Медь сопротивление: Сопротивление медного провода: таблица, формула расчета сопротивления

Содержание

Сопротивление медного провода: таблица, формула расчета сопротивления

Использование меди в электротехнических устройствах обусловлено двумя факторами: хорошей проводимостью и относительной дешевизной. При проектировании или ремонте линий электропередач или электронных приборов, необходимо учитывать сопротивление медных проводов. Пренебрежение данным параметром приведет к поломке электрической системы.

Что такое сопротивление медного провода

В металлах ток образуется при появлении электрического поля. Оно «заставляет» двигаться электроны упорядоченно, в одном направлении. Электроны дальних орбит атома, слабо удерживаемые ядром, формируют ток.

Медные провода

При прохождении отрицательных частиц сквозь кристаллическую решетку молекул меди, они сталкиваются с атомами и другими электронами. Возникает препятствие или сопротивление направленному движению частиц.

Для оценки противодействия току была введена величина «электрическое сопротивление» или «электрический импеданс». Обозначается она буквой «R» или «r». Вычисляется сопротивление по формуле Георга Ома: R=, где U — разность потенциалов или напряжение, действующее на участке цепи, I — сила тока.

Понятие сопротивления

Важно! Чем выше значение импеданса металла, тем меньший ток проходит по нему, и именно медные проводники так широко распространены в электротехнике, благодаря этому свойству.

Исходя из формулы Ома, на величину тока влияет приложенное напряжение при постоянном R. Но резистентность медных проводов меняется, в зависимости от их физических характеристик и условий эксплуатации.

Что влияет на сопротивление медного провода

Электрический импеданс медного кабеля зависит от нескольких факторов:

  • Удельного сопротивления;
  • Площади сечения проволоки;
  • Длины провода;
  • Внешней температуры.

Последним пунктом можно пренебречь в условиях бытового использования кабеля. Заметное изменение импеданса происходит при температурах более 100°C.

Зависимость сопротивления

Удельное сопротивление в системе СИ обозначается буквой ρ. Оно определяется, как величина сопротивления проводника, имеющего сечение 1 м2 и длину 1 м, измеряется в Ом ∙ м2. Такая размерность неудобна в электротехнических расчетах, поэтому часто используется единица измерения Ом ∙ мм2.

Важно! Данный параметр является характеристикой вещества — меди. Он не зависит от формы или площади сечения. Чистота меди, наличие примесей, метод изготовления проволоки, температура проводника — факторы, влияющие на удельное сопротивление.

Зависимость параметра от температуры описывается следующей формулой: ρt= ρ20[1+ α(t−20°C)]. Здесь ρ20— удельное сопротивление меди при 20°C, α— эмпирически найденный коэффициент, от 0°Cдо 100°C для меди имеет значение, равное 0,004 °C-1, t — температура проводника.

Ниже приведена таблица значений ρ для разных металлов при температуре 20°C.

Таблица удельного сопротивления

Согласно таблице, медь имеет низкое удельное сопротивление, ниже только у серебра. Это обуславливает хорошую проводимость металла.

Чем толще провод, тем меньше его резистентность. Зависимость R проводника от сечения называется «обратно пропорциональной».

Важно! При увеличении поперечной площади кабеля, электронам легче проходить сквозь кристаллическую решетку. Поэтому, при увеличении нагрузки и возрастании плотности тока, следует увеличить площадь сечения.

Увеличение длины медного кабеля влечет рост его резистентности. Импеданс прямо пропорционален протяженности провода. Чем длиннее проводник, тем больше атомов встречаются на пути свободных электронов.

Выводы

Последним элементом, влияющим на резистентность меди, является температура среды. Чем она выше, тем большую амплитуду движения имеют атомы кристаллической решетки. Тем самым, они создают дополнительное препятствие для электронов, участвующих в направленном движении.

Важно! Если понизить температуру до абсолютного нуля, имеющего значение 0° Kили -273°C, то будет наблюдаться обратный эффект — явление сверхпроводимости. В этом состоянии вещество имеет нулевое сопротивление.

Температурная корреляция

Как узнать сопротивление 1 метра медного провода

После выяснения всех факторов, влияющих на резистентность медного провода, можно объединить их в формуле зависимости сопротивления от сечения проводника и узнать, как вычислить этот параметр. Математическое выражение выглядит следующим образом: R= pl/s, где:

  • ρ — удельное сопротивление;
  • l — длина проводника, при нахождении сопротивления медного проводника длиной 1 м, l = 1;
  • S— площадь поперечного сечения.

Для вычисления S, в случае провода цилиндрической формы, используется формула: S = π ∙ r2 = π d2/4 ≈ 0.785 ∙ d2, здесь:

  • r — радиус сечения провода;
  • d — его диаметр.

Если провод состоит из нескольких жил, то суммарная площадь будет равна: S = n d2/1,27, где n — количество жил.

Если проводник имеет прямоугольную форму, то S = a ∙ b, где a — ширина прямоугольника, b — длина.

Важно! Узнать диаметр сечения можно штангенциркулем. Если его нет под рукой, то намотать на любой стержень измеряемую проволоку, посчитать количество витков, желательно, чтобы их было не меньше 10 для большей точности. После этого измерить намотанную часть проводника, и разделить значение на количество витков.

Вычисление площади сечения

Как правильно рассчитать сопротивление провода по сечению

Проектируя электрическую сеть, необходимо правильно подобрать сечение кабеля, чтобы его резистентность не была высокой. Большой импеданс вызовет падение напряжения выше допустимого значения. В результате подключенное к сети электрическое устройство может не заработать. Также, провода начнут перегреваться.

Для правильного расчета минимального сечения необходимо учесть следующие факторы:

  • По стандартам ПУЭ падение напряжения не должно быть больше 5%.
  • В бытовых условиях ток проходит по двум проводам. Поэтому, при расчете величину сопротивления нужно умножить на 2.
  • Учитывать нужно мощность всех подключенных приборов на линии. Для развития предусмотреть запас по нагрузке.

Как вычислить сопротивление проводника по формуле? Для примера можно рассмотреть задачу. Требуется определить: достаточно ли будет медного кабеля сечением 2,5 мм2 и длиной 30 метров для подключения оборудования мощностью 9 кВт.

Формулы электрической цепи

Задача решается следующим образом:

  • Резистентность медного кабеля будет равна:

2 ∙ (ρ ∙ L) / S = 2 ∙ (0,0175 ∙ 30) / 2,5 = 0,42 Ом.

  • Для нахождения падения напряжения нужно определить силу тока, по формуле: I= P/U.

Здесь P — суммарная мощность оборудования, U — напряжение в цепи. Тогда сила тока будет равна: I = 9000 / 220 = 40,91 А.

  • Используя закон Ома, можно найти падение напряжения по кабелю: ΔU = I ∙ R = 40, 91 ∙ 0,42 = 17,18 В.
  • От 220 В процент падения составит: U% = (ΔU / U) ∙ 100% = (17,18 / 220) ∙ 100% = 7, 81%>5%.

Падение напряжение выходит за пределы допустимого значения, значит необходимо использовать кабель большего сечения.

Таблица сопротивления медного провода

Узнать резистентность проводника можно по таблицам. В них содержатся готовые результаты вычислений для разных кабелей.

Таблица меди на метр 1

Например, сопротивление меди на метр для различных сечений можно определить без вычислений, из соответствующей таблицы.

Таблица меди на метр 2

Важно! Таблицы не содержат данные о всех сечениях. Если нужно узнать величину импеданса для неуказанного кабеля, то находится среднее значение между двумя ближайшими известными сопротивлениями.

Таблица сечений, сопротивлений, силы тока

Расчет сопротивления кабеля является важной задачей при проектировании электрической системы. Воспользовавшись формулами или таблицами, можно успешно ее решить.

