На схеме вольтметр: На какой схеме вольтметр, которым нужно измерить напряжение на проводнике R, включен

Содержание

На какой схеме вольтметр, которым нужно измерить напряжение на проводнике R, включен

относительная влажность воздуха 80%. чему равно отношение давления содержащегося в воздухе водяного пара к давлению насыщенного водяного пара при той … же температуре​

Резиновая лодка движется с постоянной скоростью, равной 4,7 м/с (данная скорость указана относительно течения реки), и направляется перпендикулярно к … течению реки. Скорость течения реки — 2,3 м/с. Найди значение скорости по модулю, с которой резиновая лодка плывёт относительно берега.   Ответ (округли до сотых):  м/с. ​

Моторная лодка, двигаясь, держит курс перпендикулярно к течению реки, обладая скоростью 32,5 км/ч, переплывает реку шириной 1,5 км. Скорость течения р … еки — 7 км/ч. В ответе напиши перемещение моторной лодки от начала движения.   Ответ (ответ и промежуточные вычисление округли до сотых): ​

Скорость движения шлюпки вверх по реке относительно стоящих домов — 28,4 км/ч, а по течению реки — 33,8 км/ч.

Найди модуль значения скорости, с которо … й движется по озеру шлюпка относительно стоящих домов.   ​

решите срочно плиз!!​

Величина скорости движения реки 0,6 м/с,а байдарка в состоянии перемещаться,достигая скорости 2,8 м/с относительно воды.Определи время,требующееся бай … дарке,что бы переместиться на 1220 м вверх по течению реки​

Для плавления металлической детали массой 250 г, взятой при температуре плавления, потребовалось 30 кДж тепла. Определите удельную теплоту плавления э … того вещества. Ответ запишите в кДж/кг, округлив до целого​

смачивание это притяжение или отталкивание?несмачиваемость это притяжение или отталкивание ?​

«14 октября 2012 года австрийский парашютист Феликс Баумгартнер преодолел звуковой барьер и два других мировых рекорда во время прыжка с края космоса. … И теперь вы можете испытать это на себе. …Свободное падение Баумгартнера в герметичном костюме с высоты 39 км в стратосфере над Нью-Мексико, США, позволило ему достичь скорости 1357,64 км/ч, прежде чем он раскрыл свой парашют после 4 минут 19 секунд свободного падения.

…Австриец стал первым человеком, преодолевшим звуковой барьер без включения двигателя во время подвига, а также побил рекорды по максимальному полету на воздушном шаре и прыжкам на большую высоту». Какую скорость развил бы Феликс Баумгартнер перед раскрытием парашюта, если пренебречь сопротивлением воздуха и зависимостью ускорения свободного падения от высоты? Ускорение свободного падения примите равным 9,8 м/с2.

Определи, сколько нужно сжечь древесного угля, чтобы выделилось 564,3•108 Дж энергии. Удельная теплота сгорания древесного угля равна 29,7 МДж/кг.

Вольтметры — Включение — Схема

Вычислите относительную погрешность показаний вольтметра, включенного по схеме, приведенной на рис. 11, которая получается, если предположить, что вольтметр имеет бесконечно большое сопротивление и не вносит искажений в измеряемую цепь. Классифицируйте погрешность измерения для этой задачи.  
[c.44]

Ремонт стартера. Если есть сомнения в эффективности работы стартера, необходимо проверить его на стенде с включением по схеме согласно рис. 161. При проверке используются хорошо заряженная аккумуляторная батарея, вольтметр постоянного тока со шкалой 0—30 В, амперметр с шунтом до 100 А, тахометр и динамометр. Температура стартера должна быть 25 3 °С, а щетки хорошо притерты к коллектору.  [c.223]


Измерения величины изменения индукции ДВу производятся с помощью амплитудного вольтметра У , включенного на измерительную обмотку через интегратор. К амплитудному вольтметру в описываемой схеме предъявляются высокие требования, связанные с тем, что при небольшой средней величине измеряемых э. д. с. пики нанряжения в обмотке образца могут быть в десятки раз большими по сравнению со средней их величиной. Поэтому усилитель вольтметра должен обладать большой широкополосностью.  
[c.289]

Принципиальная схема такого прибора приведена на рис. 97. Он представляет собой ползунковый реостат сопротивлением 100— 200 ом (ток 1 — 0,75 а), включенный по схеме потенциометра, с подвижного контакта которого снимается требуемое напряжение, контролируемое вольтметром.[c.127]

Рис. 2.2.4. Зависимость показаний вольтметра термоанемометра от скорости потока при включении по схеме с постоянной температурой датчика
Проволочный датчик термоанемометра закреплялся на координатнике и устанавливался в рабочей части так, что продольная ось датчика совпадала с осью трубы. После включения электрической схемы термоанемометра и балансировки измерительного канала вольтметром постоянного тока было измерено начальное напряжение 11о=3 в.  
[c.147]

Через выпрямитель усиленного электродренажа, включенный между трубопроводом и рельсом, при малом вторичном напряжении трансформатора могут течь блуждающие токи от трубопровода к рельсу, если отрицательное напряжение трубопровод — рельс больше первоначального напряжения холостого хода этого выпрямителя. Такое состояние обнаруживается по отклонению вольтметра защитной установки в противоположную сторону, причем через установку может протекать очень большой ток. Перегрузка установки в таком случае предотвращается соответствующей автоматической схемой. Реле максимального тока вызывает срабатывание другого реле, которое разъединяет выходную цепь тока трубопровод — защитная установка — рельс и при необходимости обеспечивает прямое соединение трубопровод — рельс. При помощи настраиваемого часового механизма разъединительное реле включается снова. В итоге станция продолжает работать. Число произошедших отключений указывается на счетчике. Это позволяет контролировать работу станции и дает представление о частоте отключений и тем самым о неполадках в работе электрифицированной железной дороги.  

[c.227]


НИИ 4 автоматического ключа реверсивного двигателя 5 для выключения двигателя при поступлении на вход одновибратора полезного сигнала или помех реле времени 6 для включения звукового или светового сигнала 7 импульсного вольтметра 12 для измерения напряжения сигналов до ограничения и после него, что позволяет правильно настроить сигнализирующее устройство по коэффициенту оптического отражения поверхности образца в начале испытания.
Кроме того, в электрическую схему устройства входят каскад питания устройства сигнализации 8, лампа накаливания 9 со стабилизатором 10, реверсивный двигатель поискового механизма 11 и каскад питания поискового механизма 13. Отраженный поверхностью вращающегося образца свет  [c.186]

Так как при сборке приборов используется недостаточно стабилизированный манганин, то в процессе работы показания приборов могут измениться. Особое значение это имеет в тех случаях, когда применяемое в приборе манганиновое сопротивление, включенное в последовательной схеме, велико по сравнению с общим сопротивлением прибора. В некоторых вольтметрах, где общее сопротивление прибора равно 3255 ом, сопротивление манганина 3250 ом, нестабильность вольтметров больше на 30 нестабильности аналогичной конструкции амперметров.  [c.105]

Вольтамперные характеристики фотоэлемента 364 Вольтметры — Включение — Схема 373 Вольтодобавочные машины — Определение 378  
[c. 535]

Электрическая схема включения котла (рис. 18,а) имеет автоматический выключатель, служащий для защиты от перегрузок и коротких замыканий контактор для коммутации цепи подключения электродного котла трансформаторы тока и амперметры, предназначенные для контроля токов нагрузки электродного котла вольтметры для контроля напряжения питания.  [c.89]

Измерение тока и напряжения. Схемы непосредственного включения и через измерительные трансформаторы тока и напряжения. Амперметры и вольтметры различных систем.  [c.326]

С изменением диаметра обрабатываемой детали происходит перемещение измерительного штока 1, а следовательно, поворот рычага с заслонкой, перекрывающей щель в диафрагме и изменяющей интенсивность альфа-излучения, что регистрируется счетчиком Гейгера, включенным в электрическую схему датчика (фиг. 207). Интенсивность излучения пропорциональна напряжению на нагрузочном сопротивлении 1, измеряемым катодным вольтметром, работающим яа двойном триоде 6Н8, между катодами которого включен микроамперметр 2 и реле 3.

