткой видимой области длин волн, чем в более длинные волны. Для значительной части видимого диапазона длин волн цветовая температура вольфрама выше, чем эквивалентная истинная температура в градусах Цельсия. Таким образом, для измеренной температуры нити накала 3000 C цветовая температура составляет примерно 3080 K.Предел цветовой температуры вольфрама определяется температурой плавления, которая составляет чуть более 3350 ° C или приблизительно 3550 К.

Таким образом, в качестве излучателей накаливания вольфрамово-галогенные лампы генерируют непрерывный спектр света, который простирается от центрального ультрафиолета до видимого и инфракрасного диапазонов длин волн (см. Рисунки 1 и 3). По сравнению со спектром излучения солнечного света и теоретическим излучателем черного тела 5800 К (как показано на рисунке 3 (а)), в вольфрамово-галогенных лампах всегда преобладают более длинные области длины волны.Однако по мере увеличения температуры нити в вольфрамово-галогенной лампе профиль излучения света смещается в сторону более коротких длин волн, так что по мере приближения температуры к предельной точке плавления вольфрама доля видимых длин волн, излучаемых лампой, существенно увеличивается. Этот эффект проиллюстрирован на рисунке 3 (b) путем нормализации выходного распределения излучения лампы при цветовых температурах 2800 K и 3300 K на тот же световой поток. В дополнение к значительно меньшей доле излучения в инфракрасных длинах волн, кривая 3300 K показывает гораздо больший выход в видимых длинах волн.

Фотометрические характеристики для оценки характеристик источников света несколько необычны в том смысле, что две системы единиц существуют параллельно для определения важных переменных, связанных с яркостью и спектральным выходом. Физическая фотометрическая система рассматривает свет исключительно как электромагнитное излучение с точки зрения яркости (яркости), связанной с единицами длины и угла и измеряемой в ваттах. Физиологическая фотометрическая система учитывает способ, которым гипотетический человеческий глаз оценивает источник света.Поскольку каждый человеческий глаз несколько по-разному реагирует на видимый спектр света, стандартный глаз определен международным соглашением. Основной характеристикой этого стандарта является чувствительность к разным цветам света, основанная на максимальном отклике на 550-нанометровый (зелено-желтый) свет, измеряемом в единицах люмен и , а не ваттах. Физиологическая система подойдет, если датчиком света является человеческий глаз, цифровая камера, фотопленка или какое-либо другое устройство, которое реагирует аналогичным образом.Однако эта система выйдет из строя, если анализируемый свет попадет в ультрафиолетовую или инфракрасную область, невидимую для человеческого глаза. В этом случае для измерений и анализа необходимо использовать физическую фотометрическую систему.

Технические характеристики вольфрамово-галогенной лампы для микроскопии

Номинальная
Мощность
(Вт)
Номинальное
Напряжение
(В)
Световой поток

(лм)
Нить накала
Размер
Ш x В (мм)
Средний срок службы

(часы)
10 6 150 1.5 х 0,7 300
20 6 480 2,3 х 0,8 100
30 6 765 1,5 х 1,5 100
30 12 750 2.6 х 1,3 50
50 12 1000 3,0 х 3,0 1100
100 12 3600 4,2 х 2,3 2000
Таблица 1

В таблице 1 представлены электрические характеристики, размеры нити накала, типичный срок службы и фотометрический выход для некоторых из самых популярных вольфрамово-галогенных ламп, используемых в настоящее время в оптической микроскопии.Среди наиболее важных терминов, используемых для сравнения этих ламп, — световой поток , который представляет собой общий излучаемый свет, измеренный в люмен и . Световой поток увеличивается пропорционально его физическому фотометрическому эквиваленту в ваттах. Другая важная величина, известная как сила света , — это та часть светового потока, которая измеряется телесным углом в одном направлении. Сила света в единицах кандел и используется для оценки характеристик лампы в оптической системе.Лампы также оцениваются с точки зрения световой отдачи с использованием люмен на ватт электрической мощности (относящейся к физическим и физиологическим системам) для определения эффективности, с которой электрическая мощность преобразуется в видимое излучение. Теоретический максимум световой отдачи составляет 683 люмен на ватт, но на практике вольфрамово-галогенные лампы обычно достигают предела в 37 люмен на ватт. Чтобы более четко понять электрические характеристики вольфрамово-галогенных ламп, обычно можно применять следующие обобщения: на каждые 5 процентов изменения напряжения, подаваемого на лампу, срок службы либо удваивается, либо сокращается вдвое, в зависимости от того, находится ли напряжение. уменьшилось или увеличилось.Кроме того, каждые 5 процентов изменения напряжения сопровождаются 15-процентным изменением светового потока, 8-процентным изменением мощности, 3-процентным изменением тока и 2-процентным изменением цветовой температуры.