Проводимость меди и алюминия: удельная проводимость

Электрическая проводимость или электропроводность — это способность тела проводить электрический ток. Это понятие крайне важно в электротехнике: металлы, хорошо проводящие ток, используются в проводах, плохие проводники или диэлектрики — для защиты людей от электричества. Лучшим проводником является серебро, на втором месте стоит медь (она совсем немного уступает серебру), далее идут золото и алюминий.

Достоинства и недостатки медных проводов

Медь — это пластичный переходный металл. Имеет золотисто-розовый цвет, встречается в природе в виде самородков. Используется человеком с давних времен — в его честь была названа целая эпоха.

В таблице дано удельное электрическое сопротивление стали и других металлов

Сегодня медные провода часто используют в электронных устройствах. К их достоинствам относятся:

  • Высокая электропроводность (металл занимает второе место по этому показателю, уступая только серебру). По сравнению с алюминием медь эффективнее в 1,7 раза: при равном сечении медный кабель пропускает больше тока.
  • Сварку, пайку и лужение можно проводить без использования дополнительных материалов.
  • Провода обладают хорошей эластичностью и гибкостью, их можно сворачивать и сгибать без особого вреда.

 

Медь лишь немного уступает серебру

Однако до недавнего времени медные провода проигрывали алюминиевым из-за нескольких недостатков:

  • Высокая плотность: при разных размерах медный провод будет весить больше, чем алюминиевый;
  • Цена: алюминий в несколько раз дешевле;
  • Медь окисляется на открытом воздухе: впрочем, это не влияет на ее работу и легко устраняется.

Какое сопротивление меди и алюминия

Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.

Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные.

В электротехнике значение имеют 2 термина:

  • Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
  • Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.
Алюминиевые кабели востребованы не меньше медных

Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.

Какое удельное сопротивление стали

Сталь — это металлический сплав железа с углеродом и другими элементами. В ее состав входит не менее 45% железа, содержание углерода колеблется от 0,02% до 2,14%. В зависимости от точного состава сталь используется в строительстве, машиностроении и приборостроении, а также во многих областях, например, в транспорте, народном хозяйстве, при производстве бытовых приборов.

Стальные провода отличаются невысокой проводимостью

Проводимость стали составляет всего 7,7 миллионов См/м, удельное сопротивление — 0,13 мкОм/м, то есть оно довольно высоко. Сталь плохо проводит электричество и не применяется при производстве непосредственно кабелей. Однако нередко можно встретить внешнюю оцинкованную стальную оплетку, которая защищает провода от механического растяжения. Такая защита нужна, если кабель проходит под дорогой или на нестабильном грунте, если есть риск резко дернуть провод.

Также из стали делают ПНСВ — провод нагревательный со стальной жилой, имеющий изоляцию из винила. Его размещают внутри конструкции до заливания бетона и используют в дальнейшем для электрообогрева готового блока. Электричество кабель практически не проводит.

Из стали производят провод ПНСВ

Сравнение проводимости разных видов стали

Характеристики стали зависят от ее состава и температуры:

  • Для углеродистых сплавов сопротивление довольно низкое: оно составляет 0,13-0,2 мкОм/м. Чем выше температура, тем больше значение;
  • Низколегированные сплавы имеют более высокое сопротивление — 0,2-0,43 мкОм/м;
  • Высоколегированные стали отличаются высоким сопротивлением — 0,3-0,86 мкОм/м;
  • Благодаря высокому содержанию хрома сопротивление хромистых нержавеющих сплавов равняется 0,5-0,6 мкОм/м;
  • Хромоникелевые аустенитные стали являются нержавеющими и благодаря никелю имеют высокую сопротивляемость — 0,7-0,9 мкОм/м.
Из стали часто делают оцинкованную оплетку

Медь стоит на втором месте по степени электропроводимости: она отлично пропускает электрический ток и повсеместно используется при изготовлении проводов. Не реже применяют и алюминий: он слабее меди, но дешевле и легче.

Удельное сопротивление меди, таблица

Использование проводников из чистой меди и медных сплавов востребовано в различных отраслях промышленности. Материал имеет низкое удельное сопротивление, по данному параметру выделяется среди ряда других металлов. При организации протяженных кабельных трасс удельное сопротивление необходимо учитывать, так как потери на выходе могут быть значительными при передаче напряжения на большое расстояние.

Почему низкое удельное сопротивление – основная причина применения меди

С точки зрения физики, удельное сопротивление меди и других материалов показывает способность вещества препятствовать прохождению электрического тока, уровень потерь на единицу длины проводника. По сравнению с другими металлами, медь обладает низким удельным сопротивлением в 0,017, по данному показателю уступает только серебру. Благодаря подобным характеристикам медь является востребованным на рынке проводником:

  • низкое удельное сопротивление гарантирует минимальный уровень потерь при прохождении электрического тока;
  • внешние климатические нагрузки не оказывают значительного воздействия на технические характеристики металла;
  • расчет сечения кабеля выполнить намного проще за счет минимальных потерь между входом и выходом;
  • низкое сопротивление позволяет использовать для прокладки силовых, контрольных, специальных кабелей более тонкие проводники.

Стандартный медный провод поставляется в нескольких вариантах исполнения, отличается содержанием примесей, толщиной, характеристиками. При этом сопротивление меди может незначительно изменяться в зависимости от внешних условий.

Как рассчитать и от чего зависит сопротивление меди

Использование медного кабеля недостаточной толщины ведет к перегреву проводки, выходу оборудования из строя. При выборе излишне толстых проводов увеличиваются затраты. Поэтому важно знать сопротивление меди. Получить данную информацию можно несколькими способами:

  • наиболее простой вариант – получить подобную информацию из приведенной ниже таблицы. Для большинства случаев такой способ является рабочим, позволяет получить данные для проводников в стандартных условиях измерения;
  • более сложный вариант – расчет сопротивления меди по формуле. Для получения точных значений необходимо длину и сечение провода. Исходя их входных данных можно рассчитать сопротивление проводника;
  • еще один способ достаточно трудоемкий, предполагает использование специального прибора. С помощью омметра проводится измерение электрического сопротивления проводника с помощью подачи постоянного напряжения.

В зависимости от текущих условий измерения удельное сопротивление меди может меняться. При наличии льда в изоляции, непроводящего ток, сопротивление проводника увеличивается. Также параметры напрямую зависят от типа кабеля. Стандартные значения удельного сопротивления приведены в таблице:

Марка Медь О2 P Способ получения, основные примеси
М00к 99.98 0.01 Продукт электролитического рафинирования, заключительная стадия переработки медной руды.
М0к 99.97 0.015 0.001
М1к 99.95 0.02 0.002
М2к 99.93 0.03 0.002
М00 99.99 0.001 0.0003 Переплавка катодов в вакууме, инертной или восстановительной атмосфере. Уменьшает содержание кислорода.
М0 99.97 0.001 0.002
М1 99.95 0.003 0.002
М00 99.96 0.03 0.0005 Переплавка катодов в обычной атмосфере. Повышенное содержание кислорода. Отсутствие фосфора
М0 99.93 0.04
М1 99.9 0.05
М2 99.7 0.07 Переплавка лома. Повышенное содержание кислорода, фосфора нет
М3 99.5 0.08
М1ф 99.9 0.012 — 0.04 Переплавка катодов и лома меди с раскислением фосфором. Уменьшает содержание кислорода, но приводит к повышенному содержанию фосфора
М1р 99.9 0.01 0.002 — 0.01
М2р 99.7 0.01 0.005 — 0.06
М3р 99.5 0.01 0.005 — 0.06

