Лампы люминесцентные характеристика: Люминесцентные лампы. Технические характеристики, виды, устройство люминесцентных ламп.

Содержание

Характеристики и маркировка люминесцентных ламп, все подробно

Газоразрядный источник света, на стенках колбы которого нанесено специальное люминофорное покрытие называется люминесцентной лампой. Она выполняется в форме стеклянной трубки. На торцах установлены специальные электроды, которые зажигают эту лампу. Всё пространство внутри колбы заполняется парами ртути и инертным газом. Именно они после зажигания начинают излучать свет.

После включения устройства, внутри происходит газовый разряд. Именно этот разряд зажигает пары ртути и заставляет их излучать невидимое для человеческого глаза ультрафиолетовое освещение. 

Принцип работы и виды изделия

После зажигания ртути, ультрафиолет начинает взаимодействовать с нанесённым на стенки люминофором, что провоцирует его излучать уже видимый спектр света. Таким образом, люминофор исполняет функцию преобразователи, или конвертора, и позволяет нам ощущать уже тот свет, который легко воспринимается человеческим глазом и способен освещать окружающую среду.

Благодаря уникальному свойству стекла не пропускать ультрафиолетовые лучи, оно защищает нас и полностью блокирует выход их в окружающую среду и предохраняет наши глаза от его прямого воздействия, которое губительно.

Но существуют лампы, которые не препятствуют такому излучению. Их изготавливают из увиолевого и кварцевого стекла, такие виды материалов способны пропускать ультрафиолетовые лучи. Как правило, такие лампы используют для очистки и дезинфекции разных приспособлений. В магазине их можно встретить, как бактерицидные они имеют специально обозначение, где это указано.

Принцип работы

Для увеличения тепловой отдачи света, используют лампы малого давления с добавлением амальгамы индия и кадмия либо других подобных элементов. Таким образом, температурный диапазон способен расширяться до шестидесяти градусов, в сравнении со стандартным наполнением лампы, когда температура не более двадцати пяти градусов.

Значительное снижение производительности замечается, когда температура внешней среды находится на низком уровне, ниже минимально допустимой. При таких условиях существенно увеличивается время прогрева и зажигания лампы, интенсивность и качество свечения уменьшаются в несколько раз.

Для таких условий необходимо использовать специальные утеплители и обогреватели. В связи с этим набирают актуальности лампы, не содержащие ртутных паров, которые работают исключительно на низком давлении инертного газа внутри колбы.

Технические характеристики и классификация

Чтобы классифицировать и выделить технические характеристики люминесцентных ламп следует обратить своё внимание на такие показатели их работоспособности и конструкции:

  • Тип излучаемого света. Энергосберегающие устройства могут излучать как обычный белый, так и дневной свет. Более новой их разновидностью являются универсальные приборы.
  • Поперечная ширина колбы. Пропорционально с ростом этого показателя, увеличиваются все остальные показатели, такие мощность, температура света, спектр и длительность эксплуатации прибора. Самыми распространёнными и наиболее эффективными, считаются диаметры восемнадцать, двадцать шесть и тридцать восемь миллиметров. Диаметр и длину всей колбы часто указывают вместе, например, размеры 38\406.
  • Показатель силы излучения или простыми словами мощность устройства. Благодаря данному критерию мы способны просчитать какую площадь возможно осветить с помощью выбранной нами лампы. Также от показателя мощности зависит и коэффициент полезного действия прибора.
  • Количество цоколей может быть в одном варианте, двух либо компактной формой со встроенными цоколями. Для увеличения компактности лампы скручивают спиралью, для экономии пространства.
  • Потребность в конструкции стартера или электронного балласта и безстартерный прибор. Существует мнение, что лампы, не имеющие стартера, обладают большей экономичностью, но это не так. На самом деле такие устройства просто затрачивают то же количество электроэнергии на более продолжительный запуск.
  • Номинальное напряжение, которое необходимо для функционирования лампы. Существуют разновидности способные работать от стандартного напряжения 220 вольт и более уникального, 127 вольт.
  • Форма колбы: кольцо, у-образная, прямая, спираль, шарообразный прибор, дуговая форма. Стандартные бытовые лампы обычно имеют самую приемлемую спиральную конструкцию и, как правило, не маркируются.
  • Срок службы. В зависимости от сферы использования, срок службы будет отличаться. Наибольшим периодом работы обладают домашние энергосберегающие лампы.

Маркировка люминесцентных ламп

В сравнении с более старыми аналогами, появившись на рынке, каждая энергосберегающая лампочка маркировалась и имела своё обозначение. Систему обозначения придумали сразу и лишь дополняли с выходом более новых моделей и расширением функциональности.

Производители обозначают тип устройства, но редко указывают такие параметры, как диаметр и длину колбы, они пишутся только на коробке.

Маркировка отечественных производителей

Форма колбы наглядно демонстрирует вид и влияет на большинство характеристик, давайте разберём, как маркируют колбы:

  • U – ствольчатое устройство. Спереди дополнительно указывается цифра, которая показывает, сколько электрических дуг возникает внутри.
  • M – уточнение, которое показывает что изделие имеет маленькие габариты при относительно большой мощности.
  • S – Спиральный тип колбы. Так же существуют подвиды, такие как спиральная с установленным корпусом-рубашкой.
  • P – это обозначение показывает, что используется корпус-рубашка. Применяется практически со всеми разновидностями энергосберегающих устройств.
  • C – в форме свечи.
  • Ш – шарообразное устройство, такая форма является стандартно для рефлекторных ламп.
  • R – указывает на то, что в конструкции присутствует рефлектор для направления потока света.

Разбираем все плюсы и минусы

Показатель световой отдачи увеличивается в том случае, когда длина устройства уменьшается. Таким образом, потери анодных и катодных взаимодействий стают меньше и световой поток становится более качественным. Исходя из этого, можно понять что более эффективной будет лампа на 26 Вт, чем две обладающие аналогичной суммарной мощностью.

Период эксплуатации ограничивается износом электродов, так как они при выработке просто исчезают. Струсы и падения устройства негативно сказываются на его жизнеспособности. После падения срок службы и качество света может резко упасть.

Какими плюсами обладают такие устройства:

  1. Относительно высокий коэффициент полезного действия, находится примерно в районе двадцати пяти процентов, а показатель светоотдачи выше до десяти раз, чем у ламп накаливания.
  2. Срок эксплуатации примерно двадцать тысяч часов.
  3. Довольно высокая степень светоотдачи. Данный показатель превосходит лампы накаливания в пять-шесть раз. Например, двадцати ватное энергосберегающее устройство, выделяет количество света примерное равное сто ватной лампе накаливания.
  4. Очень широкий цветовой спектр. Есть возможность выбрать лампу с таким цветом свечения, который вам необходим. На сегодняшний день существуют сотни разных вариантов оттенков.
  5. Свет распределён по всему объёму устройства, а не только на рабочем органе, как в случае с накаливающейся лампой.

Конечно, у такого устройства есть недостатки:

  • Нуждаются в дополнительной установке балласта, для стабилизации и поддержания нормальной работы лампы. Балласт – это пускорегулирующее устройство, которое обеспечивает нормальный процесс зажигания и стабильную работу энергосберегающей лампы.
  • Сильно зависят от показателя внешней температуры воздуха. Оптимальной температурой для работы, является двадцать градусов.
  • Присутствует риск отравления парами ртути при значительном повреждении оболочки устройства.
  • Нестабильное напряжение будет вызывать сильное мерцание, которое ощутимо для человеческого глаза и сильно портит зрение.
  • Установка диммера возможна только с использованием дополнительных устройств.
  • Утилизация нуждается в специализированном сервисе, который стоит немалых денег.

Выбирает энергосберегающую лампу для своих потребностей

Подбирая для себя данное устройство, следует придерживаться определённых правил, которые впоследствии будут влиять на его показатели качества и долговечности.

Маркировка популярных производителдей

На какие технические характеристики следует обратить внимание:

  • Особенности помещения, где лампу будут устанавливать.
  • Температура, при которой устройству необходимо будет функционировать.
  • Качество вашей энергосети.
  • Габариты лампы. Если она слишком длинная или широкая, есть шанс что она не поместиться в ваш светильник.
  • Необходимая потребность в мощности, цвете и разновидности светового потока.

Подобрав устройство в соответствии с данными правилами, вы гарантировано получите хороший продукт, который сможет соответствовать всем вашим потребностям.

В данной области нету явного фаворита среди производителей. Каждый дорогой, например, Philips, и более дешёвый бренд может выпускать продукцию с определённой долей бракованных изделий. У более дорогих марок philips данный процент брака будет несколько ниже.

Поэтому подбирая прибор для себя, следует отталкиваться от ваших финансовых возможностей. В среднем цена на одну лампочку philips составляет три-четыре доллара.

Цветные лампочки philips и специализированные будут стоить несколько дороже. За цвет вы переплатите примерно десять-пятнадцать процентов. Специализированные устройства могу стоить порядка десяти и более долларов, это могут быть бактерицидные и фито лампы.

Люминесцентные лампы: технические характеристики, виды, маркировка

Люминесцентные лампы представляют собой газоразрядный источник света, постепенно вытесняющий стандартные лампы накаливания за счет большого числа преимуществ, одним из которых является, несомненно, пониженное энергопотребление. Люминесцентная лампа выдает большую мощность светоотдачи, чем обыкновенная лампа накаливания той же мощности, и при этом обладает более долгим сроком эксплуатации. Принцип работы данного типа ламп заключается во взаимодействии люминофоров (как правило, используются пары ртути или аргона) с электрическим источником, результатом которого и является видимый свет.

Мощность люминесцентных ламп обычно варьируется от 8 до 150 вт.

Где используются?

Люминесцентные лампы используются повсеместно и находят свое применение практически в любой области, будь то освещение стадионов, городских улиц, промышленных территорий или же жилых помещений. Хороший КПД, превышающий 20%, низкое энергопотребление вкупе с высоким качеством света и долгий срок службы выводит данный тип ламп на второе место по популярности на всем рынке светоисточников, уступая лишь светодиодным моделям.

Маркировка люминесцентных ламп

В зависимости от состава люминофоров модели люминесцентных ламп делятся на:

  • Д – дневной свет
  • ХБ– холодно-белый свет
  • Б – белый свет
  • ТБ – тепло-белый свет
  • Е – естественный белый свет
  • К – красный свет
  • Ж – желтый свет
  • З – зеленый свет
  • Г – голубой свет
  • С – синий свет
  • УФ – ультрафиолетовый свет

По конструктивной особенности люминесцентные лампы бывают следующих типов:

  • А – амальгамная
  • Б – быстрого пуска
  • К – кольцевая
  • Р – рефлекторная
  • У – u-образная

По форм-фактору:

 

Отечественная маркировка типа лампы может иметь следующие обозначения, например, ЛДЦР-50: (Л) лампа (Д) дневная (Ц) – качество цветопередачи, (Р) рефлекторная, мощностью 50 Ватт. Обозначения типа ЛЕ или ЛХЕ означают, что данная модель производит естественный, или естественный холодный свет. В отличие от отечественных моделей, зарубежные аналоги имеют иную маркировку, представленную в виде трехзначного числа: 530, 640/740, 765, 827, 830, 840, 865, 880, 930, 940, 954/965. Каждый тип обладает определенными качествами и используется для различных целей.

Технические характеристики люминесцентных ламп следующие:

  • Требуемое напряжение – 127 или 220 Вольт
  • Световая отдача 40-80 Лм/1 Вт
  • Цоколь – 14 или 27 мм
  • Колба диаметром 12, 16, 26, 38 мм
  • Время работы от 10 000 до 40 000 часов
  • КПД от 20% (в среднем 30%)

Помимо всех имеющихся вышеперечисленных плюсов люминесцентных ламп относительно других светоисточников, у них все же имеются и свои недостатки – это более высокая цена относительно стандартных ламп накаливания и галогенных ламп, заметное сокращение срока службы при частом включении и выключении, чувствительность даже к небольшим перепадам напряжения, невозможность эксплуатации при низкой температуре (при температуре менее 10 градусов люминесцентная лампа может не работать), запрет на использование во влажных или пыльных помещениях. Тем не менее, плюсы люминесцентных ламп перевешивают все вышеперечисленные недостатки, позволяя им занимать лидирующие позиции на современном рынке светоисточников.

 

Характеристики люминесцентных ламп, маркировка и классификация

Люминесцентной лампой или лампой дневного света называют осветительное устройство, представляющее собой запаянную с двух сторон стеклянную трубку, покрытую изнутри люминофором. Изделие заполняется инертным газом (аргоном) под низким давлением, внутри трубки содержится определенное количество ртути, превращающейся в пары при нагревании.

Люминесцентные лампы – это газоразрядные источниками света, которые широко используются в настоящее время. Их популярность объясняется высокими техническими параметрами, сравнительно низкой стоимостью и продолжительным сроком службы. Из-за широкого распространения, многих пользователей интересуют характеристики люминесцентных ламп.

Классификация и маркировка люминесцентных ламп

Все ЛЛ можно разделить на две группы: специальные осветительные приборы и общего назначения. Ко второй группе относят устройства мощностью от 15 до 80 Вт, цветовые и спектральные параметры свечения которых имитируют естественное освещение.

Специальные ЛЛ могут классифицироваться по различным параметрам и характеристикам. По мощности они разделяются на маломощные и мощные — до 15 Вт и свыше 80 Вт соответственно.

Классифицировать специальные ЛЛ можно и по другим характеристикам.

По разряду:

  • Дуговые;
  • Тлеющие;
  • Тлеющего свечения.

По излучению:

  • Лампы дневного света;
  • Цветные;
  • Со специальными спектрами излучения;
  • Ультрафиолетовые.

По форме трубки:

  • Трубчатые;
  • Фигурные.

По распределению света:

  • С направленным светоизлучением;
  • С ненаправленным светоизлучением.

Каждая представленная на рынке лампа дневного света имеет специальную маркировку из нескольких букв, благодаря которым можно определить основные характеристики осветительного устройства. Первая буква в маркировке «Л» означает, что лампа является люминесцентной.

Значение других букв в маркировке:

Д – дневной свет;

ХБ – холодный белый свет;

Б – белый;

ТБ – теплый белый;

Е – естественный белый;

К – красный;

Г – голубой;

З – зеленый;

Ж – желтый;

С – синий;

УФ – ультрафиолетовое излучение.

После цвета излучения в маркировке могут использоваться также буквы для обозначения качества цветопередачи и конструктивные особенности устройства:

Ц – улучшенное качество цветопередачи;

ЦЦ – цветопередача особо высокого качества;

Р – рефлекторная лампа;

К – кольцевая;

А – амальгамная;

У – U-образная;

Б – лампа быстрого пуска.

Цифры на лампе обозначают мощность устройства в Ваттах.

Основные характеристики люминесцентных ламп и светильников

Все важные характеристики и параметры люминесцентных ламп указываются на упаковке и дублируются на корпусе устройства. При выборе осветительного прибора следует обращать внимание на мощность светильников, а также на тип цоколя.

Виды цоколей представлены на рисунке ниже.

Среди наиболее важных характеристик светильников можно выделить:

  1. Тип используемой лампы. Лучше всего выбирать светильники, для которых подойдут люминесцентные лампы от различных производителей, это позволит сэкономить средства при эксплуатации системы освещения.
  2. Размеры. Следует подбирать с учетом личных предпочтений, а также характеристик ламп, которые предполагается установить.
  3. Герметичность, защита от пыли и влаги. Эти характеристики важны в случаях монтажа устройств в неблагоприятных окружающих условиях.
  4. Методика монтажа. Светильники для ЛЛ бывают накладными, настенными, встраиваемыми, а также подвесными.
  5. Распространение света. Большинство светильников распространяют свет в одном направлении – вниз, но встречаются также устройства, направляющие излучение под углом.
  6. Материал. Изготавливают из различных материалов, наиболее распространенным является пластик. Можно использовать и металлический вариант, но он нуждается в дополнительном заземлении.

Люминесцентные лампы. История. Характеристика

Люминесцентные лампы используют лишь 25-35 процентов электроэнергии, используемой обычными лампами накаливания для обеспечения такого же светового потока. Так же, служат они до 10 раз дольше (7,000-24,000 часов).

Двумя основными типами люминесцентных ламп являются:
•    Компактные люминесцентные лампы (КЛЛ) — с интегральными контроллерами балласта и резьбовым цоколем. Это популярный вид ламп, который часто используется в бытовых светильниках.
•    Люминесцентные трубчатые и кольцевые лампы — обычно используются для целевого освещения под конкретную задачу. Например, используется в гаражах, складских помещениях, и для освещения больших территорий коммерческих и промышленных зданий.

Компактные люминесцентные лампы (КЛЛ).
Компактные люминесцентные лампы сочетают в себе энергоэффективность люминесцентных ламп с удобством и популярностью обыкновенных ламп накаливания. КЛЛ подходят для большинства светильников, предназначенных для ламп накаливания, однако, расходуют до 75% меньше электроэнергии.

Хотя, КЛЛ стоят немного больше, чем сопоставимые лампы накаливания, их срок службы дольше в 6-10 раз.
Компактные люминесцентные лампы являются наиболее экономически эффективными и действенными в тех областях, где свет горит в течение длительных периодов времени. Срок окупаемости будет немного длиннее, где свет включен в течении коротких периодов времени, например, в шкафах и кладовых. Поскольку КЛЛ часто менять не требуется, они идеально подходят для труднодоступных мест.

Освещение КЛЛ.
Компактные люминесцентные лампы доступны в различных стилях и формах, предназначенных, соответственно, для определенных целей. Размер, или общая площадь трубки определяет, сколько света она производит. Многие модели являются диммируемыми(возможна регулировка яркости) и совместимы с другими системами управления освещением.

Наиболее распространенные типы КЛЛ включают:

•    A-Line и спиральные лампы с резьбовым цоколем. Наиболее часто встречаются с популярным цоколем Эддисон(E-26) и интегральным балластом; они могут быть использованы в общебытовых светильниках, которые предназначены для ламп накаливания, например, настольные ламы, потолочные светильники и настенные бра.
•    Шаровидные лампы, похожи на спиральные, но обычно в красивой форме шара. Используются там, где их видно, например в освещении ванной комнаты и потолочном освещении.
•    Прожекторные и рефлекторные лампы, также имеют винтовую базу и предназначаются для фокусировки света на объектах перед ними. Они широко используются во внутреннем освещении, как встраиваемые и точечные светильники, и на открытом воздухе в качестве прожекторов.
•    Штырьевые (штырьковые) КЛЛ могут иметь от одной до шести трубок и оснащаются не винтовой, а контактной основой. Эти лампы выпускаются под конкретный тип светильника, где балласт уже является его частью. Есть много различных ламп данного вида, поэтому подключить лампу, не подходящую под светильник просто не получится, ввиду различных разъемов. Редко встречаются в жилых помещениях, и в основном используются в коммерческих зданиях.

Очистка и утилизация.

Все люминесцентные лампы, в т.ч. КЛЛ содержат небольшое количество ртути, которая необходима, чтобы сделать инертные газы проводимыми при всех температурах и обеспечить правильную и эффективную работу светильника. Как и многие тяжелые металлы, ртуть может быть опасна для окружающей среды, поэтому важно правильно утилизировать КЛЛ, а не просто выбросить их.


Люминесцентные лампы мощность и длина. Характеристики люминесцентных ламп и светильников

Все люминесцентные лампы можно разделить на две большие группы: линейные и компактные. Небольшой ассортимент кольцевых и U-образных ламп можно отнести к линейным, так как они делаются в колбах таких же диаметров и имеют близкие параметры.

Линейные лампы массового применения выпускаются в колбах диаметром 38, 26 и 16 мм (иностранное обозначение — Т12, Т8 и Т5, то есть 12/8, 8/8 и 5/8 дюйма). Немецкая фирма Osram делает еще лампы Т2 диаметром около 7 мм, но эти лампы применяются пока только в сканерах и другой репрографической аппаратуре, а не для общего освещения. В последние годы за рубежом выпуск ламп в колбах диаметром 38 мм практически прекращен. Стандартный ряд мощностей линейных ламп не велик: 4, 6, 8, 13, 15, 18, 20, 30, 36, 40, 58, 65 и 80 Вт. В абсолютном большинстве современных светильников используются лампы только трех номиналов мощности: 18, 36 и 58 Вт. В России еще продолжается выпуск ламп мощностью 20, 40, 65 и 80 Вт в колбах диаметром 38 мм.

Как уже было сказано, лампы разной мощности различаются длиной колб — от 136 до 1514 мм (с цоколями).

В отличие от ламп накаливания, на люминесцентных лампах никогда не указывается напряжение, на которое они должны включаться, так как в зависимости от применяемой схемы включения одна и та же лампа может работать при самых разных напряжениях — как по величине (от нескольких вольт до сотен вольт), так и по роду тока (переменный или постоянный).

Лампы каждой мощности выпускаются с различной цветностью излучения. В России по ГОСТ 6825 установлено пять цветностей белого света: тепло-белый, белый, естественный, холодно-белый и дневной, обозначаемые буквами ТБ, Б, Е, ХБ и Д. Кроме белых ламп разной цветности, производятся цветные люминесцентные лампы — красные, желтые, зеленые, голубые и синие (К, Ж,З,Ги С).

Цветность излучения ламп приблизительно может быть охарактеризована цветовой температурой Гцв. Тепло-белой цветности соответствует 7Цв = 2700 — 3000 К; белой — 7Цв = 3500 К; холодно-белой — 7Цв = 4200 К; естественной — 7Цв = 5000 К; дневной — 7Цв = 6000 — 6500 К.

В маркировке ламп зарубежного производства какого-либо единства нет, каждая фирма маркирует по-своему. Так, Philips все линейные лампы обозначает TL-D, Osram — Lumilux, General Electric — F. После этих букв указывается мощность ламп (18W, 36W, 58W).
По ГОСТ 6825 в маркировке ламп не предусмотрено указание индекса цветопередачи. В отличие от этого, в маркировке всех зарубежных ламп с хорошей и отличной цветопередачей после мощности (через дробь) ставится цифра, характеризующая общий индекс цветопередачи Ra. Если Ra = 90, то пишется цифра 9, при 80
Ведущие зарубежные фирмы часто используют в названиях ламп слова, носящие явно рекламный характер: De Lux, Super, Super de Lux и т.п. 
Учитывая большой разнобой в обозначении ламп , часто вводящий потребителей в заблуждение, Международная комиссия по освещению (МКО) разработала и рекомендовала всем странам для использования единую универсальную систему обозначений источников света ILCOS. В соответствии с этой системой все линейные люминесцентные лампы, в том числе и серии Т5, обозначаются буквами FD, кольцевые — FC, далее указывается мощность ламп, общий индекс цветопередачи и цветовая температура.

Серия ламп Т5 с диаметром колбы 16 мм выпускается в двух вариантах — «лампы с максимальной световой отдачей» (фирменное обозначение у Osram — FH , у Philips — HE) и «лампы с максимальным световым потоком» (соответственно FQ и HO). Оба варианта содержат по четыре номинала мощности: первый — 14, 21, 28 и 35 Вт, второй — 24, 39, 54 и 80 Вт. В лампах мощностью 28 и 35 Вт достигнута рекордная для люминесцентных ламп световая отдача — 104 лм/Вт. Все лампы серии Т5 могут работать только с электронными аппаратами. Лампы в колбах диаметром 26 и 38 мм (Т8 и Т12) снабжены цоколями G13, диаметром 16 мм — G5.
Компактные люминесцентные лампы (КЛЛ), в свою очередь, делятся также на две группы: с внешним аппаратом включения и со встроенным («интегрированным») аппаратом включения.
Лампы первой группы делаются мощностью от 5 до 55 Вт. Цилиндрическая колба ламп может быть изогнута один, два, три и даже четыре раза. В литературе такие лампы обычно называются «двух-, четырех-, шести- и восьмиканальными», что в принципе неверно, так как у всех таких ламп разрядный канал только один. Цоколи у всех ламп этой группы — специальные с двумя или четырьмя внешними штырьками. В двухштырьковые цоколи встроены стартеры, и для включения ламп с такими цоколями нужен только дроссель соответствующего типа. С электронными аппаратами такие лампы работать не могут, так как встроенные стартеры и помехоподавляющие конденсаторы мешают работе электронных схем. Лампы с четырехштырьковыми цоколями могут включаться как с обычными дросселями и внешними стартерами, так и с электронными аппаратами (некоторые типы ламп большой мощности могут работать только с электронными аппаратами). Насчитывается около 20 типов цоколей (рис. 1 а, б).

Рис. 1 а.

Рис. 1 б.

В России компактные лампы обозначаются буквами КЛ (компактная люминесцентная) или КЛУ (компактная люминесцентная универсальная, то есть способная работать как с обычными дросселями, так и с электронными аппаратами). Далее в обозначении указывается мощность лампы и цветность излучения.

Все компактные лампы делаются с использованием узкополосных редкоземельных люминофоров, обеспечивающих хорошую цветопередачу, поэтому в маркировке российских ламп присутствует буква Ц. Например, КЛ11/ТБЦ — компактная люминесцентная лампа со встроенным стартером, мощностью 11 Вт, тепло- белой цветности, с улучшенной цветопередачей, допускающая включение только с внешним дросселем; КЛУ9/БЦ — компактная лампа с четырехштырьковым цоколем мощностью 9 Вт, белой цветности, с улучшенной цветопередачей, допускающая включение как с дросселем и стартером, так и с электронным высокочастотным аппаратом.
В России выпускаются КЛЛ только с «единожды» изогнутой трубкой (два линейных светящихся участка) мощностью от 5 до 36 Вт с двухштырьковыми цоколями G23 со встроенным стартером или с четырехштырьковыми цоколями 2G7 (мощностью 5, 7, 9 и 11 Вт) или 2G11 (18, 24 и 36 Вт). В последние годы Опытный завод ВНИИИС в г. Саранске начал делать лампы со встроенным электронным аппаратом включения и цоколем Е27 с четырьмя и шестью линейными участками.

Ассортимент ламп зарубежного производства гораздо шире. Ведущие европейские (Osram, Philips), американские (General Electric, Sylvania) и китайские фирмы делают лампы с дважды-, трижды- и четырежды изогнутыми трубками (4, 6 и 8 светящихся участков), плоские типа 2D, спиральные и др. Фактически каждый типономинал ламп имеет свой особый цоколь, исключающий возможность включения ламп какой-либо одной мощности в арматуру, предназначенную для ламп другой мощности.

Как и для линейных, для компактных ламп каждая фирма имеет свою систему обозначений, затрудняющую ориентировку в ламповом мире и часто ставящую потребителей в тупик при решении вопроса о взаимозаменяемости ламп разных фирм. Например, лампы с цоколем G23 Philips называет PL-S, Osram — Dulux S, Sylvania — Lynx-S, General Electric — F…X. После буквенных обозначений, также как и у линейных ламп, указываются мощность, общий индекс цветопередачи и цветовая температура.

Компактные лампы второй группы (со встроенным аппаратом включения) появились на мировом рынке в 1981 году как прямая альтернатива стандартным лампам накаливания. Эти лампы, как сказано выше, были очень тяжелыми — около 400 граммов — и широкого применения не нашли. Положение коренным образом изменилось в 1986 году, когда Philips, Osram, General Electric одновременно начали промышленный выпуск КЛЛ со встроенными электронными аппаратами включения и цоколями Е14 и Е27. Лампы имеют массу не более 100 граммов; размерами, а часто и формой напоминают привычные лампы накаливания; цветность излучения, как правило, тепло-белая, что также близко к лампам накаливания. Началась широкая рекламная кампания, для чего в Германии фирма Osram какое-то время даже раздавала лампы бесплатно.

Рекламные акции сделали свое дело, и спрос на КЛЛ с цоколями Е27 и Е14 повсеместно начал расти, что привело к соответствующему росту их производства. Сейчас в мире делается уже более 200 миллионов таких ламп в год, из них около 100 миллионов — в Китае. К сожалению, в нашей стране производится не более 10 тысяч таких ламп в год.