Микроамперметр 2 служит для настройки датчика и визуального наблюдения за изменением диаметра обрабатываемой детали. При достижении ею требуемого размера срабатывает реле 5, включающее сигнальную лампочку 4 и подающее команду на останов станка.  [c.207]

Для проверки регулятора напряжения необходимо иметь следующие приборы вольтметр постоянного тока со щкалой до 20—30 б и ценой деления 0,1— 0,2 в амперметр постоянного тока со щкалой до 30 а (шкала двусторонняя с нулевым делением посредине) и ценой деления I а. Схема включения приборов для проверки регулятора напряжения приведена на рис. 167.  [c.252]

Приборы и приспособления контрольный стенд или (при отсутствии стенда) тиски амперметр с шунтом вольтметр тахометр. Электрическая схема включения стартера для проверки приведена на рис. 171.  

[c.257]

На рис. 31 показана схема включения приборов и вспомогательных устройств при общей проверке и регулировке установки. Вольтметр постоянного тока Fi со шкалой О—3 в служит для контроля сигнального напряжения на входе блока управления. Амперметр Ai со шкалой О—1 а необходим для измерения тока в цепи  [c.81]


Проверяя цепь для определения места обрыва, следует помнить, что у многих кранов часть цепи работает на переменном токе, а часть — на постоянном (например, цепь реле КЗ на рис. 184). При проверке цепи постоянного тока зажимы вольтметра (лампы) подключают к источнику постоянного тока, а при проверке цепи переменного тока — к фазе переменного тока. Во время работы следует обязательно пользоваться электрическими схемами, так как ошибочное включение лампы в фазу переменного тока при проверке цепи, работающей на постоянном токе, может привести к повреждению выпрямительных устройств.  
[c.539]

Проверка и регулировка дополнительного реле. Схема соединений при проверке дополнительного реле приведена на рис. 28. После замыкания цепи включателем 9 плавно повышают напряжение реостатом 8, пока не загорится лампа 7, показывая, что контакты реле замкнулись. В этот момент вольтметр показывает напряжение включения реле. Затем реостатом плавно понижают напряжение до того момента, когда лампочка погаснет, свидетельствуя о размыкании контактов. При этом показание вольтметра соответствует напряжению выключения реле. Результаты проверки должны соответствовать значениям, указанным в табл. 9.  [c.59]

Калориметр выполнен с двойными стенками, между которыми циркулирует охлаждающая вода. Значительный расход воды обеспечивает постоянство температуры внутренней поверхности калориметра, которая является тепловоспринимающей. Внутренний диаметр калориметра значительно больше диаметра проволоки. Поверхность проволоки не только излучает энергию, но и участвует в процессах конвективной теплоотдачи и теплопроводности. Однако после вакуумирования при остаточном давлении воздуха внутри калориметра порядка 10 мм рт. ст. передача теплоты путем конвекции и теплопроводности становится пренебрежимо малой, и проволока передает теплоту станкам калориметра только излучением. Тепловой поток определяется по падению напряжения на измерительном участке и силе тока в нем. Падение напряжения измеряется цифровым вольтметром Ф219 через делитель напряжения. Силу электрического тока, проходящего через проволоку, определяют с помощью образцового сопротивления (У н = 0,05 Ом), включенного в схему. Сила тока изменяется в пределах 1—3 А. Падение напряжения на образцовом сопротивлении измеряется с помощью того же цифрового вольтметра. На измерительном участке температура проволоки практически постоянна по длине. Эта температура определяется П0 зависимости электрического сопротивления проволоки от температуры. Такой измерительный преобразователь температуры носит название термометра сопротивления (см. п. 3.1.2). Зависимость электрического сопротивления исследуемого тела от температуры определяется предварительными опытами.[c.189]

Сопротивление контактов в местах присоединения отрицательных питающих линий измеряется вольтметром с внутренним сопротивлением не менее 10 ком на 1 в и амперметром, включенным по схеме рис. 15. Сопротивление контакта определяется как разность между сопротивлением, вычисленным по показанию приборов, и расчетным сопротивлением соответствующего проводника, соединяющего отрицательную питающута линию с рельсовой нитью.  [c.98]

Обмотка реле R не запитана, реле сработать не может, и его нормально замкнутый контакт R, включенный в схему последовательно с сигнальной лампой Останов (см. поз.5), обязательно замкнут. Но лампа ни что иное, как обычное сопротивление, поэтому потенциал ОВ постоянно присутствует в точке 4 и вольтметр покажет 24В независимо от положения рубильника М/А.  [c.303]

Без включения в схему вольтметров, имеющих малое внутреннее сопротивление, падения напряжения на каждой половине реостата будут одинаковы Ujl В, т. е. 90 В, поэтому погреишость измерения первым вольтметром следует оценить как +10%, а второго — 10 %.  [c.95]

Ваттметр, включенный в схему, измеряет сумму полных потерь в образце, помещенном в аппарат, и мощностей, потребляемых обмоткой вольтметра и вольтметровой обмоткой ваттметра.  [c.212]

Груз О, укрепленный на пружине L, отклоняется под влиянием действующей на него силы инерции (перегрузки). Движение груза связано посредством тяги т с рычагом Kf вращающимся на оси О. Рычаг К имеет на своем конце контактное асолесико i, катающееся по реостату. Между одним концом А реостата и подвижным рычагом К включен вольтметр (не показан на схеме). Через реостат пропущен ток от 6—8-вольтной батареи, и вольтметр, таким образом, служит потенцио-  [c.32]

Проведение эксперимента на модели. Решающая схема (рис. 5.5) представлена на демонстрационной панели лабораторного стенда. В узлах схемы установлены электрические гнезда, с которых снимаются значения выходных величин решающих элементов схемы. Для регистрации решения используются электронно-лучевой индикатор (ИЭЛ) И-б я цифровой вольтметр типа Щ1312. Порядок подключения этих приборов к схеме указан ниже. На схеме и демонстрационной панели показаны два функциональных преобразователя, реализующих зависимости i(t) для АЬОз и 2гОг. Включение их в схему осуществляется одновременным переводом тумблеров 5 и б соответственно в верхнее (для АЬОз) или нижнее (для ZrOj) положение.  [c.212]


Для использования установки при исследованиях зависимости вязкости жидкостей от температуры и давления был разработан и изготовлен вариант капельной и защитной трубок, в котором защитная трубка выполнена из стали 1Х18Н9Т, а регистрация времени падения ртути осуществляется с помощью платиновых контактов. Для этого Б капельную трубку впаиваются платиновые контакты, которые при замыкании ртутью обеспечивают соответствующий импульс. Однако, как показали наладочные опыты на МИПД, вокруг ртутного столбика образовывается изолирующая пленка, которая вызывает ненадежное включение сигнального устройства. В связи с этим отсчет времени в вискозиметре производился или визуально, или с помощью контура электромагнитных колебаний. Схема колебательного контура (рис. 3-33) состоит из трех индуктивных катушек, двух конденсаторов постоянной емкости (50 и 240 пф), стандартного генератора звуковых сигналов (СГС-1) и катодного вольтметра ВДУ-2. Индуктивные катушки намотаны на капельную трубку вискозиметра. Катушки примерно одинаковы, а их длина равна высоте ртутного столбика.  [c.169]

Принципиальная схема такого прибора приведена выше (см. рис. 4). Контролируемое изделие 1 просвечииается узким пучком 7-излу-чення F . Вторым пучком -/-излучеипя F. просвечивается эталонное изделие 2. Изделия располагаются и перемещаются так, что потоки -излучения всегда попадают на участки изделий, которые должны иметь одинаковую толщину. При отклонении внешних размеров контролируемого изделия и наличии в нем внутренних дефектов на фосфоры и Ф, попадают разные П0Т01Ш -у-излучения. Этот факт обнаруживается по отклонению стрелки вольтметра, включенного на выходе синхронного детектора.  [c.132]

Питание мотора / осуществляется по схеме Леонарда от специального генератора постоянного тока ДУ/ Г (динамо, управляющая работой головки), объединённого с мотором трёхфазного тока во вспомогательный моторгене-раторный агрегат. Независимая обмотка возбуждения генератора питается через ку-проксные выпрямители НКС-2 от напряжения на дуге. Возбуждение мотора I также зависит от напряжения на дуге. Такая схема включения обеспечивает плавное изменение скорости подачи электродной проволоки в зависимости от напряжения дуги. Мотор 2 — асинхронный, с постоянным числом оборотов — служит для возбуждения дуги в начале сварки и создания необходимого числа оборотов на выходном валу диференциала. Контроль за режимом сварки осуществляется по амперметру А и вольтметру V.[c.339]

При расчете количества тепла, подводимого от калориметрического нагре1вателя, следует учесть, что при схеме включения измерительных приборов, показанной на рис. 9-3, амперметр измеряет суммарную силу тока, протекающего в цепи нагревателя и вольтметра. Поэтому сила тока, протекающего в цепи нагревателя, определяется как  [c.266]