Большое разнообразие конструкций вольфрамово-галогенных ламп включает встроенные отражатели, которые служат для эффективного сбора фронтов световых волн, излучаемых лампой, и их упорядоченного направления в систему освещения. Эти предварительно собранные блоки, получившие название , рефлекторные лампы (см. Рисунок 4), нашли широкое применение в качестве внешних осветителей для приложений стереомикроскопии.Свет от осветителя может быть направлен в любую область образца с помощью гибкого оптоволоконного световода. Рефлекторные лампы сильно различаются по конструкции в зависимости от характеристик и геометрии рефлектора, а также от положения лампы внутри рефлектора. Тем не менее, все лампы с отражателем включают однотактные лампы, которые устанавливаются в центре оптической оси отражателя с цоколем, вклеенным в вершину отражателя. Конфигурация нити накала обычно определяется характеристиками луча, необходимыми для конкретной оптической системы, для которой предназначена лампа.В рефлекторных лампах используются все конструкции нити накала, включая поперечную, осевую и плоскую.

Рефлекторные лампы обычно подключаются к патронам с молибденовыми штырями, выступающими наружу из задней части рефлектора и устанавливаемыми с керамическими крышками. В некоторых случаях используются специальные кабельные соединения, чтобы пространственно отделить электрический контакт от источника тепла (лампы). Поскольку рефлекторные лампы обычно встраиваются как часть точно выровненной оптической системы, электрическое соединение только изредка используется как часть крепления.Существует несколько методов установки отражателей, в том числе установка держателя на переднем крае отражателя, использование давления на заднюю часть крышки отражателя, центрирование края отражателя в конусе и регулировку края отражателя на угловом упоре. В большинстве случаев конструкция основания рефлектора и механизм крепления используются для обозначения конкретного класса рефлекторной лампы. Внешний диаметр переднего отверстия рефлектора является определяющим критерием для рефлекторных ламп, и производители установили два основных размера.Они обозначены как MR 11 и MR 16 , причем буквы представляют собой аббревиатуру металлического отражателя , а цифры относятся к диаметру отражателя в восьмых долях дюйма. Таким образом, рефлекторная лампа MR 16 имеет диаметр приблизительно 50 миллиметров, тогда как лампы MR 11 имеют диаметр почти 35 миллиметров.

Вольфрамово-галогенные отражатели предназначены для фокусировки или коллимирования света, излучаемого лампой, как показано на рисунке 4.Фокусирующие отражатели концентрируют свет в небольшом пятне (фокусной точке) в центральной оптической оси на определенном расстоянии от отражателя (см. Рисунок 4 (b)). Этот тип отражателя имеет эллиптическую геометрию, что требует, чтобы нить накала лампы располагалась в первой фокусной точке эллипсоида, чтобы проецируемое световое пятно концентрировалось во второй фокусной точке. При проектировании светильников для фокусирующих отражателей важнейшим критерием является установка лампы на надлежащем расстоянии от входной апертуры оптической системы.Коллимирующие отражатели имеют параболическую геометрию, чтобы генерировать параллельный луч света, характеристики луча которого определяются параметрами лампы и размером отражателя (см. Рисунок 4 (c)). Угол выхода луча в первую очередь определяется размером нити накала лампы и свободным отверстием отражателя. В большинстве случаев осевая нить накала с круглым сердечником обеспечивает осесимметричный луч.