Компактные люминесцентные лампы с цоколями Е27 или Е14 обладают целым рядом преимуществ перед лампами накаливания и «неинтегрированными» КЛЛ: их световая отдача примерно в 5 раз выше, срок службы в 8-10 раз больше, лампы просто вкручиваются в патроны, не гудят, не мигают при включении, горят непульсирующим светом. Недостаток у них фактически один — высокая цена. Иностранные экономисты подсчитали, что при существующих в Европе и США ценах на электроэнергию срок окупаемости КЛЛ составляет 2 — 3 года при работе ламп около 3-х часов в сутки.

Лампы с интегрированным аппаратом включения классифицируются по мощности и цветности излучения. Как и у ламп первой группы, какого-либо единства в обозначении интегрированных КЛЛ нет — каждая фирма обозначает по-своему. По международной системе ILCOS все КЛЛ со встроенным аппаратом включения должны называться FSQ.

В России такж минала КЛЛ со вст ратом включения трубкой (рис. 2). Такие лампы типа «Аладин» или СКЛЭН мощностью 11, 13 и 15 Вт в небольших количествах делает Московский электроламповый завод.

Рис. 2. Спиральные люминесцентные лампы типа «Алалин»

В таблицах 1, 2, 3 и 4 приводятся параметры некоторых типов люминесцентных ламп отечественного и импортного производства.

Таблица 1

Мощность, Вт

Длина, мм (полная)

Световой поток, лм

Световая отдача, лм/Вт

Таблица 2

Мощность,

Номинальный

Максимальный

Номинальная

Максимальная

световой

световой

световая

световая

(при 20 °С)

(при 35 °С)

«Срок службы ламп — 18000 часов при среднем спаде светового потока 10 %. «Лампы выпускаются с цветовой температурой 2700, 3000, 4000 и 6000 К. Индекс цветопередачи всех ламп 85.

Таблица 3

Параметры КЛЛ со встроенными аппаратами включения


Мощность,

Световой

Габариты, мм

поток, лм

С двумя линейными

Газоразрядный источник света, на стенках колбы которого нанесено специальное люминофорное покрытие называется люминесцентной лампой. Она выполняется в форме стеклянной трубки. На торцах установлены специальные электроды, которые зажигают эту лампу. Всё пространство внутри колбы заполняется парами ртути и инертным газом. Именно они после зажигания начинают излучать свет.

После включения устройства, внутри происходит газовый разряд. Именно этот разряд зажигает пары ртути и заставляет их излучать невидимое для человеческого глаза ультрафиолетовое освещение.

Принцип работы и виды изделия

После зажигания ртути, ультрафиолет начинает взаимодействовать с нанесённым на стенки люминофором, что провоцирует его излучать уже видимый спектр света. Таким образом, люминофор исполняет функцию преобразователи, или конвертора, и позволяет нам ощущать уже тот свет, который легко воспринимается человеческим глазом и способен освещать окружающую среду.

Благодаря уникальному свойству стекла не пропускать ультрафиолетовые лучи, оно защищает нас и полностью блокирует выход их в окружающую среду и предохраняет наши глаза от его прямого воздействия, которое губительно.

Но существуют лампы, которые не препятствуют такому излучению. Их изготавливают из увиолевого и кварцевого стекла, такие виды материалов способны пропускать ультрафиолетовые лучи. Как правило, такие лампы используют для очистки и дезинфекции разных приспособлений. В магазине их можно встретить, как бактерицидные они имеют специально обозначение, где это указано.


Принцип работы

Для увеличения тепловой отдачи света, используют лампы малого давления с добавлением амальгамы индия и кадмия либо других подобных элементов. Таким образом, температурный диапазон способен расширяться до шестидесяти градусов, в сравнении со стандартным наполнением лампы, когда температура не более двадцати пяти градусов.

Значительное снижение производительности замечается, когда температура внешней среды находится на низком уровне, ниже минимально допустимой. При таких условиях существенно увеличивается время прогрева и зажигания лампы, интенсивность и качество свечения уменьшаются в несколько раз.

Для таких условий необходимо использовать специальные утеплители и обогреватели. В связи с этим набирают актуальности лампы, не содержащие ртутных паров, которые работают исключительно на низком давлении инертного газа внутри колбы.

Технические характеристики и классификация

Чтобы классифицировать и выделить технические характеристики люминесцентных ламп следует обратить своё внимание на такие показатели их работоспособности и конструкции:

  • Тип излучаемого света. Энергосберегающие устройства могут излучать как обычный белый, так и дневной свет. Более новой их разновидностью являются универсальные приборы.
  • Поперечная ширина колбы. Пропорционально с ростом этого показателя, увеличиваются все остальные показатели, такие мощность, температура света, спектр и длительность эксплуатации прибора. Самыми распространёнными и наиболее эффективными, считаются диаметры восемнадцать, двадцать шесть и тридцать восемь миллиметров. Диаметр и длину всей колбы часто указывают вместе, например, размеры 38\406.
  • Показатель силы излучения или простыми словами мощность устройства. Благодаря данному критерию мы способны просчитать какую площадь возможно осветить с помощью выбранной нами лампы. Также от показателя мощности зависит и коэффициент полезного действия прибора.
  • Количество цоколей может быть в одном варианте, двух либо компактной формой со встроенными цоколями. Для увеличения компактности лампы скручивают спиралью, для экономии пространства.
  • Потребность в конструкции стартера или и безстартерный прибор. Существует мнение, что лампы, не имеющие стартера, обладают большей экономичностью, но это не так. На самом деле такие устройства просто затрачивают то же количество электроэнергии на более продолжительный запуск.
  • Номинальное напряжение, которое необходимо для функционирования лампы. Существуют разновидности способные работать от стандартного напряжения 220 вольт и более уникального, 127 вольт.
  • Форма колбы: кольцо, у-образная, прямая, спираль, шарообразный прибор, дуговая форма. Стандартные бытовые лампы обычно имеют самую приемлемую спиральную конструкцию и, как правило, не маркируются.
  • Срок службы. В зависимости от сферы использования, срок службы будет отличаться. Наибольшим периодом работы обладают домашние энергосберегающие лампы.

В сравнении с более старыми аналогами, появившись на рынке, каждая энергосберегающая лампочка маркировалась и имела своё обозначение. Систему обозначения придумали сразу и лишь дополняли с выходом более новых моделей и расширением функциональности.

Производители обозначают тип устройства, но редко указывают такие параметры, как диаметр и длину колбы, они пишутся только на коробке.


Маркировка отечественных производителей

Форма колбы наглядно демонстрирует вид и влияет на большинство характеристик, давайте разберём, как маркируют колбы:

  • U – ствольчатое устройство. Спереди дополнительно указывается цифра, которая показывает, сколько электрических дуг возникает внутри.
  • M – уточнение, которое показывает что изделие имеет маленькие габариты при относительно большой мощности.
  • S – Спиральный тип колбы. Так же существуют подвиды, такие как спиральная с установленным корпусом-рубашкой.
  • P – это обозначение показывает, что используется корпус-рубашка. Применяется практически со всеми разновидностями энергосберегающих устройств.
  • C – в форме свечи.
  • Ш – шарообразное устройство, такая форма является стандартно для рефлекторных ламп.
  • R – указывает на то, что в конструкции присутствует рефлектор для направления потока света.

Разбираем все плюсы и минусы

Показатель световой отдачи увеличивается в том случае, когда длина устройства уменьшается. Таким образом, потери анодных и катодных взаимодействий стают меньше и световой поток становится более качественным. Исходя из этого, можно понять что более эффективной будет лампа на 26 Вт, чем две обладающие аналогичной суммарной мощностью.

Период эксплуатации ограничивается износом электродов, так как они при выработке просто исчезают. Струсы и падения устройства негативно сказываются на его жизнеспособности. После падения срок службы и качество света может резко упасть.

Какими плюсами обладают такие устройства:

  1. Относительно высокий коэффициент полезного действия, находится примерно в районе двадцати пяти процентов, а показатель светоотдачи выше до десяти раз, чем у ламп накаливания.
  2. Срок эксплуатации примерно двадцать тысяч часов.
  3. Довольно высокая степень светоотдачи. Данный показатель превосходит лампы накаливания в пять-шесть раз. Например, двадцати ватное энергосберегающее устройство, выделяет количество света примерное равное сто ватной лампе накаливания.
  4. Очень широкий цветовой спектр. Есть возможность выбрать лампу с таким цветом свечения, который вам необходим. На сегодняшний день существуют сотни разных вариантов оттенков.
  5. Свет распределён по всему объёму устройства, а не только на рабочем органе, как в случае с накаливающейся лампой.

Конечно, у такого устройства есть недостатки:

  • Нуждаются в дополнительной установке балласта, для стабилизации и поддержания нормальной работы лампы. Балласт – это пускорегулирующее устройство, которое обеспечивает нормальный процесс зажигания и стабильную работу энергосберегающей лампы.
  • Сильно зависят от показателя внешней температуры воздуха. Оптимальной температурой для работы, является двадцать градусов.
  • Присутствует риск отравления парами ртути при значительном повреждении оболочки устройства.
  • Нестабильное напряжение будет вызывать сильное мерцание, которое ощутимо для человеческого глаза и сильно портит зрение.
  • Установка диммера возможна только с использованием дополнительных устройств.
  • Утилизация нуждается в специализированном сервисе, который стоит немалых денег.

Выбирает энергосберегающую лампу для своих потребностей

Подбирая для себя данное устройство, следует придерживаться определённых правил, которые впоследствии будут влиять на его показатели качества и долговечности.


Маркировка популярных производителдей

На какие технические характеристики следует обратить внимание:

  • Особенности помещения, где лампу будут устанавливать.
  • Температура, при которой устройству необходимо будет функционировать.
  • Качество вашей энергосети.
  • Габариты лампы. Если она слишком длинная или широкая, есть шанс что она не поместиться в ваш светильник.
  • Необходимая потребность в мощности, цвете и разновидности светового потока.

Подобрав устройство в соответствии с данными правилами, вы гарантировано получите хороший продукт, который сможет соответствовать всем вашим потребностям.

Когда занялся решением проблемы освещения своей банки столкнулся с проблемой расшифровки того что написано на лампах.Ведь очень легко потеряться в сложном разнообразии люминесцентных ламп,а если у вас под рукой нет каталога с подробными характеристиками что делать?

Вот справочная статья которая думаю поможет многим не потерятся в своем выборе

Параметры выбора энергосберегающих ламп

Размер. Как правило, энергосберегающие лампы больше по размеру, чем обычные. Поэтому обратите внимание, поместится ли выбранная вами люминесцентная лампа в ваш светильник. Есть две основных формы энергосберегающих ламп: U — подобная и в виде спирали. Форма лампы не влияет на ее работу, однако спиралевидные лампы обычно несколько дороже, чем U -подобные, поскольку процесс их производства более сложный.

Мощность. Энергосберегающие лампы бывают различной мощности: от 3 до 85 Вт. Учитывая то, что световая отдача энергосберегающих ламп выше, чем у обычных приблизительно в 5 раз, выбирать необходимую мощность люминесцентной лампы нужно, исходя из соответствующей пропорции — там, где вы использовали лампочку накаливания мощностью 100 Вт хватит энергосберегающей лампы мощностью 20 Вт.

Тип цоколя. Перед покупкой лампы не забудьте проверить тип цоколя вашего светильника, которому подойдет только соответствующий цоколь лампы. Подавляющее большинство люстр, которые подвешиваются к потолку, имеют цоколь Е 27 (обычный), в небольших светильниках и бра применяют немного меньший по размеру цоколь Е 14 (он же миньон).

Сначала разберемся с терминологией.

Цветность света — температура черного тела, при которой оно испускает излучение с той же самой хроматичностью, что и рассматриваемое излучение. Иначе говоря, это мера объективного впечатления от цвета данного источника света. Если температура «черного тела» повышается, то синяя составляющая в спектре возрастает, а красная составляющая убывает.

Единица: кельвин (К).
Существуют следующие главные цветности света:
2700 К — сверхтеплый белый
3000 К — теплый белый
4000 К — естественный белый или белый
5000 К — холодный белый (дневной)
Лампы с одинаковой цветностью света могут иметь различные характеристики цветопередачи, что объясняется спектральным составом излучаемого ими света.
Цветовое ощущение — общее, субъективное ощущение, которое человек испытывает, когда смотрит на источник света. Свет может восприниматься как теплый белый, нейтральный белый или холодный белый. Объективное впечатление от цвета источника света определяется цветовой температурой.
Цветопередача. Достоверность цветопередачи определенной лампы показывает нам, насколько естественным выглядит наше окружение в свете этой лампы. Способность к цветопередаче отражает коэффициент (индекс) цветопередачи- Ra.
Для установления величины Ra выбирают из окружающей среды восемь цветов, которые затем освещаются исследуемой лампой и стандартной лампой, дающей свет с той же самой цветовой температурой. Чем меньше различие в способности цветопередачи сравниваемых ламп, тем выше величина Ra исследуемой лампы.
Максимальное значение коэффициента Ra составляет 100 (это значение принимается для солнечного света, а также для большинства ламп накаливания).
Класс цветопередачи — достоверность цветопередачи лампы. Классы 1A, 1B — степень цветопередачи отличная. Классы 2A, 2B — степень цветопередачи хорошая. Класс 3 — степень цветопередачи удовлетворительная. Класс 4 — степень цветопередачи недостаточная.
Каждый производитель светотехнической продукции маркирует свои изделия по своему особому типу, но эти обозначения можно расшифровать и получить необходимую информацию о лампе.
Цветопередача вместе с цветностью света / цветовой температурой составляют международное обозначение цвета лампы (цветовое обозначение), которое и нужно расшифровать.
———————————————————
Маркировка люминесцентных ламп PHILIPS(рис. 1)
Первая цифра международного обозначения определяет цветопередачу:
9 — соответствует степени цветопередачи 1A (Ra 90-100)
8 — соответствует степени цветопередачи 1B (Ra 80-89)
7 — соответствует степени цветопередачи 2А (Ra 70-79)
6 — соответствует степени цветопередачи 2В (Ra 60-69)
5 — соответствует степени цветопередачи 3 (Ra 50-59)
4 — соответствует степени цветопередачи 3 (Ra 40-49)
Следующими двумя цифрами обозначается цветность света / цветовая температура:
27 — LUMILUX PLUS INTERNA (сверхтеплый свет) / около 2700 К
30 — LUMILUX PLUS тепло-белая (теплый свет) / около 3000 К
40 — LUMILUX PLUS холодно-белая (белая естественная) / около 4000 К
50 — LUMILUX PLUS дневного света (холодный свет) / около 5000 К
60 — LUMILUX PLUS дневного света / около 6000 К
65 — LUMILUX BIOLUX (дневной свет) / около 6500 К
Специальние аквариумные лампы
PHILIPS AQUARELLE:http://www. aquariumlights.ru/philips_a.html
Аквариумные люминесцентные лампы (TLD AQUARELLE) излучают свет с очень высокой энергетической плотностью в синей части спектра. Это не только подчеркивает красоту и неповторимость подводного мира, но обеспечивает также оптимальные условия для фотосинтеза, стимулирует образование кислорода, благотворно влияет на аквариумные растения и рыб. Эти лампы имеют форму трубки диаметром 16 или 28 мм и цоколь G5 или G13 соответственно. Их мощность может быть 8-58 Вт. Полезный срок службы — 8000 часов.
Вот еще некоторая информация по лампах филипс:
http://www.i-stroy.ru/docu/electrica…amp/13340.html
и самая интересная ссилка :Специальные лампы для освещения аквариумов
http://www.zoospravka.ru/foraqua/aquaeqlamp.htm

———————————————————-

Маркировка люминесцентных ламп OSRAM
Если с обозначением люминесцентных ламп Philips все более менее понятно, то лампы Osram требуют некоторых пояснений из-за выделения своих собственных цветностей света. Поэтому для большей ясности необходимо рассмотреть еще цветности ламп Osram.
Цветности света люминесцентных ламп OSRAM
LUMILUX®
Цветность света 11-860 LUMILUX® PLUS ECO дневного света
Цветность света 21-840 LUMILUX® PLUS ECO холодно-белая
Цветность света 31-830 LUMILUX® PLUS ECO тепло-белая
Цветность света 41-827 LUMILUX® PLUS ECO INTERNA
Все эти цветности света имеют экономичные люминесцентные лампы OSRAM LUMILUX® PLUS ECO .
Лампы с цветностью света LUMILUX® отличаются великолепной цветопередачей и высокой световой отдачей. Основными достоинствами этих ламп являются:
пониженная потребляемая мощность
световая отдача до 104 лм/Вт
превосходная цветопередача в соответствии со стандартом DIN 5035, степенью 1В (Ra 80 — Ra 89).
Для ламп с цветностями света LUMILUX® рекомендуется использовать электронные ПРА, обеспечивающие экономичную работу этих ламп, световой поток которых в течение их срока службы падает лишь незначительно. Данная рекомендация относится и к лампам с цветностью света LUMILUX® DE LUXE.
LUMILUX® DE LUXE
Лампа 12-950 LUMILUX® DE LUXE с цветностью дневного света отвечает самым высоким требованиям к передаче естественного цвета при дневном освещении (5400 К, Ra 98). Поэтому она незаменима в тех случаях, когда нужна атмосфера живого дневного света, например, в типографиях, зубоврачебных кабинетах и лабораториях, при просмотре диапозитивов и в специализированных магазинах текстильных товаров.
Лампы 22-940 LUMILUX® DE LUXE с холодно-белой и 32-930 LUMILUX® DE LUXE с тепло-белой цветностью света отвечают самым высоким требованиям к очень хорошей цветопередаче (Ra>90). Степень цветопередачи 1А по DIN 5035.
Лампа 72-965 BIOLUX® излучает свет, который по своей спектральной характеристике схож с солнечным светом. Эта лампа рекомендуется для помещений с недостатком дневного света, например, для офисов, банков и магазинов. Благодаря своей очень хорошей цветопередаче и высокой температуре цвета (6500 К) она идеально подходит для сравнения красок и медицинской светотерапии.
Универсально-белая (тип 25)
Лампа с универсальной цветностью света для внутреннего и наружного освещения.
Лампы со специальными цветностями света
76 NATURA DE LUXE. Красная составляющая излучаемого этой лампой света гармонично согласована с остальными цветовыми компонентами. Благодаря своей естественной цветопередаче она особенно хорошо подходит для подсветки мясных и колбасных изделий, деликатесов, овощей, цветов и т.д.
77 FLUORA®. Специальный облучатель для растений и аквариумов с усиленным излучением в спектральном диапазоне синего и красного света. Идеально воздействует на фотобиологические процессы. Кстати аналог ГроЛюкс и подобных — для подсветки растений.
60, 66 и 67. Цветные люминесцентные лампы красного, зеленого и синего цвета для декоративного освещения и создания специальных световых эффектов.Для акв особо не подходят.
62. Люминесцентная лампа желтого света, абсолютно не содержащего ультрафиолетовую составляющую. Поэтому эта лампа рекомендуется для стерильных производств, например, для цехов по изготовлению микросхем, а также для общего освещения без УФ-излучения.
Лампы Osram с обозначениями SPS и UVS излучают свет с минимальным содержанием ультрафиолетовой составляющей типа А (при абсолютном отсутствии ультрафиолетовых составляющих типа В и С).
————————————————————

Cпецификация энергосберегающей лампы производства DeLux: ESS-02A 15W E14 6400K означает, что перед нами лампа мощностью 15 Вт, с маленьким цоколем (Е14), излучающая холодный белый свет (6400К).

__________________________________________________

РАСШИФРОВКА УСЛОВНОГО ОБОЗНАЧЕНИЯ ЛАМП НАКАЛИВАНИЯ

Обозначения типов ламп накаливания

Б — спиральная;
БК – биспиральная с криптоновым наполнением;
В – вакуумная;
Г — газополная;
Д – декоративная;
ЗК – зеркальная с концентрированной КСС;
ЗШ – зеркальная с широкой КСС;
М – в колбе из молочного стекла;
О – в колбе из опалового стекла;
С – в свечевидной колбе;
Ш – шаровидной колбе.

Обозначения некоторых типов источников света

ДРЛ – дуговая ртутная лампа высокого давления с люминофором.
ДРИ – металлогалогенная лампа.
ДРИЗ — металлогалогенная лампа с внутренним зеркальным отражателем.
ДРИШ — металлогалогенная лампа короткодуговая,шаровая.
ДнаТ – натриевая лампа высокого давления.
ДнаЗ — натриевая лампа высокого давления с зеркальным отражателем.
КГ – галогенная лампа накаливания с кварцевой колбой.
————————————————————

Люминесцентная лампа является газоразрядным источником света, которая сегодня широко применяется для освещения не только в офисах и производстве, а так же в домах, квартирах и гаражах. Главные достоинства по сравнению с обычными лампами накаливания- это продолжительный срок службы (до 20 раз выше) и в несколько раз больше энергоэффективность (они в разы меньше потребляют электроэнергии при том же световом потоке).

Но есть недостатки:

  1. Чувствительны к качеству электропитания и количеству включений и выключений. При несоблюдении этих условий- быстро выходят из строя.
  2. Внутри стеклянной колбы содержится ртуть опасная для здоровья человека.
  3. Отсутствие возможности регулирования при помощи димеров яркости свечения, кроме КЛЛ (компактной люминесцентной лампы) особой конструкции и с специфическим подключением, требующим прокладки дополнительных проводов для этого.
  4. Не рекомендуется использовать вместе с выключателем, имеющим встроенную подсветку , что может приводить к неправильной ее работе с кратковременными зажиганиями лампы.
  5. Период между включениями люминесцентной лампы должен составлять более 2 минут. Поэтому не рекомендуется использовать совместно с датчиком, звука, движения и т. п. Если это проигнорировать, то она быстро выйдет из строя.
  6. Не рекомендуется компактный тип люминесцентных ламп использовать в герметичных светильниках с высокой степенью защиты IP для помещений с высокой влажностью, запыленностью, пожароопасностью и т. д.
  7. Рабочая температура не ниже -25 градусов по Цельсию, при достижении этого порога она проста не сможет засветится при включении.

Виды люминесцентных ламп.

Для дома и квартиры в основном применяются компактные люминесцентные лампы (далее ККЛ) под обычный цоколь, которые подключаются на прямую к электрической сети 220 Вольт. Довольно редко встречаются компактные 4- штырьковые люминесцентные лампы, для работы которых необходим светильник со специальным пуск-регулирующим блоком, с которым также работают так называемые лампы дневного света трубчатой (очень редко дугообразной формы). Последние в основном применяются для освещения административных и промышленных помещений.

Технические характеристики ламп дневного света.

  • Они работают все на напряжении 220 Вольт, реже при последовательном подключении двух на 127 Вольтах.
  • Маркировка из трех букв. Первая означает Л- люминесцентная, вторая оттенок свечения. Д — дневной, Б — белый, Е — естественно-белый, ТБ — тепло-белый, ХБ — холодно-белый; К, 3, Ж, Г, С — соответственно красный, зеленый, желтый, синий, голубой, синий, УФ означает — ультрафиолетовый. Третья буква Ц (или две ЦЦ) после первых двух свидетельствует о цветопередаче высокого качества. И в самом конце стоят буквы подчеркивающие конструктивные особенности: У — U-образная, К — кольцевая, Р — рефлекторная, Б — быстрого пуска. Цифры указывают мощность в Ваттах. Потребляемая мощность находится в пределах от 18 до 80 Вт.
  • В зависимости от конструкции лампы встречаются с разными типами и размерами держателей (цоколей)Диаметр трубки обозначается Т- размером, после которого идет значение в восьмых частях дюйма. Так маркировка T8 свидетельствует об диаметре в 26 милиметров, а T12 — в 38 мм. Будьте внимательны, а то приобретите лампу, не подходящую к вашему светильнику. Более подробно читайте в .
  • Кроме цоколя лампа должна походить и по длине, так Вы не вставите 18 Вт лампу в 32 Вт светильник, потому что их длина почти в 2 раза отличается.

Технические характеристики компактных люминесцентных ламп.

Все технические характеристики легко найдете на упаковке или на корпусе лампы. Обычно там указывается срок службы, потребляемая мощность в Ваттах (Watt) и сравнение по аналогичной эффективности с лампой накаливания. Всегда обращайте внимание на тип цоколя. Встречаются в продаже с цоколем Е14 уменьшенного размера и обычного- Е27, предназначенного для прямой замены ламп накаливания. Еще одним важным параметром является цветопередача, которая показывает какого оттенка будет искусственный свет, указываемый в Кельвинах от 2700К (теплый оттенок, как у лампы накаливания) до 6500К (холодный).
Более подробно об этом читайте в нашей статье «

Сравнительная характеристика люминесцентных ламп Т5 и Т8

В наше время очень широкое применение получили люминесцентные светильники. Практические одни и те же светильники можно встретить с лампами Т5 и Т8. А чем же отличаются люминесцентная лампа Т8 от Т5? Сравним основные технические характеристики.

Лампы Т5 называют еще лампами нового поколения. К основным техническим характеристиками лам можно отнести:

  • габаритные размеры;
  • светоотдача;
  • срок службы.

Обзор лампы Т8.

Лампа Т8 имеет диаметр 26 мм. Средняя светоотдача у люминесцентных ламп Т8: 65 лм/Вт. Цветовая температура: 2800—6000К в зависимости от лампы. Индекс цветопередачи ламп Т8:  Ra=55-80.  Оптимальной температурой для ламп считается 250С. При других температурах световой поток уменьшается. У разных производителей люминесцентных ламп характеристики могут немного отличаться. В среднем срок службы лампы Т8: 9000-13000 часов. К концу срока службы световой поток падает на 20-30%.

Обзор лампы Т5.

Лампа Т5 имеет диаметр 16мм. В лампе Т5 применен новый люминофор. По сравнению с лампой Т8, конструкция ламп включает на 38% меньше стекла и люминофора. Лампа Т5 имеет высокую светоотдачу: около 95 лм/Вт. Цветовая температура как и у ламп Т8. В отличие от лампы Т8, у данной лампы после 10000 часов световой поток падает всего на 5%. Ламы Т5 более экологичны.  Производители добились уменьшение содержания ртути в лампа Т5 в 5 раз по сравнению с Т8. Лампы обладают высоким качеством цветопередачи.  Индекс цветопередачи: Ra=80-90. Максимальный световой поток лампы достигается при температуре окружающей среды +350С. Срок службы лампы Т5: 16000-2000 часов. Лампы работают только с электронными ПРА.

Светоотдача ламп

Подведем итог: лампы Т5 имеют меньшие габариты, высокую светоотдачу, лучшие характеристики цветопередачи, больший ресурс работы, более экологичны.

Что мы получим при использовании ламп Т5? Экономию электроэнергии на 30%, лучшие световые характеристики, увеличенный срок службы и благодарность от Greenpeace

В общем, можно сказать, что лампа Т5 по характеристикам  лучше в 3 раз лампы Т8 (экономия электроэнергии + срок службы + цветопередача + экологичность = 3).

В сравнении ламп Т8 и Т5 важное место занимает и цена ламп. Ведь не каждый заказчик способен оценить все достоинства ламп Т5.

Лампы Т5 примерно в 1,5-2 раз дороже ламп Т8.

Тот кто живет сегодняшним днем – выберет лампу Т8, а умный купит лампу Т5
Советую почитать:

Lightopedia.

com — Характеристики света Взаимодействие с другими людьми

Оценка на основе типовых ламп накаливания

На этой диаграмме показано количество люменов, создаваемых обычными лампами накаливания.

Руководство по яркости лампы: шкала люмена

В прошлом потребители использовали мощность в ваттах для оценки яркости лампы.Однако мощность не является точным показателем яркости лампы. Энергоэффективные источники света, такие как компактные люминесцентные лампы (КЛЛ), имеют гораздо меньшую мощность, но при этом производят большое количество света. Мощность — это просто мера количества потребляемой энергии. С другой стороны, светоотдача является мерой светового потока или, проще говоря, яркости лампы. Он измеряется в ЛЮМЕНАХ.

По мере того, как все больше потребителей узнают об этом распространенном заблуждении, люмены станут одним из наиболее важных факторов при выборе лампы.

Итак, если вы все еще спрашиваете лампу WATT, которая вам нужна, вы задаете неправильный вопрос.

Просто помните, больше люмен = больше света.

В таблице справа показаны типичные значения LUMEN для ламп накаливания.