Прибор имеет настольное оформление. Внутри его корпуса, на двух выдвижных панелях, смонтированы узлы электроизмерительной схемы, регулятор напряжения питания нагревателя и распределительная система водяного охлаждения. На лицевую панель прибора вынесены рукоятки управления, кнопки включения и выключения прибора, тумблер включения нагревателя, переключатели масштаба записи сигналов термопар и режима работы, контрольный манометр системы охлаждения и контрольные амперметр и вольтметр нагревательной цепи. В комплект прибора входит шеститочечный электронный потенциометр типа ЭПП-09.  [c.63]

Корректирование работы регулятора. Для нормальной работы трансформатора необходимо, чтобы токи, проходящие через каждый из двух включенных встречно-параллельно игнитронов, были равны. При нарушении этого условия в токе, проходящем через обмотку высокого напряжения трансформатора Т, появляется постоянная составляющая, вызывающая подмагни-чивание трансформатора и дополнительный нагрев его. Для наблюдения за постоянной составляющей игнитронный регулятор имеет индикатор постоянной составляющей ИПС, представляющий вольтметр с нулем посередине для наблюдения за этой составляющей в обоих направлениях. Устранение постоянной составляющей, появляющейся вследствие разброса параметров ламп или нарушения симметрии схемы, производится изменением сопротивления Ru (рукоятка с надписью Корректор ),  [c.157]

Ответ. Предпочтительней схема на рис. 40, б внутреннее сопротивление вольтметра R-a должно быть возможно большим по сравнению с сопротивлением участка пепи, на котором производится измерение, чтобы избежать погрешности из-за уменьшения этого сопротивления при включении прибора. Включив прибор через конденсатор С, можно обеспечить режим, когда реактивное сопротивление Хс будет значительно меньше При С = 0,1 мкФ Хс = Ю /2я/С 1500 Ом, а = 2S0000 Ом, т. е. X [c.122]

Ваттметрический метод определения полных потерь на гистерезис и вихревые токи [36]. Ваттметрический метод основан на измерении потерь мощности в трансформаторе с разомкнутой вторичной цепью (т. е. не потребляющий мощности), причем в качестве сердечника трансформатора используется испытуемый материала (аппарат Эпштейна). Принципиальная схема установки представлена на рис. 17.68. В четыре секции трансформатора П], Пг набирается образец из пластин, которые образуют магнитную цепь. В цепь первичной намагничивающей катушки щ включен амперметр А и токовая обмотка ваттметра в цепь вторичной обмотки трансформатора включены вольтметр V и обмотка напряжения ваттметра —1 2. Полные потери на гистерезис и вихревые токи Рт. в равны Р . в = ( — E 2lR2]wl w2, где Р — показания ваттметра  [c.317]

Крутящий момент преобразуется в пропорциональный ему электрический сигнал. Тензодатчики включены в уравновешенный мост, питаемый от источника постоянного напряжения 15 в. К мосту может подключаться схема калибровки тен-зодатчиков с вольтметром и источником питания. Электрический хиг-нал от тензодатчиков подается на клеммы X самописца. На клеммы У самописца подается напряжение от тахогенератора постоянного тока, откалиброванного с точностью 0,5%. Тахогенератор дает напряжение 25 в при 1000 об1мин (режим холостого хода). Для снижения подаваемого на клеммы У самописца выходного сигнала до 10 мв включен набор сопротивлений. Величина тока в цепи контролируется амперметром.  [c.195]

МИ электрооптическими кристаллами типа u l, ZnS или НМТ 65, 66] или одноосными кристаллами типа KDP и ADP в продольной конфигурации (свет распространяется вдоль оптической оси с). Тот факт, что в настоящее время нет кристаллов достаточно высокого оптического качества, можно рассматривать как временный [70]. Модуляторы чаще изготавливают из более доступных материалов KDP и ADP в поперечной конфигурации [67, 68]. Но поскольку при таком методе измерения через кристалл должны проходить две (перпендикулярно) поляризованные компоненты, даже если модулятор предназначен для фазовой модуляции линейно поляризованного излучения, мы сталкиваемся с проблемой естественного двойного лучепреломления и нестабильных оптических искал ений, которые ограничивают применимость поперечной конфигурации с кристаллами KDP и ADP для модуляции по интенсивности [69]. В схеме, изображенной на фиг. 9,4, за модулятором стоит фотоумножитель, на выходе которого включен чувствительный вольтметр постоянного тока. Поскольку измеряются только средние интенсивности, фотоумножитель может иметь большую постоянную времени.  [c.489]

Проверяют исправность цепи присоединения клеммы 102 к каркасу панели управления. Для этого при включенном вводном рубильнике присоединяют указатель напряжения (вольтметр) к очищенному от краски и грязи каркасу панели управления, касаясь вторым щупом предохранителя цепи управления лифтом, убеждаются, что цепь присоединения клеммы 102 к каркасу панели управления исправна (лампа указателя напряжения светится, стрелка вольтметра отклоняется). Затем проверяют надежность присоединения каркаса панели управления к зануляюшей магистрали. Работа лифта должна быть приостановлена, если при проведении технического осмотра обнаружены, иибо неисправность цепи зануления клеммы 102 схемы управления лифтом, либо отсутствие зануления каркасов электрооборудования и электроаппаратов, а также зануления вторичных обмоток понижающих трансформаторов.  [c.272]


Напряжение от сети через блокировочные контакты и предохранители подводится к регулировочному автотрансформатору Т1, служащему для плавного изменения напряжения, и к трансформатору накала кенотрона Т2 (рис. 29.52). Включение высокого напряжения осуществляется нажатием кнопки S1 автоматического выключателя, имеющего три обмотки две из них соединены последовательно (причем одна шунтируется переключателем защиты S2). Разомкнутое положение этого переключателя соответствует чувствительной защите автомат срабатывает при пробое на стороне переменного тока и остается включенным, если ток в цепи выпрямленного напряжения не превосходит 5 мА. Когда переключатель 52 замкнут, осуществляется грубая защита автомат не срабатывает при коротком замыкании на высокой стороне и остается включенным, если мощность на стороне высокого напряжения при 50 кВ пе превосходит 2 кВ-А такой режим должен длиться не более 1 мин. Измерение напряжения на образце производится вольтметром kV класса 1,5 на стороне низкого напряжения, проградуированным в киловольтах. Конденсаторы С служат для защиты от перенапряжений первичной обмотки. При синусоидальной форме кривой питающего напряжения вторичное напряжение высоковольтного трансформатора в режиме холостого хода не отличается от синусоидального более чем на 5 %. Резистор R служит для защиты трансформатора и кенотрона от перегрузки при пробое образца. В установке имеется сосуд с электродами для стандартного испытания жидких материалов. Испытания на постоянном токе производят при помощи схемы однополупериодного выпрямления, для получения которой йспо.тьзу-ется кенотрон Л на образец подается постоянное напряжение отрицательной полярности. Если необходимо измерять ток утечки, то для этой цели используют микроамперметр в анодной цепи. Защита мнкроамперметра от перегрузок осуществляется при помощи разрядника Р, шунтирующего конденсатор, и сопротивле-  [c.394]

В нижней части рисунка показана последовательность преобразования подводимой энергии напряжением /л промышленной частоты 50 Гц в частоту 10 000 Гц в машинном преобразователе. Высокое напряжение С/1 с помощью понижающего трансформатора трансформируется в напряжение С/г, не превышающее нескольких десятков вольт. Контроль электрических параметров процесса нагрева детали осуществляется по приборам, схема включения которых изображена на рис. 61. В схему включаются пять приборов вольтметр В, амперметр А, киловаттметр КВ для измерения соответственно напряжения, тока и мощности генератора фазометр Ф для измерения коэффициента мощности на-  [c.108]

К — электрод, поляризуемый катодно А — электрод, поляризуемый анодно НЭ — каломельные полуэлементы КВ — клеммы для присоединения катодного вольтметра НЭ — нормальный элемент Вестона М — мешалка с гидравлическим затвором Г — шлифы с кранами для ввода газов П — отбор проб электролита Пх — переключатель для включения катодного вольтмет ра в цепь катода пли анода и Я-, — переключатели для включения в измерительную схему элемента Вестона (включается при э. д. с. > 1 в)  [c.137]


Схема,вольтметр для автомобиля — Электросхемы — Статьи

Прибор предназначен для индикации на трехразрядном светодиодном дисплее напря­жения бортовой сети автомобиля. Подключается прибор двумя проводами и измеряет напря­жение, от которого сам же и питается. Пределы измерения от 6 до 25V (рис.1). Его можно так же использовать и как вольтметр для лабораторного источника питания, в этом случае схема включения будет изменена как показана на рисунке 2, а диапазон измеряемого напря­жения будет от нуля до 30V. Однако, при этом потребуется отдельный источник напряжения 5V для питания вольтметра.