МЕДЬ и МЕДНЫЙ ПРОКАТ

Новости / МЕДЬ и МЕДНЫЙ ПРОКАТ

МЕДЬ и МЕДНЫЙ ПРОКАТ

Марки меди и их химический состав  определен в ГОСТ 859-2001. Сокращенная информация о марках меди приведена ниже (указано минимальное содержание меди и предельное содержание только двух примесей – кислорода и фосфора):

Марка Медь О2 P Способ получения, основные примеси
М00к 99.98 0.01 Медные катоды:продукт электролитического  рафинирования, заключительная стадия переработки медной руды.
М0к 99.97 0.015 0.001
М1к 99.95 0.02 0.002
М2к 99.93 0.03 0.002
М00 99.99 0.001 0.0003 Переплавка катодов в вакууме, инертной или восстановительной атмосфере.Уменьшает содержание кислорода.
М0 99.97 0.001 0.002
М1 99.95 0.003 0.002
М00 99.96 0.03 0.0005 Переплавка катодов в обычной атмосфере.Повышенное содержание кислорода. Отсутствие фосфора
М0 99.93 0.04
М1 99.9 0.05
М2 99.7 0.07 Переплавка  лома.Повышенное содержание кислорода, фосфора нет
М3 99.5 0.08
М1ф 99.9 0.012 — 0.04 Переплавка катодов и лома медис раскислением фосфором.Уменьшает содержание кислорода, но приводит к повышенному содержанию фосфора
М1р 99.9 0.01 0.002 — 0.01
М2р 99.7 0.01 0.005 — 0.06
М3р 99.5 0.01 0.005 — 0.06

Первая группа марок относится к катодной меди, остальные — отражают химический состав различных медных полуфабрикатов (медные слитки, катанка и изделия из неё, прокат).

Специфические особенности меди, присущие разным маркам, определяются не  содержанием меди (различия составляют не более 0.5%), а содержанием конкретных примесей (их количество может различаться в 10 – 50 раз). Часто используют классификацию марок меди по содержанию кислорода:

—  бескислородная медь (М00 , М0 и М1 ) с содержанием кислорода до 0.001%.

—  рафинированная медь (М1ф, М1р, М2р, М3р) с содержанием кислорода до 0.01%,   но с повышенным содержанием фосфора.

— медь высокой чистоты (М00, М0, М1) с содержанием кислорода 0.03-0.05%.

— медь общего назначения (М2, М3) с содержанием кислорода до 0.08%.

Примерное соответствие марок меди, выпускаемой по разным стандартам, приведено ниже:

ГОСТ EN, DIN
М00 Cu-OFE
М0 Cu-PHC, OF-Cu
М1 Cu-OF, Cu-OF1
М1 Cu-ETP, Cu-ETP1,Cu-FRTP, Cu-FRHC,

SE-Cu, E-Cu, E Cu57, E Cu58

М1ф Cu-DHP, SF-Cu
М1р Cu-DLP, SW-Cu

Разные марки меди имеют  различное применение, а отличия в условиях их производства определяют существенные различия в цене.

Для производства кабельно-проводниковой продукции катоды переплавляют по технологии, которая исключает насыщение меди кислородом при изготовлении продукции. Поэтому медь в таких изделиях соответствует маркам  М00, М0 , М1 .

Требованиям большинства технических задач удовлетворяют относительно дешевые марки М2 и М3. Это определяет массовое производство основных видов медного проката из М2 и М3.

Прокат из марок М1, М1ф, М1р, М2р, М3р производится в основном для конкретных потребителей и стоит намного дороже.

Физические свойства меди

Главное свойство меди, которое определяет её преимущественное использование – очень высокая электропроводность (или низкое удельное электросопротивление). Такие примеси как фосфор, железо, мышьяк, сурьма, олово, существенно ухудшают её электропроводность. На величину электропроводности существенное влияние оказывает способ получения полуфабриката и его механическое состояние. Это иллюстрируется приведенной ниже таблицей:

Удельное электрическое сопротивление меди для различных полуфабрикатов разных марок (гарантированные значения) при 20оС.

мкОм*м Марка Вид  и  состояние  полуфабриката ГОСТ, ТУ
0.01707 М00 Слитки (непрерывное вертикальное литье)
М00 Катанка кл.А ( кислород0.02-0.035%) 193-79
0.01718 М0 Катанка кл.В (кислород: 0.045%) ТУ 1844 01003292517-2004
0.01724 М1 Катанка кл.С (кислород: 0.05%)
М1 Слитки (горизонтальное литье) 193-79
М1 Слитки (горизонтальное литье)
0.01748 М1 Ленты 1173-2006
М1 Прутки отожженные 1535-2006
0.01790 М1 Прутки полутвердые, твердые, прессованные

Различия в сопротивлении катанки марок М00, М0 и М1, обусловлены разным количеством примесей и составляют около 1%. В то же время различия в сопротивлении, обусловленные разным механическим состоянием, достигают 2 – 3%. Удельное сопротивление изделий из меди марки М2 примерно 0.020 мкОм*м.

Второе важнейшее свойство меди — очень высокая теплопроводность.

Примеси и легирующие добавки уменьшают электро- и теплопроводность меди, поэтому сплавы на медной основе значительно уступают меди по этим показателям. Значения параметров основных физических свойств меди в сравнении с другими металлами приведены в таблице (данные приведены в двух разных системах единиц измерения):

Показатели

 

Единица

измерения

 Медь Алю-

миний

Латунь

Л63, ЛС

Бронза

БрАЖ

Сталь 12Х18Н10
Удельное

элетросопротивление,

мкОм*м 0.0172 –

0.0179

0.027-

0.030

0.065 0.123     0.725
 

Теплопроводность,

кал/см*с*град 0.93 0.52 0.25 0.14     0.035
Вт/м*град 386 — 390 217 106 59 15

По электро — и теплопроводности медь незначительно уступает только серебру.

Влияние примесей  и  особенности  свойств  меди  различных  марок 

Отличия в свойствах меди разных марок связаны с влиянием примесей на базовые свойства меди.   О влиянии примесей на физические свойства (тепло- и электропроводность) говорилось выше. Рассмотрим их влияние на другие группы свойств.

Влияние на механические свойства.

Железо, кислород, висмут, свинец, сурьма ухудшают пластичность. Примеси, малорастворимые в меди (свинец, висмут, кислород, сера), приводят к хрупкости при высоких температурах.

Температура рекристаллизации меди для разных марок составляет  150- 240о С. Чем больше примесей, тем выше эта температура. Существенное увеличение температуры рекристаллизации меди дает серебро, цирконий. Например введение 0.05% Ag увеличивает температуру рекристаллизации вдвое, что проявляется в увеличении температуры размягчения и уменьшении ползучести при высоких температурах, причем без потери тепло- и электропроводности.

Влияние на технологические свойства.

К технологическим свойствам относятся:

1) способность к обработке давлением при низких и высоких температурах,

2) Паяемость и свариваемость изделий.

Примеси, особенно легкоплавкие,  формируют зоны хрупкости при высоких температурах, что затрудняет горячую обработку давлением.  Однако уровень примесей в марках М1 и М2 обеспечивают необходимую технологическую пластичность.

При холодном деформировании влияние примесей заметно проявляется при производстве проволоки. При одинаковом пределе прочности на разрыв ( ?в =16 кгс/мм2 ) катанки из марок М00, М0 и М1 имеют разное относительное удлинение ? (38%, 35% и 30% соответственно). Поэтому катанка класса А (ей соответствует марка М00) более технологична при производстве проволоки, особенно малых диаметров. Использование бескислородной меди для производства проводников тока обусловлено не столько величиной электропроводности, сколько технологическим фактором.

Процессы сварки и пайки существенно затрудняются при  увеличении  содержания кислорода, а также свинца и висмута.

Влияние кислорода и водорода на эксплуатационные свойства.