Индекс цветопередачи

CRI, или индекс цветопередачи (Ra), измеряет, насколько хорошо данный источник света передает цвет. Ученые оценивают это, используя 8 эталонных цветов и сравнивая то, как они выглядят под источником света, с тем, как те же цвета выглядят под двумя эталонными источниками: светом накаливания (для ламп теплого цвета) и дневным светом (для ламп холодного цвета).CRI представлен числом по шкале от 0 до 100, где 0 означает «плохо», а 100 — «отлично». Чем меньше число, тем более искаженным будет цвет под источником света. Как вы можете видеть на этих двух изображениях, источник света может улучшать или искажать цвета объекта.


  • Плохой индекс цветопередачи
  • Хороший CRI

Коррелированная цветовая температура: теплый или холодный

Внешний вид цвета, также известный как коррелированная цветовая температура (CCT), является мерой того, насколько теплый или холодный источник света кажется человеческому глазу. Он измеряется в градусах Кельвина.

Большинство источников света имеют температуру Кельвина в диапазоне от 2700K до 6500K. Для справки: дневной свет в полдень имеет температуру Кельвина 5000 К. Источники света накаливания обычно находятся в диапазоне от 2700 до 3500 К. Компактные люминесцентные лампы и светодиоды могут иметь диапазон от 2700 до 6500 К. Чем выше температура Кельвина, тем холоднее кажется источник света, а чем ниже температура Кельвина, тем теплее кажется источник света.

Источники видимого света — Введение

Видимый свет составляет лишь крошечную часть всего спектра электромагнитного излучения, однако он содержит единственную область частот, на которую будут реагировать палочки и колбочки человеческого глаза.Длины волн, которые люди обычно могут визуализировать, лежат в очень узком диапазоне примерно от 400 до 700 нанометров. Люди могут наблюдать и реагировать на раздражители, создаваемые видимым светом, потому что глаза содержат специализированные нервные окончания, чувствительные к этому диапазону частот. Однако остальная часть электромагнитного спектра невидима.

За излучение электромагнитного излучения отвечает широкий спектр источников, которые, как правило, классифицируются в соответствии с конкретным спектром длин волн, генерируемых источником.Относительно длинные радиоволны производятся электрическим током, протекающим через огромные широковещательные антенны, в то время как гораздо более короткие волны видимого света производятся колебаниями энергетического состояния отрицательно заряженных электронов внутри атомов. Самая короткая форма электромагнитного излучения, гамма-волны, возникает в результате распада ядерных компонентов в центре атома. Видимый свет, который люди могут видеть (спектр показан на рисунке 1), обычно представляет собой смесь длин волн, чей меняющийся состав зависит от источника света.

В нашей повседневной жизни мы подвергаемся бомбардировке огромным спектром электромагнитного излучения, только часть которого мы действительно можем «видеть» как видимый свет. Когда вы выходите на улицу, подавляющее большинство видимого людям света излучается солнцем, которое также производит множество других частот излучения, не попадающих в видимый диапазон. Внутри мы видим видимый свет, исходящий от искусственных источников , в первую очередь от флуоресцентных и вольфрамовых приборов.

Ночью естественный свет излучается небесными телами, такими как луна, планеты и звезды, в дополнение к периодическому северному сиянию (северное сияние) и случайным кометам или метеорам («падающая звезда»). Другие источники естественного света включают метеорологические молнии, вулканы, лесные пожары, а также некоторые биохимические источники видимого света ( биолюминесценция ). Биологические источники света включают знакомых молниеносных насекомых («светлячков») и более экзотическое свечение моря, включая биолюминесцентные виды бактерий, водоросли, динофлагелляты, медузы, гребневики (гребневики) и некоторые виды рыб.

Длина волны видимого света и воспринимаемый цвет
Диапазон длин волн
(нанометры)
Воспринимаемый цвет
340-400 Ближний ультрафиолетовый (УФ; невидимый)
400-430 Фиолетовый
430-500 Синий
500-570 Зеленый
570-620 От желтого до оранжевого
620-670 Ярко-красный
670-750 Темно-красный
Более 750 Ближний инфракрасный (ИК; Невидимый)
Таблица 1

Таблица 1 содержит список видимых цветов r распределение, воспринимаемое людьми для ряда узких диапазонов длин волн в спектре видимого света. Связывание определенных цветов с областью длин волн позволяет различать разные тона, оттенки и оттенки. Многие различные спектральные распределения могут вызывать идентичные цветовые ощущения (явление, известное как метамеры ). Например, ощущение желтого цвета может быть вызвано светом с одной длиной волны, например 590 нм, или может быть результатом просмотра двух равных количеств света с отдельными длинами волн, например 580 и 600 нм.Также можно рассматривать желтый цвет как узкое распределение, охватывающее все длины волн от 580 до 600 нанометров. Что касается зрительной системы человека, то тот же аргумент справедлив для всех цветов видимого спектра. Однако недавние исследования показывают, что некоторые виды (особенно птицы) могут различать цвета, воспринимаемые людьми как метамеры.

Источники света накаливания

Древние люди не имели надежного источника света в течение долгих ночей, но они могли иногда находить и собирать горящие дрова от лесных пожаров, а затем поддерживать пламя в костре в течение короткого периода времени. время.По мере развития знаний человек обнаружил, что искры, а затем и огонь, могут возникать при ударе определенных камней вместе (например, кремень и железный колчедан) или при агрессивном трении дерева о дерево. Как только эти техники были освоены, человек мог разводить огонь, когда он пожелал.

Когда горит огонь, выделяется химическая энергия в виде тепла и света. Горящее топливо, будь то трава, дерево, масло или какой-либо другой горючий материал, испускает газы, которые нагреваются огромной химической энергией, генерируемой во время сгорания, заставляя атомы в газе светиться или накаливать .Электроны в атомах газа продвигаются на более высокие уровни энергии за счет тепла, и свет высвобождается в форме фотонов, когда электроны релаксируют в свое основное состояние. Цвет пламени указывает на температуру и количество выделяемой энергии. Тускло-желтое пламя намного холоднее ярко-синего пламени, но даже самое холодное пламя все равно очень горячее (не менее 350 градусов Цельсия).

Хотя смола и тряпки использовались для изготовления первых факелов, первый практический шаг в борьбе с огнем произошел, когда была изобретена масляная лампа.Были обнаружены первые лампы возрастом более 15 000 лет (рис. 2), сделанные из камней и ракушек, которые сжигали животный жир и растительные масла. До изобретения газового освещения животный жир пользовался огромным спросом. Основным источником этого масла был жир , полученный путем варки жировых тканей, полученных от морских животных, таких как киты и тюлени. Масляные лампы в конечном итоге превратились в свечи, которые были сформированы путем заливки затвердевшего жира или пчелиного воска, как показано на рисунке 2. Ранние свечи генерировали довольно много дыма, но не так много света.В конце концов, было обнаружено, что парафиновый воск, при правильном отливке с пропитанным тканевым фитилем, дает относительно яркое пламя без значительного количества дыма.

В 19 веке освещение на природном газе получило широкое распространение во многих крупных городах Европы, Азии и США. Ранние газовые фонари работали, создавая струю горящего газа (довольно опасная ситуация), в то время как более поздние модели были оснащены плащом или тонкой сеткой из химически обработанной ткани, которая рассеивает пламя и излучает гораздо более яркий свет.

Молния: естественный конденсатор

Изучите накопление статических электрических зарядов между грозовыми облаками и влажной землей во время грозы с помощью этого урока, в котором моделируются конденсаторные разряды молний, ​​одного из природных источников света.

Ранние микроскописты полагались на свечи, масляные лампы и естественный солнечный свет для освещения относительно грубых оптических систем в своих микроскопах. Эти примитивные источники света страдали от мерцания, неравномерного освещения, бликов и часто представляли потенциальную опасность возгорания.Сегодня лампы накаливания высокой интенсивности на основе вольфрама являются основным источником света, используемым в современных микроскопах и большинстве бытовых осветительных систем.

На рисунке 3 представлены кривые спектрального распределения, демонстрирующие относительные количества энергии в зависимости от длины волны для нескольких различных источников белого света (состоящего из смеси, содержащей все или большинство цветов видимого спектра). Красная кривая представляет относительную энергию вольфрамового света во всем видимом спектре.Как видно из рисунка, энергия вольфрамового света увеличивается с увеличением длины волны. Этот эффект существенно влияет на среднюю цветовую температуру получаемого света, особенно по сравнению с естественным солнечным светом и флуоресцентным светом (ртутная лампа). Спектр, представленный желтой кривой, представляет собой распределение видимого света из спектра естественного солнечного света, взятого в полдень. В нормальных условиях солнечный свет содержит наибольшее количество энергии, но все кривые, показанные на рисунке 3, были нормализованы к спектру вольфрама, чтобы облегчить сравнение.Темно-синяя спектральная кривая характерна для ртутной дуговой лампы и демонстрирует некоторые заметные отличия от спектров вольфрама и естественного солнечного света. В спектре газоразрядной лампы присутствует несколько энергетических пиков, которые возникают в результате наложения отдельных линейчатых спектров, происходящих от паров ртути.

Спектр видимого света, создаваемый белым светоизлучающим диодом ( LED ), представлен зеленой кривой на рисунке 3. Светоизлучающие диоды по своей природе монохроматические устройства, цвет которых определяется шириной запрещенной зоны между различными используемыми полупроводниковыми материалами. в диодной конструкции.Красные, зеленые, желтые и синие диоды являются обычными и широко используются в качестве индикаторов для компьютеров и других устройств бытовой электроники, таких как радиотюнеры, телевизионные приемники, проигрыватели компакт-дисков, видеомагнитофоны и цифровые проигрыватели видеодисков. Светодиоды белого света изготавливаются из синих диодов из нитрида галлия путем покрытия полупроводниковой матрицы люминофором, который излучает широкий диапазон видимых длин волн при возбуждении светом, излучаемым синим диодом. Спектры лазеров, получаемых от диодов или газовых лазеров, обычно очень узкие, часто включают только одну или несколько определенных длин волн.Пример показан на рисунке 3 (голубая кривая) для слаботочного полупроводникового диодного лазера, который полезен для множества приложений, включая считывание штрих-кодов и отслеживание данных на оптических дисках.

Вольфрамовые источники света обычно называют лампами накаливания , потому что они излучают свет при нагревании с помощью электрической энергии. Нити современных лампочек (или ламп) обычно состоят из вольфрама, металла, который в некоторой степени эффективно излучает свет при резистивном нагреве электрическим током.Современные лампы накаливания произошли от угольных дуговых ламп, изобретенных сэром Хамфри Дэви, которые излучают свет за счет разрядной дуги, образованной между двумя угольными стержнями (или электродами накаливания), когда на электроды подается электрический потенциал. В конце концов, угольные дуговые лампы уступили место первым лампам, в которых использовались углеродные нити, заключенные в вакуумированный стеклянный колпак. Вольфрамовые нити, впервые примененные в 1910 году Уильямом Дэвидом Кулиджем, испаряются намного медленнее, чем углеродные волокна, полученные из хлопка, при нагревании в вакууме стеклянной оболочки.Нить накала действует как простой резистор и излучает значительное количество света в дополнение к теплу, выделяемому током.

Светоизлучающие диоды

Узнайте, как два разнородных легированных полупроводника можно объединить в диод и получить свет при приложении напряжения к области соединения между материалами.

Вольфрамовые лампы накаливания — это тепловые излучатели, которые излучают непрерывный спектр света, простирающийся от примерно 300 нанометров в ультрафиолетовой области до примерно 1400 нанометров в ближней инфракрасной области.Их конструкция, конструкция и работа очень просты, и большое количество этих ламп использовалось в качестве источников света накаливания. Типичные лампы состоят из герметичной стеклянной колбы (см. Рисунок 4), откачанной или заполненной инертным газом, и содержащей вольфрамовую проволочную нить накаливания, питаемую либо постоянным, либо переменным током. Лампы излучают огромное количество света и тепла, но на свет приходится только 5-10 процентов их общей выходной энергии.

Вольфрамовые лампы имеют несколько недостатков, таких как снижение интенсивности с течением времени и почернение внутренней поверхности оболочки из-за медленного осаждения испаренного вольфрама на стекле.Цветовая температура и яркость вольфрамовых ламп меняются в зависимости от приложенного напряжения, но средние значения цветовой температуры находятся в диапазоне от примерно 2200 K до 3400 K. Температура поверхности активной вольфрамовой нити очень высока, обычно в среднем составляет 2550 градусов Цельсия для стандартных 100 градусов Цельсия. -ваттная коммерческая лампочка. В некоторых случаях оболочки вольфрамовых ламп заполнены благородными газами криптоном или ксеноном (инертный газ , заполняющий газ ) в качестве альтернативы созданию вакуума для защиты горячей вольфрамовой нити.Эти газы повышают эффективность ламп накаливания, поскольку они уменьшают количество испаренного вольфрама, который осаждается на внутренней части окружающего стеклянного сосуда.

Галогенные лампы, высокоэффективная версия вольфрамовой лампы накаливания, обычно содержат следы йода или брома в заполняющем газе, которые возвращают испарившийся вольфрам в нить накаливания намного эффективнее, чем лампы, изготовленные с использованием других газов. Вольфрамово-галогенные лампы, впервые разработанные General Electric в 1950-х годах для освещения кончиков сверхзвуковых реактивных крыльев, способны производить очень однородный яркий свет на протяжении всего срока службы лампы.Кроме того, галогенные лампы намного меньше и эффективнее вольфрамовых ламп сопоставимой мощности. Срок службы вольфрамово-галогенной лампы в идеальных условиях может достигать 10 лет.

Нити накаливания вольфрамово-галогенных ламп часто представляют собой очень компактные спиральные сборки, помещенные в оболочку из боросиликатно-галогенидного стекла (часто называемого плавленым кварцем ). Высокие рабочие температуры ограничивают использование вольфрамово-галогенных ламп только хорошо вентилируемыми лампами с веерообразными радиаторами для устранения огромного количества тепла, выделяемого этими лампами. Многие бытовые лампы оборудованы для работы с вольфрамово-галогенными лампами мощностью 300-500 Вт и излучают значительное количество света, который заполняет комнату намного лучше, чем их вольфрамовые аналоги с более слабым излучением. В сочетании с волоконно-оптическими световодами и абсорбционными или дихроматическими фильтрами вольфрамово-галогенные лампы обеспечивают освещение высокой интенсивности для широкого спектра применений в оптической микроскопии, но, как главный недостаток, выделяют значительное количество инфракрасного света в виде лучистого тепла, которое может легко разрушить образец.

Флуоресцентные источники света

Существует большое количество источников видимого света без накаливания, которые используются для внутреннего и наружного освещения, помимо важных приложений в оптической микроскопии. Большинство этих источников света основаны на электрическом разряде через газ, такой как ртуть, или благородные газы неон, аргон и ксенон. Генерация видимого света в газоразрядных лампах основана на столкновениях между атомами и ионами в газе с электрическим током, который проходит между парой электродов, размещенных на концах оболочки колбы.

Стеклянная трубка обычной люминесцентной лампы покрыта люминофором на внутренней поверхности стекла, а трубка заполнена парами ртути под очень низким давлением (см. Рисунок 5). Электрический ток подается между электродами на концах трубки, создавая поток электронов, который течет от одного электрода к другому. Когда электроны из потока сталкиваются с атомами ртути, они переводят электроны внутри атомов в более высокое энергетическое состояние. Эта энергия выделяется в виде ультрафиолетового излучения, когда электроны в атомах ртути возвращаются в основное состояние.Ультрафиолетовое излучение впоследствии возбуждает внутреннее люминофорное покрытие, заставляя его излучать яркий белый свет, который мы наблюдаем от люминесцентных ламп. Люминесцентные лампы примерно в два-четыре раза эффективнее излучают видимый свет, производят меньше отходящего тепла и обычно служат в десять-двадцать раз дольше, чем лампы накаливания.

Уникальной особенностью флуоресцентных источников света является то, что они генерируют серию длин волн, которые часто концентрируются в узких полосах, называемых спектрами линий . Как следствие, эти источники не создают непрерывного спектра освещения, характерного для источников накаливания. Хорошим примером (почти исключительно) одночастотного источника видимого света без накаливания являются натриевые лампы, обычно используемые в уличном освещении. Эти лампы излучают очень интенсивный желтый свет, при этом более 95 процентов излучения состоит из 589-нанометрового света, и практически никакие другие длины волн не присутствуют на выходе. Можно разработать газоразрядные лампы, которые будут излучать почти непрерывный спектр в дополнение к линейчатым спектрам, присущим большинству этих ламп.Наиболее распространенный метод — покрытие внутренней поверхности трубки частицами люминофора, которые будут поглощать излучение, испускаемое светящимся газом, и преобразовывать его в широкий спектр видимого света от синего до красного.

В нормальных условиях большинство людей не в состоянии различить разницу между линейчатым спектром и спектром непрерывных длин волн. Однако некоторые объекты отражают необычные цвета в свете прерывистого источника, особенно при флуоресцентном освещении. Вот почему одежда или другие ярко окрашенные предметы, приобретенные в магазине при освещении флуоресцентным светом, часто имеют немного другой цвет при естественном солнечном свете или постоянном вольфрамовом освещении.

Цветовая температура

Узнайте, как медленно нагревание виртуального излучателя черного тела смещает цветовой спектр света, излучаемого излучателем, с более длинных на более короткие средние длины волн при повышении температуры.

В стереомикроскопии отраженного света, особенно при исследовании термочувствительных образцов, люминесцентные лампы предпочтительнее вольфрамовых ламп из-за их высокой эффективности и низкого тепловыделения.Современные люминесцентные лампы могут быть сконфигурированы для линейных ламповых или кольцевых осветителей, чтобы обеспечить микроскописта интенсивным рассеянным светом. Этот источник искусственного белого света не уступает солнечному свету (без сопутствующего тепла) по цветовой температуре и устраняет характеристики мерцания, типичные для люминесцентных ламп потребительского уровня. По сравнению с вольфрамовыми, вольфрамово-галогенными или дуговыми лампами осветители микроскопов с люминесцентными лампами могут обеспечить относительно длительные периоды (примерно 7000 часов) высококачественного обслуживания.В качестве источника рассеянного света люминесцентные лампы создают равномерно освещенное поле зрения без раздражающих горячих точек или бликов. Более новая технология освещения с холодным катодом является многообещающей в качестве специализированного источника света в оптической микроскопии, особенно для короткоживущих событий, усиленных возбуждением флуоресценции, и для приложений, где избыточное тепло или время нагрева в источнике света может мешать образцу или наблюдаемое событие.

Специализированный метод фотографирования движущихся образцов, особенно полезный при освещении темнопольной микроскопии, был разработан с использованием электронных систем фотовспышки.Электронные вспышки работают за счет ионизации в заполненной ксеноновым газом стеклянной оболочке, приводимой в действие разрядом большого конденсатора. Короткоживущий высоковольтный импульс от трансформатора вызывает ионизацию газообразного ксенона, позволяя конденсатору разряжаться через проводящий теперь газ. Излучается внезапная вспышка яркого света, после чего газообразный ксенон быстро возвращается в непроводящее состояние, и конденсатор перезаряжается. Фотовспышки обеспечивают мгновенное освещение 5500 К, что позволяет уловить значительное количество деталей объекта для получения впечатляющих результатов в фотографии, цифровой обработке изображений и микрофотографии.

Дуговые газоразрядные лампы, наполненные газами, такими как пары ртути и ксенон, являются предпочтительными источниками освещения для некоторых специализированных форм флуоресцентной микроскопии. Типичная дуговая лампа в 10-100 раз ярче, чем аналоги на основе вольфрама, и может обеспечить яркое монохроматическое освещение в сочетании с дихроматическими интерференционными фильтрами со специальным покрытием. В отличие от вольфрамовых и вольфрамово-галогенных ламп, дуговые лампы не содержат нити накала, а, скорее, зависят от ионизации газообразного пара с помощью дугового разряда высокой энергии между двумя электродами для получения интенсивного света. Обычно дуговые лампы имеют средний срок службы около 100-200 часов, и большинство внешних источников питания оснащены таймером, который позволяет микроскописту отслеживать, сколько времени прошло. Ртутные дуговые лампы (часто называемые горелками ; см. Ртутные и ксеноновые лампы, показанные на рисунке 6) имеют мощность от 50 до 200 Вт и обычно состоят из двух электродов, герметизированных под высоким давлением паров ртути в корпусе из кварцевого стекла.

Ртутные и ксеноновые дуговые лампы не обеспечивают равномерной освещенности во всем спектре длин волн от ближнего ультрафиолетового до инфракрасного.Большая часть интенсивности ртутной дуговой лампы расходуется в ближнем ультрафиолетовом и синем спектре, при этом большинство пиков высокой интенсивности приходится на диапазон 300-450 нанометров, за исключением нескольких пиков с более высокой длиной волны в зеленой области спектра. . Напротив, ксеноновые дуговые лампы имеют более широкий и более равномерный выход по интенсивности в видимом спектре и не демонстрируют пиков очень высокой спектральной интенсивности, характерных для ртутных ламп. Однако ксеноновым лампам не хватает ультрафиолета, и они расходуют большую часть своей интенсивности в инфракрасном диапазоне, что требует осторожности при контроле и устранении избыточного тепла при использовании этих ламп.

Эра использования светодиодов в качестве практического источника освещения наступила в двадцать первом веке, и диод является идеальным дополнением к объединению полупроводниковой технологии и оптической микроскопии. Относительно низкое энергопотребление (от 1 до 3 вольт при 10 до 100 миллиампер) и длительный срок службы светодиодов делают эти устройства идеальными источниками света, когда требуются уровни белого света от низкой до средней. Микроскопы, подключенные к компьютерам, подключенным через порт универсальной последовательной шины ( USB ) или работающие от батарей, могут использовать светодиод в качестве небольшого, низкотемпературного, маломощного и недорогого внутреннего источника света для визуального наблюдения и цифрового захват изображения.В некоторых учебных и исследовательских микроскопах начального уровня в настоящее время используется внутренний высокоинтенсивный белый светоизлучающий диод, который служит основным источником света.

Хотя характеристики проецирования света эпоксидной оболочкой все еще исследуются, светоизлучающие диоды в настоящее время тестируются и продаются для широкого спектра применений, таких как светофоры, знаки, фонарики и внешние кольцевые осветители для микроскопии. Свет, излучаемый белыми светодиодами, имеет спектр цветовой температуры, аналогичный спектру ртутной лампы, которая относится к категории освещения дневного света и .Изучая спектр излучения белого светодиода, представленный на рисунке 3, пик пропускания при 460 нм обусловлен синим светом, излучаемым полупроводниковым диодом из нитрида галлия, в то время как широкий диапазон высокого пропускания, расположенный между 550 и 650 нм, является результатом вторичного света, излучаемого люминофорное покрытие внутри полимерной оболочки. Комбинация длин волн дает «белый» свет с относительно высокой цветовой температурой, который является подходящим диапазоном длин волн для визуализации и наблюдения в оптической микроскопии.

Источники лазерного света

Еще одним источником видимого света, который становится все более важным в нашей повседневной жизни, является лазерное освещение. Аббревиатура LASER является аббревиатурой от L ight A , увеличенного с помощью модели S с таймером E миссии R . Одной из уникальных особенностей лазеров является то, что они излучают непрерывный луч света, состоящий из одной дискретной длины волны (или иногда нескольких длин волн), который выходит из устройства в одной выровненной фазе, обычно называемой когерентным светом .Длина волны света, излучаемого лазером, зависит от материала, из которого состоит лазерный кристалл, диод или газ. Лазеры производятся самых разных форм и размеров, от крошечных диодных лазеров, достаточно маленьких, чтобы пройти сквозь игольное ушко, до огромных военных и исследовательских инструментов, заполняющих все здание.

Лазеры используются в качестве источников света в ряде приложений, от считывателей компакт-дисков до измерительных инструментов и хирургических инструментов. Знакомый красный свет гелий-неонового лазера (часто сокращенно He-Ne ) сканирует покупки потребителей с помощью оптических штрих-кодов, но также играет важную роль во многих системах лазерной сканирующей конфокальной микроскопии.Применение лазеров в оптической микроскопии также приобретает все большее значение как в качестве единственного источника света, так и в сочетании с флуоресцентными и / или лампами накаливания. Несмотря на относительно высокую стоимость, лазеры находят особенно широкое применение во флуоресценции, монохроматическом светлом поле и в быстрорастущих областях конфокального лазерного сканирования, полного внутреннего отражения, резонансного переноса энергии флуоресценции и многофотонной микроскопии.

Газовые аргоно-ионные лазеры

Узнайте, как газоразрядная трубка аргон-ионного лазера работает с ионизированным газом, генерируя непрерывную волну световой энергии через выходное зеркало.В учебном пособии показано медленное накопление световой энергии внутри трубки до установления устойчивого состояния лазерного разряда.

Лазеры на ионах аргона (рис. 8) производят мощное спектральное излучение на 488 и 514 нм, тогда как газовые лазеры на криптоне демонстрируют большие пики на длинах волн 647,1 и 752,5 нм. Оба этих лазера часто используются в качестве источников возбуждения в лазерной сканирующей конфокальной микроскопии. Импульсные лазеры с синхронизацией мод на легированном титаном сапфировом кристалле используются в качестве источников для многофотонного возбуждения из-за их высокой пиковой интенсивности, но они также обладают низкой средней мощностью и короткими рабочими циклами.В качестве предпочтительных источников света для многофотонной микроскопии импульсные лазеры значительно дороже и сложнее в эксплуатации, чем небольшие лазеры с воздушным охлаждением, используемые в конфокальной микроскопии.

В новой лазерной технологии используются лазерные диоды на основе полупроводников и отдельные лазеры на кристалле, которые уменьшают размер и требования к мощности для источников света. Лазерные диоды, такие как неодим: фторид иттрия-лития (Nd: YLF) и неодим: ванадат иттрия (Nd: YVO (4)), обычно реагируют намного быстрее, чем светодиоды, но также относительно малы и потребляют мало энергии.К недостаткам использования лазеров в микроскопии относятся дополнительные затраты на источник света, риск дорогостоящего повреждения оптики, увеличение затрат, связанных с покрытием линз и зеркал, разрушение образцов и возможное повреждение сетчатки глаза микроскописта, если не соблюдаются безопасные методы обращения и работы. .

Из этого обсуждения становится очевидным, что, хотя существует большое количество доступных источников освещения, в повседневной жизни мы обычно полагаемся только на некоторые из них.В дневное время солнце служит нашим основным источником освещения на открытом воздухе, в то время как мы обычно полагаемся на флуоресцентное и вольфрамовое освещение в помещении и в вечерние часы. Как обсуждалось выше, все эти три основных источника освещения имеют разные свойства и спектральные характеристики, но их максимальная интенсивность попадает в диапазон видимого света. Человеческий мозг автоматически приспосабливается к различным источникам света, и мы интерпретируем цвета большинства объектов вокруг нас как почти не меняющиеся, когда они рассматриваются в различных условиях освещения.

Соавторы

Кеннет Р. Спринг — научный консультант, Ласби, Мэриленд, 20657.

Майкл У. Дэвидсон — Национальная лаборатория сильных магнитных полей, 1800 г. Ист. , Florida, 32310.

Расчет спектров излучения от обычных источников света

Мне очень нравится моя система освещения Philips Hue, которую я купил более года назад. Система позволяет с помощью смартфона установить миллионы различных цветов и тысячи уровней яркости для 18 лампочек.Вы также можете запрограммировать автоматическое включение системы при приближении к дому, известное как геозона, или в определенное время дня. Но как качество света по сравнению с другими технологиями освещения?

Интуитивно понятная система домашнего освещения

Система Philips Hue работает, изменяя количество излучаемого синего, зеленого и красного света, которое вы можете установить прямо со своего смартфона. Если вы чувствительны к определенному цвету света, вы можете просто избегать его.Вы можете настроить освещение в зависимости от вашего настроения, чтобы сосредоточиться, зарядиться энергией, прочитать или расслабиться. Например, есть режим «Концентрация», который предпочтительно выделяет больше синего света, что, как было показано, улучшает способность концентрироваться. Отдыхая по вечерам, я использую режим «Закат», который дает больше красных и оранжевых оттенков.