Принципиальная схема автомобильного вольтметра показана на рисунке 1. Напряже­ние от бортовой сети автомобиля поступает на вход устройства. Для питания схемы необходим источник напряжением 5V, это напряжение создает интегральный стабили­затор А1 типа 7805. Чтобы выходное напря­жение было стабильным необходимо чтобы входное было как минимум на 1V выходе напряжения стабилизации, поэтому мини­мальное измеряемое напряжение равно 6V

Измеряемое напряжение снимается до ста­билизатора и через резистор R1 поступает на аналого-цифровой вход микроконтроллера. У микроконтроллера PIC16F676 есть восемь входов АЦП, но здесь используется только один вход.


Схема индикации выполнена на трех одноцифровых семисегментных светодиодных индикаторах с общими анодами. Индикаторы включены по динамической схеме. Можно использовать любые семисегмент-ные одноцифровые светодиодные индика­торы с общим анодом или трехцифровую матрицу.

Настройка заключается в подстройке R1 так чтобы показания прибора соответствовали действительности.

На основе этой схемы был сделан испытатель стабилитронов, который можно использовать для проверки стабилитронов на напряжение стабилизации до 28V. и для идентификации стабилитронов, например, если есть подозрение что это стабилитрон, но абсолютной уверенности в этом нет.


Принципиальная схема испытателя показана на рисунке 3. Схема состоит из измери­теля постоянного напряжения, по схеме ана­логичного тому, что показан на рисунке 1. и генератора повышенного постоянного напря­жения. Генератор на микросхеме A3 выраба­тывает постоянное напряжение 30V, которое через резистор R13 поступает на вход изме­рителя. А параллельно этому входу подклю­чается испытуемый стабилитрон VDx. Если стабилитрон исправен, и включен правильно (как показано на схеме) то, при условии что его напряжение стабилизации ниже 30V, напряжение на входе измерителя понизится до напряжения стабилизации стабилитрона Если это диод или стабилитрон на напря­жение более 30V, — напряжение не пони­зится. А при пробое или неправильном подключении напряжение понизится до нуля (при пробое) или до величины прямого паде­ния напряжения (при неправильном подклю­чении). Так же этим прибором можно изме­рять прямое напряжение падения диодов, включая их противоположно включению стабилитрона (катодом к общему минусу)

Напряжение источника питания 9V (может быть от 7 до 12V) поступает на два стабилизатора А1 и А2. 

Сначала схема была сделана с одним общим стабилизатором для измери­теля и генератора, но позже выяснилось что генератор оказывает влияние на работу измерителя по цепи питания, поэтому стаби­лизаторы сделаны раздельными. ИМС A3 типа МАХ15032 представляет собой мало­мощный повышающий DC-DC преобразова­тель. Величина выходного напряжения зависит от соотношения сопротивлений R14 и R15. При налаживании R15 подбирают так, чтобы напряжение на С5 было равно 30V. Накачка напряжения происходит на индуктив­ности L1. Частота генерации (500 кГц) зави­сит от емкости С6.

             И еще хочу отметить интересный момент, для очищения кожи лица многие пользуются кремами типа скраба. Но не все знают как можно приготовить его в домашних условиях. Вот есть отличный сайт, где есть много рецептов его приготовления. домашние скрабы ничем не уступают фирменным, а в некотором смысле даже безопасней. Следите за кожей своего лица…

Похожие материалы

Схема вольтметра для автомобиля » Схемы электронных устройств

Вольтметр предназначен для эксплуатации в автомобиле в качестве бортового прибора для тестирования и ремонта электрооборудования автомобиля. Вольтметр может быть выполнен в виде самостоятельного блока, питаемого от аккумуляторной батареи автомобиля и имеющего щупы для подключения к контролируемой цепи, в этом случае вольтметр полностью развязан по постоянному току относительно аккумулятора за счет использования импульсного блока питания с разделительным высокочастотным трансформатором.
Или второй вариант, при котором вольтметр располагается на приборной панели автомобиля и постоянно подключен к аккумуляторной батареи, от которой он питается и напряжение которой индицирует.

Вольтметр имеет 2,5-разряднуш шкалу и измеряет напряжения в первом случае от 0 до 15В (максимальное значение шкалы 19,9В нереализуемо из-за низкого напряжения питания АЦП, и не имеет смысла в случае контроля автомобильного электрооборудования). Во втором случае от 10-ти до 15-ти Вольт. Погрешность измерения не хуже 4%.

Вольтметр можно использовать и как самостоятельное устройство, с питанием от батарей, при этом нужно удалить старший разряд и дополнить схему входным делителем- Измерительный блок вольтметра может быть взят в качестве основы для построения цифрового мультиметра. При этом входное сопротивление при измерении до 9,9В составляет 500 кОм.

Принципиальная схема изображена на рисунке 1. Используется принцип непосредственного измерения напряжения без его преобразования в временный интервал или частоту.

Измеряемое напряжение поступает на вход компаратора, в качестве которого работает операционный усилитель А1. Где оно сравнивается с ступенчато-нарастающим напряжением, сформированным резистивной матрицей и счетчиками D1 и D2. В момент равенства этих напряжений на выходе А1 появляется импульс положительной полярности, который останавливает работу мультивибратора на D5.1 и D5-2 и включает индикацию в дешифраторах D3 и D4. На табло высвечивается значение напряжении.

В случае если измеряемое напряжение больше десяти вольт в работу вступает третий разряд, который выполнен на триггере D6. Он имеет дополнительный весовой резистор R5, входящий в резистивную матрицу. Для двух младших разрядов ступенчатое напряжение формируется резисторами R1-R4 и R6-R9.

В том случае, если измеряемое напряжение больше предела измерения, ступенчатое напряжение не достигает равенства с измеряемым и на выходе А1 не появляется импульс, соответственно индикаторы не включаются, зрительно это воспринимается как погасание индикаторов и сигнализирует о том, что прибор зашкаливает. Индикацией того что прибор включен служит свечение запятой после второго разряда (15,0).

Элементы D5.3 и D5.4 служат для формирования импульса совпадения напряжений. Для питания прибора используется источник питания принципиальная схема которого изображена на рисунке 2.

Входное напряжение от аккумулятора 8-15В поступает на трансформаторный преобразователь на транзисторах VT1 и VT2 и импульсном трансформаторе Т1. Преобразователь выполнен по схеме с обратной связью по напряжению. R1 выполняет роль резистора, создающего напряжение смешения на базах транзисторов и одновременно ограничивает базовые токи транзисторов, исключая их выход из строя.

С повышающей третичной обмотки переменное напряжение поступает на мостовой выпрямитель на диодах VD1 — VD4 и с него на два стабилизатора напряжения, первый на транзисторе VT3, он стабилизирует положительное напряжение, которое используется для питания микросхем и индикаторов, его выходной ток 200 mA.

Напряжение — 5В формируется простым параметрическим стабилизатором на стабилитроне VD6 и резисторе R2. Стабилитрон подключен между выходами положительного и отрицательного напряжения и стабилизирует сумку на уровне 10В, из которой затем вычитается +5В и остаётся -5В для питания компаратора, ток — 20 mA.

В приборе использованы конденсаторы типа КМ, К10-7, К50-6, резисторы МЛТ-0,125 и МЛТ-0,25. Резисторы матрицы изготовлены из резисторов МЛТ-0,25. Они берутся с заранее меньшим сопротивлением, чем указано на схеме и при помощи стачивания микронной шкуркой их графитового слоя, их сопротивление подгоняется под указанные на схеме величины. Затем резисторы покрывают эпоксидной смолой, исключая воздействие сырости.

Микросхемы К133 можно заменить на К155 или 555, но в этом случае увеличатся размеры печатной платы. Вместо индикаторов АЛ113Е можно использовать любые другие светодиодные индикаторы с общим анодом, например АЛС324 или АЛС333. Если использовать индикаторы с общин катодом их общие катоды нужно соединить с общим проводом питания, использовать дешифраторы К514ИД1.

Вместо дешифраторов К514ИД2, можно использовать КР514ИД2 при этом тоже придется изменить печатную плату. В качестве печатной платы использован кусок, размерами 50×70 мм, отрезанный от макетной платы с посадочными местами под планарные микросхемы. Такие платы используются в различных конструкторских бюро для макетирования цифровых устройств. Все соединения выполнены монтажным проводом.