При обычных условиях эксплуатационные  свойства меди (прежде всего долговечность эксплуатации) практически одинаковы для разных марок. В то же время при высоких температурах  может проявиться вредное влияние кислорода, содержащегося в меди. Эта возможность обычно реализуется при нагреве меди в среде, содержащей водород.

Кислород изначально содержится в меди марок  М0, М1, М2, М3. Кроме этого, если бескислородную медь отжечь на воздухе при высоких температурах, то вследствие диффузии кислорода поверхностный слой изделия станет кислородсодержащим.   Кислород в меди присутствует в виде закиси меди,  которая локализуется по границам зерен.

Кроме кислорода в меди может присутствовать водород. Водород попадает в медь в процессе электролиза или при отжиге в атмосфере, содержащей водяной пар. Водяной пар всегда присутствует в воздухе. При высокой температуре он разлагается с образованием водорода, который легко диффундирует в медь.

В бескислородной меди атомы водорода располагаются в междоузлиях кристаллической решетки и особо не сказываются на свойствах металла.

В кислородсодержащей меди при высоких температурах водород   взаимодействует с закисью меди. При этом  в толще меди образуется водяной пар  высокого давления, что приводит к вздутиям, разрывам и трещинам.      Это явление известно как «водородная болезнь» или «водородное охрупчивание». Оно проявляется при эксплуатации медного изделия при температурах свыше 200о С в атмосфере, содержащей водород или водяной пар.

Степень охрупчивания  тем сильнее, чем больше содержание кислорода в меди и  выше температура эксплуатации. При 200о С  срок службы составляет  1.5 года, при 400о С — 70 часов.

Особенно сильно оно проявляется в изделиях малой толщины (трубки, ленты).

При нагреве в вакууме изначально содержащийся в меди водород взаимодействует с закисью меди и также ведет к охрупчиванию изделия и ухудшению вакуума. Поэтому изделия, которые эксплуатируются при высокой температуре,  производятся из бескислородных (рафинированных) марок меди М1р, М2р, М3р.

Механические свойства медного  проката

Большая часть медного проката, поступающего в свободную продажу, производится из марки М2. Прокат из марки М1 производится в основном под заказ, кроме того он примерно на 20% дороже.

Холоднодеформированный прокат – это тянутые (прутки, проволока, трубы) и холоднокатаные (листы, лента, фольга) изделия. Он   выпускается в твердом, полутвердом и мягком (отожженном) состояниях. Такой прокат маркируется буквой «Д», а состояния поставки буквами Т, П или М.

Горячедеформированный прокат – результат прессования (прутки, трубы) или горячей прокатки (листы, плиты) при температурах выше температуры рекристаллизации. Такой прокат маркируется буквой «Г». По механическим свойствам горячедеформированный прокат близок (но не идентичен) к холоднодеформированному прокату в мягком состоянии.

Параметры при комнатной темп. М Т
Модуль упругости E, кгс/мм2 11000 13000
Модуль сдвига Gкгс/мм2 4000 4900
Предел текучести ?0.2 , кгс/мм2 5 — 10 25 — 34
Предел прочности ?в кгс/мм2 19 – 27 31 – 42
Относ. удлинение ?  40 – 52 2 — 11
Твердость НВ 40 — 45 70 — 110
Сопротивление срезу, кгс/мм2 10 — 15 18 — 21
Ударная вязкость, 16 — 18
Обрабатываем. резанием, % к Л63-3 18
Предел усталости ?-1 при 100 млн циклов 7 12

Высокий предел прочности на сжатие (55 — 65 кгс/мм2) в сочетании с высокой пластичностью определяет широкое использование меди  в качестве прокладок в уплотнениях неподвижных соединений с температурой эксплуатации до 250оС  (давление 35  Кгс\см2  для пара и 100 Кгс\см2  для воды).

Медь широко используется в технике низких температур, вплоть до гелиевых. При низких температурах она сохраняет показатели прочности, пластичности и вязкости, характерные для комнатной температуры. Наиболее часто используемое свойство меди в криогенной технике – её высокая теплопроводность. При криогенных температурах теплопроводность марок М1 и М2 становится существенной, поэтому в криогенной технике применение марки М1 становится принципиальным.

Медные прутки выпускаются прессованными (20 – 180 мм) и холоднодеформированными,  в твердом, полутвердом и мягком состояниях (диаметр 3 — 50 мм)  по ГОСТ 1535-2006.

Плоский медный прокат общего назначения выпускается в виде фольги, ленты, листов и плит по ГОСТ 1173-2006:

Фольга медная – холоднокатаная: 0.05 – 0.1 мм (выпускается только в твердом состоянии)

Ленты медные  — холоднокатаные: 0.1 – 6 мм.

Листы медные —  холоднокатаные: 0.2 – 12 мм

— горячекатаные:    3 – 25 мм (механич. свойства регламентируются до 12 мм)

Плиты медные – горячекатаные:   свыше 25 мм (механические свойства не регламентируются)

Горячекатаные и мягкие холоднокатаные медные листы и ленты выдерживают испытание на  изгиб  вокруг оправки диаметром равным толщине листа. При толщине до 5 мм они выдерживают изгиб до соприкосновения сторон, а при толщине 6 – 12 мм — до параллельности сторон. Холоднокатанные полутвердые листы и ленты выдерживают испытание на изгиб на 90 град.

Таким образом допустимый радиус  изгиба медных листов и лент равен толщине листа (ленты).

Глубина выдавливания лент и листов пуансоном радиусом 10 мм составляет не менее 7 мм для листов толщиной 0.1-0.14 мм и не менее 10 мм для листов толщиной 1-1.5 мм. По этому показателю (выдавливаемость) медь уступает латуням Л63 и Л68.

Медные трубы общего назначения изготавливаются  холоднодеформированными (в мягком, полутвердом и твердом состояниях) и прессованными (больших сечений) по ГОСТ 617-2006.

Медные трубы используются не только  для технологических жидкостей, но и для питьевой воды. Медь инертна по отношению к хлору и озону, которые используются для очистки воды, ингибирует рост бактерий, при замерзании воды медные трубы деформируются без разрыва.  Медные трубы  для воды производятся по ГОСТ Р 52318-2005, для них ограничено содержание органических веществ на внутренней поверхности. Минимальные радиусы изгиба и допустимые давления для мягких медных труб приведены ниже:

Размер трубы, мм Допустимое

давление, бар

Радиус изгиба, мм Размер трубы Допустимое

давление, бар

Дюймы (мм)
6*1 230 30 1/4” (6.35*0.8) 220
8*1 163 35
10*1 130 40 3/8” (9.52*0.8) 120
12*1 105 45 1/2” (12.7*0.8) 100
14*1 90 52
16*1 80 60 5/8” (15, 87*1) 80
18*1 67 70 3/4” (19,05*1) 67
20*1 60 75
22*1 54 80 7/8” (22.22*1) 54

Коррозионные свойства меди.

При нормальных температурах медь устойчива в следующих средах:

— сухой воздух

— пресная вода (аммиак, сероводород, хлориды, кислоты ускоряют коррозию)

— в морской воде при небольших скоростях движения воды

— в неокислительных кислотах и растворах солей (в отсутствии кислорода)

— щелочные растворы (кроме аммиака и солей аммония)

— сухие газы-галогены

— органические кислоты, спирты, фенольные смолы

Медь неустойчива в следующих средах:

— аммиак, хлористый аммоний

— окислительные минеральные кислоты и растворы кислых солей

Коррозионные свойства меди в некоторых средах заметно ухудшаются с увеличением количества примесей.

Контактная коррозия.

Допускается контакт меди  с медными сплавами, свинцом, оловом во влажной атмосфере, пресной и морской воде. В то же время не допускается контакт с алюминием, цинком вследствие их быстрого разрушения.