Отражатели обычно изготавливаются из стекла, но некоторые из них также изготавливаются из алюминия.Их внутренние стенки могут быть гладкими или иметь фасетки для контроля распределения света. Внутренняя структура варьируется от мелких, едва заметных зерен до крупных, выложенных плиткой граней (см. Рис. 4 (а)). В стеклянных отражателях внутренняя поверхность куполообразного отражателя покрывается (обычно осаждением из паровой фазы) для получения требуемых отражающих свойств. Стабильность размеров стеклянных отражателей превосходит стабильность металлических отражателей, а возможность выбора конкретных материалов покрытия, включая те, которые могут изменять спектральный характер отраженного света, делает эти отражатели гораздо более универсальными.Металлические отражатели намного проще и дешевле изготавливать, но они ограничены в управлении спектральным выходом и более подвержены колебаниям геометрических допусков во время работы.

Если требуется весь спектр излучения, излучаемого лампой, или в случаях, когда полезен инфракрасный свет, оптимальным выбором будут металлические отражатели или стеклянные отражатели с тонким золотым покрытием. Однако там, где необходимо использовать определенные отражательные свойства для выбора длин волн посредством интерференции, оптимальными являются дихроичные тонкопленочные покрытия на стеклянных отражателях.Эти покрытия состоят примерно из 40-60 очень тонких слоев, каждый из которых составляет всего четверть длины волны света, и состоят из чередующихся материалов, имеющих высокий и низкий показатель преломления. Точная настройка толщины и количества слоев позволяет разработчикам генерировать широкий спектр выходных спектральных характеристик. Среди ламп с дихроичным отражателем наиболее полезной для микроскопии является отражатель холодного света , потому что только видимый свет в диапазоне длин волн от 400 до 700 нанометров направляется в оптическую систему (рис. 4 (d)).Инфракрасные волны излучаются через заднюю часть отражателя и отводятся от фонаря с помощью электрического вентилятора. Применение подходящих отражателей холодного света снижает общую тепловую нагрузку на систему освещения и дает свет, который можно записывать с помощью пленочных и цифровых фотоаппаратов.

Базовая анатомия одноцокольной вольфрамово-галогенной лампы, обычно используемой для освещения в оптической микроскопии, показана на рисунке 5. Общая длина измеряется от конца стержня основания до точки герметичной выхлопной трубы.Важным критерием для размещения лампы по отношению к системе коллекторных линз является длина светового центра (рис. 5 (а)), при которой центр нити накала соответствует определенной плоскости отсчета в цоколе лампы. Другими важными параметрами являются диаметр колбы (самая толстая часть оболочки), ширина зажима основания (обычно немного больше диаметра колбы) и размеры поля накала (высота и ширина). Эффективный размер источника освещения, используемого при проектировании выходной оптической системы, определяется высотой и шириной нити накала (поле нити накала).Допуски и положение поля накала имеют решающее значение и не должны отклоняться более чем на 1 миллиметр от оси симметрии лампы (определяемой плоскостью штырей основания и центральной линией лампы). Допуски по полю нити разработаны для конкретной архитектуры нити и должны измеряться, когда нить накала горячая.

Чрезмерно высокие рабочие температуры вольфрамово-галогенных ламп требуют существенно более прочных и толстых прозрачных колб, чем у обычных вольфрамовых и угольных ламп.Стекло из кварцевого стекла из кварцевого стекла является стандартным материалом, используемым при производстве вольфрамово-галогенных ламп, поскольку этот материал может выдерживать температуру оболочки до 900 C и рабочее давление до 50 атмосфер. В целом оптическое качество кожухов кварцевых ламп значительно ниже, чем у ламп из дутого стекла, используемых для производства обычных ламп накаливания. Этот артефакт связан с тем, что кварц труднее обрабатывать (в первую очередь из-за более высокой температуры плавления).Кварц, предназначенный для огибающих ламп, начинается с цилиндрической трубки, которую сначала обрезают до нужной длины, а затем присоединяют меньшую выхлопную трубу. Позже в процессе производства, после того, как нить накала и выводные штыри вставлены и зажаты, оболочка заполняется соответствующим газом и галогеновым соединением, прежде чем выхлопная труба будет удалена и запломбирована в процессе, называемом наконечник , который оставляет видимый дефект на конверте. Вольфрамово-галогенные лампы, используемые в микроскопии, обычно имеют выступающее пятно, расположенное в верхней части оболочки в области, которая не влияет на оптическое качество света, излучаемого лампой (рис. 5 (а)).Предварительно изготовленные внутренние конструктивные элементы лампы (нить накала, соединитель из фольги и штыри) вставляются в трубчатый кварц до того, как свинцовые штыри герметично запечатываются в оболочке путем защемления. Форма внешней поверхности зажима обеспечивает максимальную механическую прочность.