Трансформатор питания Т1 намотан на ферритовом кольце К17х8,2х5 мм из феррита 2000НМ. Первичная обмотка 40 витков провода ПЭВ-0,41 с отводом от середины, вторичная 14 витков с отводом от середины провода ПЭВ-0,2, третичная — 60 витков ПЭВ-0,2.

В процессе настройки прибора подбором номинала R10 устанавливают соответствие между индицируемой величиной и реальным напряжением, поступившим на вход вольтметра.

В том случае, если прибор используется по второму варианту, то есть, он установлен на приборной панели автомобиля и постоянно индицирует состояние аккумуляторной батареи, его вход питания (8-15В источника рис.2) подключают к бортовой сети после замка зажигания, при включении зажигания включается вольтметр. Вход его в этом режиме постоянно подключен к аккумуляторной батареи (измерительный вход 0-15В) в соответствии с полярностью.

Можно использовать и отдельный выключатель питания, тогда вольтметр будет индицировать состояние аккумулятора как под нагрузкой, так и без неё.

3. Воздействие вольтметра на измеряемую цепь | 7. Измерительные приборы | Часть1

3. Воздействие вольтметра на измеряемую цепь

Воздействие вольтметра на измеряемую цепь

Любой измерительный прибор в некоторой степени влияет на измеряемую цепь. Это влияние аналогично воздействию манометра на давление в шинах, при измерении  которого незначительная часть воздуха высвобождается. Несмотря на то, что такое влияние неизбежно, оно может быть минимизировано грамотной конструкцией измерительного прибора.

Так как вольтметр всегда подсоединяется параллельно компоненту или группе компонентов измеряемой схемы, любой проходящий через него ток будет оказывать влияние на общий ток этой схемы, а значит и на измеряемое напряжение. Не «забирает» ток от тестируемой цепи только идеальный вольтметр, потому что он имеет бесконечное сопротивление. Однако, идеальные вольтметры существуют только на страницах учебников, в реальной жизни их нет. Давайте возьмем следующую схему делителя напряжения, и на ее примере рассмотрим влияние вольтметра на измеряемую цепь:

 

 

Пока вольтметр не подключен к данной цепи, напряжение на каждом из резисторов составляет 12 вольт (два резистора одинаковой величины делят исходное напряжение ровно пополам). Ели мы подключим вольтметр с внутренним сопротивлением 10 МОм (стандартная величина современных цифровых вольтметров) к нижнему резистору схемы, то создадим своего рода параллельное соединение двух сопротивлений:

 

 

Это действие понизит сопротивление нижнего эквивалентного резистора (параллельно соединенные сопротивления 250 и 10 МОм) до 9,615 МОм, что кардинальным образом изменит распределение напряжений в схеме. На нижнем резисторе напряжение теперь будет гораздо меньше чем прежде, а на верхнем — гораздо больше:

 

 

Делитель напряжения с сопротивлениями резисторов 250 и 9,615 МОм разделит напряжение источника питания 24В на две части — 23,1111 и 0,8889 вольт соответственно. Так как вольтметр является частью сопротивления 9,615 МОм, его индикатор покажет напряжение 0,8889 вольт.

Вольтметр не может «знать», что до его подключения к цепи напряжение на нижнем резисторе (сопротивлением 250 МОм) имело величину 12 вольт. Сам факт подключения вольтметра к схеме делает его частью этой схемы, а значит собственное сопротивление вольтметра изменяет соотношение сопротивлений делителя, влияя тем самым на измеряемое напряжение.

Если провести аналогию последнего примера с измерением давления в шинах, то то манометру для работы потребуется такое количество воздуха, что в процессе измерения он практически весь выйдет наружу. Количество воздуха, потребляемого манометром при измерении давления в шинах аналогично количеству тока, потребляемого вольтметром при измерении напряжения. Чем меньше воздуха требует манометр для своей работы, тем меньше он будет сдувать шины в процессе измерения. Чем меньше тока для свое работы требует вольтметр, тем меньшую нагрузку он оказывает на тестируемую цепь.

Такой эффект называется нагрузочным, и он в определенной степени присутствует в каждом случае использования вольтметра, заставляя его отображать напряжение меньше истинного. Выше нами был рассмотрен наихудший сценарий, в котором сопротивление вольтметра значительно ниже сопротивлений резисторов делителя. Очевидно, чем больше сопротивление вольтметра, тем меньше нагрузка на тестируемую цепь. Именно поэтому идеальный вольтметр имеет бесконечное внутреннее сопротивление.

Для вольтметров с электромеханическими индикаторами количественное влияние нагрузочного эффекта на измеряемую цепь выражается через их чувствительность, которая оценивается в «омах на вольт» (Ом/В). Это делается потому, что такие вольтметры для разных диапазонов измерения используют разные резисторы, благодаря чему их внутренне сопротивление будет изменяться в зависимости от диапазона. Цифровые вольтметры, в отличие от электромеханических, вне зависимости от диапазона измерения имеют постоянное сопротивление (но не всегда), поэтому влияние нагрузочного эффекта на измеряемую цепь для них выражается через внутреннее сопротивление, которое оценивается в Омах.

Чувствительность вольтметра  ( Ом / В) показывает величину множителя, на который нужно умножить сопротивление резистора, чтобы увеличить шкалу измерителя на 1 В. В качестве примера давайте возьмем схему вольтметра из предыдущей статьи:

 

 

Для диапазона измерения 1000 В, общее внутреннее сопротивление этого вольтметра будет равно 1 МОм (999,5 кОм + 500 Ом), что даст нам чувствительность 1000000 Ом на 1000 вольт или 1000 Ом на вольт (1кОм/В). Эта чувствительность будет постоянной для любого диапазона данного прибора:

 

 

Проницательный наблюдатель заметит, что чувствительность (Ом/В) любого индикатора определяется единственным фактором — его номинальным (предельным) током, который в нашем случае составляет 1 мА. К такому выводу можно прийти, если учесть следующее: величина «Ом/В» математически обратна величине «В/Ом», которая по закону Ома представляет собой силу тока (I = U/R). Отсюда следует, что номинальный ток индикатора, определяющий его чувствительность, не зависит диапазонов измерений, которыми оснащен вольтметр посредством добавочных резисторов. В нашем случае номинальный ток индикатора величиной 1 мА дает вольтметру чувствительность 1000 Ом/В в независимости от выбранного диапазона измерений.

Чтобы свести к минимуму нагрузку вольтметра на любую тестируемую схему, нужно минимизировать номинальный ток индикатора. Для достижения этой цели можно заменить индикатор на более чувствительный (которому требуется меньше тока для полного отклонения стрелки), но такой компромисс повлечет за собой потерю прочности, так как более чувствительный индикатор будет более хрупким.

Другой подход к решению данной проблемы заключается в использовании специальной схемы, которая увеличит подаваемый на индикатор ток, снизив при этом ток, потребляемый прибором от схемы в процессе измерения. Такая схема называется усилителем постоянного тока:

 

 

Конструкция усилителя достаточно сложна для рассмотрения на данном этапе, поэтому достаточно будет сказать, что его схема позволяет измеряемому напряжению контролировать количество тока,  поставляемого на индикатор от внутреннего источника питания (например батареи). Таким образом, потребность индикатора в токе удовлетворяется за чет внутренней батареи вольтметра,  а не за счет тестируемой цепи. Вольтметр, использующий усилитель постоянного тока, по прежнему будет нагружать схему в процессе измерения, но эта нагрузка будет в сотни или тысячи раз меньше, чем у вольтметра без усилителя. 

До появления полупроводниковых приборов, известных как полевые транзисторы, в качестве усилительных устройств этих приборов использовались электронные лампы. Такие ламповые вольтметры когда то были очень популярными инструментами для проведения измерений и тестирования схем.

 

 

В настоящее время задачу усиления тока в цифровых измерительных приборах выполняют схемы на полупроводниковых транзисторах. Несмотря на то, что такая конструкция (использование усилителя для повышения измеряемого тока) очень хорошо работает, она значительно усложняет прибор и делает непонятной его работу для начинающих радиолюбителей.