Свариваемость меди

Высокая тепло- и электропроводность меди затрудняют её электросварку (точечную и роликовую). Особенно это касается массивных изделий. Тонкие детали можно сварить вольфрамовыми электродами. Детали толщиной более 2-х мм можно сваривать нейтральным ацетилено-кислородным пламенем. Надежный способ соединения медных изделий – пайка мягкими и твердыми припоями.

Медные сплавы 

Техническая медь имеет низкую прочность и износоустойчивость, плохие литейные и антифрикционные свойства.  Этих недостатков лишены сплавы на медной основе — латуни и бронзы. Правда эти улучшения достигаются  за счет ухудшения тепло- и электропроводности.

Имеются особые случаи, когда нужно сохранить высокую электро- или теплопроводность меди, но придать ей жаропрочность или износоустойчивость.

При нагревании меди выше температуры  рекристаллизации происходит резкое снижение предела текучести и твердости.  Это затрудняет использование меди в электродах для контактной сварки. Поэтому, для этой цели используют специальные медные сплавы с  хромом, цирконием, никелем, кадмием (БрХ, БрХЦр, БрКН, БрКд). Электродные сплавы сохраняют  относительно высокую твердость и удовлетворительную электро- и теплопроводность  при температурах сварочного процесса (порядка 600 С ).

Жаропрочность  достигается также легированием серебром. Такие сплавы (МС) имеют меньшую ползучесть при неизменной электро- и теплопроводности.

Для использования в подвижных контактах (коллекторные пластины, контактный провод) применяют медь с небольшим уровнем легирования магнием или кадмием БрКд, БрМг. Они имеют повышенную износоустойчивость при высокой электропроводности.

Для кристаллизаторов используют медь с добавками железа или олова. Такие сплавы имеют высокую теплопроводность при повышенной износоустойчивости.

Низколегированные марки меди по сути являются бронзами, но часто их относят к группе медного проката с соответствующей маркировкой (МС, МК, МЖ).

Поделиться ссылкой:

  • Рекомендуем
  • Комментарии

IP65 степень герметичности оборудования

  IP-рейтинг (Ingress Protection Rating, входная защита) — система классификации степеней защиты оболочки электрооборудования от проникновения твёрдых предметов и воды в соответствии с международным стандартом IEC 60529 (DIN 40050, ГОСТ 14254-96). К примеру, радиоуправление для крана F21-E1B имеет класс герметизации IP-65. Первая цифра означ…

Перевод крана на управление с пола

Перевод крана на управление с пола. При осуществлении перевода мостовых или козловых кранов, на дистанционное управление с пола могут быть применены кабельные пульты управления либо беспородные пульты управления грузоподъемными кранами. Полный перечень операций и систем контроля крановой кабины, должны соответствовать функционалу пульта, согласно РД 24.09…

Троллейный шинопровод HFP

Троллейный шинопровод HFP Описание — Контактно – защищенный троллейный шинопровод HFP H предназначен для внутренней и внешней установки. — Шинопроводы состоят из жесткого ПВХ корпуса и медных токопроводящих жил. Конструкция корпуса шинопровода и токосъемника исключают возможность перепутывания фаз. — Токосъемники выполнены в виде скользящей, холо…

Презентация завода Uting Telecontrol

Презентация завода Uting Telecontrol Видео презентация завода радиотехнических изделий Uting Telecontrol. Один из крупнейших производителей промышленного радиоуправления, пультов для кранов и прочих грузоподъемных механизмов. https://www.youtube.com/watch?v=hQiPE9z7E6Y…

Расчет тока электродвигателя

Расчет тока электродвигателя Расчет номинального тока трехфазного асинхронного электродвигателя Для корректного выбора системы электрификации подъемно – транспортного механизма будь то троллейный шинопровод или кабельный подвод, необходимо знать номинальный ток электрической установки. Ниже приведена форма расчета трехфазного асинхронного электродви…

Медно-никелевые провода. Достоинства и технология производства

Медно-никелевые термостойкие провода были созданы в результате научного исследования, ставящего цель получить проводник с очень высокой электропроводимостью из доступных металлов и с не сложной технологией производства.

Технология производства

Для получения сверхпроводника на медный провод в вакууме по всему периметру наносят токопроводящий слой, состоящий из сплава никеля и меди, с диффузией в поверхностный слой проволоки-основы. Снаружи наносится защитный слой металла. После чего полученный провод проходит отжиг в вакууме в течение 30 — 180 мин при 850-950oС. Для создания медно-никелевого провода применяется чистые (99,99) медь и никель.

Эффект повышенной проводимости образуется  в состоящем из двух металлов слое сплава, который представляет собой тонкостенную токопроводящую трубку-прослойку. Благодаря диффузионному взаимодействию слоев металла, примыкающих к трубке прослойке с обеих сторон, поверхность получается почти идеальной.

Нанесение слоев провода происходит в вакуумном оборудовании для исключения окисления проводящего слоя. Следовательно длина зависит от возможностей вакуумного оборудования.

Чертеж медно-никелевого проводника.

1 – медная или никелевая проволока основа

2 – токопроводящий слой из сплава меди и никеля. Толщина слоя делается достаточной для обеспечения неразрывности слоя

3 – защитный слой. Толщина выбирается достаточной для обеспечения защиты от механических воздействий

Расчет удельного сопротивления медно-никелевого провода

Высокая электропроводимость у меди и алюминия, а также  у золота и серебра. В других металлах электропроводность существенно ниже.

Таблица удельного электрического сопротивления металлов

Металл

ρ, Ом·мм²/м

Серебро

0,015…0,0162

Медь

0,01724…0,018

Золото

0,023

Алюминий

0,0262…0,0295

Иридий

0,0474

Молибден

0,054

Вольфрам

0,053…0,055

Цинк

0,059

Никель

0,087

Железо

0,098

Платина

0,107

Олово

0,12

Свинец

0,217…0,227

Титан

0,5562…0,7837

Висмут

1,2

 

Удельное сопротивление данных металлов для нужд современной электротехники является очень высоким, для развития техники необходимо получение проводников с электропроводностью в десятки раз больше.

Электрическое сопротивление медно-никелевого проводника зависит от чистоты меди и никеля, входящих в его состав.

Если медь и никель чистые (от 99,99 и выше), то электрическое сопротивление медно-никелевого провода снижается в 14 раз.

В интервале значений чистоты материалов от 99,99 и выше электрическое сопротивление Электрическое сопротивление медно-никелевого проводника расчитывается по формуле:

ρ= ρo exp(-α(R)V),

где ρ – сопротивление проводника мкОм*м,

ρoудельное сопротивление меди 0,017241 мкОм*м

α (R) — физическая константа, которая зависит от квалитета поверхности, на которую наносится сплав.Если проволока-основа обработана  по 14 классу чистоты α (R) =1,65*102;

V — содержание в материале примесей в %, от 0,01 и ниже.

Проводник с поверхностью подготовленной по 14 классу обработки, с диаметром основы в 1,0 мм и толщине нанесенного в вакууме токопроводящего слоя (50% меди и никеля) глубиной 10-6 мм рт. ст. и толщине защитного слоя глубиной 10-6 мм рт. ст., 10 мкм, с чистотой материалов 99,99, имеет сопротивление

 ρ =0,00123 мкОм,

Это в 14 раз ниже сопротивления проводника из меди.