Прожив с этой системой какое-то время, я также обнаружил некоторые долгосрочные преимущества:

  • Ночью я засыпаю легче, чем когда у меня были старые люминесцентные лампы.
  • С момента обновления системы мой счет за электроэнергию снизился примерно на 21 доллар в месяц. Это связано с тем, что светоизлучающая лампа (LED) мощностью 12 Вт может давать такой же оптический выход, как лампа накаливания мощностью 60 Вт.

Сравнение некоторых настроек системы освещения в моей квартире. Слева: мягкий белый. В центре: красный. Справа: синий дождь.

Я пытался убедить своих родителей купить систему, но мой коммерческий аргумент не повлиял на них. Я недавно купил им систему в качестве рождественского подарка, так как я такой хороший сын.Первый комментарий, который я услышал при демонстрации системы, был: «Ого, свет такой естественный». Это побудило меня выяснить, почему это так, и можно ли использовать программное обеспечение COMSOL Multiphysics® для исследования лежащих в основе физики. Ответ кроется в спектре излучения высокоэффективных светодиодных ламп. Сравнивая спектр излучения естественного света со спектром излучения ламп накаливания, люминесцентных и светодиодных ламп, мы можем лучше понять это явление.

Построение спектров излучения в COMSOL Multiphysics

Спектры излучения естественного дневного света, а также ламп накаливания, люминесцентных и светодиодных ламп представлены ниже.Как вы увидите, спектры излучения очень разные, и ни один из них не может идеально воспроизводить естественный дневной свет.

Естественный дневной свет

Начнем с дневного света, приходящего на поверхность земли от солнца. В настоящее время нет возможности воспроизвести спектр излучения искусственным источником света. Однако световые трубки (или световые трубки) можно использовать для перенаправления входящего дневного света в подземные места, например станции метро. Один из примеров — подземный вокзал в Берлине.Световая труба проходит над станцией (показано ниже, на левом изображении) и собирает свет, который передается через специальную трубу вниз в подземную станцию ​​(показано ниже, справа).

Слева: световая трубка у входа на вокзал в Берлине. Изображение Даббелю — Собственная работа. Под лицензией CC BY-SA 3.0 через Wikimedia Commons. Справа: световая трубка передает свет в подземный терминал. Изображение Тилля Креча — Flickr. Лицензия CC BY 2.0 через Wikimedia Commons.

Световод создает более естественное освещение вокзала в дневное время. Очевидным недостатком этого подхода является то, что он не работает ночью, что создает необходимость в искусственном освещении, имитирующем естественный дневной свет.

Спектр излучения естественного света обычно соответствует распределению Планка в видимой части спектра, как мы можем видеть ниже. Ни один цвет не имеет существенного преимущества перед другим, хотя интенсивность наиболее высока в голубой области, около 460 нм.


Спектр излучения видимого света, приходящего на поверхность Земли от Солнца.

Лампы накаливания

Лампа накаливания содержит вольфрамовую нить, которая резистивно нагревается, когда через нее проходит ток. При температуре около 2000 К нить накала начинает излучать видимый свет. Чтобы вольфрамовая проволока не загорелась, колбу наполняют газом, обычно аргоном. Тепло, выделяемое в нити накала, переносится в окружающую среду посредством излучения, конвекции и теплопроводности.Лампа накаливания излучает больше красного света, чем естественный дневной свет. Излучение распространяется даже в инфракрасную часть электромагнитного спектра, что тратит энергию и снижает общую эффективность лампы.


Спектр излучения в видимом диапазоне типичной лампы накаливания.

Люминесцентные лампы

Люминесцентная лампа обычно состоит из длинной стеклянной трубки, содержащей смесь ртути и инертного газа, такого как аргон, под низким давлением.Внутри этой трубки образуется неравновесный разряд (плазма). Это означает, что температура электронов отличается от температуры окружающей газовой смеси. Например, температура электронов может быть порядка 20000 К, но температура газа остается относительно близкой к комнатной температуре, 300 К. Поскольку плазма не находится в равновесии, реакции электронного удара изменяют химический состав газовой смеси. способом, управляемым столкновительными процессами.Эти столкновения могут создавать электронно-возбужденные нейтралы, которые впоследствии могут вызывать спонтанное излучение фотонов с определенными длинами волн.

Видимый свет создается двумя способами: оптическим излучением непосредственно из разряда или возбуждением люминофором на поверхности трубки. Флуоресцентное освещение часто вызывает проблемы у людей, страдающих расстройством зрения, называемым синдромом Ирлена, и, как ни странно, люди часто жалуются на головные боли и мигрени при длительном воздействии флуоресцентного света.

Как вы можете видеть на графике ниже, спектр излучения флуоресцентного источника света выглядит довольно странно. Квантование происходит из-за прямого излучения плазмы или люминофора, но человеческому глазу излучаемый свет все еще кажется белым. Как и лампы накаливания, люминесцентные лампы могут быть неэффективными, потому что плазму нужно поддерживать, и она испускает излучение в невидимом диапазоне.


Спектр излучения типичной люминесцентной лампы.

Светодиодные лампы
Светодиоды

производят революцию в индустрии освещения, поскольку они часто намного эффективнее с точки зрения световой отдачи и более долговечны, чем традиционные технологии ламп накаливания.Например, обычные потребительские светодиодные лампы работают на 10-20% мощности, необходимой для работы лампы накаливания сопоставимой яркости. У них также есть срок службы более 25 000 часов, по сравнению с только 1000 часами для ламп накаливания.

Светодиоды

намного эффективнее ламп накаливания, потому что они работают совершенно по-другому. Светодиоды — это полупроводниковые устройства, которые излучают свет, когда электроны в зоне проводимости переходят через запрещенную зону посредством излучательной рекомбинации с дырками в валентной зоне.В отличие от ламп накаливания, светодиоды излучают свет в очень узком диапазоне длин волн.

Изначально красные, зеленые и желтые светодиоды были разработаны в 1950-х и 1960-х годах. Однако именно изобретение синего светодиода привело к созданию новых эффективных источников белого света. Синий свет, излучаемый такими светодиодами, можно использовать для стимулирования более широкого спектра излучения от слоя люминофора вокруг корпуса светодиода или можно напрямую комбинировать с красными и зелеными светодиодами для создания белого света.

Как показано на графике ниже, спектры светодиодов для желтого люминофора становятся ближе к спектрам естественного дневного света.Синего света больше, чем у лампы накаливания, и почти вся энергия излучается в видимом спектре.


Спектр излучения типичной светодиодной лампы в теплом белом цвете.

Комбинированные источники света

Различные спектры излучения отложены на одной оси ниже. Хотя ни одна из ламп точно не воспроизводит естественный дневной свет, очевидно, что светодиодная лампа является лучшим приближением. Все излучение происходит в видимом диапазоне, что делает устройство очень эффективным.


Спектры излучения дневного света и обычных ламп накаливания, люминесцентных и светодиодных ламп.

Обычно лампы накаливания и люминесцентные лампы имеют фиксированный оптический выход. Также доступны светодиодные лампы с фиксированным спектром излучения. Построив спектры излучения различных источников света, мы можем сделать вывод, что светодиодные лампы наиболее точно воспроизводят естественный дневной свет.

Узнайте больше о способах моделирования источников света

Как мы видели в этом сообщении в блоге, существует множество различных способов создания искусственного света.Все описанные выше методы можно смоделировать с различными уровнями детализации с помощью COMSOL Multiphysics с модулями полупроводников, плазмы, теплопередачи или лучевой оптики.

  • Прочтите сообщение в блоге:
  • Загрузить учебную модель:

PHILIPS — зарегистрированная торговая марка Koninklijke Philips N.V. и ее дочерних компаний.

Компактные люминесцентные лампы — Chemistry LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  1. Авторы и авторство

Компактные люминесцентные лампы или КЛЛ — обманчиво простые устройства.По сравнению с принципами работы лампы накаливания, понимание того, как КЛЛ излучает свет, требует знания электронной структуры атомов, участвующих в испускании света. Работа с КЛЛ упрощена: как только электрический ток начинает течь через КЛЛ, внутренняя часть лампы начинает светиться и излучать видимый свет. Углубляясь глубже, КЛЛ содержит несколько ключевых компонентов, участвующих в этом излучении видимого света, включая присутствие паров элементарной ртути, благородного газа (аргона, ксенона, неона или криптона) и внутреннего покрытия, называемого люминофором, которое является фактически ответственным веществом. для получения видимого света из КЛЛ.

Вспоминая электронную конфигурацию атома и его орбитальные подоболочки, каждый атом содержит некоторое различное количество орбитальных подоболочек, которые, соответственно, заполняются возрастающей энергией, начиная с орбитальной подоболочки с наименьшей энергией. Например, гелий содержит два электрона, оба расположены на орбитали 1s2, что делает эту орбиталь заполненной. Для сравнения, атом водорода содержит только один электрон на орбитали 1s 2 , что делает эту орбиталь частично заполненной.Этот принцип полностью или частично заполненных орбиталей жизненно важен для понимания работы КЛЛ.

Газы, которые населяют полую внутреннюю часть КЛЛ, содержат полностью заполненные орбитальные подоболочки. Поскольку электронные конфигурации ртути и благородных газов находятся на минимально возможном уровне энергии, называемом основным состоянием, эти типы атомов сильно сопротивляются отказу от каких-либо электронов из-за стабильности, которую они уже достигли благодаря заполненным орбитальным подоболочкам. Однако, когда энергия, передаваемая через электрический ток, проходит через CFL, избыточный поток электронов воздействует на атомы ртути и благородных газов.Это столкновение, называемое неупругим рассеянием между электроном и атомом, заставляет электрон из самой внешней подоболочки затронутого атома временно «прыгать» или переходить на следующий самый высокий энергетический уровень. Этот электрон сейчас находится в «возбужденном» состоянии, но желает вернуться в свое прежнее стабильное состояние, поэтому будет излучать фотон энергии, когда возбужденный электрон переходит обратно на более низкий энергетический уровень, высвобождая избыточную энергию в виде этого протона.

Эти фотоны, испускаемые атомами газа, однако, имеют длины волн в ультрафиолетовом спектре и должны быть сначала преобразованы в видимый свет для любого полезного использования.Здесь внутреннее покрытие CFL, называемое люминофором, работает по такому же механизму, что и ранее описанное возбуждение, и переходит из состояний с более высокой энергией в состояние с более низкой энергией. Люминофор будет поглощать ультрафиолетовые фотоны, вызывая временное возбуждение на следующий более высокий энергетический уровень с последующим излучением фотона более низкой энергии из-за свойств материала люминофора, состоящего из смеси металлических металлов, например: меди, цинка, сульфиды, оксиды, нитриды, алюминий, селениды, кремний или редкоземельные металлы.В зависимости от этого состава видимый свет, излучаемый КЛЛ, может варьироваться по длине волны и соответствующему видимому цвету.

Из ChemPRIME: 5.15: Электронные конфигурации

Авторы и авторство

Интернет-кампус ZEISS Microscopy | Металлогалогенные лампы

Введение

Металлогалогенные источники освещения быстро становятся серьезным препятствием для применения ртутных и ксеноновых дуговых ламп для исследований во флуоресцентной микроскопии.Эти источники света оснащены высокоэффективной дуговой разрядной лампой, помещенной в эллиптический отражатель, который фокусирует выходной сигнал в жидкий световод для подачи на оптическую цепь микроскопа. Расширенные версии также содержат внутренние фильтры для выбора длины волны, заслонки и фильтры нейтральной плотности для управления интенсивностью. Металлогалогенные лампы, которые наиболее полезны для микроскопии, имеют выход излучения с расширенными давлением версиями видных спектральных линий ртутной дуги в дополнение к более высоким уровням излучения в непрерывных областях между линиями (см. Рисунок 1).В результате металлогалогенные лампы обычно дают гораздо более яркие изображения флуорофоров с полосами поглощения, попадающими в спектральные области между линиями ртути, включая усиленный зеленый флуоресцентный белок ( EGFP ), флуоресцеин, Cy2 и Alexa Fluor 488. Поскольку выключен -пиковая интенсивность металлогалогенных ламп примерно на 50 процентов выше, чем у ртутных дуговых ламп, эти источники становятся фаворитом для экспериментов по визуализации живых клеток с использованием EGFP. Кроме того, металлогалогенные лампы производят более равномерное излучение, чем ртутные лампы (как в пространстве, так и во времени), что делает эти источники гораздо более надежными для количественных анализов.Коммерческие металлогалогенные источники света, разработанные для микроскопии, имеют увеличенный срок службы дуговых ламп (до 2000 часов по сравнению с 200 часами для ртутных ламп) и устраняют традиционные проблемы юстировки, обеспечивая равномерное освещение по всему полю обзора.

Подобно своим аналогам с ртутной дугой, металлогалогенные лампы имеют несколько выступающих линий излучения в ультрафиолетовой, фиолетовой, синей, зеленой и желтой спектральных областях, которые значительно ярче, чем при непрерывном усредненном выходе (как показано на рисунке 1).Почти 90 процентов электроэнергии, подаваемой в металлогалогенные лампы, эффективно преобразуется в излучение. Остальное в основном теряется из-за резистивного нагрева. Примерно 75 процентов потребляемой мощности излучается разрядной дугой, в то время как около 15 процентов излучается электродами и горячей оболочкой (см. Процентное соотношение преобразования энергии галогенида металла на рисунке 4). Из света, излучаемого дугой, более половины (около 55 процентов) находится в ультрафиолетовом и видимом диапазоне длин волн от 350 до 700 нанометров.Спектральные линии в металлогалогенных лампах (возникающие в результате переходов элементарных возбужденных состояний в парах ртути) имеют длину 365, 405, 436, 546 и 579 нанометров, что позволяет этим источникам света быть достаточно эффективными при использовании для изображения флуорофоров, которые были разработаны специально для возбуждение ртутными дуговыми лампами. К ним относятся DAPI (4 ‘, 6-диамидино-2-фенилиндол; линия 365 нм), Alexa Fluor 405 (линия 405 нм), Cy3 и родамин (линия 546 нм) и MitoTracker Red (линия 579 нм). Кроме того, в эту категорию попадают несколько наиболее полезных флуоресцентных белков (Cerulean, тандемный димер Tomato и Kusabira Orange).Более высокие уровни излучения в непиковых областях в сочетании с превосходной временной стабильностью металлогалогенных ламп делают эти источники более полезными, чем ртутные дуговые лампы, для визуализации флуорофоров, возбуждаемых в диапазоне от 480 до 500 нанометров. Металлогалогенные лампы также более подходят, чем ртутные, для количественной визуализации ратиометрических красителей.

Оптическая сила металлогалогенных ламп

Комплект фильтров Возбуждение
Фильтр
Ширина полосы (нм)
Дихроматический
Зеркало
Отсечка (нм)
Мощность
мВт / см 2
DAPI (49) 1 365/10 395 LP 14.5
CFP (47) 1 436/25 455 LP 76,0
GFP / FITC (38) 1 470/40 495 LP 57,5 ​​
YFP (S-2427A) 2 500/24 ​​ 520 LP 26.5
TRITC (20) 1 546/12 560 LP 33,5
TRITC (S-A-OMF) 2 543/22 562 LP 67,5
Красный Техас (4040B) 2 562/40 595 LP 119.5
м Cherry (64HE) 1 587/25 605 LP 54,5
Cy5 (50) 1 640/30 660 LP 13,5

1 Фильтры ZEISS 2 Фильтры Semrock
Таблица 1

В таблице 1 представлены значения оптической выходной мощности типичного (ZEISS HXP) 150-ваттного металлогалогенного источника света после прохождения через оптическую цепь микроскопа и выбранные наборы флуоресцентных фильтров.Мощность (в милливатт / см 2 ) измерялась в фокальной плоскости объектива микроскопа (40-кратный сухой флюорит, числовая апертура = 0,85) с использованием радиометра на основе фотодиода. Для проецирования света через объектив в датчик радиометра использовалось либо зеркало с коэффициентом отражения более 95% от 350 до 800 нанометров, либо стандартный набор флуоресцентных фильтров. Потери пропускания света в системе освещения микроскопа могут варьироваться от примерно 50 до 99 процентов входной мощности, в зависимости от механизма связи источника света и количества фильтров, зеркал, призм и линз в оптической цепи.Например, для типичного инвертированного микроскопа исследовательского уровня, подключенного к внешнему металлогалогенидному источнику освещения, менее 20 процентов света, выходящего из жидкого световода на входе в систему коллимирующих линз, доступно для возбуждения флуорофоров, расположенных на объектив фокальной плоскости. Аналогичный диапазон потерь света имеет место с традиционными ксеноновыми и ртутными газоразрядными лампами, закрепленными непосредственно на осветителе через фонарный столб.

В отличие от ксеноновых и ртутных дуговых ламп, металлогалогенные лампы, используемые в микроскопии, оснащены эллиптическими отражателями, в которые колба встраивается на заводе-изготовителе.Лампы предназначены для создания концентрированного светового пятна на заданном расстоянии перед рефлектором (фокусное расстояние лампы; см. Рисунок 2). Одним из основных преимуществ предварительно собранных ламп с отражателем (которые производятся с очень жесткими допусками) является то, что каждый раз при замене лампы отражатель также устанавливается в фиксированное положение внутри фонарного светильника, что устраняет жесткие и громоздкие требования к юстировке. ртутных и ксеноновых дуговых ламп. Отражатели металлогалогенных ламп покрыты несколькими слоями фильтров дихроматической интерференции, которые позволяют большей части теплового (инфракрасного) излучения проходить через отражатель, в то время как ультрафиолетовые и видимые длины волн концентрируются в фокусированном пятне.Типичная конфигурация металлогалогенной лампы для микроскопии представлена ​​на рисунке 2. Запуск в жидкий световод управляется полым алюминиевым конусом (или аналогичным коллектором), соединенным с держателем лампы, который служит для размещения лампы в непосредственной близости от световода. входная апертура. Такая конструкция обеспечивает равномерное распределение силы света и цветовой температуры от светового пятна в световод.

Световой поток — это величина, которая соответствует свету, излучаемому металлогалогенной лампой во всех направлениях, и напрямую зависит от входной мощности.Та часть светового потока, которая доступна для освещения образца, в значительной степени определяется используемой оптической системой, но обычно доступно только около 60 процентов даже с компонентами самого высокого качества. Эффективность системы (полезный световой поток системы; см. Рисунок 2), который является индикатором количества света, фактически доступного микроскопу, еще ниже. В случае металлогалогенных ламп, помещенных в эллиптические отражатели, эффективность светового потока является бессмысленной величиной, поскольку свет излучается только в одном направлении.Скорее, используемый световой поток, который направляется в пятно освещения на входе в световод, является более точным определением света, доступного для переноса в оптическую систему микроскопа. Следует отметить, что дополнительные оптические компоненты, установленные в систему, такие как фильтры тепловой защиты и линзы фокусирующего конденсатора, уменьшают световой поток, попадающий в световод. Таким образом, более полезным термином для описания мощности освещения металлогалогенных ламп является световой поток системы , который определяется как количество света, фактически выходящего из внешнего фонарного светильника и доступного микроскопу.

На рисунке 2 схематично показана диаграмма следа лучей типичной металлогалогенной дуговой лампы, помещенной в эллиптический отражатель того типа, который обычно используется в флуоресцентной микроскопии. Большая часть общего светового потока, излучаемого лампой, эффективно собирается собирающим отражателем (обозначенным красным каркасом на рисунке 2) и фокусируется на входной плоскости жидкостного световода. Свет, сфокусированный собирающим зеркалом, называется используемым световым потоком отражателя, и большая часть этого света проходит через тепловой (инфракрасный) фильтр, чтобы отвести как можно больше тепла.Небольшой процент полезных видимых длин волн отражается от поверхности фильтра и, возможно, от других компонентов в фонаре. В результате часть используемого светового потока от рефлектора теряется. Свет, который успешно попадает в жидкий световод, скремблируется, чтобы удалить пространственные и временные неоднородности, а затем передается на расширитель луча на входном порте микроскопа. Этот свет часто называют используемым световым потоком системы, как описано выше.

В металлогалогенных лампах с короткой дугой ярко выраженная область максимальной яркости (называемая горячей точкой ) возникает очень близко к концам каждого электрода и постепенно уменьшается к центру дуги. В результате самые высокие значения освещенности обнаруживаются у ламп с наименьшими межэлектродными зазорами (при фиксированной мощности лампы). В вертикальном рабочем положении распределение яркости в дуге осесимметрично, но из-за неоднородного теплового распределения внутри дуги на небольшом расстоянии перед верхним электродом имеется точка максимальной яркости.В горизонтальном рабочем положении (как и в случае большинства металлогалогенных ламп, используемых в микроскопии) две точки максимальной яркости примерно одинаковы. Однако общая геометрия дуги слегка отклоняется вверх в горизонтальных лампах из-за конвекционных токов в окружающем наполняющем газе. Таким образом, оптическая система должна быть спроектирована так, чтобы использовать область максимальной яркости, ближайшую к электродам. В металлогалогенных лампах, помещенных в эллиптический отражатель, эта область расположена во внутренней фокусной точке рядом с основанием отражателя (см. Рисунок 2).Точное расположение лампы в отражателе определяется путем измерения средней яркости вдоль оси лампы и по всей длине дуги.

При проектировании оптических систем для оптимальной работы с металлогалогенными лампами на основе отражателя необходимо учитывать распределение силы света вокруг лампы. Эта величина определяется как направленный световой поток и представляет собой комбинированное измерение отдельных значений силы света в различных направлениях, которые должны собираться в фокальной точке отражателя и проецироваться в пятно освещения для передачи в оптическую систему микроскопа.Пространственное распределение силы света металлогалогенной лампы широко варьируется в зависимости от конструкции лампы (фактически, односторонняя или двусторонняя) и рабочего положения. Самый удобный метод изучения этих распределений — это нанести интенсивность на полярную диаграмму для определенной плоскости, окружающей лампу (см. Рисунок 3). Карты распределения полярной интенсивности часто называют индикатрисами . На рисунке 3 представлены карты распределения полярной интенсивности во всех трех измерениях ( x , y , z ) для типичной двухцокольной металлогалогенной лампы.Обратите внимание на симметричное распределение, которое происходит вокруг лампы в горизонтальной ( x ) плоскости. Напротив, дефект наконечника стержня, расположенный в верхней части лампы, вызывает возмущения в картах интенсивности (около 180) для двух других осей. Из-за значительной потери интенсивности в областях, окружающих пятно, конструкции рефлекторных систем должны иметь возможность компенсировать, чтобы обеспечить равномерное поле освещения. Некоторые из новых конструкций ламп (известные как без наконечников) устраняют дефект, чтобы обеспечить более равномерное распределение интенсивности.

Отражающие металлогалогенные лампы, предназначенные для микроскопии, обычно оснащены фокусирующими зеркалами эллиптической формы, но другие версии имеют отражатели, которые образуют параллельные световые пучки. Эллиптические отражатели обладают характеристикой силы света, которая значительно меняется в зависимости от расстояния от передней фокальной плоскости, но многие из этих коллекторов могут собирать до 85 процентов всего излучаемого света. К сожалению, однако, проецируемый пучок лучей может быть нарушен темным центральным пятном, где волновые фронты закрыты концом плазменной трубки (см. Полярные карты на рисунке 3).Фокусное расстояние для высокоэффективных коллекторных ламп эллиптической формы составляет примерно от 24 до 45 миллиметров (измеряется от переднего края рефлектора). Параболические и сферические отражатели создают параллельные волновые фронты, которые позволяют отображать источник в бесконечности, и поэтому обычно не используются во внешних лампах, которые передают свет на микроскоп через волоконно-оптические кабели или жидкие световоды. Важным элементом рефлекторных ламп является проверка общих критериев конструкции, чтобы гарантировать, что только минимальное количество излучения (фактически, минимально возможное) отражается обратно к самой лампе.Неправильная задняя подсветка вызывает чрезмерное количество тепла в областях, окружающих трубку и стержни, что является потенциально серьезным артефактом, который может нанести значительный ущерб физической целостности, характеристикам и стратегии охлаждения лампы.

Оптически совершенные металлогалогенные эллипсоидные рефлекторные лампы излучают поле волнового фронта, которое разделяет различные области дуги в радугу цветовых температур, от голубовато-белого (с цветовой температурой примерно 6500 K) в центральной фокальной области до более красноватых оттенков на периферии (от 4500 до 5000 К).Однако для применения в микроскопии требуется смесь этих компонентов с разной длиной волны, чтобы сформировать однородный и однородный цветовой баланс, который может быть дополнительно уточнен с помощью выбранных интерференционных фильтров для оптимального возбуждения флуорофора. На практике решение состоит в том, чтобы тщательно спроектировать эллиптические отражатели, содержащие три поворотных перестановки с разными радиусами кривизны для достижения наилучшего возможного смешения различных цветовых компонентов дуги на входной плоскости жидкостного световода.Работа металлогалогенной лампы

Металлогалогенные лампы запускаются путем кратковременного воздействия на электроды триггера высокого напряжения (в диапазоне от 5 до 30 киловольт) с использованием специальной цепи зажигания. Импульс напряжения ионизирует наполняющий газ аргон (иногда называемый стартовым газом ) и инициирует последовательность горения, которая впоследствии вызывает испарение и ионизацию элементарной ртути и компонентов галогенидов металлов по мере того, как температура и давление лампы начинают расти.Металлогалогенные лампы не достигают своего полного цветового спектра и характеристик стабильности излучения, пока не достигнут заданной рабочей температуры, периода времени, который может составлять до пяти минут. Как только лампа полностью заработает, испаренные соли галогенидов металлов диссоциируют под действием дуги и переходят в более высокие энергетические состояния, из которых они излучают спектральные линии. По мере того, как они диффундируют ближе к более холодным внутренним стенкам оболочки, редкоземельные металлы рекомбинируют с галогеном, чтобы повторить цикл возбуждения.Выбор редкоземельных металлов, добавляемых в заполнитель оболочки, влияет на спектральные свойства излучения лампы (индекс цветопередачи ), а также на световую отдачу. Соли галогенидов металлов имеют более низкое давление пара, чем элементарная ртуть, добавляемая в колбу, которая также служит буферным газом для определения рабочего напряжения лампы. Таким образом, ртуть контролирует вольт-амперные характеристики лампы, в то время как соли галогенидов металлов вносят вклад в основном в количество светоотдачи и спектральное содержание после прогрева лампы.Йодидные соли обычно используются в металлогалогенных лампах, поскольку они менее стабильны (легче диссоциируют), чем хлориды и бромиды. Во многих случаях йодид таллия добавляют в металлогалогенные лампы для регулировки выходной цветовой температуры. На спектральный выход и эффективность преобразования энергии, а также на общие характеристики металлогалогенной лампы (суммированные на Рисунке 4) также могут влиять колебания в источнике питания, а также производственные изменения.

Рабочая температура металлогалогенной лампы имеет решающее значение для оптимальных характеристик лампы, при этом резкие колебания часто приводят к нежелательным характеристикам излучения или, в худшем случае, к преждевременному выходу из строя оболочки или уплотнения.Как правило, при нормальной работе температура термобаллона находится в диапазоне от 800 до 1000 ° C. Превышение этих температур приводит к расстеклованию кварцевой оболочки, что обычно снижает светоотдачу и увеличивает вероятность разрыва. При более низких температурах уменьшение испарения ртути и солей галогенидов металлов приводит к изменению электрических характеристик, что приводит к сдвигу спектрального распределения, снижению выходного светового потока и вызывает почернение стенок оболочки. Температура уплотнений лампы также должна поддерживаться в пределах диапазона, рекомендованного производителем.При высоких температурах возможность ускоренного окисления ставит под угрозу целостность уплотнения, что может привести к выходу из строя из-за разрушения под напряжением между металлом и кварцевым стержнем. В металлогалогенных лампах с источником питания постоянного тока анодное уплотнение работает при значительно более высокой температуре, чем катод, и в большинстве конфигураций светильников должно быть снабжено радиатором или вентилятором.