Простым и гениальным решением проблемы нагрузочного эффекта, создаваемого вольтметром, является использование потенциометрического инструмента или инструмента нулевого баланса. Этот метод не требует продвинутых электронных схем и чувствительных устройств, таких как транзисторы или электронные лампы, но он предполагает активное участие и мастерство пользователя. Принцип работы потенциометрического инструмента состоит в следующем. Берется отдельный источник питания с регулируемым напряжением и через детектор «нуля» подключается к тем точкам цепи, где нужно измерить напряжение. После этого напряжение регулируемого источника настраивается на измеряемое напряжение, равенство которых покажет детектор «нуля». В некоторых схемах, для регулировки напряжения используется прецизионный потенциометр, поэтому их и назвали потенциометрическими инструментами. Если эти два напряжения будут равны, то вольтметр в процессе измерения будет потреблять нулевой ток от тестируемой цепи, не оказывая на нее никакого влияния. Давайте рассмотрим как все это работает на примере вышеупомянутой схемы делителя напряжения:

 

 

Детектор «нуля» представляет собой чувствительное устройство, способное регистрировать наличие очень малых напряжений. Если в качестве такого детектора используется электромеханический индикатор, то он должен быть чувствительным к полярности (его стрелка должна находиться в центре шкалы, и в зависимости от полярности напряжения отклоняться в ту или иную сторону). Поскольку целью детектора является указание на состояние нулевого напряжения, разметка шкалы его индикатора не имеет особого значения. 

Самый простой детектор «нуля» можно построить на базе обычных наушников, динамики которых будут выступать в роли своеобразного индикатора. В момент подачи на наушники напряжения, поток электронов переместит диффузоры динамиков и вы услышите в них щелчок. Еще один щелчок вы услышите при отключении источника напряжения. Таким образом, детектор «нуля» можно сделать из наушников и кнопочного переключателя:

 

 

Если для этой цели использовать наушники сопротивлением 8 Ом, то их чувствительность может быть увеличена при помощи трансформатора. В основе работы трансформатора лежит принцип электромагнетизма, который преобразует уровни пульсирующих напряжений и токов. В нашем случае можно применить понижающий трансформатор, который преобразует импульсы небольшого тока (созданные путем нажатия и отжатия кнопочного переключателя) в более высокие, что обеспечит более эффективное управление диффузорами наушников. Трансформатор с соотношением сопротивлений 1000 : 8 идеально подойдет для этой цели. Помимо прочего, трансформатор накапливает энергию слаботочного сигнала в своем  магнитном поле, чтобы потом, при нажатии кнопки, выбросить ее в динамики наушников, повышая тем самым чувствительность детектора. Таким образом, использование трансформатора делает щечки громче, что позволяет обнаружить слабые сигналы:

 

 

Ниже приведена схема, в которой в качестве детектора «нуля» выступают наушники, трансформатор и кнопочный переключатель:

 

 

Детектор «нуля» работает подобно лабораторным весам, он показывает только равенство двух напряжений (его отсутствие между точками 1 и 2), и ничего больше. Лабораторные весы показывают равенство между неизвестной массой и кучей стандартных (калиброванных) масс:

 

 

Детектор покажет равенство напряжений между точками 1 и 2 в том случае, если напряжение регулируемого источника питания будет равно напряжению на резисторе R2 (смотри второй закон Кирхгофа ). 

Для работы с потенциометрическим инструментом необходимо таким образом настроить регулируемый источник питания, чтобы индикатор детектора «нуля» показал нулевое значение (при использовании наушников нужно добиться прекращения щелчков путем многократных нажатий на кнопочный переключатель). Только после этого можно зафиксировать значение измеренного вольтметром напряжения:

 

 

При использовании потенциометрического инструмента вольтметру не нужен высокочувствительный индикатор, потому что он измеряет напряжение не в схеме, а на регулируемом источнике питания, напряжение которого приравнивается к измеряемому с помощью детектора «нуля». Весь необходимый для работы вольтметра ток поставляется все тем же регулируемым источником питания. Так как напряжение на детекторе «нуля» в этом случае будет нулевое, то и ток между точками 1 и 2 будет равен нулю, а это значит, что нагрузки на схему в процессе измерения практически не будет. 

Еще раз повторимся, что этот метод, выполненный надлежащим образом, создаст почти нулевую нагрузку на измеряемую цепь. В идеале он вообще не должен нагружать схему, но для достижения такого результата на детекторе «нуля» должно быть абсолютно нулевое напряжение, которое потребует бесконечно чувствительного индикатора и идеального баланса напряжений. Несмотря на практическую невозможность достижения абсолютно нулевой нагрузки на тестируемую схему, потенциометрические инструменты являются отличным решением для измерения напряжений в высокоомных цепях. В отличие от электронных усилителей тока, которые решают эту проблему с помощью передовых технологий, потенциометрический метод достигает гипотетически идеального результата базируясь только на втором законе Кирхгофа .  

Схема цифрового вольтметра на микросхеме К176 » Паятель.Ру


При проектировании цифровых вольтметров или мультиметров большинство радиолюбителей операются либо на аналого-цифровые преобразователи серии К572ПВ, либо прибор строят по схеме частотомера с аналогоцифровым преобразователем «напряжение-частота» или «напряжение-период». Но есть другой способ — непосредственного измерения. Его сущность заключается в том, что счетчик прибора, работающий на индикацию, одновременно вырабатывает ступенчато-изменяющееся напряжение, которое поступает на один из входов компаратора, а на его другой вход поступает напряжение от измеряемой цепи.


В момент совпадения этих напряжений на выходе компаратора изменяется логический уровень, который, обычно останавливает счетчик в этом положении на некоторое время. Таким образом прибор работает как простой (медленный) частотомер, в течении некоторого времени происходит измерение напряжения (нарастание ступенчатого напряжения до уровня измеряемого), затем следует индикация, затем обнуление, и все сначала.

Используя микросхемы серии К176, а именно дешифраторы К176ИД2, имеющие на своих входах триггеры памяти можно построить вольтметр, показания которого будут столь же оперативно изменяться как и в приборах построенных на микросхемах К572ПВ2 или К572ПВ5.

Принципиальная схема трехразрядного вольтметра, измеряющего напряжение от нуля до 9,99В показана на рисунке 1. Основу прибора составляет трехразрядный счетчик на микросхемах D3-D5. На вход этого счетчика постоянно поступают импульсы частотой около 3 кГц от мультивибратора на элементах D1.1 и D1.2. Счетчик все время считает по кругу от нуля до 999, он не имеет никаких входов кроме информационного и не может устанавливаться в нуль какими-то внешними импульсами. На выходе счетчика кроме дешифраторов с семисегментными индикаторами включена резистивная матрица, состоящая из резисторов R5-R16.

Сопротивления резисторов соответствуют весовым значениям выходных кодов счетчика. Все резисторы имеют одну общую точку соединения. Именно в этой точке, во время работы счетчика получается ступенчато-нарастающее напряжение. Оно изменяется от нулевого уровня до уровня логической единицы с числом промежуточных ступеней 999. Затем резко падает до нуля, и снова постепенно нарастает до единицы.

Это напряжение поступает на прямой вход компаратора D2. Задача компаратора состоит в том, чтобы зарегистрировать момент совпадения этого напряжения с напряжением, поступающим с входного делителя (на самом деле не совпадения а минимального превышения, не более чем на одну ступень).

В этот момент на выходе компаратора устанавливается логическая единица. Она запускает одновибратор на элементах D1.3, D1.4, который вырабатывает короткий импульс. Этот импульс поступает на входы «X» дешифраторов D6-D8 и записывает в их триггеры тот код, который был в этот момент на выходах счетчика. Это число отображается индикатором до тех пор пока не поступит следующий импульс от одновибратора.

Таким образом счетчик все время ходит по кругу и синтезирует нарастающее напряжение, а на индикацию выводится только то значение, которое численно соответствует измеряемому напряжению.

Источник питания должен быть стабилизирован, поскольку он принимает непосредственное участие в формировании ступенчатого напряжения.

Номиналы резисторов R5-R16 рассчитаны и их сопротивления не соответствуют номинальному ряду, поэтому некоторые из них нужно набирать из двух-трех. Класс точности должен быть не менее 4%, от него в первую очередь зависит точность показаний прибора. Удобно взять обычные резисторы сопротивлением на 5-20% меньшего сопротивления чем на схеме, например, вместо R11 на 90 кОм берем на 82 кОм, а затем контролируя сопротивление точным омметром при помощи мелкой шкурки стачиваем резистивный слой с одной стороны корпуса резистора до получения нужного сопротивления.

Рисунок 2
Установив сопротивления указанные на схеме можно получить класс точности прибора 4-6%. Более высокую точность с серией К176 получить трудно. Если требуется более высокая точность напряжение на каждый резистор следует подавать через пару ключей микросхемы К561КТ3 (рисунок 2). В этом случае можно получить класс точности 0,1-0,5%, но это сильно усложняет схему.