После защемления выводов штифта (этот процесс проводится, пока оболочка промывается инертным газом, чтобы избежать окисления), колба заполняется через выхлопную трубу соответствующим газом, содержащим 0.От 1 до 1,0 процента галогенового соединения. Инертный наполняющий газ может быть ксеноном, криптоном, аргоном или азотом, а также смесью этих газов, имеющей наивысший средний атомный вес, совместимый с желаемым сопротивлением дуге. Галоген, используемый для вольфрамово-галогенных ламп, используемых в микроскопии, обычно представляет собой HBr, CH 3 Br или CH 2 Br 2 . Высокое внутреннее давление в лампе достигается за счет заполнения оболочки до желаемого давления и погружения лампы в жидкий азот для конденсации заполняющего газа.После герметизации выхлопной трубы на выходе наполняющий газ расширяется по мере того, как он нагревается до температуры окружающей среды. В высокоэффективных вольфрамово-галогенных лампах, производимых Osram (Сильвания, США), используется технология Xenophot , в которой газ криптон заменяется ксеноном, который имеет более высокую атомную массу, чем криптон и другие газы-наполнители. Ксенон обеспечивает лучшее подавление испарения вольфрама, обеспечивает более высокую температуру нити накала и увеличивает световую отдачу примерно на 10 процентов (что соответствует увеличению цветовой температуры примерно на 100 K).Лампы Xenophot продаются с использованием аббревиатуры HLX , которая образована от терминов H алоген, L напряжение тока и X енон. Большинство вольфрамово-галогенных ламп, используемых в исследовательских микроскопах, оснащены лампами Osram / Sylvania HLX или их эквивалентами.

Вольфрам всегда используется для изготовления проволочной нити в современных лампах накаливания. Чтобы быть пригодной для вольфрамово-галогенных ламп, необработанная вольфрамовая проволока должна пройти сложный процесс легирования и термообработки, чтобы придать пластичность, необходимую для обработки, и гарантировать, что нить накала не деформируется в течение длительных периодов высокой температуры во время работы лампы.Провод также необходимо тщательно очистить, чтобы предотвратить выброс вредных газов после герметизации лампы. Длина нити накала определяется рабочим напряжением, при более высоком напряжении требуется большая длина. Диаметр определяется уровнями мощности лампы и желаемым сроком службы. Для высоких уровней мощности требуются более толстые волокна, которые к тому же механически прочнее. Геометрия нити в значительной степени определяет фотометрические свойства вольфрамово-галогенных ламп. Лампы, используемые в микроскопии, обычно имеют геометрию нити с плоским сердечником, при которой проволока сначала наматывается в форме прямоугольного стержня, а затем зажимается поперек длинной оси.Вместо диаметра и длины нити с плоским сердечником измеряются по длине и ширине плоской стороны нити и по толщине прямоугольной формы. Характеристики светового излучения ламп накаливания с плоским сердечником значительно отличаются от характеристик излучения других геометрических форм. Наиболее значительная часть излучаемого света излучается перпендикулярно плоской поверхности нити накала, которая совмещена с собирающей оптикой для максимальной пропускной способности. В некоторых конструкциях ламп используется специальная нить накала с плоским сердечником, у которой светоизлучающая поверхность имеет квадратную форму.Эти лампы являются предпочтительными источниками освещения в микроскопии проходящего света.