Ориентация металлогалогенной лампы во время работы может существенно повлиять на ее характеристики, поэтому всегда следует соблюдать рекомендации производителя.В большинстве случаев предпочтительная ориентация размещает длинную ось газоразрядной трубки горизонтально, независимо от конструктивных параметров лампы. Горизонтальная ориентация позволяет металлогалогенным лампам демонстрировать почти симметричные термодинамические характеристики, при которых происходит равномерное изменение температуры от двух горячих точек около электродов до концов валов. В вертикальном положении электроды часто приобретают неравномерный температурный баланс, что ухудшает характеристики лампы. Еще одним важным аспектом ориентации лампы является положение дефекта на огибающей наконечника насосного стержня ( PST ).Это область, в которой трубка заполняющего газа была закрыта во время изготовления лампы. Вспышка на выходе приводит к искажению геометрии колбы и может быть обнаружена как холодное пятно (по отношению к остальной части оболочки) на тепловизионных картах ламп во время работы. Металлогалогенные лампы, установленные в горизонтальном положении, должны иметь PST, направленный вверх (вверху колбы), и это делается на заводе для ламп, встроенных в отражатели. Такое расположение предотвращает конденсацию компонентов заполнения в области PST.

Металлогалогенные лампы часто требуют охлаждения для обеспечения правильной работы. Одной из наиболее критических областей являются уплотнения штока, где молибденовая фольга встроена в кварц и подвержена окислению атмосферными компонентами при чрезмерных температурах. В большинстве случаев максимально допустимая температура на внешних концах вала составляет 350 ° C, что можно легко поддерживать с помощью простых сценариев охлаждения. Принудительное охлаждение с помощью бесщеточного вентилятора постоянного тока — это метод, который предпочитают производители источников света для микроскопии на вторичном рынке.Помимо стержней, важным конструктивным фактором в металлогалогенных лампах является температура отражателя. Температура поверхности отражателя не должна превышать 250 ° C, чтобы избежать отслаивания слоев дихроичной тонкой пленки. Охлаждение отражателей требует немного большего внимания, чтобы минимизировать температурный градиент, создаваемый по поверхности отражателя. Большие перепады температур могут вызвать напряжение в лампе и вызвать трещины в отражателе. Независимо от стратегии охлаждения отдельных компонентов лампы, следует отметить, что холодный воздух никогда не должен попадать прямо на газоразрядную трубку.Уровень успеха в поддержании надлежащей рабочей температуры металлогалогенных ламп оказывает определенное положительное влияние на срок службы лампы, особенно с точки зрения предотвращения расстеклования и поддержания полезных уровней светового потока.

После пуска металлогалогенной газоразрядной лампы необходимо дать ей полностью нагреться до рекомендуемых рабочих параметров (температуры и давления) перед выключением. Во многих случаях лампы полностью готовы к работе через минуту или две, но это значение зависит от конструкции и технических характеристик лампы.После зажигания компоненты наполнителя лампы (ртуть, галогениды и редкоземельные элементы) испаряются последовательно, в то время как напряжение лампы, электрическая мощность и световой поток постепенно увеличиваются, пока не достигнут установившегося рабочего режима. Редкоземельные элементы испаряются последним из наполняющих газов, так что металлогалогенные лампы генерируют спектральное распределение со смещением в синий цвет до тех пор, пока не завершится прогрев. Останов — это процесс, обратный запуску, когда первыми конденсируются редкоземельные элементы.Преждевременное прекращение работы лампы может привести к быстрому износу электродов и потемнению внутренних стенок оболочки, что отрицательно скажется на эксплуатационных характеристиках лампы в будущем. Фактически, если лампа случайно выключается слишком быстро во время фазы запуска, компоненты наполнителя (галогениды ртути и редкоземельных элементов) часто откладываются на внутренних стенках оболочки и на электродах. Этот артефакт может быть визуализирован как темное непрозрачное покрытие и может отрицательно повлиять на повторное зажигание (в редких случаях навсегда).Кроме того, количество запусков лампы оказывает значительное влияние на срок службы, при этом более частые зажигания приводят к сокращению срока службы независимо от того, позволяли ли лампе достигать надлежащей рабочей температуры при каждом запуске перед отключением питания.

Металлогалогенные лампы подвержены подобным артефактам нестабильности, которые поражают другие источники света дугового разряда (в основном ртуть и ксенон). Термины, используемые для описания нестабильности дуги, многочисленны и включают такие слова, как мерцание , дрожание , колебание и колебание , которые все относятся к колебаниям яркости.В отличие от традиционных дуговых ламп, некоторые разновидности металлогалогенных ламп работают с дроссельной цепью, в результате чего частоты в диапазоне от 50 до 60 герц передаются непосредственно в лампу. Следовательно, лампа гаснет и снова загорается со скоростью 100–120 раз в секунду, что может мешать высокоскоростным цифровым камерам снимать чрезвычайно высокую частоту кадров, но, как правило, слишком быстро, чтобы повлиять на большинство детекторов микроскопа. Новые схемы электронных ламп, в которых используются источники питания постоянного тока, смягчают это явление, а также обеспечивают гораздо лучшие общие характеристики стабильности.Однако из-за собственных колебаний яркости, присутствующих во всех конструкциях дуговых ламп, разновидности галогенидов металлов демонстрируют краткосрочную нестабильность с точки зрения износа электродов и конвективных токов внутренней лампы.

Электроды в металлических дуговых лампах со временем медленно деградируют, поскольку наконечники приобретают деформацию и увеличиваются в большем радиусе, что приводит к уменьшению тока, протекающего возле наконечника катода, а также увеличивает уровень мощности, необходимый для поддержания дуги. Три наиболее распространенных артефакта, связанных с износом электродов, называются блужданием , , вспышкой , и дрожанием , (см. Рисунок 5).Блуждание дуги происходит, когда точка присоединения дуги на кончике катода перемещается в новое место, часто следуя круговой схеме по окружности электрода. Блуждание сопровождается вспышкой дуги, что относится к мгновенному изменению яркости, когда дуга перемещается в новую область на электроде с более высоким эмиссионным характером, чем предыдущая точка присоединения. Колебание возникает, когда конвекционные токи в наполняющем газе, возникающие из-за разницы температур между дугой и огибающей, вызывают быстрое боковое смещение столба дуги.В совокупности эти источники нестабильности вносят значительный вклад в плохие характеристики лампы, но достижения в конструкции источников питания для металлогалогенных ламп позволяют создавать новые системы, которые демонстрируют гораздо лучшую временную и пространственную стабильность как в краткосрочной, так и в долгосрочной перспективе.

Процесс старения кварцевых колб в металлогалогенных лампах обычно известен как расстекловывание (или перекристаллизация ) и проявляется как появление молочно-белого покрытия на внутренних стенках газоразрядной трубки, которое фактически является физическим изменением. в самой кварцевой структуре.Чрезвычайно высокие рабочие температуры и давления, которым газоразрядная трубка подвергается в течение своего срока службы, медленно вызывают регрессивное переупорядочение аморфного кварца до полукристаллического состояния в некоторых областях оболочки. Белый налет состоит из оксидов кремния, что сопровождается потерей плотности и прочности. Когда срок службы дуговых ламп заканчивается, большая часть газоразрядной трубки полностью расстеклована и подвергается повышенному риску взрыва. Помимо очевидной опасности для безопасности, расстеклованные газоразрядные трубки также обладают ухудшенными фотометрическими свойствами, и их следует заменять новыми лампами.Металлогалогенная дуговая лампа, конструкция

В конструкции металлогалогенных ламп используется большое количество разнообразных дизайнерских мотивов, но те, которые используются в флуоресцентной микроскопии, ограничиваются заказными версиями с короткой дугой, размещенными в эллиптических отражателях. Газоразрядная трубка изготовлена ​​из плавленого кварца или кварца, которая окружает систему электродов и содержит наполняющие газы и соли металлов. Разрядная дуга горит в области между концами катода и анода (называемой межэлектродным зазором , ).Плавленый кварц — один из немногих материалов, способных выдерживать экстремальные механические нагрузки и термические нагрузки, предъявляемые к металлогалогенным лампам, которые должны выдерживать длительную работу при температурах, приближающихся к 950 C, и давлениях до 40 атмосфер. В некоторых высокоэффективных лампах толщина кварцевой оболочки может достигать 5 миллиметров. Во время производства электроды герметично закрываются в валах ламп и электрически соединяются с цоколями молибденовой фольгой и штырями (см. Рисунок 6 (b)).Цоколи лампы обеспечивают подключение к внешнему источнику питания, а также используются в качестве механической опоры. В лампах, соединенных с дихроичными отражателями, длинная ось кварцевого вала ориентирована параллельно оптической оси эллиптического отражателя (рисунки 2 и 6 (а)), так что зазор между электродами можно точно выровнять в фокусной точке. Один конец стержня лампы зацементирован в керамическом основании отражателя, а другой конец выступает в центр отражателя и электрически соединен с источником питания с помощью кабеля.

Электроды в металлогалогенных лампах изготовлены из легированных вольфрамовых сплавов и имеют идентичную форму для версий, предназначенных для использования с переменным током ( AC ). Эти лампы, предназначенные для работы на постоянном токе ( DC, ), содержат более массивный анод и меньший заостренный катод (аналогично электродам в ксеноновых дуговых лампах). В общем, электроды, используемые в металлогалогенных лампах, делятся на две категории: электроды pin и катушки (см. Рисунок 6 (c)).Катушечные электроды представляют собой более тонкие версии штыревых электродов, но имеют тонкую вольфрамовую проволоку, намотанную на концы в один или два слоя. Конструкция электрода оказывает сильное влияние на температурный профиль вольфрамового стержня, начиная от кончика и заканчивая областью, которая встроена в кварцевый стержень. В металлогалогенных лампах конфигурация электродов должна быть совместима с формой колбы (переходная область между колбой и стержнем), а также с химическими веществами для наполнения и внутренним объемом колбы колбы.Конструкция электродов должна также учитывать устранение потенциальных тепловых гнезд (области с более высокой температурой, чем их окружение) и должна обеспечивать дугу стабильную основу, где может иметь место оптимальная активность электронной эмиссии. Лучшие электроды достаточно стабильны, чтобы лампа могла надежно работать в течение всего срока службы.

Металлогалогенные валы ламп обеспечивают механические и электрические соединения между колбой и цоколем лампы. Большинство ламп, используемых в микроскопии, изолированы от внешней среды с помощью технологии, известной как зажимное уплотнение , которое включает сжатие нагретого, податливого кварцевого вала между двумя металлическими зажимами.По сравнению с другими металлами вольфрам имеет относительно низкий коэффициент теплового расширения, но он все же примерно в десять раз больше, чем у кварца. В результате вольфрамовый электрод не может быть прикреплен непосредственно к кварцевому валу без разрушения лампы из-за теплового расширения во время обычной эксплуатации. Решение этой проблемы достигается путем подачи энергии на кварцевые валы с помощью молибденовой ленты (или фольги), края которой имеют остро протравленные края, которые могут впиваться в кварц, не вызывая его поломки во время нагрева.Тонкая молибденовая фольга (размером примерно 20 микрометров на 2-4 миллиметра) приваривается к подводящим проводам для подключения к источнику питания на одном конце и к вольфрамовому электроду на другом конце. Эти фольги, в зависимости от толщины, способны проводить во время работы ток до 100 ампер. В лампах большой мощности часто необходимо несколько слоев фольги, чтобы выдержать большие токовые нагрузки.

Качество света, излучаемого металлогалогенной лампой, в первую очередь определяется компонентами fill .В зависимости от области применения металлогалогенные лампы могут быть заполнены любым количеством до 10 различных компонентов, которые выполняют критические функции, продиктованные их химическими и физическими свойствами, в процессе генерации света. Одним из компонентов, присутствующих во всех металлогалогенных лампах, является инертный стартовый газ , обычно аргон или ксенон, который не вступает в реакцию с другими компонентами заполнения и проявляет желаемые свойства зажигания. Лампы, используемые в микроскопии, также содержат жидкие пары ртути и галогены.Концентрация ртути в первую очередь влияет на рабочее давление лампы и определяет требования к напряжению, как обсуждалось выше. Галогены, наиболее широко используемые в металлогалогенных лампах, — это йод и бром, которые реагируют со следовыми количествами редкоземельных металлов с образованием галогенидных солей. Эти соли обладают более высоким давлением пара, чем одни металлы, что позволяет инженерам точно настраивать плотность частиц редкоземельных элементов в дуге для регулировки цветовой температуры и других характеристик излучения.

В большинстве случаев кожухи металлогалогенных ламп заполнены избытком газообразного галогена для проведения цикла регенерации галогена , который служит для предотвращения осаждения испаренного вольфрама с электродов на внутренних стенках кожуха.Редкоземельные металлы, используемые в металлогалогенных лампах, относятся к группе лантаноидов и обычно представляют собой диспрозий ( Dy ), тулий ( Tm ) и / или гольмий ( Ho ). Варьируя комбинацию и концентрацию этих металлических элементов, можно использовать для модуляции спектрального распределения излучения, чтобы соответствовать целевому применению лампы. В общем, редкоземельные элементы выбираются для обеспечения непрерывного спектрального излучения дневного света с высокой световой эффективностью. При комнатной температуре металлогалогенные лампы существуют при давлении окружающей среды или ниже, но во время работы внутреннее давление может составлять от 10 до 40 атмосфер, в зависимости от компонентов заполнения.

Цоколь лампы является важным компонентом, который выполняет двойную функцию: обеспечение механической поддержки и электрического подключения к источнику питания. В двухцокольных лампах цоколь состоит из металлических гильз (часто называемых наконечниками ), приклеенных к концам валов ламп. В некоторых случаях втулки представляют собой конические цилиндры, которые могут быть оснащены резьбой или тросом. Металлогалогенные лампы, разработанные для флуоресцентной микроскопии, требующие жидкостного световода (см. Рисунки 2 и 6), по сути, работают как однотактные лампы с керамическим основанием, соединенным с эллиптическим отражателем.В зависимости от конструкции лампы катодный или анодный конец лампы можно прикрепить к основанию, а другой конец соединить перемычкой с электрическим соединением в корпусе отражателя с помощью тонкого металлического кабеля, приваренного к выступающему молибденовому штырю. Цоколь лампы участвуют в отводе тепла от блока во время работы через металлическую контактную поверхность (обычно гильзу). Базовая температура в точке контакта между гильзой и патроном не должна превышать примерно 350 ° C во время работы, что требует от производителей послепродажного обслуживания включения радиаторов, больших площадей контакта, вентиляторов или других компенсирующих элементов в конструкции своих приборов.

Производство металлогалогенных ламп для микроскопии с высокотехнологичными оптическими системами требует жестких геометрических допусков для ламп. В рефлекторных лампах точное расположение колбы имеет решающее значение, поскольку отклонения всего в несколько миллиметров могут привести к значительному снижению равномерности освещения. Микроскопия — это сложное приложение, в котором свет, исходящий от отражателя, должен быть очень точно сфокусирован, чтобы максимизировать входной поток в жидкий световод.По этой причине рефлекторные металлогалогенные лампы, используемые в флуоресцентной микроскопии, строго выравниваются внутри эллиптического рефлектора во время изготовления. Кроме того, необходимо тщательно контролировать допуски на оболочку и стержень лампы, которые, естественно, сильно отличаются от других изделий из расплавленного стекла, чтобы обеспечить точное расположение дугового зазора относительно задней фокальной точки отражателя. Точные допуски также необходимы для компенсации небольших отклонений электродов от оси лампы.В совокупности многочисленные требования к точному изготовлению ламп вполне укладываются в возможности современных процессов производства ламп, так что нынешний модельный ряд коммерческих металлогалогенных ламп часто соответствует требованиям флуоресцентной микроскопии и даже превосходит их.

В заключение отметим, что номенклатура, относящаяся к идентификации лампы, сильно различается в зависимости от производителя, и пока нет универсального стандарта. Металлогалогенные лампы, используемые в микроскопии, объединены Osram в семейство HTI , где H — это сокращение от символа ртути ( Hg или Hydragyrum ), T — это немецкий термин, обозначающий дневной свет. ( Tageslicht ) и I указывает на присутствие галогенных соединений (йодидов и бромидов).Другие обозначения, используемые Osram: M или R для редкоземельных металлов, S для безопасных ламп с внешней колбой вокруг оболочки, P для проекционных ламп и C для кабелей с кабелем. Металлогалогенные лампы Ushio продаются под торговым наименованием EmArc с кодовым префиксом SMH , аббревиатурой от металлогалогенида с короткой дугой. У других производителей такая же запутанная номенклатура, поэтому их каталоги продукции следует внимательно изучать, чтобы выбрать правильный выбор лампы для конкретного применения.Лампы и блоки питания

Требования к источникам питания для металлогалогенных ламп несколько отличаются от требований к источникам питания ртутных и ксеноновых дуговых ламп. Источники питания как переменного, так и постоянного тока ( AC и DC ) могут использоваться с металлогалогенными лампами (в зависимости от конструктивных параметров лампы), но оба типа должны иметь аналогичные функции, включая схемы зажигания и балласта, стабилизацию мощности и правильный профиль тока во время фазы запуска лампы.Металлогалогенные блоки питания требуют охлаждения, обычно с помощью вентиляторов и радиаторов. Поскольку все дуговые лампы обычно требуют высокого напряжения для инициирования горения, их источники питания обычно состоят из двух ступеней, главной цепи питания и модуля зажигания. Во время фазы запуска основной источник питания обычно выдает напряжение в диапазоне от 200 до 350 вольт на воспламенитель, который повышает выходную мощность до уровня от 5 до 30 киловольт для зажигания, в зависимости от способности лампы перезапускать при горячем зажигании.После запуска лампы напряжение может упасть до рабочего диапазона от 20 до 100 вольт. Одним из обязательных требований к металлогалогенным источникам питания является то, что все электрические соединения должны быть хорошо изолированы друг от друга, а также от потенциала земли во избежание возникновения дуги.

На рис. 7 показано в разрезе внутренние компоненты типичного металлогалогенного лампового светильника на вторичном рынке, разработанного с жидкостным световодом для применений во флуоресцентной микроскопии.Практически во всех современных внешних лампах используются световоды (оптоволоконные или жидкостные) для установки горячей лампы на безопасном расстоянии от чувствительных компонентов микроскопа, что снижает теплопередачу и обеспечивает более высокий уровень термической стабильности для длительных экспериментов. Металлогалогенная лампа и блок отражателя крепятся с помощью зажимов, чтобы точно установить фокусное пятно на входной апертуре световода. В некоторых светильниках между лампой и входом в световод расположен фильтр, блокирующий ультрафиолетовое и инфракрасное излучение (см. Рисунки 7 и 8).Установка жидкостного световода осуществляется путем вставки входного разъема в переднее или заднее крепление на фонаре, пока он не будет надежно закреплен (это называется защелкивающимся соединением и быстроразъемным соединителем ). Другой конец световода соединен со специальной системой расширяющихся линз, индивидуальной для каждой конструкции микроскопа. Металлогалогенные лампы оснащены источниками питания как переменного, так и постоянного тока с установленными внутри запальниками и балластами и обычно включают небольшой электрический вентилятор под цоколем лампы для обеспечения принудительного воздушного охлаждения.Поскольку лампы выровнены по своим отражателям с очень жесткими допусками на заводе, замена — это просто вопрос удаления отработанной лампы и установки новой.

Чтобы избежать возможного теплового повреждения светового скремблера (и микроскопа), инфракрасное излучение, а также другие потенциально опасные длины волн излучения, генерируемые лампой, должны быть удалены до того, как они попадут в оптоволокно или световод, и это наиболее удобно сделать с помощью подходящих фильтры. В идеальном случае только длины волн, критичных для формирования изображения и возбуждения флуорофора, должны покидать источник света и отправляться на оптическую цепь микроскопа (профили пропускания оптического волокна и жидкого световода представлены на рисунке 8).Вместо того, чтобы полагаться на широкополосные зеркала, можно использовать холодные зеркала и настраиваемые полосовые интерференционные фильтры, чтобы позволить нежелательному теплу уходить и выбрать длины волн света, передаваемых на входную апертуру световода. Полоса длин волн, обычно необходимая для применения в микроскопии общего назначения, составляет приблизительно от 360 до 700 нанометров. Ненужные длины волн, которые могут повредить живые клетки или микроскоп, в том числе в ближнем инфракрасном и ультрафиолетовом диапазонах, могут проходить через дихроматические зеркала (инфракрасный передатчик обозначен как холодное зеркало , а ультрафиолетовый передатчик обозначен как горячее зеркало ). и впитаться в корпус лампы.В качестве дополнительного преимущества рассеивание тепла холодным зеркалом уменьшает перемещение источника света, вызванное тепловым расширением механических и оптических компонентов, чтобы гарантировать передачу на образец максимально возможного уровня лучистого потока.

Более совершенные лампы для вторичного рынка и OEM (производитель оригинального оборудования) содержат ряд функций, которые очень удобны для визуализации живых клеток в флуоресцентной микроскопии. Среди этих дополнительных удобств — световые заслонки, колеса фильтров, индикаторы срока службы лампы, контроль выходной интенсивности и настраиваемые интерфейсы, которые легко интегрируются в программное обеспечение для управления микроскопом.Большинство металлогалогенных ламп содержат по крайней мере регулируемую диафрагму, которая позволяет контролировать интенсивность лампы, а некоторые модели включают фильтры с переменной нейтральной плотностью для более точной регулировки. Электронный контроль времени работы лампы и температуры — еще одна полезная функция, встроенная во многие металлогалогенные лампы. Те системы, которые постоянно контролируют температуру лампы, полезны для предотвращения непреднамеренных повторных зажиганий до тех пор, пока лампа не остынет до безопасного состояния. Встроенные фильтрующие колеса становятся все более распространенными в металлогалогенных лампах.Эти блоки позволяют оператору удобно вставлять выбранные фильтры возбуждения непосредственно в удаленный светильник, тем самым устраняя потенциальные артефакты вибрации, которые сопровождают колесо фильтров, прикрепленное непосредственно к микроскопу. Световые заслонки, которые весьма полезны для управления периодом освещения во время визуализации живых клеток, могут управляться вручную или с помощью программного обеспечения. Большинство металлогалогенных ламп можно подключить к главному компьютеру с помощью универсальной последовательной шины (, USB, ) или последовательного порта RS-232.Жидкие световоды

Предпочтительной схемой оптического освещения в флуоресцентной микроскопии является освещение Хлера, которое служит для равномерного освещения поля изображения с использованием пространственно сложного источника света путем визуализации только части источника в фокальной плоскости конденсора (или задней фокальной плоскости объектива в эпи-иллюминация). Свет, падающий на образец, распределяется равномерно, хотя этот свет может приходить не со всех возможных азимутов с одинаковой интенсивностью. Другой важной особенностью освещения Кхлера является контроль когерентности света от источника, но также можно добиться однородного освещения с помощью световода.Применение жидких световодов в микроскопии позволяет скремблировать или смешивать свет для уменьшения пространственной и временной когерентности. В металлогалогенных лампах свет, исходящий от отражателя, фокусируется на входной апертуре одномодового оптического волокна или жидкостного световода (см. Рисунки 2 и 7). Тепловое движение в жидком световоде постоянно изменяет оптический путь и рассеивает свет, так что как пространственная, так и временная когерентность эффективно устраняются

Хотя в современных металлогалогенных лампах используются реже, спиральные одномодовые оптические волокна создают отражения от оболочки, которые постоянно меняются при небольшом изгибе волокна, создавая выходной луч, который является эффективно однородным по интенсивности во времени и пространстве.Сообщается, что метод вибрации волокна на частотах до 100 килогерц также эффективен при скремблировании света, но требует дополнительного оборудования. Фаза света, выходящего из оптического волокна, искажается из-за различной длины пути световых волн, проходящих через волокно, хотя высокая яркость и хроматические характеристики сохраняются. Выходной луч описывается профилем интенсивности в виде цилиндра , а не гауссовым профилем, характерным для лазерного света.

На рисунке 8 (а) показан спектральный профиль металлогалогенной лампы (желтая кривая), измеренный на выходе 5-миллиметрового жидкостного световода, наложенного на полосовые участки типичного отсекающего фильтра (красная кривая), используемого в фонарях вторичного рынка. Обратите внимание, что полосовой фильтр отсечки удаляет длины волн излучения лампы ниже 360 нанометров и выше 700 нанометров, но способен пропускать значительную часть длин волн выше 1200 нанометров (хотя излучение в этой области минимально для металлогалогенных ламп).Анатомия жидкостного световода представлена ​​в разрезе на Рисунке 8 (b). Муфта изготовлена ​​из нержавеющей стали и содержит торцевую заглушку из оптического стекла, которая контактирует непосредственно с жидкой средой в направляющей. Оболочка с низким показателем преломления на внутренней стенке гибкой трубки гарантирует, что сильно наклонный свет отражается обратно в жидкую среду. Конструктивные параметры соединителя различаются в зависимости от производителя (таким образом, отсутствует отраслевой стандарт), что затрудняет или делает невозможным использование жидкостного световода, разработанного для какого-либо конкретного фонаря вторичного рынка в конкурирующем устройстве.

Одним из наиболее важных вопросов при использовании оптических волокон и жидких световодов является эффективность соединения выхода лампы источника с входной трубкой волокна или световода. Большинство оптических волокон и жидких световодов имеют числовую апертуру от 0,2 до 0,55, и это значение должно быть согласовано с оптической системой сбора для источника. Некоторые производители микроскопов и вторичного рынка предлагают металлогалогенные лампы, предназначенные для использования с жидкими световодами, в которых выполняется это условие.Комбинация 75-ваттной ксеноновой дуговой лампы или металлогалогенной лампы в эллиптическом отражателе, холодном зеркале и оптически согласованном жидком световоде диаметром от 3 до 5 миллиметров может обеспечить светоотдачу, превышающую 2 милливатт на нанометр. Конец волокна становится эффективным источником света для микроскопа независимо от размера дуги лампы, что приводит к уменьшению яркости по сравнению с самой дугой. Однако, когда целью является равномерное освещение апертуры большого диаметра, как в случае широкопольных флуоресцентных микроскопов и конфокальных микроскопов с вращающимся диском, расширенный источник не так вреден для рабочих характеристик.Единственное требование — это коллимирующая линза достаточного диаметра, чтобы эффективно собирать световой поток и проецировать его на дисковый сканер или заднюю апертуру объектива.

ОСНОВНЫЕ ОСВЕЩЕНИЯ

ОСНОВНЫЕ ОСВЕЩЕНИЯ

ОСВЕЩЕНИЕ РУКОВОДСТВО ПО ОБНОВЛЕНИЮ ОСВЕЩЕНИЯ
Управление по воздуху и радиации Агентства по охране окружающей среды США 6202J
EPA 430-B-95-003, январь 1995 г.

Программа зеленого света Агентства по охране окружающей среды США


СОДЕРЖАНИЕ

Базовое понимание основ освещения необходимо разработчикам и лицам, принимающим решения. кто оценивает обновления освещения.В этом документе представлен краткий обзор конструкции. параметры, технологии и терминология, используемые в светотехнике. Для более подробной информации информацию о конкретных энергосберегающих технологиях освещения см. в разделе «Обновление освещения». Документ о технологиях.


ОСВЕЩЕНИЕ

Количество освещенности

Световой поток

Наиболее распространенной мерой светоотдачи (или светового потока) является люмен.Источники света обозначен мощностью в люменах. Например, люминесцентная лампа T12 мощностью 40 Вт может иметь рейтинг 3050 люмен. Точно так же мощность светильника может быть выражена в люменах. Как лампы и светильники стареют и загрязняются, их световой поток уменьшается (т. е. происходит обесценивание просвета). Большинство характеристик лампы основано на первоначальной яркости (т.е. когда лампа новая).

Уровень освещенности

Интенсивность света, измеренная на плоскости в определенном месте, называется освещенностью .Освещенность измеряется в фут-канделах, люменах на квадратный фут. Вы можете измерить освещенность с помощью люксметра, расположенного на рабочей поверхности, где выполняются задания. С использованием простая арифметика и фотометрические данные производителя, вы можете предсказать освещенность для определенного космос. (Люкс — это метрическая единица измерения освещенности, измеряемая в люменах на квадратный метр. Чтобы преобразовать фут-кандел в люкс, фут-кандел умножьте на 10,76.)