Существенно повысить класс точности (1-2%) можно если счетчики К176ИЕ2 заменить на К561ИЕ14. К тому же нужно разделить цепи питания счетчиков с компаратором и светодиодных индикаторов, поскольку индикаторы потребляют большой ток и могут оказывать дестабилизирующее действие на формирователь ступенчатого напряжения. Калибруют прибор подбором номинала R3. Точно установить прибор на нуль можно включением резистора сопротивлением в несколько мегаом между выводом 4 и 11 компаратора.

Скорость работы прибора можно существенно увеличить если поднять частоту мультивибратора, например до 10-15 кГц, но в этом случае нужно соответствующим образом сократить длительность импульса, вырабатываемого одновибратором на элементах D1.3 и D1.4, таким образом, чтобы длительность вырабатываемого им импульса была меньше периода импульсов на выходе мультивибратора.

Верхний предел измерения можно установить подбором номинала R3, например, если нужно измерять 0..,99,9В его сопротивление должно быть около 1 Мом (окончательно подбирается при калибровке).

Конструкция вольтметра

Добавлено 4 апреля 2021 в 13:49

Сохранить или поделиться

Как было сказано ранее, большинство измерительных механизмов являются чувствительными устройствами. Некоторые механизмы Д’Арсонваля имеют номинальный ток отклонения на полную шкалу всего 50 мкА при (внутреннем) сопротивлении провода менее 1000 Ом. Это делает возможным создание вольтметра со значением полной шкалы всего 50 милливольт (50 мкА х 1000 Ом)! Чтобы сконструировать вольтметр с практически применимыми размерами шкал (более высокими напряжениями) на основе таких чувствительных измерительных механизмов, нам нужно найти способ уменьшить измеряемую величину напряжения до уровня, с которым может работать механизм.

Измерительный механизм Д’Арсонваля

Давайте начнем наш пример с задачи с измерительным механизмом Д’Арсонваля, имеющим номинальное значение 1 мА для отклонения стрелки на полную шкалу и сопротивление катушки 500 Ом:

Рисунок 1 – Измерительный механизм Д’Арсонваля

Используя закон Ома (E = IR), мы можем определить, какое напряжение приведет к отклонению стрелки этого измерительного механизма на полную шкалу:

E = IR

E = (1 мА) (500 Ом) = 0,5 В

Если бы всё, что нам было нужно, это измерительный прибор, который мог бы измерять 1/2 вольта, то простого измерительного механизма, который у нас есть здесь, было бы достаточно. Но для измерения более высоких уровней напряжения необходимо нечто большее. Чтобы получить эффективный диапазон напряжений вольтметра, превышающий 1/2 вольта, нам необходимо разработать схему, подающую на измерительный механизм только точную долю измеряемого напряжения.

Это расширит диапазон измерительного механизма до более высоких напряжений. Соответственно, нам нужно будет перемаркировать шкалу на лицевой стороне индикатора, чтобы указать его новый диапазон измерений с подключенной схемой деления.

Но как создать необходимую схему деления? Что ж, если мы намерены позволить этому измерительному механизму измерять большее напряжение, чем сейчас, нам нужна схема делителя напряжения, чтобы пропорционально разделить общее измеряемое напряжение и подать на измерительный механизм меньшее значение. Зная, что схемы делителей напряжения строятся из последовательных сопротивлений, мы подключим резистор последовательно с измерительным механизмом (используя собственное внутреннее сопротивление механизма в качестве второго сопротивления в делителе):

Рисунок 2 – Измерительный механизм Д’Арсонваля с использованием делителя напряжения

Умножающие резисторы

Последовательный резистор называется «умножающим» резистором, потому что он умножает рабочий диапазон измерительного механизма, когда пропорционально делит измеряемое напряжение. Определение необходимого значения умножающего сопротивления будет для вас простой задачей, если вы знакомы с анализом последовательных цепей.

Например, давайте определим необходимое значение «умножающего» резистора, чтобы значение полной шкалы этого измерительного механизма (1 мА, 500 Ом) составляло 10 вольт. Для этого нам сначала нужно нарисовать таблицу E/I/R для двух последовательных компонентов:

Рисунок 3 – Таблица анализа цепи

Мы знаем, что стрелка измерительного механизма отклоняется на полную шкалу при проходящем через него токе 1 мА, и мы хотим, чтобы это происходило при прикладывании (к всей последовательной цепи) напряжения 10 В, мы можем заполнить таблицу следующим образом:

Рисунок 4 – Таблица анализа цепи. Шаг 1. Исходные данные

Для определения значения умножающего сопротивления есть несколько способов. Один из способов – определить полное сопротивление цепи, используя закон Ома в столбце «Общее» (R=E/I), а затем вычесть из него 500 Ом измерительного механизма, чтобы получить значение умножающего сопротивления:

Рисунок 5 – Таблица анализа цепи. Шаг 2. Определение значения умножающего сопротивления

Другой способ рассчитать это же значение сопротивления – это определить падение напряжения на измерительном механизме при отклонении стрелки на полную шкалу (E =IR), а затем вычесть это падение напряжения из общего значения, чтобы получить напряжение на умножающем резисторе. И, наконец, можно снова использовать закон Ома для определения сопротивления (R=E/I) для умножающего сопротивления:

Рисунок 6 – Таблица анализа цепи. Способ 2

Оба способа дают один и тот же ответ (9,5 кОм), и один метод может использоваться в качестве проверки другого, чтобы проверить точность расчета.

Рисунок 7 – Полученная схема вольтметра для максимального напряжения 10 вольт

При подаче ровно 10 вольт между измерительными щупами измерительного прибора (от какой-либо батареи или прецизионного источника питания) через измерительный механизм будет проходить ток ровно 1 мА, который ограничивается «умножающим» резистором и собственным внутренним сопротивлением механизма. На сопротивлении проволочной катушки измерительного механизма будет падать ровно 1/2 вольта, и стрелка будет указывать точно на значение полной шкалы. Если изменить маркировку шкалы так, чтобы показания на ней были от 0 до 10 В (вместо от 0 до 1 мА), любой, кто смотрит на шкалу, интерпретирует ее показание как десять вольт.

Обратите внимание, что пользователю измерительного прибора совсем не обязательно знать, что сам механизм фактически измеряет лишь часть этих десяти вольт от внешнего источника. Всё, что имеет значение для пользователя, – это то, что схема в целом работает для точного отображения общего приложенного напряжения.

Вот как конструируются и используются реальные электроизмерительные приборы: чувствительный измерительный механизм сконструирован так, чтобы работать с минимальными напряжением и током, насколько это возможно для максимальной чувствительности, затем его «обманывают» какой-то схемой делителя, построенной из прецизионных резисторов так, чтобы он показывал значение полной шкалы, когда на схему в целом воздействует гораздо большее напряжение или ток. Здесь мы рассмотрели конструкцию простого вольтметра. Амперметры следуют тому же общему правилу, за исключением того, что параллельно включенные «шунтирующие» резисторы используются для создания схемы делителя тока, в отличие от последовательно включенных «умножающих» резисторов делителя напряжения, используемых в конструкциях вольтметров.

Как правило, для такого электромеханического измерительного прибора полезно иметь несколько диапазонов, чтобы он мог измерять широкий диапазон напряжений с помощью одного измерительного механизма. Это достигается за счет использования многопозиционного переключателя и нескольких умножающих резисторов, каждый из которых рассчитан на определенный диапазон напряжений:

Рисунок 8 – Многодиапазонный вольтметр

Пятипозиционный переключатель одновременно устанавливает контакт только с одним резистором. В нижнем (полностью по часовой стрелке) положении он вообще не контактирует ни с одним резистором, обеспечивая положение «выключено». Сопротивление каждого резистора подбирается таким образом, чтобы обеспечить для вольтметра определенный полный диапазон, всё в зависимости от конкретного номинала измерительного механизма (1 мА, 500 Ом). Конечным результатом является вольтметр с четырьмя различными диапазонами измерения. Конечно, для того, чтобы он работал правильно, шкала измерительного механизма должна быть снабжена метками, соответствующими каждому диапазону.