Одним из критических факторов при производстве вольфрамово-галогенных ламп является герметизация внутренних элементов, чтобы изолировать их от внешней атмосферы. Подводящие провода (молибденовые штыри; рис. 5 (b)) выходят из цоколя лампы через уплотнение, чтобы установить и закрепить лампу в гнезде, подключенном к источнику питания. Наиболее важным аспектом создания уплотнения является разница в коэффициентах теплового расширения кварцевых и вольфрамовых нитей накала.Кварц имеет очень низкий коэффициент расширения, тогда как у вольфрама намного выше. Без надлежащего уплотнения подводящие провода будут быстро расширяться, когда лампа нагревается, и разбивают окружающее стекло. В современных вольфрамово-галогенных лампах очень тонкая молибденовая фольга (шириной от 2 до 4 миллиметров и толщиной от 10 до 20 микрометров; рис. 5 (b)) заделана в кварц, и каждый конец фольги приварен к коротким соединительным проводам из молибдена, которые в свою очередь приварены к нити накала и подводящему штифту.Молибден используется в уплотнении, потому что острые кромки позволяют безопасно врезать его в кварц во время операции зажима. Лампы, используемые для микроскопии, имеют односторонние основания, имеющие либо молибденовые штыри, выступающие из зажима, либо вольфрамовые штыри, которые изнутри связаны с молибденовой фольгой, как описано выше. Расстояние между штифтами стандартизовано и составляет от 4 до 6,35 миллиметра (обозначено как G4 и G6.35; G для стекла). Диаметр штифта колеблется от 0.От 7 до 1 миллиметра.

Поскольку на данный момент технология производства вольфрамово-галогенных ламп настолько развита, срок службы обычной лампы внезапно заканчивается, обычно при включении холодной лампы накаливания. В течение среднего срока службы современные вольфрамово-галогенные лампы не чернеют и претерпевают лишь незначительные изменения в фотометрических выходных характеристиках. Как и в случае с другими лампами накаливания, срок службы вольфрамово-галогенной лампы определяется скоростью испарения вольфрама из нити накала.Если нить накала не имеет постоянной температуры по всей длине провода, а вместо этого имеет области с гораздо более высокой температурой, вызванные неравномерной толщиной или внутренними структурными изменениями, то нить накала обычно выходит из строя из-за преждевременного разрыва в этих областях. Даже несмотря на то, что испаренный вольфрам возвращается в нить за счет цикла регенерации галогена (обсужденного выше), материал, к сожалению, откладывается на более холодных участках нити, а не в тех критических горячих точках, где обычно происходит утонение.В результате практически невозможно предсказать, когда какая-либо конкретная нить накала выйдет из строя в лампах, которые работают непрерывно. В тех лампах, которые часто включаются и выключаются, можно с уверенностью предположить, что они выйдут из строя в какой-то момент при включении.

Вольфрамово-галогенные лампы могут работать от источников питания постоянного или переменного тока, но в большинстве исследовательских приложений микроскопии используются источники питания постоянного тока ( DC, ). Самые современные источники питания для вольфрамово-галогенных ламп имеют специализированную схему, обеспечивающую стабилизацию тока и подавление пульсаций.Критическая фаза для вольфрамово-галогенной лампы — это когда напряжение впервые подается на холодную нить накала, период, когда сопротивление нити примерно в 20 раз ниже, чем при полной рабочей температуре. Таким образом, когда напряжение питания мгновенно подается на лампу при ее включении, течет очень высокий начальный ток (до 10 раз выше, чем в установившемся режиме; называемый пусковой ток ), который медленно падает по мере того, как температура нити накала и электрическое сопротивление увеличивать. Пиковый уровень тока достигается в течение нескольких миллисекунд после запуска, но обычно заканчивается примерно за полсекунды.К сожалению, высокий пусковой ток, возникающий при холодном запуске, отрицательно сказывается на ожидаемом сроке службы лампы. Специализированная схема источника питания (часто называемая схемой плавного пуска ) используется для компенсации высоких пусковых токов в самых передовых приложениях (включая микроскопию), в которых вольфрамово-галогенные лампы используются для проведения логометрических измерений.