Достоинства медно-никелевой проволоки

  • Высокая электропроводимость
  • Любой диаметр проволоки
  • Дешевизна материалов
  • Провод любой длины

 

таблица и другие способы его определения

Автор Aluarius На чтение 5 мин. Просмотров 727 Опубликовано

Когда производится расчет сечения кабеля, то в частном домостроении или в квартирах для определения этой величины используются два показателя: потребляемая мощность сети и сила тока, проходящая по разводке. Сопротивление в данном случае роли не играет. Все дело в небольшой длине проводов. А вот если длина линии электропередач достаточно большая, то без определения данного показателя здесь не обойтись. К примеру, на начале участка напряжение будет 220-2240 вольт, а на конце уже заниженное 200-220 вольт. А так как все чаще в проводке используются медные кабели и провода, то наша задача в этой статье рассмотреть сопротивление медного провода (таблица сопротивления проводов будет ниже приложена).

Что нам дает сопротивление в общем? В принципе, с его помощью можно узнать параметры используемого провода или материал, из которого он изготовлен. К примеру, если для прокладки линии электропередачи использовался скрытый способ, то зная сопротивление линии, можно точно сказать, какой она длины. Ведь часто прокладка производится под землей и непрямолинейным способом. Или еще один вариант, зная длину участка и его сопротивление можно подсчитать диаметр используемого кабеля, а через него и его сечение. Плюс, зная данную величину, можно узнать материал, из которого этот провод был изготовлен. Это все говорит о том, что не стоит сбрасывать со счетов данный показатель.

Все это касалось электрической проводки, но когда дело касается электроники, то в этой области без определения сопротивления и сопоставления его с другими параметрами не обойтись. В некоторых случаях данный параметр может сыграть решающую роль, даже неправильный подбор провода по сопротивлению может привести к тому, что подключаемый к такому проводнику прибор просто не будет работать. К примеру, если к блоку питания обычного компьютера подключить очень тонкий провод. Напряжение в таком проводнике станет низким, не намного, но этого будет хватать, чтобы компьютер работал некорректно.

От чего зависит сопротивление

Так как мы говорим о медном проводе, то первое от чего зависит этот физический параметр, это медь, то есть, сырьевой материал. Второе – это размеры проводника, а, точнее, его диаметр или сечение (обе величины связаны между собой формулой).

Конечно, есть дополнительные физические величины, которые влияют на сопротивление проводника. К примеру, температура окружающей среды. Ведь известно, что при повышении температуры самого провода, его сопротивление увеличивается. А так как этот показатель находится в обратной зависимости от силы (плотность) тока, соответственно ток при повышении сопротивления, наоборот, снижается. Правда, это относится к тем металлам, которые являются обладателями положительного температурного коэффициента. Для примера можно привести сплав вольфрама, который используется для нити накала лампочки. Такому материалу изменения силы (плотность) тока не страшны при высоком нагреве, потому что этот металл обладает отрицательным температурным коэффициентом.

Расчет сопротивления

Сегодня все сделано для человека. И даже такой простой расчет можно сделать несколькими способами. Есть простые, есть сложные. Начнем с простых.

Первый вариант табличный. В чем его простота? К примеру, таблица на нижнем рисунке.

Здесь все четко показано и взаимосвязано. Зная определенные размеры медного провода, можно определить его сопротивление и силу тока, которую провод может выдержать. Или, наоборот, имея в наличие показатели сопротивления или силы (плотность) тока, которые, кстати, можно определить мультиметром, можно легко определить сечение или диаметр проводника. Данный вариант самый удобный, таблицы можно найти в свободном доступе в интернете.

Второй способ определения – с помощью калькулятора (онлайн). Таких интернетовских приспособлений великое множество, работать с ними удобно и легко. Можно в такой калькулятор вставлять физические величины медного проводника и получать размерные показатели, или, наоборот. Правда, основная масса таких калькуляторов в своей программе имеет одно стандартное значение – это удельное сопротивление меди, равное 0,0172 Ом·мм²/м.

И самый сложный вариант расчета – это провести его своими руками, используя формулу. Вот она: R=pl/S, где:

  • р – это то самое удельное сопротивление меди;
  • l – длина медного провода;
  • S – его сечение.

Хотелось бы отметить, что медь обладает одним из самых низких удельных сопротивлений. Ниже него только серебро – 0,016.

Определить сечение проводника можно через формулу, где основным параметром является его диаметр. А вот определить диаметр можно разными способами, кстати, такая статья на нашем сайте есть, можете прочитать и получить полную и достоверную информацию.

Заключение о теме

Подводим итог всему вышесказанному. Конечно, никто не будет учитывать сопротивление электрической разводки медным кабелем в доме или квартире. Но если дело касается прокладки воздушных или подземных линий электропередач, к примеру, от подстанции до дачного участка, то данный показатель придется учитывать обязательно. Ведь именно он повлияет на качество напряжения в сети дома. А вот рассчитать параметры укладываемых кабелей можно будет разными способами, где показатель сопротивления медного провода (таблица приложена) является одним из основных.

Бактериальная устойчивость к меди в процессе становления в течение тысяч лет

Низкотемпературная электронная микрофотография кластера бактерий E. coli. Каждая отдельная бактерия имеет продолговатую форму. Фото Эрика Эрбе, цифровая раскраска Кристофера Пули.

Использование меди в организме человека еще в бронзовом веке сформировало эволюцию бактерий, что привело к появлению насекомых, которые обладают высокой устойчивостью к антибактериальным свойствам металла.

Медь в больших количествах токсична для людей и большинства живых клеток.Но наша иммунная система использует медь для защиты от бактерий, от которых мы можем заболеть.

Чем больше меди в окружающей среде, тем больше бактерий, в том числе E. coli , вырабатывают генетическую устойчивость. И это может представлять повышенный риск заражения людей, сказал Джейсон Слот, руководивший новым исследованием устойчивости к меди и доцент кафедры патологии растений в Университете штата Огайо.

Сегодня медь широко используется, в том числе в кормах для животных и в производстве больничного оборудования — области, которые могут быть особенно благоприятными для бактерий, развивающих еще большую устойчивость, сказал Слот.

Под давлением «медного стресса» бактерии обменивали ДНК, что позволило некоторым пережить угрозу, сказал Слот, специализирующийся на эволюционной геномике грибов. И на протяжении веков гены, которые приводят к устойчивости к меди, соединились, создав особенно сильного противника для тяжелого металла, который ученые кластера называют «островом гомеостаза меди и серебра» или CHASRI.

Слот и его коллеги создали молекулярные часы, используя образцы бактерий, собранные с течением времени, и эволюционный анализ, чтобы проследить историю сопротивления меди.Команда изучила изменения в бактериях и сравнила их с использованием меди человеком. Их работа предполагает, что у бактерий повторялись эпизоды генетической диверсификации, которые, по-видимому, соответствуют пикам производства меди.

Исследование опубликовано в журнале Genome Biology and Evolution .

Слот, биолог-эволюционист, впервые заинтересовался резистентностью к меди, когда узнал, что вовлеченные гены не развиваются так, как ожидали бы ученые.

«Это могло возникнуть в то время, когда люди начали использовать много меди — в бронзовом веке», — сказал Слот. Он и его сотрудники предполагают, что изначальное сопротивление могло возникнуть в молоке, сброженном в сосуде из медного сплава, или в кишечнике животного в среде с высоким содержанием меди.

С тех пор человеческое использование меди, вероятно, способствовало появлению бактерий с более сильной броней против нее. Например, «Около 2000 лет назад римляне закачивали в окружающую среду тонну медной пыли», — сказал Слот.Ледяные керны из Гренландии подтвердили эту теорию, показав вероятные высокие выбросы меди в то время.

Сегодня медь широко используется в промышленности, в том числе в сельском хозяйстве, где металл добавляют в корм для откорма животных. По словам Слот, в последние годы наблюдается тенденция к более широкому использованию меди в медицинских учреждениях из-за ее антибактериальных свойств.

«Вы побуждаете бактерии в окружающей среде разработать механизм, который уклоняется от вашей иммунной системы», — сказал Слот.