Яркость

Другое измерение света — яркость , иногда называемая яркостью.Это измеряет свет «покидая» поверхность в определенном направлении, и учитывает освещенность на поверхности и отражательная способность поверхности.

Человеческий глаз не видит света; он видит яркость. Следовательно, количество света доставляется в пространство, а отражательная способность поверхностей в пространстве влияет на вашу способность видеть.

Обратитесь к ГЛОССАРИЮ в конце этого документа для получения более подробных определений.

Количественные единицы

  • Световой поток обычно называют световым потоком и измеряется в люменах (лм).
  • Освещенность называется уровнем освещенности и измеряется в фут-канделах (fc).
  • Яркость — это яркость, которая измеряется в фут-ламбертах (fL) или кандел / м2 (кд / м2).

Определение целевого уровня освещенности

Общество инженеров освещения Северной Америки разработало процедуру для определение соответствующего среднего уровня освещенности для конкретного помещения. Эта процедура (используется разработчики и инженеры (рекомендует целевой уровень освещенности, учитывая следующие:

  • выполняемые задачи (контраст, размер и т. д.))
  • возраст оккупантов
  • Важность скорости и точности

Затем можно выбрать подходящий тип и количество ламп и осветительных приборов на основе следующие:

  • эффективность приспособления
  • световой поток лампы
  • отражательная способность окружающих поверхностей
  • Эффекты световых потерь из-за уменьшения светового потока лампы и накопления грязи
  • Размер и форма комнаты
  • наличие естественного света (дневного света)

При проектировании новой или модернизированной системы освещения необходимо соблюдать осторожность, чтобы избежать чрезмерного освещения. космос.В прошлом помещения были рассчитаны на 200 фут-свечей в местах, где 50 футсвечи могут быть не только адекватными, но и превосходными. Отчасти это было из-за заблуждения что чем больше света в помещении, тем выше качество. Мало того, что игнорирование ненужной энергии, но это также может снизить качество освещения. См. Приложение 2 для получения информации об уровнях освещенности, рекомендованных Общество инженеров освещения Северной Америки. В указанном диапазоне освещенности три Факторы диктуют надлежащий уровень: возраст пассажира (ов), требования к скорости и точности, а также фоновый контраст.

Например, для освещения помещения, в котором используются компьютеры, потолочные светильники должны обеспечивать до 30 fc окружающего освещения. Рабочие фонари должны обеспечивать дополнительные свечи, необходимые для достичь общей освещенности до 50 фк при чтении и письме. Для освещения Рекомендации для конкретных визуальных задач см. в Справочнике по освещению IES, 1993 г., или в Рекомендуемая практика IES № 24 (для освещения VDT).

Показатели качества

  • Вероятность визуального комфорта (VCP) указывает процент людей, которым комфортно с бликами от светильника.
  • Критерии расстояния (SC) относятся к максимальному рекомендуемому расстоянию между креплениями до обеспечить единообразие.
  • Индекс цветопередачи (CRI) указывает внешний вид цвета объекта под источником как по сравнению с справочным источником.

Качество освещения

Улучшение качества освещения может принести большие дивиденды американским предприятиям. Прибыль в рабочем производительность может быть достигнута за счет обеспечения скорректированного уровня освещенности с уменьшением бликов.Хотя стоимость энергии для освещения значительна, она мала по сравнению с затратами на рабочую силу. Следовательно, эти повышение производительности может быть даже более ценным, чем экономия энергии, связанная с новыми светотехника. В торговых помещениях привлекательный и удобный дизайн освещения может привлечь клиентура и увеличение продаж.

В этом разделе рассматриваются три проблемы качества.

  • блики
  • Равномерность освещенности
  • цветопередача

Блики Возможно, наиболее важным фактором, влияющим на качество освещения, являются блики.Блики это сенсация вызвано слишком ярким светом в поле зрения. Дискомфорт, раздражение или уменьшение может произойти продуктивность.

Яркий объект сам по себе не обязательно вызывает блики, но яркий объект перед темным фон, однако, обычно вызывает блики. Контраст — соотношение между яркость объекта и его фона. Хотя визуальная задача в целом становится проще при повышенном контрасте слишком большой контраст вызывает блики и усложняет визуальную задачу трудный.

Вы можете уменьшить яркость или блики, не превышая рекомендуемых уровней освещенности и используя осветительное оборудование, предназначенное для уменьшения бликов. Жалюзи или линзы обычно используются для блокировки прямого просмотр источника света. Непрямое освещение или верхнее освещение может создать среду с низким уровнем бликов за счет равномерное освещение потолка. Кроме того, правильное размещение светильника может уменьшить отраженные блики на рабочие поверхности или экраны компьютеров. Стандартные данные теперь предоставляются вместе со спецификациями светильников включают таблицы с оценками вероятности визуального комфорта (VCP ) для комнат различной геометрии.Индекс VCP показывает процент людей в данном пространстве, которые считают, что блики от приспособления приемлемы. Рекомендуется минимум 70 VCP для коммерческие интерьеры, в то время как светильники с VCP более 80 рекомендуются в компьютерных области.


Равномерность освещенности по задачам

Равномерность освещенности — это проблема качества, которая касается того, насколько равномерно свет распространяется по область задач. Хотя средняя освещенность комнаты может быть подходящей, два фактора могут компромисс единообразия.
  • Неправильное размещение светильников в соответствии с критериями расстояния между светильниками (отношение максимума рекомендуемое расстояние между крепежными приспособлениями и установочной высотой над рабочей высотой)
  • светильники, оснащенные отражателями, сужающими светораспределение

Неравномерная освещенность вызывает несколько проблем:

  • недостаточный уровень освещенности в некоторых областях
  • зрительный дискомфорт, когда задачи требуют частого смещения поля зрения с недостаточно освещенных участков на затемненные
  • ярких пятен и бликов на полу и стенах, которые отвлекают внимание и создают некачественный вид
Цветопередача

Способность правильно видеть цвета — еще один аспект качества освещения.Источники света различаются по своему способность точно отражать истинный цвет людей и предметов. Индекс цветопередачи Шкала (CRI) используется для сравнения влияния источника света на внешний вид его цвета. окружение.

Шкала от 0 до 100 определяет CRI. Более высокий индекс цветопередачи означает лучшую цветопередачу или меньший цвет сдвиг. CRI в диапазоне 75–100 считаются отличными, а 65–75 — хорошими. Диапазон 55-65 — удовлетворительно, а 0-55 — плохо.При более высоком индексе цветопередачи цвета поверхности кажутся ярче, улучшение эстетики пространства. Иногда источники с более высоким индексом цветопередачи создают иллюзию более высокие уровни освещенности.

Значения CRI для выбранных источников света сведены в таблицу с другими данными о лампах в Приложении 3.

Вернуться к содержанию



ИСТОЧНИКИ СВЕТА

В коммерческих, промышленных и торговых объектах используется несколько различных источников света.Каждый тип лампы имеет особые преимущества; выбор подходящего источника зависит от требований к установке, стоимость жизненного цикла, качество цвета, возможность регулирования яркости и желаемый эффект. Три типа ламп обычно используются:

  • лампа накаливания
  • люминесцентный
  • разряд высокой интенсивности
  • пары ртути
  • галогенид металла
  • натрий высокого давления
  • натрий низкого давления
Перед описанием каждого из этих типов ламп в следующих разделах описаны характеристики, которые общие для всех.

Характеристики источников света

Электрические источники света имеют три характеристики: эффективность, цветовую температуру и цвет. индекс рендеринга (CRI). Таблица 4 суммирует эти характеристики.

КПД
Некоторые типы ламп более эффективны в преобразовании энергии в видимый свет, чем другие. В Эффективность лампы относится к количеству люменов, выходящих из лампы, по сравнению с количеством ватт, необходимый для лампы (и балласта).Выражается в люменах на ватт. Источники с более высоким Эффективность требует меньше электроэнергии для освещения помещения.
Цветовая температура Еще одна характеристика источника света — цветовая температура. Это измерение «тепло» или «прохлада» лампы. Люди обычно предпочитают более теплый источник в более низких области освещения, такие как обеденные зоны и гостиные, а также более прохладный источник в более высоких освещенные зоны, такие как продуктовые магазины.

Цветовая температура относится к цвету излучателя черного тела при заданной абсолютной температуре, выражается в Кельвинах. Радиатор черного тела меняет цвет при повышении температуры (сначала до красный, затем оранжевый, желтый и, наконец, голубовато-белый при самой высокой температуре. А «теплый» цвет Источник света на самом деле имеет более низкую цветовую температуру . Например, холодно-белый люминесцентный лампа имеет голубоватый цвет с цветовой температурой около 4100 К.Более теплый флуоресцентный лампа выглядит более желтоватой с цветовой температурой около 3000 К. См. Приложение 5 для цветовые температуры различных источников света.


Индекс цветопередачи

CRI — это относительная шкала (от 0 до 100). указывает, насколько воспринимаемые цвета соответствуют фактическим цвета. Он измеряет степень восприятия цветов объектов, освещенных заданным светом. источник, соответствовать цветам тех же объектов, когда они освещены эталонным стандартом источник света.Чем выше индекс цветопередачи, тем меньше цветовой сдвиг или искажение.

Число CRI не указывает, какие цвета и на сколько сместятся; это скорее индикация среднего сдвига восьми стандартных цветов. Два разных источника света могут иметь одинаковые значения CRI, но цвета в этих двух источниках могут сильно отличаться.


Лампы накаливания

Стандартная лампа накаливания

Лампы накаливания — одна из старейших доступных технологий электрического освещения.С эффективностью от 6 до 24 люмен на ватт, лампы накаливания являются наименее энергоэффективными электрическими источник света и имеют относительно небольшой срок службы (750-2500 часов).

Свет образуется при пропускании тока через вольфрамовую нить, в результате чего она нагревается и нагревается. светиться. При использовании вольфрам медленно испаряется, что в конечном итоге приводит к разрыву нити.

Эти лампы доступны во многих формах и отделках. Два самых распространенных типа фигур это обычные лампы «A-type » и лампы в форме рефлектора .


Вольфрамово-галогенные лампы

Галогенная лампа накаливания — еще один тип лампы накаливания. В галогенной лампе небольшой кварцевая капсула содержит нить накала и газообразный галоген. Небольшой размер капсулы позволяет нить накала для работы при более высокой температуре, что дает свет с большей эффективностью, чем стандартные лампы накаливания. Газообразный галоген соединяется с испарившимся вольфрамом, переосаждая его. на нити. Этот процесс продлевает срок службы нити накала и предохраняет стенку лампы от почернение и уменьшение светоотдачи.

Поскольку нить накала относительно мала, этот источник часто используется там, где направлен сильно сфокусированный луч. желанный. Компактные галогенные лампы популярны в розничной торговле для демонстрации и акцента. освещение. Кроме того, вольфрамово-галогенные лампы обычно производят более белый свет, чем другие лампы. лампы накаливания более эффективны, служат дольше и имеют улучшенный износ светового потока.


Лампа накаливания A-Lamp Доступны более эффективные галогенные лампы.В этих источниках используется инфракрасное покрытие кварцевого стекла. лампа или усовершенствованная конструкция отражателя для перенаправления инфракрасного света обратно на нить накала. Нить затем светится сильнее, и эффективность источника увеличивается.
Люминесцентные лампы

Люминесцентные лампы — наиболее часто используемые коммерческие источники света в Северной Америке. В Фактически, люминесцентные лампы освещают 71% коммерческих помещений в Соединенных Штатах. Их популярность можно объяснить их относительно высокой эффективностью, рассеянным светораспределением характеристики и долгий срок службы.

  • Конструкция люминесцентной лампы состоит из стеклянной трубки со следующими характеристиками:
  • , наполненный аргоном или аргон-криптоном и небольшим количеством ртути
  • покрытый изнутри люминофором
  • с электродом на обоих концах

Люминесцентные лампы излучают свет за счет следующего процесса:

  • Электрический разряд (ток) поддерживается между электродами через пары ртути и инертный газ.
  • Этот ток возбуждает атомы ртути, заставляя их излучать невидимое излучение ультрафиолет (УФ) радиация.
  • Это УФ-излучение преобразуется в видимый свет люминофором, покрывающим трубку.

Для разрядных ламп (например, люминесцентных) требуется балласт для обеспечения правильного пускового напряжения и отрегулируйте рабочий ток после запуска лампы.


Полноразмерные люминесцентные лампы

Полноразмерные люминесцентные лампы доступны в нескольких формах, включая прямые, U-образные и круговые конфигурации. Диаметр лампы составляет от 1 дюйма до 2,5 дюйма. Самый распространенный тип лампы — четырехфутовая (F40), прямая люминесцентная лампа диаметром 1,5 дюйма (T12). Более эффективная люминесцентная лампа. Теперь доступны лампы меньшего диаметра, включая T10 (1,25 дюйма) и T8 (1 дюйм).

Люминесцентные лампы доступны в диапазоне цветовых температур от теплого (2700 (K) цвета от «ламп накаливания» до очень холодных (6500 (K) «дневных» цветов).«Холодный белый» (4100 (K) — наиболее распространенный цвет люминесцентных ламп. Нейтральный белый цвет (3500 (K) становится популярным для офиса. и розничное использование.

Улучшения люминесцентного покрытия люминесцентных ламп улучшили цветопередачу и сделали некоторые люминесцентные лампы приемлемыми для многих приложений, в которых ранее преобладали лампы накаливания.


Рекомендации по производительности

Производительность любой осветительной системы зависит от того, насколько хорошо ее компоненты работают вместе.В системах с люминесцентными лампами и балластом светоотдача, потребляемая мощность и эффективность зависят от изменения температуры окружающей среды. Когда температура окружающей среды вокруг лампы ниже значительно выше или ниже 25 ° C (77F) производительность системы может измениться. Приложение 6 показывает эту взаимосвязь для двух распространенных систем балласта лампы: лампы F40T12 с магнитным балласт и лампа F32T8 с электронным балластом.

Как видите, оптимальная рабочая температура для системы ПРА F32T8 выше. чем для системы F40T12.Таким образом, когда температура окружающей среды выше 25 ° C (77 ° F), производительность системы F32T8 может быть выше, чем производительность в соответствии с ANSI условия. Лампы с меньшим диаметром (например, двухтрубные лампы Т-5) достигают максимума при еще большем температура окружающей среды.


Компактные люминесцентные лампы

Достижения в области люминофорных покрытий и уменьшение диаметра трубок облегчили разработка компактных люминесцентных ламп.

Производимые с начала 1980-х годов, они являются долговечной и энергоэффективной заменой лампа накаливания.

Доступны различные мощности, цветовые температуры и размеры. Мощность компактного люминесцентные лампы мощностью от 5 до 40 (замена ламп накаливания мощностью от 25 до 150 Вт ( и обеспечить экономию энергии от 60 до 75 процентов. Производя свет, похожий по цвету на лампы накаливания, продолжительность жизни компактных люминесцентных ламп примерно в 10 раз больше, чем у ламп накаливания. стандартная лампа накаливания. Однако учтите, что использование компактных люминесцентных ламп весьма затруднительно. ограничено в приложениях затемнения.

Компактная люминесцентная лампа с цоколем Эдисона позволяет легко модернизировать лампа накаливания. Ввинчиваемые компактные люминесцентные лампы доступны двух типов:

  • Integral Units. Они состоят из компактной люминесцентной лампы и пускорегулирующего устройства в автономном корпусе. единицы измерения. Некоторые встроенные блоки также включают в себя рефлектор и / или стеклянный кожух.
  • Модульные блоки. Модернизированная компактная люминесцентная лампа модульного типа аналогична модернизированной. интегральные блоки, за исключением того, что лампа сменная.
Отчет спецификаций , в котором сравниваются характеристики компактных люминесцентных ламп различных торговых марок. лампы теперь доступны в Национальной информационной программе по осветительной продукции («Винт-цоколь Компактные люминесцентные лампы », Specifier Reports, Volume 1, Issue 6, April 1993).

Газоразрядные лампы высокой интенсивности

Лампы с разрядом высокой интенсивности (HID) похожи на люминесцентные в том, что генерируется дуга. между двумя электродами. Дуга в источнике HID короче, но излучает гораздо больше света, тепло и давление внутри дуговой трубки.

Изначально разработанные для наружного и промышленного применения, HID-лампы также используются в офисах, розничная торговля и другие внутренние помещения. Улучшены их характеристики цветопередачи. и более низкие мощности недавно стали доступны (всего 18 Вт.

У источников HID есть несколько преимуществ:

  • относительно долгий срок службы (от 5000 до 24000+ часов)
  • относительно высокий световой поток на ватт
  • относительно небольшой по физическому размеру

Однако следует также учитывать следующие эксплуатационные ограничения.Во-первых, лампы HID требуют пора разогреться. Он варьируется от лампы к лампе, но среднее время прогрева составляет от 2 до 6 минут. Во-вторых, лампы HID имеют время «повторного зажигания», что означает кратковременное прерывание тока или падение напряжения слишком низкое для поддержания дуги, лампа погаснет. В этот момент газы внутри лампа слишком горячая для ионизации, и нужно время, чтобы газы остыли и давление упало прежде, чем дуга снова загорится. Этот процесс перезапуска занимает от 5 до 15 минут, в зависимости от того, какой источник HID используется.Следовательно, хорошее применение HID-ламп — это места, где лампы не включаются и не выключаются периодически.

Следующие источники HID перечислены в порядке возрастания эффективности:

  • пары ртути
  • галогенид металла
  • натрий высокого давления
  • натрий низкого давления

Пар ртути

Прозрачные лампы на парах ртути, излучающие сине-зеленый свет, состоят из дуги на парах ртути. трубка с вольфрамовыми электродами на обоих концах.Эти лампы имеют самую низкую эффективность среди HID. семья, быстрое обесценивание просвета и низкий индекс цветопередачи. Из-за этих характеристики, другие источники HID заменили ртутные лампы во многих приложениях. Тем не менее, ртутные лампы по-прежнему остаются популярными источниками освещения ландшафта из-за срок службы лампы составляет 24 000 часов, а также яркое изображение зеленых ландшафтов.

Дуга содержится во внутренней колбе, называемой дуговой трубкой. Дуговая трубка заполнена высокой чистотой. ртуть и газ аргон.Дуговая трубка заключена во внешнюю колбу, которая заполнена азот.

Ртутные лампы с улучшенным цветом используют люминофорное покрытие на внутренней стенке колбы для улучшения индекс цветопередачи, что приводит к небольшому снижению эффективности.


Металлогалогенид

Эти лампы похожи на ртутные лампы, но в дуговой трубке используются металлогалогенные добавки. вместе с ртутью и аргоном. Эти добавки позволяют лампе производить больше видимого света. на ватт с улучшенной цветопередачей.

Диапазон мощности от 32 до 2000, что позволяет использовать их в самых разных помещениях и на улице. В эффективность металлогалогенных ламп колеблется от 50 до 115 люмен на ватт (обычно примерно в два раза больше). пара ртути. Одним словом, металлогалогенные лампы обладают рядом преимуществ.

  • высокая эффективность
  • хорошая цветопередача
  • широкий диапазон мощности

Однако у них также есть некоторые эксплуатационные ограничения:

  • Расчетный срок службы металлогалогенных ламп короче, чем у других источников HID; более низкая мощность лампы служат менее 7500 часов, в то время как лампы высокой мощности служат в среднем от 15000 до 20000 часов.
  • Цвет может отличаться от лампы к лампе и может меняться в течение срока службы лампы и во время затемнение.

Благодаря хорошей цветопередаче и большому световому потоку эти лампы подходят для занятий спортом. арены и стадионы. Внутреннее использование включает большие аудитории и конференц-залы. Эти лампы иногда используются для общего наружного освещения, например, парковок, но при высоком давлении натриевая система обычно является лучшим выбором.


Натрий высокого давления

Натриевая лампа высокого давления (HPS) широко используется для наружного и промышленного применения. Его более высокая эффективность делает его лучшим выбором, чем галогенид металла для этих применений, особенно когда хорошая цветопередача не является приоритетом. Лампы HPS отличаются от ртутных и металлогалогенных. лампы тем, что они не содержат пусковых электродов; в цепь балласта включен высоковольтный электронный стартер. Дуговая трубка изготовлена ​​из керамического материала, выдерживающего высокие температуры. до 2372F.Он заполнен ксеноном для зажигания дуги, а также натриево-ртутным газом. смесь.

Эффективность лампы очень высока (целых 140 люмен на ватт. Например, 400-ваттный Натриевая лампа высокого давления дает начальную светосилу 50 000 люмен. Металлогалогенная лампа такой же мощности производит 40 000 начальных люменов, а ртутная лампа мощностью 400 Вт дает только 21 000 люменов. первоначально.

Натрий, основной используемый элемент, дает «золотой» цвет, характерный для ламп HPS.Хотя лампы HPS, как правило, не рекомендуются для приложений, где требуется цветопередача. критично, улучшаются свойства цветопередачи HPS. Некоторые лампы HPS уже доступны в цветах «люкс» и «белый», обеспечивающих более высокую цветовую температуру и улучшенный цвет исполнение. Эффективность маломощных «белых» ламп HPS ниже, чем у металлогалогенных. лампы (люмен на ватт маломощного металлогалогенида составляет 75-85, а белого HPS — 50-60 LPW).


Натрий низкого давления

Хотя натриевые лампы низкого давления (LPS) похожи на люминесцентные системы (потому что они системы низкого давления), они обычно входят в семейство HID.Лампы LPS — самые эффективные источники света, но они производят свет худшего качества из всех типов ламп. Быть монохроматический источник света, все цвета кажутся черными, белыми или оттенками серого под LPS источник. Лампы LPS доступны в диапазоне мощности от 18 до 180.

Лампы LPS обычно используются только на открытом воздухе, например, в безопасности или на улице. освещение и внутри помещений с низким энергопотреблением, где качество цвета не имеет значения (например,грамм. лестничные клетки). Однако из-за плохой цветопередачи многие муниципалитеты не разрешают их для освещения проезжей части.

Поскольку лампы LPS являются «удлиненными» (например, люминесцентными), они менее эффективны для направления и управление световым лучом по сравнению с «точечными источниками», такими как натрий и металл высокого давления галогенид. Следовательно, меньшая высота установки обеспечит лучшие результаты с лампами LPS. К сравните установку LPS с другими альтернативами, рассчитайте эффективность установки как среднее количество обслуживаемых фут-кандел, деленное на потребляемую мощность в ваттах на квадратный фут освещенной площади.Входная мощность системы LPS увеличивается с течением времени, чтобы поддерживать постоянный световой поток в течение срок службы лампы.

Натриевая лампа низкого давления может взорваться при контакте натрия с водой. Утилизировать этих ламп в соответствии с инструкциями производителя.

Вернуться к содержанию



БАЛЛАСТЫ

Все газоразрядные лампы (люминесцентные и HID) требуют вспомогательного оборудования, называемого балласт.Балласты выполняют три основные функции:
    ,
  • , обеспечивают правильное пусковое напряжение , , потому что лампам для запуска требуется более высокое напряжение, чем для работать
  • согласовать линейное напряжение с рабочим напряжением лампы
  • ограничить ток лампы , чтобы предотвратить немедленное разрушение, потому что после зажигания дуги сопротивление лампы уменьшается

Поскольку балласты являются неотъемлемым компонентом системы освещения, они оказывают прямое влияние на светоотдача.Балластный коэффициент — это соотношение светоотдачи лампы с использованием стандартного эталона. балласта по сравнению с номинальной светоотдачей лампы на стандартном лабораторном балласте. Общий балласты целевого назначения имеют балластный коэффициент меньше единицы; специальные балласты могут иметь балласт множитель больше единицы.


Люминесцентные балласты

Два основных типа люминесцентных балластов — это магнитные и электронные балласты:

Магнитные балласты Магнитные балласты (также называемые электромагнитными балластами) относятся к одному из следующих категории:
  • стандартный сердечник-катушка (больше не продается в США для большинства приложений)
  • высокоэффективный сердечник-катушка
  • катодный вырез или гибридный

Стандартные магнитные балласты сердечник-катушка — это, по сути, трансформаторы сердечник-катушка, которые относительно неэффективны в эксплуатации люминесцентных ламп.Высокоэффективный балласт заменяет алюминиевый электропроводка и сталь более низкого сорта стандартного балласта с медной проводкой и усиленной ферромагнитные материалы. Результатом этих обновлений материалов является 10-процентная эффективность системы. улучшение. Однако учтите, что эти «высокоэффективные» балласты являются наименее эффективными магнитными. балласты, доступные для работы с полноразмерными люминесцентными лампами. Более эффективные балласты описано ниже.

«Катодный вырез» ПРА (или «гибридный «) — это высокоэффективные ПРА с сердечником и катушкой. электронные компоненты, отключающие питание катодов (нитей) ламп после зажигания ламп, что дает дополнительную экономию 2 Вт на стандартную лампу.Кроме того, многие T12 с частичным выходом гибридные балласты обеспечивают на 10% меньше светового потока и потребляют на 17% меньше энергии, чем энергоэффективные магнитные балласты. Гибридные балласты T8 с полной выходной мощностью почти так же эффективны, как быстрозажимные двухламповые электронные балласты Т8.

Электронные балласты Практически в каждом полноразмерном люминесцентном освещении можно использовать электронные балласты. обычных магнитных балластов типа «сердечник-катушка». Электронные балласты улучшают люминесцентный эффективность системы за счет преобразования стандартной входной частоты 60 Гц в более высокую частоту, обычно От 25000 до 40000 Гц.Лампы, работающие на этих более высоких частотах, производят примерно такой же количество света, в то время как потребляет на 12-25 процентов меньше энергии . Другие преимущества электронного балласты имеют меньший слышимый шум, меньший вес, практически полное отсутствие мерцания лампы и затемнение возможности (с конкретными моделями балласта).

Доступны три исполнения ЭПРА:

. Стандартные электронные балласты T12 (430 мА)

Эти балласты предназначены для использования с обычными (T12 или T10) системами люминесцентного освещения.Некоторые электронные балласты, предназначенные для использования с 4-дюймовыми лампами, могут работать с четырьмя лампами одновременно. время. Параллельная проводка — еще одна доступная функция, которая позволяет использовать все сопутствующие лампы в цепь балласта для продолжения работы в случае отказа лампы. Электронные балласты также доступны для 8-дюймовых стандартных и мощных ламп T12.

T8 Электронные балласты (265 мА)

Электронный балласт T8, специально разработанный для использования с лампами T8 (диаметром 1 дюйм), обеспечивает самая высокая эффективность среди люминесцентных систем освещения.Некоторые электронные балласты T8 предназначены для запуска ламп в обычном режиме быстрого запуска, а другие работают в режим мгновенного запуска. Использование электронных пускорегулирующих аппаратов T8 с мгновенным запуском может дать до 25 процентов сокращение срока службы лампы (на 3 часа за запуск), но дает небольшое повышение эффективности и света выход. (Примечание. Срок службы лампы для мгновенного запуска и быстрого запуска одинаков для 12 или более часов за пуск.)

Электронные балласты с регулируемой яркостью

Эти балласты позволяют регулировать световой поток ламп на основе данных, введенных вручную. регуляторы яркости или от устройств, которые определяют дневной свет или присутствие людей.


Типы люминесцентных схем

Существует три основных типа люминесцентных схем:
  • быстрый старт
  • мгновенный запуск
  • предварительный нагрев

Конкретный используемый флуоресцентный контур можно определить по этикетке на балласте.

Цепь быстрого запуска является наиболее часто используемой системой на сегодняшний день. Балласты быстрого пуска обеспечивают непрерывное нагрев нити накала лампы во время работы лампы (кроме случаев, когда используется балласт с катодным вырезом или фонарь).Пользователи замечают очень короткую задержку после «щелчка переключателя» перед включением лампы.

Система мгновенного пуска мгновенно зажигает дугу в лампе. Этот балласт обеспечивает более высокую пусковое напряжение, что исключает необходимость в отдельной пусковой цепи. Это более высокое начало напряжение вызывает больший износ нити, что приводит к сокращению срока службы лампы по сравнению с быстрым начиная.

Схема предварительного нагрева использовалась, когда впервые стали доступны люминесцентные лампы.Эта технология используется очень мало сегодня, за исключением приложений с магнитным балластом малой мощности, таких как компактные флуоресцентные. Отдельный пусковой выключатель, называемый стартером, помогает в образовании дуги. В нити накала требуется некоторое время, чтобы нагреться до нужной температуры, поэтому лампа не зажигается в течение нескольких секунд.