На Рисунке 6 изображена типичная вольфрамово-галогенная лампа мощностью 100 Вт, используемая в микроскопии проходящего света.Лампа оснащена охлаждающими отверстиями, которые позволяют конвекционным потокам омывать лампу более прохладным воздухом во время работы. Металлический отражатель, покрывающий внутреннюю часть светильника, помогает сферическому отражателю направлять максимально возможный уровень светового потока в систему коллекторных линз для подачи на оптическую цепь микроскопа. Этот усовершенствованный фонарик содержит запасной патрон и сменный пластиковый инструмент, который оператор может использовать для захвата корпуса лампы во время переключения лампы.Регулировка положения лампы по отношению к оптической оси сферического отражателя и коллектора может быть выполнена с помощью винтов с внутренним шестигранником, которые перемещают основание. Лампа прикрепляется к осветителю микроскопа с помощью запатентованного монтажного фланца, который соединяет лампу с вертикальным или инвертированным микроскопом (хотя большинство ламп не могут быть заменены с одной марки микроскопа на другую). Инфракрасный (тепловой) фильтр перед системой коллекторных линз поглощает значительное количество нежелательного излучения, и дополнительные фильтры обычно могут быть вставлены в световой тракт (используя прорези держателя фильтра в осветителе микроскопа) для поглощения выбранных диапазонов видимых длин волн, регулировки цветовой температуры или добавить нейтральную плотность (уменьшение амплитуды света).Большинство ламп для микроскопии не оборудованы диффузионными фильтрами, но они часто требуются для достижения равномерного освещения по всему полю обзора и обычно помещаются производителем в осветительный прибор микроскопа.

The Lighting Trinity: 3 характеристики, которые необходимо знать при покупке светодиодных ламп

Раньше покупка освещения была довольно простой задачей. Для большинства ламп нужно знать только их физическую форму и мощность. Для чего-то более экзотического вы можете принести свою старую лампочку в магазин и совместить ее с чем-нибудь на полке.

Очень легко купить не ту лампочку — и вы останетесь недовольны.

Сегодня покупка лампочек — это запутанный беспорядок. Мощность больше не зависит от яркости лампы. Появилось множество новых терминов, таких как Кельвин, CRI и люмен. Очень легко купить не ту лампочку — и вы останетесь недовольны.

Но это не должно быть сложно. Я объясню три спецификации, которые вам нужно знать простым английским языком. Я называю их Осветительной Троицей. И я покажу вам, как найти эту информацию на упаковке лампочки.

1. Коррелированная цветовая температура

Проще говоря, коррелированная цветовая температура (CCT) — это цвет белого света.

Забудьте о таких описаниях, как «мягкий белый» и «дневной свет». Это заблуждение. Вместо этого вы захотите узнать фактическое значение, связанное с CCT.

Классическая лампа накаливания на 60 Вт имеет температуру около 2700 К при полной яркости.

CCT выражается в градусах Кельвина, часто сокращается до K. Обычно на упаковке осветительных приборов написаны числа вроде 2700 K и 5000 K.Чем меньше число, тем «теплее» цвет. 2700 K можно охарактеризовать как теплый белый цвет, а 5000 K — как холодный белый.

Иллюстрация значений CCT в градусах Кельвина. Большинство светильников для внутреннего освещения излучают свет в диапазоне от 1800 K до 6500 K.

Классическая лампа накаливания мощностью 60 Вт дает около 2700 K при полной яркости. Галогенная лампа имеет температуру около 3000 К. При затемнении обе могут упасть до 2000 К или даже ниже. Это тип освещения, обычно встречающийся в доме.

Люминесцентные лампы сложнее.Они могут быть разной цветовой температуры. Обычно вы найдете 3500 K, 4100 K и 5000 K, но также доступны более низкие и более высокие значения. Офисное освещение обычно составляет около 4100 К.

Ярлык «Факты освещения», который можно найти на большинстве потребительских осветительных приборов, поможет вам выбрать правильный CCT. Номер будет под «Светлый вид» или «Светлый цвет». Некоторые бренды, такие как IKEA, публикуют CCT и другую информацию на упаковке, но не используют этикетку «Факты освещения».

2.Люмен

Люмен — это яркость источника белого света.