«Я думаю, что злоупотребление чем-либо — плохая идея, но людям действительно сложно не злоупотреблять тем немногим оружием, которое у нас есть».


Медь уничтожает MRSA одним прикосновением
Предоставлено Государственный университет Огайо

Ссылка : Бактериальная устойчивость к меди в процессе создания на протяжении тысяч лет (2016, 16 марта) получено 26 декабря 2020 с https: // физ.org / news / 2016-03-бактериальная-устойчивость-медь-тысячи-лет.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, нет часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

Повышенная износостойкость с использованием медно-вольфрамовых электродов

Повышенная износостойкость

Электроэрозионная обработка карбидов — дело непростое.Буквально. Определение правильного набора параметров для успешной работы может потребовать времени, внимания и тщательной настройки. И если у вас нет прекрасных рабочих отношений со службой поддержки поставщика оборудования, вам не повезет, особенно если вы работаете на время. Поэтому мы подумали, что упростим задачу. В этой серии блогов, посвященных электродным материалам для электроэрозионной обработки, мы обсудим 5 способов улучшения процессов электроэрозионной обработки карбидов с помощью медно-вольфрамового электрода.

Что такое износостойкость?

Теперь всем известно, что EDMing Carbides идет медленно, и поэтому скорость износа может быть ужасной.Поэтому очень важно знать износостойкость материала электродов. Прежде чем обсуждать износостойкость медно-вольфрамового сплава, давайте сначала определим, как мы измеряем износ. Определение износостойкости в первую очередь означает измерение износа торца и углов.

  • Конечный износ — это количество материала, выгоревшего от нижней части материала на глубину электрода до полости.
  • Угловой износ — это мера потери длины 90-градусного внешнего угла электрода до соответствующего внутреннего угла.Вместе эти измерения определяют, насколько успешно материал будет работать на протяжении всего срока использования.

Какие свойства меди и вольфрама повышают износостойкость?

Поскольку EDM представляет собой термический процесс, чем выше температура плавления материала, тем лучше он может выдерживать высокие температуры процесса. При температуре 6191 ° F вольфрам имеет самую высокую температуру плавления среди всех металлов и, как таковой, обеспечивает поистине непревзойденное тепловое сопротивление. В конечном итоге это приводит к лучшему износу углов.Для применений, где необходимы острые углы и детализированные полости, состав можно отрегулировать, включив в него больше вольфрама для улучшения характеристик. (Но имейте в виду, что меньшее количество меди означает меньшую скорость резки.) Структурная целостность меди делает ее очень устойчивой к возникновению дуги постоянного тока в плохих условиях промывки, где она все еще может обеспечивать очень тонкую поверхность. Для более плавного горения и улучшения качества поверхности в состав материала может входить больше меди.

Комбинация теплового сопротивления вольфрама с сопротивлением меди дуговому разряду постоянного тока позволяет получить электрод, который может удерживать острые углы и помогает предотвратить точечную коррозию карбидов EDMing.Используя медно-вольфрамовый электрод для электроэрозионной обработки карбидов, вы можете обеспечить эффективность производства и экономию средств за счет улучшенного отношения износа электрода к материалу заготовки.

Для получения дополнительной информации о медно-вольфрамовых заготовках для электроэрозионных станков загрузите нашу бесплатную техническую документацию!

Свойства медного провода Размер шкалы Сопротивление Ток AWG

Представленные здесь значения являются стандартами, доступными для многих независимых публикаций, но в конечном итоге все они происходят от системы American Wire Gauge (AWG) (также известной как Калибр Брауна и Шарпа).Он существует с середины 1800-х годов в США и Канада. Размеры относятся к большинству прочных цилиндрических стержней независимо от материала — медь, алюминий, пластик, углеродное волокно и др.

Обратите внимание, что при увеличении калибра проволоки диаметр проволоки уменьшается. Хотя это может показаться несколько отсталым, на то есть веская причина. Первоначально это было связано к количеству раз, когда проволоку нужно было протянуть через фильеру для извлечения, чтобы добиться окончательного размера проволоки.

По определению, диаметр 36 AWG составляет 0,0050 дюйма, а диаметр 0000 (четырехгранник) — 0,4600. дюймов в диаметре. Соотношение этих диаметров составляет 92, а существует 40 типоразмеров. от # 36 до # 0000, или 39 шагов. При использовании этого соотношения диаметры проволоки меняются геометрически. по следующей формуле: Диаметр провода 36 AWG составляет:

Соответственно, ASTM B 258-02 Стандарт определяет соотношение между последовательными размерами как корень 39-й степени из 92, или приблизительно 1.1229322.

Обозначение скрутки a / b означает количество проволок калибра b. Например, 7/44 означает 7 нитей. из одножильного провода 44 AWG.

Примечание: изменение мощности всего на 3 дБ означает удвоение (или уменьшение вдвое) мощности, изменение 3 размера проводов представляют собой примерно удвоение (или уменьшение вдвое) площади поперечного сечения.

См. Таблицу преобразования калибра провода внизу страницы. Значения даны при 25 ° C и являются исходя из идеальных параметров чистой меди.

Круглый мил — это площадь поперечного сечения круга диаметром 1 мил. (1/000 дюйма).

40 0,003145 0,07988 9,888 0,0299 0,0445 1049 3442 0,09
39 0,003531 0,08969 12,47 0.0377 0,0562 832 2729 0,11
38 0,003965 0,1007 15,72 0,0476 0,0708 660 2164 0,13
37 0,004453 0,1131 19,83 0,0600 0.0893 523 1716 0,17
36 0,005000 0,1270 25,00 0,0757 0,113 415 1361 0,21
35 0,005614 0,1426 31,52 0,0954 0,142 329 1079 0.27
34 0,006304 0,1601 39,75 0,120 0,179 261 856 0,33
33 0,007080 0,1798 50,13 0,152 0,226 207 679 0,43
32 0.007950 0,2019 63,21 0,191 0,285 164 538 0,53
31 0,007950 0,2268 79,70 0,241 0,359 130 427 0,7
30 0,01003 0,2548 100.5 0,304 0,453 103 339 0,86
29 0,01126 0,2860 126,7 0,384 0,571 81,8 268 1,2
28 0,01246 0,3211 159,8 0,484 0.720 64,8 213 1,4
27 0,01419 0,3604 201,5 0,610 0,908 51,5 169 1,7
26 0,01594 0,4049 254,1 0,769 1,14 40,8 134 2.2
25 0,01790 0,4547 320,4 0,970 1,44 32,4 106 2,7
24 0,02010 0,5105 404,0 1,22 1,82 25,7 84,2 3,5
23 0.02257 0,5733 509,5 1,54 2,29 20,4 66,8 4,7
22 0,02535 0,6439 642,4 1,95 2,89 16,1 53,0 7
21 0,02846 0,7229 810.1 2,45 3,65 12,8 42,0 9
20 0,03196 0,8118 1022 3,09 4,60 10,2 33,3 11
19 0,03589 0,9116 1288 3,90 5.80 8,05 26,4 14
18 0,0403 1.024 1624 4,92 7,32 6,39 20,9 16
17 0,04526 1,150 2048 6,20 9,23 5,06 16.6 19
16 0,05082 1,291 2583 7,82 11,6 4,02 13,2 22
15 0,05707 1,450 3257 9,86 14,7 3,18 10,4 28
14 0.06408 1,628 4107 12,4 18,5 2,53 8,28 32
13 0,07196 1,828 5178 15,7 23,3 2,00 6,57 35
12 0,08081 2,053 6530 19.8 29,4 1,59 5,21 41
11 0,09074 2.305 8234 24,9 37,1 1,26 4,13 47
10 0,1019 2,588 10380 31,4 46,8 0.999 3,28 55
9 0,1144 2,906 13090 39,6 59,0 0,792 2,60 64
8 0,1285 3,264 16510 50,0 74,4 0,628 2,06 73
7 0.1443 3,665 20820 63,0 93,8 0,498 1,63 89
6 0,1620 4,115 26250 79,5 118 0,395 1,30 101
5 0,1819 4,620 33100 100 149 0.313 1.03 118
4 0,2043 5,189 41740 126 188 0,249 0,815 135
3 0,2294 5,827 52640 159 237 0,197 0,646 158
2 0.2576 6.543 66370 201 299 0,156 0,512 181
1 0,2893 7,348 83690 253 377 0,124 0,407 211
0 0,3249 8,252 105500 320 475 0.098 0,323 328
00 0,3648 9,266 133100 403 599 0,078 0,256 283
000 0,4096 10,40 167800 508 756 0,062 0,203 245
0000 0.4600 11,68 211600 641 953 0,049 0,161