HID балласты

Как и люминесцентные лампы, HID-лампы требуют для запуска и работы пускорегулирующего устройства. Цели балласт аналогичен: для обеспечения пускового напряжения, для ограничения тока и для согласования с линейным напряжением напряжению дуги.

При использовании балластов HID основное внимание уделяется регулированию мощности лампы, когда линия напряжение меняется. В лампах HPS балласт должен компенсировать изменения напряжения лампы, как а также при изменении линейных напряжений.

Установка неправильного балласта HID может вызвать множество проблем:

  • потеря энергии и увеличение эксплуатационных расходов
  • значительно сокращает срок службы лампы
  • значительно увеличивает затраты на обслуживание системы
  • обеспечивает уровень освещенности ниже желаемого
  • увеличение затрат на электромонтаж и установку выключателя
  • вызывает срабатывание лампы при падении напряжения

Емкостное переключение доступно в новых светильниках HID со специальными балластами HID.Большинство обычное применение HID-емкостной коммутации — это двухуровневое освещение с контролем присутствия. контроль. При обнаружении движения датчик присутствия отправит сигнал на двухуровневый HID. система, которая быстро доводит уровень освещенности от пониженного уровня ожидания до примерно 80% полной мощности, с последующим нормальным временем прогрева от 80% до 100% полной световой отдачи. В зависимости от типа лампы и мощности световой поток в режиме ожидания составляет примерно 15-40% от полной мощности. а потребляемая мощность составляет 30-60% от полной мощности.Следовательно, в периоды, когда пространство незанятых людей и система затемнена, достигается экономия 40-70%.

Электронные балласты для некоторых типов ламп HID начинают поступать в продажу. Эти балласты обладают такими преимуществами, как уменьшенный размер и вес, а также лучший контроль цвета; однако электронные балласты HID предлагают минимальный выигрыш в эффективности по сравнению с балластами магнитных HID.

Вернуться к содержанию



СВЕТИЛЬНИКИ

Светильник, или осветительная арматура, представляет собой блок, состоящий из следующих компонентов:
  • ламп
  • патроны
  • балластов
  • светоотражающий материал
  • линзы, рефракторы или жалюзи
  • корпус

Светильник

Основная функция светильника — направлять свет с помощью отражающих и экранирующих материалов.Многие проекты модернизации освещения состоят из замены одного или нескольких из этих компонентов для улучшения эффективность приспособления. В качестве альтернативы пользователи могут рассмотреть возможность замены всего светильника на тот, который Я спроектировал так, чтобы эффективно обеспечить необходимое количество и качество освещения.

Есть несколько разных типов светильников. Ниже приводится список некоторых наиболее распространенных типы светильников:

  • светильники общего освещения, такие как люминесцентные лампы 2х4, 2х2 и 1х4
  • Даунлайт
  • непрямое освещение (свет отражается от потолка / стен)
  • Точечное или акцентное освещение
  • рабочее освещение
  • наружное и прожекторное освещение

КПД светильника

КПД светильника — это процент светового потока лампы, который фактически выходит из приспособление.Использование жалюзи может улучшить визуальный комфорт, но поскольку они уменьшают просвет выход приспособления, КПД снижается. Как правило, самые эффективные светильники имеют худший визуальный комфорт (например, промышленные светильники без покрытия). И наоборот, приспособление, обеспечивающее самый высокий уровень визуального комфорта наименее эффективен. Таким образом, дизайнер по свету должен определить лучший компромисс между эффективностью и VCP при выборе светильников. В последнее время некоторые производители начали предлагать светильники с отличным VCP и эффективностью.Эти так называемые «Супер-приспособления » сочетают в себе ультрасовременные линзы или жалюзи, чтобы обеспечить лучшее из обоих миры.

Ухудшение поверхности и скопившаяся грязь в старых, плохо обслуживаемых приборах также могут вызвать снижение эффективности светильников. Обратитесь к Техническому обслуживанию Освещения для получения дополнительной информации.


Направляющий свет Каждый из вышеперечисленных типов светильников состоит из ряда компонентов, которые предназначены для работы. вместе производить и направлять свет.Поскольку тема производства света была освещена В предыдущем разделе текст ниже посвящен компонентам, используемым для направления производимого света. лампами.
Отражатели Отражатели предназначены для перенаправления света, излучаемого лампой, для достижения желаемого распределение силы света вне светильника.

В большинстве точечных и прожекторных ламп накаливания обычно используются зеркальные (зеркальные) отражатели. встроены в светильники.

Одним из энергоэффективных вариантов модернизации является установка специально разработанного отражателя для усиления света. контроль и эффективность приспособления, которое может позволить частичное снятие демпфирования. Отражатели дооснащения полезно для повышения эффективности старых, изношенных поверхностей светильников. Разнообразие доступны светоотражающие материалы: белая краска с высокой отражающей способностью, ламинат с серебряной пленкой и два марки анодированного алюминиевого листа (стандартная или повышенная отражательная способность).Серебряный пленочный ламинат Обычно считается, что он имеет самый высокий коэффициент отражения, но считается менее прочным.

Правильная конструкция и установка отражателей могут иметь большее влияние на производительность, чем отражающие материалы. Однако в сочетании с демпфированием использование отражателей может привести к снижение светоотдачи и может перераспределить свет, что может быть приемлемым или неприемлемым для конкретное пространство или приложение. Чтобы обеспечить приемлемую производительность от отражателей, позаботьтесь о пробная установка и измерение уровней освещенности «до» и «после», используя процедуры, изложенные в Оценка освещения.Для получения конкретных данных об эффективности названия бренда см. Отчеты спецификатора, «Зеркальные отражатели», том 1, выпуск 3, Национальная информационная программа по осветительной продукции.


Линзы и жалюзи В большинстве комнатных коммерческих люминесцентных светильников используются либо линзы, либо жалюзи для предотвращения прямого попадания света. просмотр ламп. Свет, излучаемый в так называемой «зоне ослепления» (углы более 45 градусов от вертикальной оси прибора) может вызвать визуальный дискомфорт и отражения, которые уменьшают контраст на рабочих поверхностях или экранах компьютеров.Линзы и жалюзи пытаются контролировать эти проблемы.

Линзы. Линзы из прозрачного акрилового пластика, устойчивого к ультрафиолетовому излучению, обеспечивают максимальное освещение производительность и однородность всех средств защиты. Однако они обеспечивают меньший контроль бликов, чем решетчатые светильники. Типы прозрачных линз включают призматические, крылья летучей мыши, линейные крылья летучей мыши и поляризованные. линзы. Линзы обычно намного дешевле, чем жалюзи. Белые полупрозрачные диффузоры намного менее эффективны, чем прозрачные линзы, и они приводят к относительно низкой вероятности визуального комфорта.Новые материалы линз с низким уровнем бликов доступны для модернизации и обеспечивают высокий визуальный комфорт (VCP> 80) и высокая эффективность.

Жалюзи. Жалюзи обеспечивают превосходный контроль бликов и высокий визуальный комфорт по сравнению с линзово-диффузорные системы. Чаще всего жалюзи используются для устранения бликов. отражается на экранах компьютеров. Так называемые параболические жалюзи с «глубокими ячейками» (с отверстиями для ячеек 5-7 дюймов) и глубиной 2–4 дюйма (обеспечивают хороший баланс между визуальным комфортом и эффективностью светильника.Хотя параболические жалюзи с мелкими ячейками обеспечивают высочайший уровень визуального комфорта, они уменьшают КПД светильника около 35-45 процентов. Для модернизированных приложений, как с глубокими ячейками, так и с жалюзи с мелкими ячейками доступны для использования с существующими приспособлениями. Обратите внимание, что жалюзи с глубокими ячейками дооснащение увеличивает общую глубину трансмиссии на 2–4 дюйма; убедитесь в наличии достаточной глубины камеры статического давления перед указанием модернизации с глубокими ячейками.


Распределение

Одна из основных функций светильника — направлять свет туда, где он нужен.Свет Распространение светильников охарактеризовано Обществом инженеров освещения как следующим образом:

  • Прямой (от 90 до 100 процентов света направляется вниз для максимального использования.
  • Непрямое (от 90 до 100 процентов света направляется на потолки и верхние стены и отражается во всех частях комнаты.
  • Semi-Direct (от 60 до 90 процентов света направлено вниз, а остальная часть света направлена ​​вниз). направлен вверх.
  • General Diffuse или Direct-Indirect (равные части света направлены вверх и вниз.
  • Подсветка (дальность проецирования луча и фокусирующая способность характеризуют это светильник.

Распределение освещения, характерное для данного светильника, описывается с помощью канделы. Распространение предоставляется производителем светильника (см. диаграмму на следующей странице). Кандела распределение представлено кривой на полярном графике, показывающей относительную силу света 360 вокруг приспособления (если смотреть в разрезе приспособления.Эта информация полезна потому что он показывает, сколько света излучается в каждом направлении и относительные пропорции вниз и вверх. Угол среза — это угол, измеренный прямо вниз, где приспособление начинает экранировать источник света, и прямой свет от источника не виден. Угол экранирования — это угол, отсчитываемый от горизонтали, через который приспособление обеспечивает экранирование для предотвращения прямого просмотра источника света.Углы экранирования и отсечения складываются. до 90 градусов.

Продукты для модернизации освещения, упомянутые в этом документе, более подробно описаны в Технологии модернизации освещения.

Вернуться к содержанию



Отдельные объявления

Advanced Lighting Guidelines: 1993, Исследовательский институт электроэнергии (EPRI) / Калифорния Энергетическая комиссия (CEC) / Министерство энергетики США (DOE), май 1993 г.

EPRI, CEC и DOE совместно разработали обновленную версию Advanced 1993 года. Руководство по освещению (первоначально опубликовано ЦИК в 1990 году). Рекомендации включают четыре новые главы, посвященные управлению освещением. Эта серия руководств содержит исчерпывающие и объективную информацию о текущем осветительном оборудовании и средствах управления.

Рекомендации касаются следующих областей:

  • Практика светотехнического проектирования
  • Система автоматизированного проектирования освещения
  • светильники и системы освещения
  • энергоэффективные люминесцентные балласты
  • Лампы люминесцентные полноразмерные
  • Лампы люминесцентные компактные
  • Лампы вольфрам-галогенные
  • Металлогалогенные лампы и лампы HPS
  • дневное освещение и поддержание светового потока
  • датчики присутствия
  • Системы расписания
  • Модернизация систем управления

Помимо обзоров технологий и приложений, каждая глава завершается рекомендациями. спецификации для точного определения компонентов модернизации освещения.Руководящие принципы также свести в таблицу репрезентативные данные о производительности, которые может быть очень сложно найти в продукте литература.

Чтобы получить копию Advanced Lighting Guidelines (1993), обратитесь в местную коммунальную службу (если у вас Утилита является членом EPRI). В противном случае позвоните в ЦИК по телефону (916) 654-5200.

Ассоциация инженеров-энергетиков использует этот текст для подготовки кандидатов к сдаче Сертифицированных Экзамен по эффективности освещения (CLEP).Эта 480-страничная книга особенно полезна для изучения расчетов освещенности, основных соображений по проектированию и эксплуатации характеристики каждого семейства источников света. Он также содержит рекомендации по применению для промышленных, офисное, торговое и внешнее освещение.

Учебник можно заказать в Ассоциации инженеров-энергетиков по телефону (404). 925-9558.

Стандарт ASHRAE / IES 90.1-1989, Американское общество отопления, охлаждения и Инженеры по кондиционированию воздуха (ASHRAE) и Общество инженеров освещения (IES), 1989.

ASHRAE / IES 90.1-1989, широко известный как «Стандарт 90.1», является стандартом эффективности, который Участники Green Lights соглашаются следовать им при проектировании новых систем освещения. Стандарт 90.1 — это в настоящее время является национальным стандартом добровольного консенсуса. Однако этот стандарт становится законом в многие государства. Закон об энергетической политике 1992 г. требует, чтобы все штаты подтвердили к октябрю 1994 г., что их положения коммерческого энергетического кодекса соответствуют или превышают требования Стандарта 90.1.

Участникам Green Lights нужно только соответствовать части стандарта, касающейся системы освещения. Стандарт 90.1 устанавливает максимальную плотность мощности (W / SF) для систем освещения в зависимости от типа здание или ожидаемое использование в каждом пространстве. Осветительная часть стандарта 90.1 не применяются к следующему: наружные производственные или технологические объекты, театральное освещение, специальное освещение, аварийное освещение, вывески, торговые витрины и жилые помещения освещение.Дневное освещение и управление освещением получают внимание и кредиты, а также минимум стандарты эффективности указаны для балластов люминесцентных ламп на базе балласта Federal Стандарты.

Вы можете приобрести Standard 90.1, связавшись с ASHRAE по телефону (404) 636-8400 или IES по телефону (212) 248-5000.

Справочник по управлению освещением , Крейг Дилуи, 1993.

Этот 300-страничный нетехнический справочник дает четкий обзор управления освещением. принципы.Особое внимание уделяется важности эффективного обслуживания и преимущества хорошо спланированной и выполненной программы управления освещением. Содержание организована следующим образом:

  • Основы и технологии
  • Обследование здания
  • Эффективное освещение (для людей)
  • Экономика модернизации
  • Техническое обслуживание
  • Финансирование модернизации
  • Зеленая инженерия (воздействие на окружающую среду)
  • Получение справки
  • Истории успеха

Кроме того, приложения к книге включают общую техническую информацию, рабочие листы и информацию о продукте. гиды.Чтобы приобрести эту ссылку, позвоните в Ассоциацию инженеров-энергетиков по телефону (404) 925-9558.

Illuminations: Учебное пособие для старших специалистов по свету, международное Ассоциация компаний по управлению освещением (НАЛМКО), первое издание, 1993 г.

Освещение — это 74-страничное учебное пособие для начинающих светотехников. (Обозначение NALMCO) для повышения статуса до старшего светотехника. В Рабочая тетрадь состоит из семи глав, каждая из которых содержит тест для самопроверки.Ответы даны в оборотная сторона книги.

  • Основы обслуживания (например, электричество, приборы, вопросы утилизации и т. Д.)
  • Работа лампы (например, конструкция и работа лампы (все типы, цветовые эффекты)
  • Работа с балластом (например, люминесцентные и HID компоненты балласта, типы, мощность, балласт коэффициент, гармоники, начальная температура, КПД, замена)
  • Поиск и устранение неисправностей (например,g., визуальные симптомы, возможные причины, объяснения и / или способы устранения)
  • Органы управления (например, фотоэлементы, часы, датчики присутствия, диммеры, EMS)
  • Устройства и технологии для модернизации освещения (например, отражатели, компактные флуоресцентные лампы, модернизация балласта, исправление чрезмерно освещенных ситуаций, линзы и жалюзи, преобразования HID, измерение энергоэффективности)
  • Аварийное освещение (например, знаки выхода, типы приспособлений, приложения, батареи, техническое обслуживание)

Подсветка четкая и понятная.Самая сильная сторона публикации — обширная иллюстрации и фотографии, которые помогают прояснить обсуждаемые идеи. Учебник для подмастерьев Также доступны специалисты по освещению (под названием «Осветите» (рекомендуется для новички в области освещения.

Для заказа звоните в НАЛМКО по телефону (609) 799-5501.


Научно-исследовательский институт электроэнергетики (EPRI)

Справочник по эффективности коммерческого освещения , EPRI, CU-7427, сентябрь 1991 г.

Справочник по эффективности коммерческого освещения содержит обзор эффективных коммерческие осветительные технологии и программы, доступные конечному пользователю. Помимо предоставления обзор возможностей сохранения освещения, этот 144-страничный документ предоставляет ценные информация об образовании в области освещения и информация в следующих областях:

  • справочник групп по энергетике и окружающей среде обширный справочник по освещению с аннотациями библиографии
  • справочник светотехнических демонстрационных центров
  • краткое изложение правил и норм, относящихся к освещению
  • справочник светотехнических учебных заведений, курсов и семинаров
  • списки журналов и журналов по освещению
  • Справочник и описания светотехнических научно-исследовательских организаций
  • справочник профессиональных групп и торговых ассоциаций в области освещения

Чтобы получить копию EPRI Lighting Publications, обратитесь в местное коммунальное предприятие (если оно член EPRI) или обратитесь в Центр распространения публикаций EPRI по телефону (510) 934-4212.

Следующие публикации по освещению доступны в EPRI. Каждая публикация содержит подробное описание технологий, их преимуществ, областей применения и тематических исследований.

  • Освещение разрядом высокой интенсивности (10 страниц), BR-101739
  • Электронные балласты (6 страниц), BR-101886
  • Датчики присутствия (6 страниц), BR-100323
  • Компактные люминесцентные лампы (6 страниц), CU.2042R.4.93
  • Зеркальные модифицированные отражатели (6 страниц), CU.2046Р.6.92
  • Модернизация осветительных технологий (10 страниц), CU.3040R.7.91

Кроме того, EPRI предлагает серию 2-страничных информационных бюллетеней, охватывающих такие темы, как обслуживание освещения, качество освещения, освещение VDT и срок службы лампы.

Чтобы получить копию EPRI Lighting Publications, обратитесь в местное коммунальное предприятие (если оно член EPRI). В противном случае обратитесь в Центр распространения публикаций EPRI по телефону (510). 934-4212.

Справочник по основам освещения, Научно-исследовательский институт электроэнергии, TR-101710, март 1993.

В этом справочнике представлена ​​основная информация о принципах освещения, осветительном оборудовании и др. соображения, связанные с дизайном освещения. Он не предназначен для использования в качестве актуальной ссылки на актуальные осветительные приборы и оборудование. Справочник состоит из трех основных разделов:

  • Физика света (например, свет, зрение, оптика, фотометрия)
  • Осветительное оборудование и технологии (e.г., лампы, светильники, регуляторы освещения)

  • Решения по дизайну освещения (например, цели освещения, качество, экономика, нормы, мощность качество, фотобиология и утилизация отходов)

Чтобы получить копию EPRI Lighting Publications, обратитесь в местное коммунальное предприятие (если оно член EPRI) или обратитесь в Центр распространения публикаций EPRI по телефону (510) 934-4212.


Общество инженеров освещения (IES)

ED-100 Начальное освещение Эта образовательная программа, состоящая примерно из 300 страниц в папке, представляет собой обновленную версию. учебных материалов по основам 1985 года.Этот набор из 10 уроков предназначен для тех, кто хотите тщательный обзор поля освещения.
  • Свет и цвет
  • Свет, зрение и восприятие
  • Источники света
  • Светильники и их фотометрические данные
  • Расчет освещенности
  • Световые приложения для визуального представления
  • Освещение для визуального воздействия
  • Наружное освещение
  • Энергоменеджмент / Экономика освещения
  • Дневной свет
ЭД-150 Промежуточное освещение Этот курс — «следующий шаг» для тех, кто уже прошел ED-100. фундаментальной программы или желающих расширить свои знания, полученные с помощью практических опыт.Экзамен технических знаний IES основан на уровне ED-150. знание. Папка длиной 2 дюйма содержит тринадцать уроков.
  • Видение
  • Цвет
  • Источники света и балласты
  • Оптический контроль
  • Расчет освещенности
  • Психологические аспекты освещения
  • Концепции дизайна
  • Компьютеры в дизайне и анализе освещения
  • Экономика освещения
  • Расчет дневного света
  • Объемы / распределение электроэнергии
  • Электроуправление
  • Математика освещения
Справочник по освещению IES, 8-е издание, IES of North America, 1993. Этот 1000-страничный технический справочник представляет собой комбинацию двух более ранних томов, которые по отдельности адресная справочная информация и приложения. Считается «библией» озарения. Инженерное дело, Справочник обеспечивает широкий охват всех этапов светотехнических дисциплин. 34 главы разделены на пять общих частей.
  • Наука об освещении (например, оптика, измерения, зрение, цвет, фотобиология)
  • Светотехника (например, источники, светильники, дневное освещение, расчеты)
  • Элементы дизайна (e.g., процесс, выбор освещения, экономика, нормы и стандарты)
  • Lighting Applications, в которой обсуждаются 15 уникальных примеров.
  • Специальные темы (например, энергоменеджмент, контроль, техническое обслуживание, экологические вопросы)

Кроме того, Справочник содержит обширный ГЛОССАРИЙ и указатель, а также множество иллюстрации, графики, диаграммы, уравнения, фотографии и ссылки.

Справочник является важным справочником для практикующего светотехника.Вы можете приобрести руководство из отдела публикаций IES по телефону (212) 248-5000. Члены IES получают цену скидка на Справочник.

IES Lighting Ready Reference, IES, 1989. . Эта книга представляет собой сборник информации об освещении, включая следующие: терминология, коэффициенты преобразования, таблицы источников света, рекомендации по освещенности, расчетные данные, энергия соображения управления, методы анализа затрат и процедуры обследования освещения.Готов Справочник включает наиболее часто используемые материалы из Справочника по освещению IES.

Вы можете приобрести 168-страничный справочник в отделе публикаций IES по телефону (212). 248-5000. Члены IES получают Ready Reference при вступлении в общество.

Освещение VDT: Рекомендуемая практика IES для офисов освещения Содержит компьютерные терминалы визуального отображения. ОЭС Севера Америка, 1990. IES RP-24-1989. Это руководство по освещению содержит рекомендации по освещению офисов, где компьютер Используются ВДТ.Он также предлагает рекомендации относительно требований к освещению для визуального комфорта и хорошая видимость, с анализом влияния общего освещения на визуальные задачи VDT.

Чтобы приобрести копию RP-24, обратитесь в IES по телефону (212) 248-5000.

Национальное бюро освещения (NLB) NLB — это информационная служба, созданная Национальными производителями электрооборудования. Ассоциация (NEMA). Его цель — повысить осведомленность и оценить преимущества хорошее освещение.NLB продвигает все аспекты управления энергопотреблением освещения, начиная от производительность к световому потоку. Ежегодно НББ публикует статьи в различных периодических изданиях и путеводители, написанные для непрофессионала. В этих статьях обсуждаются конкретные конструкции систем освещения, методы эксплуатации, технического обслуживания и системные компоненты.

Следующие публикации являются основными ссылками, дающими обзор предмета и включают приложения для освещения.

  • Офисное освещение и производительность
  • Прибыль от модернизации освещения
  • Максимально эффективное использование освещения Доллар
  • Решение головоломки проблем просмотра VDT
  • Руководство NLB по промышленному освещению
  • Руководство NLB по управлению освещением в розничной торговле
  • Руководство NLB по энергоэффективным системам освещения
  • Освещение для безопасности
  • Проведение аудита системы освещения
  • Освещение и возможности человека

Чтобы запросить каталог или заказать публикации, позвоните в NLB по телефону (202) 457-8437.

Руководство NEMA по средствам управления освещением, Национальные производители электрооборудования Ассоциация, 1992.

В этом руководстве представлен обзор следующих стратегий управления освещением: включение / выключение, занятость. распознавание, планирование, настройка, сбор дневного света, компенсация износа просвета и контроль спроса. Кроме того, в нем обсуждаются параметры оборудования и приложения для каждого элемента управления. стратегия.

Для заказа звоните в NLB по телефону (202) 457-8437.


Национальная информационная программа по осветительной продукции (NLPIP)

Эта программа публикует объективную информацию о продуктах для модернизации освещения и является спонсируется четырьмя организациями: Green Lights EPA, Исследовательским центром освещения, New Управление энергетических исследований и разработок штата Йорк и Энергетическая компания северных штатов. Доступны два типа публикаций (Specifier Reports и Lighting Answers.

). Чтобы приобрести эти публикации, отправьте запрос по факсу в Исследовательский центр освещения, Политехнический институт Ренсселера: (518) 276-2999 (факс).

Отчеты спецификаций В каждом отчете спецификатора рассматривается конкретная технология обновления освещения. Отчеты спецификатора предоставить справочную информацию о технологии и результаты независимых тестов производительности брендовых продуктов для модернизации освещения. Отчеты NineSpecifier опубликованы по состоянию на июль. 1994.
  • Электронные балласты, декабрь 1991 г.
  • Редукторы мощности, март 1992 г.
  • Зеркальные отражатели, июль 1992 г.
  • Датчики присутствия, октябрь 1992 г.
  • Светильники для парковок, январь 1993 г.
  • Компактные люминесцентные лампы с винтовыми цоколями, апрель 1993 г.
  • Катодно-разъединяющий балласт, июнь 1993 г.
  • Exit Sign Technologies, январь 1994 г.
  • Электронные балласты, май 1994 г.

В отчетах-спецификациях, которые будут опубликованы в 1994 г., будут рассмотрены пять тем: знаки выхода, электронные балласты, элементы управления дневным светом, компактные люминесцентные лампы и заменители для лампы накаливания с отражателем.HID-системы для освещения торговых дисплеев также будут исследованы в 1994.

Световые ответы

Ответы на освещение содержат информативный текст об эксплуатационных характеристиках конкретных технологии освещения, но не включают результаты сравнительных испытаний производительности. Освещение Ответы, опубликованные в 1993 году, касались флуоресцентных систем T8 и поляризационных панелей для люминесцентные светильники. Дополнительные ответы на вопросы освещения, запланированные к публикации в 1994 году, будут охватывать рабочее освещение и HID затемнение.Другие обсуждаемые темы — электронный балласт. электромагнитные помехи (EMI) и системы освещения 2’x4 ‘.

Периодические издания Energy User News, Chilton Publications, публикуется ежемесячно.

В этом ежемесячном издании рассматриваются многие аспекты энергетической отрасли. Каждое издание содержит раздел, посвященный освещению, обычно содержащий тематическое исследование и как минимум одну статью, посвященную осветительный продукт или проблема. Некоторые выпуски Energy User News содержат руководства по продуктам, которые Таблицы по конкретным технологиям, в которых перечислены участвующие производители (с номерами телефонов) и атрибуты своей продукции.В сентябрьском выпуске 1993 года главным элементом было освещение, а содержала следующую информацию.

  • несколько статей по освещению и анонсы продуктов
  • специальный отчет о планировании модернизации освещения и качестве электроэнергии
  • Технологический отчет по вольфрамово-галогеновым лампам
  • Комментарий к успешной модернизации датчика присутствия людей
  • руководства по КЛЛ, галогенам, HID, отражателям, ЭПРА

Чтобы заказать выпуски, звоните (215) 964-4028.

Управление освещением и техническое обслуживание, НАЛМКО, публикуется ежемесячно .

В этой ежемесячной публикации рассматриваются проблемы и технологии, непосредственно связанные с обновлением и обслуживание систем коммерческого и промышленного освещения. Ниже приведены некоторые темы рассматриваются в Управление освещением и техническое обслуживание: светотехническая промышленность, законодательство, новые продуктов и приложений, утилизации отходов, геодезии и управления освещением.

Чтобы заказать подписку, позвоните в НАЛМКО по телефону (609) 799-5501.

Другие публикации EPA Green Lights

Помимо Руководства по обновлению освещения, EPA публикует другие документы, которые доступны бесплатно. оплаты в Центре обслуживания клиентов Green Lights. Кроме того, новая факсимильная линия EPA система позволяет пользователям запрашивать и получать маркетинговую и техническую информацию Green Lights в течение нескольких минут по телефону (202) 233-9659.

Обновление зеленого света Этот ежемесячный информационный бюллетень является основным средством информирования участников Green Lights (и другие заинтересованные стороны) о последних обновлениях программы. Информационный бюллетень за каждый месяц обращается к осветительным технологиям, приложениям, тематическим исследованиям и специальным мероприятиям. Каждый выпуск содержит последний график семинаров по модернизации освещения и копию формы отчетности используется участниками для отчета о завершенных проектах для EPA.

Чтобы получить бесплатную подписку на обновление, обратитесь в службу поддержки клиентов Green Lights по адресу (202) 775-6650 или факс (202) 775-6680.

Power Pages

Power Pages — это короткие публикации, посвященные технологиям освещения, приложениям и конкретным вопросы или проблемы по программе Green Lights. Анонсы Power Pages ищите в информационный бюллетень обновления.