Вы увидите, как много лампочек рекламируются с такими словами, как «эквивалент 60 Вт». Часто эти утверждения являются откровенно ложными. Вместо этого обратите внимание на люмены, которые также указаны на этикетке «Факты освещения».

Пример этикетки «Факты освещения» с индексом цветопередачи и полной цветовой шкалой, но без оценки стоимости жизни и энергии.

В качестве примера, существует ряд лампочек «эквивалент 60 Вт», люмены которых на самом деле ближе к лампе 40 Вт.Поговорим о разочаровании.

При замене ламп накаливания используйте следующие значения светового потока, чтобы найти светодиодный эквивалент:

  • 40 Вт: ~ 400 люмен
  • 60 Вт: ~ 800 люмен
  • 75 Вт: ~ 1100 люмен
  • 100 Вт: ~ 1600 люмен
  • 150 Вт: ~ 2200 люмен

Итак, когда вы ищете замену на 60 Вт, ищите что-то с яркостью около 800 люмен.

3. Индекс цветопередачи

Индекс цветопередачи (CRI) — это мера того, насколько «настоящие» или точные цвета выглядят под источником белого света.

Значения CRI варьируются от 0 до 100. Для большинства приложений чем выше CRI, тем лучше.

Рассмотрите внешний вид людей и предметов при дневном свете. Они, как правило, отлично выглядят, правда? Что ж, CRI дневного света составляет около 100. Сравните это с оранжевым уличным фонарем, где трудно различить цвет чего-либо. У этого уличного фонаря индекс цветопередачи близок к 0.

Классические лампы накаливания имеют очень высокий индекс цветопередачи около 100. Большинство продаваемых сегодня светодиодов имеют индекс цветопередачи около 80, но штат Калифорния требует, чтобы продавцы продавали лампы с индексом цветопередачи 90 или выше.

Иллюстрация CRI. Изображение: LUX Technology Group.

Сложность заключается в том, что производителям не нужно указывать CRI на этикетках с фактами освещения. Иногда вы можете увидеть его напечатанным где-нибудь в другом месте на коробке. Например, IKEA всегда печатает индекс цветопередачи на упаковке светодиодных ламп. Продукты с индексом цветопередачи 90 и выше почти всегда упоминают индекс цветопередачи на упаковке.

Но часто CRI нигде не встречается. Хорошее эмпирическое правило: если индекс цветопередачи не указан, а лампа от известного бренда, например Philips, GE или CREE, это, вероятно, около 80 CRI.Если вы не узнаете бренд и он недорогой, он может находиться в диапазоне 70–80 CRI.

Вы, вероятно, сочтете приемлемой лампу 80 CRI, если она соответствует вашим требованиям CCT и световому потоку, но постарайтесь получить что-то с более высоким CRI, если таковое имеется.

Заключение
Факты об освещении лампы накаливания мощностью 60 Вт. Эта более типичная этикетка не включает индекс цветопередачи или полную цветовую шкалу, но содержит оценки стоимости срока службы и энергии.

Теперь, когда у вас есть понимание Троицы Освещения, давайте применим ваши знания на практике.

Допустим, вы хотите заменить лампу накаливания мощностью 60 Вт, цветовая температура которой составляет 2700 К, а яркость — 800 люмен. Купите светодиодную лампу с температурой около 2700 К, производительностью около 800 люмен и с индексом цветопередачи не менее 80.

Возможно, вам захочется чего-нибудь посветлее или прохладнее. Используйте свое понимание цвета и яркости, чтобы выбрать, соответственно, более высокое значение люмена или более высокую CCT.

Если это слишком много для обработки или у вас необычная лампочка, обязательно зайдите в SimpleBulb.com. Если вы обратитесь к нам, мы лично поможем вам выбрать подходящую лампочку.

Спасибо за чтение. Если вы нашли эту статью интересной, нажмите кнопку хлопка выше и поделитесь с друзьями. Я также рекомендую вам оставить комментарий или связаться со мной напрямую. Посетите SimpleBulb.com: самый простой способ найти идеальную замену светодиодной лампе.

Связанные истории

Теги
Присоединяйтесь к Hacker Noon