Преобразование калибра проволоки в диаметр в дюймах

Все единицы указаны в дюймах

7/0 0,6513 0,490 0,500 0,5000
6/0 0,5800 0.460 0,464 0,4688
5/0 0,5165 0,430 0,432 0,4375
4/0 0,4600 0,3938 0,400 0,454 0,4063
3/0 0,4096 0,3625 0.372 0,425 0,3750
2/0 0,3648 0,3310 0,348 0,380 0,3438
1/0 0,3249 0,3065 0,324 0,340 0,3125
1 0,2893 0,2830 0,300 0.300 0,2813
2 0,2576 0,2625 0,276 0,284 0,2656
3 0,2294 0,2437 0,252 0,259 0,2391
4 0,2043 0,2253 0,232 0,238 0.2242
5 0,1819 0,2070 0,212 0,220 0,2092
6 0,1620 0,1920 0,192 0,203 0,1943
7 0,1443 0,1770 0,176 0,180 0,1793
8 0.1285 0,1620 0,160 0,165 0,1644
9 0,1144 0,1483 0,144 0,148 0,1495
10 0,1019 0,1350 0,128 0,134 0,1345
11 0,0907 0.1205 0,116 0,120 0,1196
12 0,0808 0,1055 0,104 0,109 0,1046
13 0,0719 0,0915 0,092 0,095 0,0897
14 0,0641 0,0800 0.080 0,083 0,0747
15 0,0571 0,0720 0,072 0,072 0,0673
16 0,0508 0,0625 0,064 0,065 0,0598
17 0,04526 0,054 0,056 0.058 0,0538
18 0,04030 0,0475 0,048 0,049 0,0478
19 0,03589 0,0410 0,040 0,042 0,0418
20 0,03196 0,0348 0,036 0,035 0.0359
21 0,02846 0,03175 0,032 0,032 0,0329
22 0,02535 0,0286 0,028 0,028 0,0299
23 0,02257 0,0258 0,024 0,025 0,0269
24 0.02010 0,0230 0,022 0,022 0,0239
25 0,01790 0,0204 0,020 0,020 0,0209
26 0,01594 0,0181 0,018 0,018 0,0179
27 0,01420 0.0173 0,0164 0,016 0,0164
28 0,01264 0,0162 0,0148 0,014 0,0149
29 0,01126 0,0150 0,0136 0,013 0,0135
30 0,0103 0,014 0.0124 0,012 0,0120
31 0,00893 0,0132 0,0116 0,010 0,0109
32 0,00795 0,0128 0,0108 0,009 0,0102
33 0,00708 0,0118 0,0100 0.008 0,0094
34 0,00630 0,0104 0,0092 0,007 0,0086
35 0,00561 0,0095 0,0084 0,005 0,0078
36 0,00500 0,0090 0,0076 0,004 0.0070
37 0,00445 0,0085 0,0068
38 0,00396 0,0080 0,0060
39 0,00353 0,0075 0,0052
40 0.00314 0,007 0,0048
41 0,00279 0,0066 0,0044
42 0,00249 0,0062 0,0040
43 0,00221 0,0060 0.0036
44 0,00198 0,0058 0,0032
45 0,00176 0,0055 0,0028
46 0,00157 0,0052 0,0024
47 0.00140 0,0050 0,0016
48 0,00124 0,0048 0,0012
49 0,00111 0,0046 0,0010
50 0,00099 0,0044
51 0.00088
52 0,00078
53 0,00070
54 0,00060
55 0.00050
56 0,00040
  • AWG = американский калибр проводов (Brown & Sharpe)
  • W & M = Washburn & Moen (калибр стальной проволоки)
  • SWG = калибр проволоки имперского стандарта
  • BWG = Birmingham or Stubs Wire Gauge
  • Стандарт США = Стандарт США (пересмотренный)

Перевести текст на русский язык.Проводники — это материалы с низким сопротивлением, поэтому через них легко проходит ток

Проводники — это материалы с низким сопротивлением, поэтому ток легко проходит через них. Чем ниже сопротивление материала, тем больше тока может пройти через него.

Наиболее распространенными проводниками являются металлы. Лучшие из них — серебро и медь. Преимущество меди в том, что она намного дешевле серебра. Таким образом, медь широко используется для производства проводов.Одна из общих функций проводников — подключение источника напряжения к сопротивлению нагрузки. Поскольку проводники из медной проволоки имеют очень низкое сопротивление, в них создается минимальное падение напряжения. Таким образом, все приложенное напряжение может создавать ток в сопротивлении нагрузки.

Следует учитывать, что большинство материалов меняют значение сопротивления при изменении температуры.

Металлы повышают свое сопротивление при повышении температуры, тогда как углерод снижает свое сопротивление при повышении температуры.Таким образом, металлы имеют положительный температурный коэффициент сопротивления, а углерод — отрицательный температурный коэффициент. Чем меньше температурный коэффициент или чем меньше изменение сопротивления при изменении температуры, тем совершеннее материал сопротивления.

Материалы с очень высоким сопротивлением называются изоляторами. Ток через изоляторы проходит с большим трудом.

Наиболее распространены изоляторы воздушные, бумажные, резиновые, пластмассовые.

Любой изолятор может проводить ток, если к нему приложено достаточно высокое напряжение.К изоляторам необходимо приложить токи большой силы, чтобы они стали проводящими. Чем выше сопротивление изолятора, тем больше должно быть приложенное напряжение.

Когда изолятор подключен к источнику напряжения, он накапливает электрический заряд, и на изоляторе создается потенциал. Таким образом, изоляторы выполняют две основные функции:

для изоляции проводящих проводов и, таким образом, для предотвращения короткого замыкания между ними и

для хранения электрического заряда при подаче напряжения.

1. Найдите ответы на эти вопросы в тексте выше:

1. Какие материалы называются проводниками?



2. В чем преимущество меди перед серебром?

3. Какая наиболее распространенная функция проводников?

4. Почему в медных проводниках возникает минимальное падение напряжения?

5. Какая связь между значением сопротивления и температурой углерода?

6.Какие материалы называют изоляторами?

7. Какие изоляторы самые распространенные?

8. Каковы две основные функции изоляторов?

2. Дополните предложения правильным вариантом:

1. Изоляторы — это материалы, имеющие а) низкое сопротивление.

б) высокое сопротивление.

2. Ток легко проходит по проводникам а).

б) с большим трудом.

3. Медь и серебро — а) общие проводники.

б) изоляторы общие.

4. Воздух, бумага и пластмассы — это а) обычные изоляторы.

б) общие жилы.

5. При подаче высокого напряжения. а) не проводит ток

изолятор б) он проводит ток.

6. Изоляторы используются а) для накопления электрического заряда.

б) для снижения напряжения.

c) для предотвращения короткого замыкания между проводками

провода

8.

Добавить комментарий

Ваш адрес email не будет опубликован.