Эти документы доступны через факсимильную линию Green Lights. Для запроса доставки факса звоните по факсу (202) 233-9659. Периодически звоните по факсу, чтобы получить последнюю информация от Green Lights. Если у вас нет факсимильного аппарата, обратитесь в Green Lights. Служба поддержки клиентов по телефону (202) 775-6650.

Легкие трусы

EPA публикует 2-страничные краткие обзоры по различным вопросам реализации. Эти публикации предназначен для ознакомления с техническими и финансовыми проблемами, влияющими на решения по обновлению.Четыре Light Briefs фокусируются на технологиях: датчики присутствия, электронные балласты, зеркальные отражения. отражатели и эффективные люминесцентные лампы. Другие выпуски охватывают скользящие стратегии финансирования, варианты финансирования, измерение рентабельности модернизации освещения и удаление отходов. Текущие копии были разосланы всем участникам Green Lights.

За дополнительной информацией обращайтесь в службу поддержки Green Lights по телефону (202). 775-6650 или по факсу (202) 775-6680.

Брошюра Green Lights

EPA выпустило четырехцветную брошюру для продвижения программы Green Lights. В нем излагаются цели и обязательства программы, описывая при этом то, что делают некоторые из участников. Этот документ является важным инструментом для любой маркетинговой презентации Green Lights.

Чтобы заказать копии брошюры, свяжитесь со службой поддержки клиентов Green Lights по телефону (202). 775-6650 или факс (202) 775-6680

Вернуться к содержанию




A, B, C, D, E, F, G, H, I, L, M, N, O, P, Q, R, S, T, U, V, W, Z
AMPERE : стандартная единица измерения электрического тока, равная одному кулону в секунду.Он определяет количество электронов, проходящих мимо заданной точки в цепи во время конкретный период. Amp — это аббревиатура.

ANSI : Аббревиатура американского национального института стандартов.

ARC TUBE : Трубка, заключенная во внешнюю стеклянную оболочку HID лампы и сделанная из прозрачного кварцевый или керамический, содержащий дуговую струю.

ASHRAE : Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха

ПЕРЕГОРОДКА : Отдельный непрозрачный или полупрозрачный элемент, используемый для управления распределением света в определенных углы.

БАЛЛАСТ: Устройство для управления люминесцентными и HID лампами. Балласт обеспечивает необходимое пусковое напряжение, при этом ограничивая и регулируя ток лампы во время работы.

BALLAST CYCLING : Нежелательное состояние, при котором балласт включает и выключает лампы. (циклы) из-за перегрева термовыключателя внутри балласта. Это может быть связано с неправильные лампы, неподходящее напряжение, высокая температура окружающей среды вокруг светильника, или ранняя стадия выхода из строя балласта.

КОЭФФИЦИЕНТ БАЛЛАСТНОЙ ЭФФЕКТИВНОСТИ : Фактор балластной эффективности (BEF) — это балластный коэффициент. (см. ниже) деленное на входную мощность балласта. Чем выше BEF (в пределах того же лампово-балластного типа (тем эффективнее балласт.

БАЛЛАСТНЫЙ КОЭФФИЦИЕНТ : балластный коэффициент (BF) для конкретной комбинации лампы и балласта. представляет собой процент от номинального люменов лампы, который будет произведен комбинацией.

CANDELA: Единица силы света, описывающая интенсивность источника света в определенном направление.

РАСПРЕДЕЛЕНИЕ КАНДЕЛ : Кривая, часто в полярных координатах, иллюстрирующая изменение сила света лампы или светильника в плоскости, проходящей через световой центр.

МОЩНОСТЬ СВЕЧИ: Мера силы света источника света в определенном направлении, измеряется в канделах (см. выше).

CBM : Сокращенное обозначение ассоциации сертифицированных производителей балласта.

CEC : Сокращение от California Energy Commission.

КОЭФФИЦИЕНТ ИСПОЛЬЗОВАНИЯ : Отношение люменов от светильника, получаемого от рабочая плоскость к люменам, создаваемым только лампами. (Также называется «CU»)

ИНДЕКС ЦВЕТООТРАЖЕНИЯ (CRI): Шкала влияния источника света на цвет внешний вид объекта по сравнению с его цветным внешним видом под эталонным источником света. Выражается по шкале от 1 до 100, где 100 означает отсутствие изменения цвета. Низкий рейтинг CRI предполагает что цвета объектов будут выглядеть неестественно под этим конкретным источником света.

ЦВЕТОВАЯ ТЕМПЕРАТУРА : Цветовая температура является характеристикой внешнего вида цвета источник света, связывающий цвет с эталонным источником, нагретым до определенной температуры, измеряется термической единицей Кельвина. Измерение также можно описать как «тепло» или «прохлада» источника света. Обычно источники ниже 3200K считаются «теплыми»; пока те, что выше 4000К, считаются «крутыми» источниками.

COMPACT FLUORESCENT : небольшая люминесцентная лампа, которая часто используется как альтернатива лампы накаливания.Срок службы лампы примерно в 10 раз больше, чем у ламп накаливания, и составляет 3-4 часа. в раз эффективнее. Также называются лампами PL, Twin-Tube, CFL или BIAX.

БАЛЛАСТ ПОСТОЯННОЙ МОЩНОСТИ (CW) : Премиальный тип СКРЫТЫЙ балласта, в котором первичная и вторичная обмотки изолированы. Считается высокоэффективным балластом с высокими потерями. с отличной регулировкой мощности.

АВТОПРЕОБРАЗОВАТЕЛЬ МОЩНОСТИ КОНСТАНТА (CWA) БАЛЛАСТ : популярный тип HID балласт, в котором первичная и вторичная катушки электрически соединены.Считается соответствующий баланс между стоимостью и производительностью.

КОНТРАСТ: Отношение между яркостью объекта и его фоном.

CRI: (СМ. ИНДЕКС ЦВЕТА)

УГОЛ ОБРЕЗКИ : Угол от вертикальной оси приспособления, под которым отражатель, жалюзи или другое экранирующее устройство закрывает прямую видимость лампы. Это дополнительный угол угол экранирования.

КОМПЕНСАЦИЯ ДНЕВНОГО ОСВЕЩЕНИЯ : Система затемнения, управляемая фотоэлементом, который уменьшает мощность ламп при дневном свете. По мере увеличения дневного света интенсивность лампы уменьшается. Энергосберегающая технология, используемая в районах со значительным дневным освещением.

DIFFUSE : термин, описывающий распределение рассеянного света. Относится к рассеянию или размягчению свет.

РАССЕИВАТЕЛЬ: Полупрозрачный кусок стекла или пластика, который экранирует источник света в приспособление.Свет, проходящий через диффузор, будет перенаправлен и рассеян.

ПРЯМОЙ БЛИК : Блики, возникающие при прямом взгляде на источники света. Часто результат недостаточно экранированные источники света. (См. ОБЗОР)

DOWNLIGHT : Тип потолочного светильника, обычно полностью встраиваемый, в который попадает большая часть света. направлен вниз. Может иметь открытый отражатель и / или экранирующее устройство.

ЭФФЕКТИВНОСТЬ : показатель, используемый для сравнения светоотдачи с потреблением энергии.Эффективность измеряется в люменах на ватт. Эффективность аналогична эффективности, но выражается в разных единицы измерения. Например, если источник мощностью 100 Вт дает 9000 люмен, то эффективность составляет 90 люмен. на ватт.

ЭЛЕКТРОЛЮМИНЕСЦЕНТ: Технология источника света, используемая в знаках выхода, которая обеспечивает равномерная яркость, длительный срок службы лампы (примерно восемь лет) при очень небольшом потреблении энергия (менее одного ватта на лампу).

ЭЛЕКТРОННЫЙ БАЛЛАСТ : ПРА, в котором используются полупроводниковые компоненты для увеличения частота работы люминесцентной лампы (обычно в диапазоне 20-40 кГц.Меньший индуктивный Компоненты обеспечивают контроль тока лампы. Эффективность люминесцентной системы повышается за счет работа лампы высокой частоты.

ЭЛЕКТРОННЫЙ ДИММИНИРУЮЩИЙ БАЛЛАСТ : Электронный люминесцентный балласт с регулируемой мощностью.

EMI: Сокращенное обозначение электромагнитных помех. Высокочастотные помехи (электрические шум), вызванный электронными компонентами или люминесцентными лампами, который мешает работе электрическое оборудование.EMI измеряется в микровольтах и ​​может контролироваться фильтрами. Так как EMI может создавать помехи для устройств связи, Федеральная комиссия по связи (FCC) установил лимиты для EMI.

ЭНЕРГОСБЕРЕГАЮЩИЙ БАЛЛАСТ : Тип магнитного балласта, сконструированный таким образом, что компоненты работают эффективнее, холоднее и дольше, чем «стандартный магнитный» балласт. По законам США, стандартные магнитные балласты больше не производятся.

ЭНЕРГОСБЕРЕГАЮЩАЯ ЛАМПА : Лампа с меньшей мощностью, обычно производящая меньше люмен.

FC: (СМОТРЕТЬ ПОДВЕСКУ)

ФЛУОРЕСЦЕНТНАЯ ЛАМПА : Источник света, состоящий из трубки, заполненной аргоном, вместе с криптон или другой инертный газ. При подаче электрического тока возникающая дуга излучает ультрафиолетовое излучение. излучение, которое возбуждает люминофор внутри стенки лампы, заставляя их излучать видимый свет.

FOOTCANDLE (FC): Английская единица измерения освещенности (или уровня освещенности) на поверхность.Одна фут-свеча равна одному люмену на квадратный фут.

FOOTLAMBERT : английская единица яркости. Один футламберт равен 1 / p кандел на квадратный фут.

ЯРКОСТЬ: Достаточное влияние яркости или различий в яркости в пределах поля зрения высокий, чтобы вызвать раздражение, дискомфорт или потерю зрения.

ГАЛОГЕН: (СМ. ГАЛОГЕННАЯ ЛАМПА Вольфрама)

ГАРМОНИЧЕСКОЕ ИСКАЖЕНИЕ : Гармоника — это синусоидальная составляющая периодической волны. имеющий частоту, кратную основной частоте.Гармонические искажения от осветительное оборудование может создавать помехи другим приборам и работе электроэнергии сети. Общее гармоническое искажение (THD) обычно выражается в процентах от ток основной линии. THD для 4-футовых люминесцентных балластов обычно составляет от 20% до 40%. Для компактных люминесцентных балластов уровни THD более 50% не являются редкостью.

HID: Сокращенное обозначение разряда высокой интенсивности. Общий термин, описывающий пары ртути, металл галогенидные, натриевые источники высокого давления и (неофициально) натриевые источники света и светильники низкого давления.

HIGH-BAY: Относится к типу освещения в промышленных помещениях, где потолок составляет 20 см. футов или выше. Также описывает само приложение.

ВЫСОКАЯ МОЩНОСТЬ (HO): Лампа или балласт, предназначенный для работы при более высоких токах (800 мА) и производить больше света.

HIGH POWER FACTOR : ПРА с номинальным коэффициентом мощности 0,9 или выше, который достигается с помощью конденсатора.

НАТРИЕВАЯ ЛАМПА ВЫСОКОГО ДАВЛЕНИЯ : Газоразрядная лампа высокой интенсивности (HID), свет которой производится излучением паров натрия (и ртути).

HOT RESTART или HOT RESTRIKE : Явление повторного зажигания дуги в HID-свете. источник после кратковременного отключения питания. Горячий перезапуск происходит, когда дуговая трубка остыла. достаточное количество.

IESNA: Сокращенное обозначение Общества инженеров по освещению Северной Америки.

ОСВЕЩЕНИЕ : фотометрический термин, который определяет количество света, падающего на поверхность или плоскость. Освещенность обычно называют уровнем освещенности. Выражается в люменах на квадратный фут. (фут-кандел) или люмен на квадратный метр (люкс).

НЕПРЯМОЙ СБЛИК : Слепящий свет от отражающей поверхности.

МГНОВЕННЫЙ ЗАПУСК : Люминесцентная схема, которая мгновенно зажигает лампу с очень высокой пусковое напряжение от балласта.Лампы мгновенного пуска имеют одноштырьковые цоколи.

КРЕСТ-КОЭФФИЦИЕНТ ТОКА ЛАМПЫ (LCCF): Пиковый ток лампы, деленный на среднеквадратичное значение. (средний) ток лампы. Производители ламп требуют <1,7 для максимального срока службы лампы. LCCF 1,414 идеальная синусоида.

КОЭФФИЦИЕНТ СТАРЕНИЯ ЛАМПЫ (LLD): Коэффициент, представляющий снижение светового потока с течением времени. Коэффициент обычно используется как множитель начального просвета. рейтинг в расчетах освещенности, который компенсирует снижение светового потока.LLD коэффициент — безразмерное значение от 0 до 1.

LAY-IN-TROFFER: Люминесцентный светильник; обычно приспособление размером 2 х 4 фута, которое устанавливается или «кладется» в специфическая потолочная сетка.

LED: Сокращенное обозначение светоизлучающего диода. Технология освещения, используемая для знаков выхода. Потребляет небольшую мощность и имеет номинальный срок службы более 80 лет.

LENS : Прозрачный или полупрозрачный материал, изменяющий характеристики направления света. проходя через это.Обычно из стекла или акрила.

КОЭФФИЦИЕНТ ПОТЕРИ СВЕТА (LLF): Факторы, которые позволяют системе освещения работать с меньшими затратами. чем начальные условия. Эти коэффициенты используются для расчета поддерживаемого уровня освещенности. LLF разделены на две категории: восстанавливаемые и невозмещаемые. Примеры: люмен лампы. износ и износ поверхности светильников.

СТОИМОСТЬ ЖИЗНИ : Общие затраты, связанные с покупкой, эксплуатацией и обслуживанием система в течение жизни этой системы.

ЗАСЛОНКА: Оптическая сборка решетчатого типа, используемая для управления распределением света от осветительного прибора. Может от пластика с мелкими ячейками до решеток из анодированного алюминия с большими ячейками, используемых в параболических люминесцентные светильники.

КОЭФФИЦИЕНТ НИЗКОЙ МОЩНОСТИ : Фактически нескорректированный коэффициент мощности балласта менее 0,9 (СМ. НПФ)

НАТРИЙ НИЗКОГО ДАВЛЕНИЯ : Газоразрядная лампа низкого давления, свет в которой излучение паров натрия.Считается монохроматическим источником света (большинство цветов отображается как серый).

ЛАМПА НИЗКОГО НАПРЯЖЕНИЯ : Лампа (обычно компактная галогенная) и хорошая цветопередача. Лампа работает от 12 В и требует использования трансформатора. Популярный лампы MR11, MR16 и PAR36.

ПЕРЕКЛЮЧАТЕЛЬ НИЗКОГО НАПРЯЖЕНИЯ : Реле (выключатель с магнитным приводом), которое позволяет локальное и дистанционное управление освещением, включая централизованные часы или компьютерное управление.

ЛЮМЕН: Единица светового потока или светового потока. Световой поток лампы — это мера светового потока. общий световой поток лампы.

LUMINAIRE : Полный осветительный прибор, состоящий из лампы или ламп, а также их частей. предназначен для распределения света, удержания ламп и подключения ламп к источнику питания. Также называется приспособление.

LUMINAIRE EFFICIENCY : Отношение общей световой отдачи светильника к световому потоку. мощность ламп, выраженная в процентах.Например, если два светильника используют один и тот же лампы, больше света будет испускаться из светильника с более высокой эффективностью.

ЯРКОСТЬ: Фотометрический термин, который количественно определяет яркость источника света или освещенная поверхность, отражающая свет. Выражается в футламбертах (английских единицах) или канделах. за квадратный метр (метрические единицы).

ЛЮКС (LX): Метрическая единица измерения освещенности поверхности.Один люкс равен одному люмен на квадратный метр. Один люкс равен 0,093 фут-канделы.

ПОДДЕРЖИВАЕМАЯ ОСВЕЩЕННОСТЬ : Относится к уровням освещенности помещения, отличным от начального или номинального. условия. Эти термины учитывают факторы световых потерь, такие как уменьшение светового потока лампы, светильник. износ грязи и износ поверхности комнаты.

MERCURY VAPOR LAMP : Тип газоразрядной лампы высокой интенсивности (HID), в которой большая часть свет создается за счет излучения паров ртути.Излучает сине-зеленый свет. Доступны прозрачные лампы и лампы с люминофорным покрытием.

METAL HALIDE : Тип разрядной лампы высокой интенсивности (HID), в которой большая часть света образуется за счет излучения паров галогенидов металлов и ртути в дуговой трубке. Доступен в прозрачном и лампы с люминофорным покрытием.

MR-16: Низковольтная кварцевая лампа с рефлектором, всего 2 дюйма в диаметре. Обычно лампа и отражатели представляют собой единый блок, который направляет резкий и точный луч света.

NADIR : Опорное направление непосредственно под светильником или «прямо вниз» (угол 0 градусов).

NEMA: Сокращенное обозначение Национальной ассоциации производителей электрооборудования.

NIST: Сокращенное обозначение Национального института стандартов и технологий.

NPF (НОРМАЛЬНЫЙ КОЭФФИЦИЕНТ МОЩНОСТИ) : комбинация пускорегулирующего устройства / лампы, в которой отсутствуют компоненты (например, конденсаторы) были добавлены, чтобы скорректировать коэффициент мощности, сделав его нормальным (существенно низким, обычно 0.5 или 50%).

ДАТЧИК ЗАСЕДАНИЯ : Устройство управления, которое выключает свет после того, как пространство становится незанятые. Может быть ультразвукового, инфракрасного или другого типа.

ОПТИКА: Термин, относящийся к компонентам осветительной арматуры (таким как отражатели, рефракторы, линзы, жалюзи) или светоизлучающие или светорегулирующие характеристики прибора.

PAR LAMP : Лампа с параболическим алюминированным отражателем.Лампа накаливания, галогенид металла или компактный Люминесцентная лампа используется для перенаправления света от источника с помощью параболического отражателя. Светильники бывают доступны с раздачей наводнением или спотом.

PAR 36: Лампа PAR диаметром 36 1/8 дюйма параболической формы. отражатель (СМ. ПАР. ЛАМПУ).

ПАРАБОЛИЧЕСКИЙ СВЕТИЛЬНИК : популярный тип люминесцентных светильников с жалюзи алюминиевых перегородок изогнутой параболической формы.Результирующее светораспределение, производимое эта форма обеспечивает меньшее количество бликов, лучший контроль света и считается более эстетичной. обращаться.

PARACUBE : Пластиковая решетка с металлическим покрытием, состоящая из небольших квадратов. Часто используется для замены линза в установленном troffer для улучшения ее внешнего вида. Паракуб визуально комфортный, но КПД светильника снижается. Также используется в помещениях с компьютерными экранами из-за их способность уменьшать блики.

ФОТОЭЛЕМЕНТ: Светочувствительное устройство, используемое для управления светильниками и диммерами в ответ на обнаруженные уровни освещенности.

ФОТОМЕТРИЧЕСКИЙ ОТЧЕТ : Фотометрический отчет — это набор печатных данных, описывающих свет распределение, эффективность и зональный световой поток светильника. Этот отчет создан из лабораторные испытания.

КОЭФФИЦИЕНТ МОЩНОСТИ : Отношение напряжения переменного тока x ампер через устройство к мощности переменного тока устройство.Такое устройство, как балласт, которое измеряет 120 В, 1 А и 60 Вт, имеет мощность коэффициент 50% (вольт x ампер = 120 ВА, следовательно, 60 Вт / 120 ВА = 0,5). Некоторые коммунальные услуги взимают заказчики систем с низким коэффициентом мощности.

ПРЕДВАРИТЕЛЬНЫЙ НАГРЕВ : Тип схемы балласта / лампы, в которой используется отдельный стартер для нагрева люминесцентной лампы. лампа до того, как будет подано высокое напряжение для запуска лампы.

QUAD-TUBE LAMP : Компактная люминесцентная лампа с двойной двойной трубкой.

РАДИОЧАСТОТНЫЕ ПОМЕХИ (RFI): Помехи в радиодиапазоне вызвано другим высокочастотным оборудованием или устройствами в непосредственной близости. Люминесцентное освещение системы генерируют RFI.

RAPID START (RS): Самая популярная комбинация люминесцентных ламп и пускорегулирующих устройств, используемая сегодня. Этот балласт быстро и эффективно предварительно нагревает катоды лампы для запуска лампы. Использует «двухштырьковый» цоколь.

ROOM CAVITY RATIO (RCR): Соотношение размеров комнаты, используемое для количественной оценки того, как свет будет взаимодействуют с поверхностями комнаты.Коэффициент, используемый при расчетах освещенности.

ОТРАЖЕНИЕ: Отношение света, отраженного от поверхности, к свету, падающему на поверхность. Коэффициент отражения часто используется для расчета освещения. Коэффициент отражения темного ковра составляет около 20%, а чистая белая стена — примерно от 50% до 60%.

ОТРАЖАТЕЛЬ: Часть светильника, которая закрывает лампы и перенаправляет свет. испускается лампой.

РЕФРАКТОР: Устройство, используемое для перенаправления светового потока от источника, в основном путем изгиба. волны света.

УДАЛЕННЫЙ: Термин, используемый для описания дверной коробки троффера, в которой находится линза или жалюзи. над поверхностью потолка.

ПОЛОЖЕНИЕ : Способность балласта поддерживать постоянную (или почти постоянную) выходную мощность в ваттах. (светоотдача) при колебаниях напряжения питания балласта. Обычно указывается как +/- процентное изменение выпуска по сравнению с +/- процентным изменением ввода.

РЕЛЕ: Устройство, которое включает или выключает электрическую нагрузку при небольших изменениях тока или Напряжение.Примеры: реле низкого напряжения и твердотельное реле.

ПЕРЕОБОРУДОВАНИЕ : относится к модернизации приспособления, комнаты или здания путем установки новых деталей или оборудование.

САМОСВЕТИТЕЛЬНЫЙ ЗНАК ДЛЯ ВЫХОДА : Технология освещения с использованием стекла с люминофорным покрытием трубки, заполненные радиоактивным газом тритием. Знак выхода не использует электричество и, следовательно, не требует быть зашитым.

SEMI-SPECULAR: Термин, описывающий характеристики светоотражения материала.Некоторый свет отражается направленно с некоторым рассеянием.

УГОЛ ЭКРАНА : Угол, измеряемый от плоскости потолка до линии обзора, где становится видна голая лампа в светильнике. Более высокие углы экранирования уменьшают прямые блики. это дополнительный угол угла отсечки. (См. УГОЛ ОБРЕЗКИ).

КРИТЕРИЙ РАСПОЛОЖЕНИЯ : Максимальное расстояние, на котором могут быть размещены внутренние приспособления, обеспечивает равномерное освещение рабочей плоскости.Высота светильника над рабочей плоскостью умноженное на критерий расстояния, равняется расстоянию между светильником.

SPECULAR: Зеркальная или полированная поверхность. Угол отражения равен углу заболеваемость. Это слово описывает отделку материала, используемого в некоторых жалюзи и отражателях.

СТАРТЕР: Устройство, используемое с балластом для запуска предварительного нагрева люминесцентных ламп.

СТРОБОСКОПИЧЕСКИЙ ЭФФЕКТ : Состояние, при котором вращающееся оборудование или другое быстро движущееся объекты кажутся стоящими из-за переменного тока, подаваемого к источникам света.Иногда его называют «стробоскопическим эффектом».

T12 ЛАМПА : Промышленный стандарт для люминесцентных ламп толщиной 12 1/8 дюйма (1 дюйм) диаметр. Другие размеры — лампы T10 (1 дюйм) и T8 (1 дюйм).

ТАНДЕМНАЯ ПРОВОДКА : Вариант подключения, при котором пускорегулирующие устройства используются совместно двумя или более светильниками. Это снижает затраты на рабочую силу, материалы и энергию. Также называется проводкой «ведущий-ведомый».

ТЕПЛОВОЙ КОЭФФИЦИЕНТ : коэффициент, используемый в расчетах освещения, который компенсирует изменение светоотдачи люминесцентной лампы из-за изменения температуры стенки колбы.Применяется при рассматриваемая комбинация лампы и балласта отличается от используемой в фотометрической тесты.

TRIGGER START : Тип балласта, обычно используемый с прямой мощностью 15 и 20 Вт. флюоресцентные лампы.

TROFFER: Термин, используемый для обозначения встраиваемого люминесцентного светильника (комбинация корыто и сундук).

Вольфрамовая галогенная лампа : Газонаполненная лампа накаливания с вольфрамовой нитью и колба лампы из кварца, выдерживающая высокие температуры.Эта лампа содержит некоторые галогены (а именно йод, хлор, бром и фтор), которые замедляют испарение вольфрам. Также обычно называется кварцевой лампой.

ДВУХТРУБНЫЙ: (СМ. КОМПАКТНАЯ ЯРКОСТЬ)

УЛЬТРАФИОЛЕТОВЫЙ (УФ): Невидимое излучение с более короткой длиной волны и более высокой частоты, чем видимый фиолетовый свет (буквально за пределами фиолетового света).

ЛАБОРАТОРИИ БАЗОВЫХ РАБОТНИКОВ (UL): Независимая организация, чья в обязанности входит тщательное тестирование электротехнической продукции.Когда продукты проходят эти испытания, они могут быть помечены (и объявлены) как «внесенные в список UL». Испытания UL только на безопасность продукта.

ВАНДАЛОУСТОЙЧИВОСТЬ: Светильники с прочным корпусом, противоударным экраном и винты с защитой от взлома.

VCP: Сокращенное обозначение вероятности визуального комфорта. Рейтинговая система оценки прямых дискомфортные блики. Этот метод представляет собой субъективную оценку визуального комфорта, выраженную как процент жильцов помещения, которых не смущает прямой свет.VCP позволяет несколько Факторы: яркость светильника под разными углами обзора, размер светильника, размер помещения, светильник монтажная высота, освещенность и отражательная способность поверхности комнаты. Таблицы VCP часто представлены как часть фотометрических отчетов.

ОЧЕНЬ ВЫСОКАЯ МОЩНОСТЬ (VHO): Люминесцентная лампа, работающая при «очень высоком» токе. (1500 мА), что дает больший световой поток, чем лампа с «высокой мощностью» (800 мА) или стандартный выход лампа (430 мА).

VOLT: Стандартная единица измерения электрического потенциала.Он определяет «силу» или «давление» электричества.

НАПРЯЖЕНИЕ: Разница электрических потенциалов между двумя точками электрической цепи.

WALLWASHER: Описывает светильники, освещающие вертикальные поверхности.

ВАТТ (Вт) : Устройство для измерения электрической мощности. Он определяет уровень потребления энергии. электрическим устройством во время его работы. Стоимость энергии при эксплуатации электрического устройства рассчитывается как его мощность, умноженная на часы использования.В однофазных цепях это связано с вольтами. и амперы по формуле: Вольт x Ампер x PF = Ватт. (Примечание: для цепей переменного тока коэффициент мощности должен быть включены.)

РАБОЧАЯ ПЛОСКОСТЬ: Уровень, на котором выполняется работа, и на которой указывается освещенность и измеряется. Для офисных помещений это обычно горизонтальная плоскость на высоте 30 дюймов над полом. (высота стола).

ZENITH: Направление прямо над светильником (180 (угол).



Основы освещения — один из серии документов, известных под общим названием Руководство по обновлению освещения . Щелкните ниже, чтобы перейти к другим документам этой серии.

Планировка

Технический

Приложения

ЗЕЛЕНЫЙ ФОНАРЬ: яркое вложение в окружающую среду

Чтобы получить дополнительную информацию или заказать другие документы или приложения из этой серии, свяжитесь с офисом программы Green Lights по телефону: Программа «Зеленый свет»
US EPA
401 M Street, SW (6202J)
Вашингтон, округ Колумбия 20460

или позвоните по горячей линии информации о зеленых огнях по телефону (202) 775-6650, факсу (202) 775-6680.Анонсы новых публикаций можно найти в ежемесячном информационном бюллетене Green Lights & Energy Star Update .

Система факсимильной связи Energy Star телефон: 2202-233-9659


Щелкните ЗДЕСЬ, чтобы вернуться на страницу руководства по обновлению освещения.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

.

Добавить комментарий

Ваш адрес email не будет опубликован.