В такой конструкции измерительного прибора значение каждого резистора определяется одним и тем же методом с использованием известного максимального напряжения, значения измерительного механизма для отклонения стрелки на полную шкалу и сопротивления измерительного механизма. Для вольтметра с диапазонами 1 вольт, 10 вольт, 100 вольт и 1000 вольт умножающие сопротивления будут следующими:

Рисунок 9 – Пример умножающих сопротивлений

Обратите внимание на значения умножающих резисторов, используемые для этих диапазонов, и насколько они странные. Очень маловероятно, что когда-либо найдется прецизионный резистор 999,5 кОм, поэтому разработчики вольтметров часто выбирают вариант приведенной выше конструкции, который использует более распространенные значения резисторов:

Рисунок 10 – Пример умножающих сопротивлений

С каждым последовательно повышающимся диапазоном напряжений переключатель приводит в действие всё больше умножающих резисторов, в результате чего их последовательные сопротивления складываются до необходимой суммы. Например, если переключатель диапазона установлен в положение 1000 вольт, нам потребуется общее умножающее сопротивление 999,5 кОм. Благодаря этой конструкции измерительного прибора мы получим:

Rобщ = R4 + R3 + R2 + R1

Rобщ = 900 кОм + 90 кОм + 9 кОм + 500 Ом = 999,5 кОм

Преимущество, конечно же, состоит в том, что номиналы отдельных умножающих резисторов встречаются чаще (900 кОм, 90 кОм, 9 кОм), чем некоторые из странных значений в первой схеме (999,5 кОм, 99,5 кОм, 9,5 кОм). Однако с точки зрения пользователя измерительного прибора заметной разницы в работе не будет.

Резюме

  • Расширенные диапазоны измерения напряжения в вольтметрах создаются путем добавления к чувствительному измерительному механизму последовательных «умножающих» резисторов, обеспечивающих точный коэффициент деления напряжения.

Оригинал статьи:

Теги

ВольтметрДля начинающихИзмерениеИзмерительная техникаОбучениеСхемотехникаЭлектрическое напряжение

Сохранить или поделиться

Принцип работы

, чувствительность к напряжению, типы и применение

Вольтметр

с момента своего изобретения всегда был основой измерений силовых цепей. Чтобы убедиться, что ваша схема была спроектирована и собрана правильно, вам понадобятся измерительные приборы на основе измерителя напряжения для ее проверки. В этом посте будет обсуждаться, что такое вольтметр, принцип его работы, уравнение напряжения, чувствительность к напряжению, различные типы вольтметров и их применение.

Что такое вольтметр

Вольтметр — это измерительный прибор, который измеряет напряжение между двумя узлами в электрической цепи.В аналоговых вольтметрах стрелка перемещается по шкале пропорционально напряжению в цепи. Цифровые вольтметры имеют цифровую индикацию напряжения с помощью аналого-цифрового преобразователя.

Постоянно установленные вольтметры используются для контроля генераторов или другого стационарного оборудования. Портативные приборы оснащены мультиметром для измерения силы тока и сопротивления. Это стандартные контрольно-измерительные приборы, используемые в электротехнике и электронике.

Рис.1 — Вольтметр

Принцип работы вольтметра

Его работа основана на принципе закона Ома. Закон Ома гласит: «Напряжение на сопротивлении прямо пропорционально току, проходящему через него». Любой базовый измеритель имеет разность потенциалов на своих выводах, когда через него протекает ток полной шкалы. Символ, представляющий вольтметр, представляет собой круг с заключенной в него буквой V.

Рис. 2 — Принципиальная схема для представления напряжения

Вольтметр всегда подключается параллельно компоненту в цепи, для которой напряжение составляет быть измеренным.На вольтметре постоянного тока есть знаки полярности. Поэтому необходимо подключить плюсовую (+) клемму вольтметра к верхней точке потенциала, а минус (-) клемму — к нижней точке потенциала, чтобы получить отклонение измерителя.

В вольтметре переменного тока нет знаков полярности и его можно подключить в любом случае. Однако и в этом случае вольтметр по-прежнему подключен параллельно к компоненту, для которого измеряется напряжение. Вольтметр с высоким диапазоном напряжения создается путем последовательного соединения сопротивления с измерительным механизмом, который имеет полную шкалу напряжения, как показано на рисунке ниже.

Рис. 3 — Допустимое напряжение полной шкалы

Уравнение напряжения

Последовательное сопротивление называется множителем. Его значение определяется из уравнения напряжения.

Где,

  • В = Напряжение,
  • I м = Ток полной шкалы,
  • R se = Сопротивление в серии и
  • В м = Напряжение полной шкалы

Чувствительность к напряжению

Чувствительность по напряжению — величина, обратная току, необходимому для полного отклонения.

Чем меньше ток измерителя, тем больше будет чувствительность по напряжению. Фактическое сопротивление вольтметра равно чувствительности, умноженной на полное напряжение. Сопротивление вольтметра всегда будет постоянным, даже если показание напряжения может быть не полным.

Типы вольтметров

Рис. 4 — Типы вольтметров

1. Аналоговый вольтметр

Включает в себя показывающие вольтметры отклоняющего типа.Аналоговый вольтметр можно разделить на три категории. Это:

  • Moving Coil Instruments
  • Moving Iron Instruments
  • Электростатический вольтметр

Рис. 5 — Функциональный вид аналогового вольтметра

1.1. Инструменты с подвижной катушкой

Типы приборов с подвижной катушкой Аналоговые вольтметры доступны в двух типах. Это:

  • Инструменты с подвижной катушкой с постоянным магнитом
  • Приборы с подвижной катушкой с динамо-измерителем
1.1.1. Инструменты с подвижной катушкой с постоянным магнитом

Приборы с подвижной катушкой с постоянным магнитом реагируют только на постоянный ток. Эти инструменты имеют постоянный магнит для создания магнитного поля. Катушка намотана на кусок мягкого железа и вращается вокруг собственной вертикальной оси. Когда ток протекает через катушку, в соответствии с уравнением силы Лоренца создается отклоняющий момент.

Рис.6 — Вольтметр с подвижной катушкой

1.1.2. Инструменты с подвижной катушкой динамо-метра

Инструменты с подвижной катушкой динамо-метра состоят из двух катушек. Одна катушка неподвижна, а другая вращается вокруг нее. Взаимодействие двух полей создает отклоняющий момент.

1.2. Инструменты с подвижным утюгом

Инструменты с подвижным утюгом используются в цепях переменного тока и подразделяются на приборы с простым подвижным утюгом, динамо-измерителем и индукционным типом инструментов. Он состоит из мягкого железа, содержащего подвижные и неподвижные катушки.

Рис. 7 — Вольтметр подвижного железа

Взаимодействие потоков, создаваемых этими элементами, создает отклоняющий момент. Диапазоны расширяются за счет включения резисторов последовательно с катушкой.

1.3. Электростатический вольтметр

Он работает по принципу электростатики, когда отталкивание между двумя пластинами заряда отклоняется стрелкой, прикрепленной к пружине.

Эти инструменты используются для измерения постоянного и переменного тока высокого напряжения.Это высокочувствительные приборы, способные измерять как минимальные напряжения заряда, так и напряжение в широком диапазоне — почти 200 кВ.

Рис. 8 — Электростатические вольтметры

2. VTVM и FET VM

Эти типы инструментов могут обрабатывать как напряжения переменного / постоянного тока, так и измерения сопротивления. В этих устройствах между входом и измерителем используется электронный усилитель.

Рис. 9 — Вольтметр с вакуумной трубкой

Если в этом устройстве используется вакуумная трубка в усилителе, то оно называется вакуумным ламповым вольтметром (VTVM).VTVM используются при измерениях переменного тока большой мощности.

Полевой транзистор (FET) — это транзистор, который использует электрическое поле для управления электрическим поведением устройства. Их также называют униполярными транзисторами. Вольтметр на основе полевого транзистора использует это свойство полевых транзисторов при измерении напряжения.

3. Цифровой вольтметр (DVM)

Цифровой вольтметр отображает напряжение с помощью светодиодов или ЖК-дисплеев для отображения результата. Инструмент должен содержать аналого-цифровой преобразователь.Устройство содержит запрограммированный микроконтроллер, АЦП и ЖК-дисплей, чтобы обеспечить точное цифровое отображение аналоговых значений от 0 до 15 вольт постоянного тока.

Рис. 10 — Цифровой вольтметр и мультиметр

Они используются из-за таких свойств, как точность, долговечность и уменьшение ошибок параллакса.

  Подробнее о цифровом вольтметре, его принципе и принципах работы.  

Применения вольтметра

Применения вольтметра включают:

  • Это очень полезно для определения напряжения устройства накопления заряда, например, для проверки напряжения батареи.Например, новый элемент AAA будет иметь около 1,6 В, а умирающий — 1,1 В. Свинцово-кислотный автомобильный аккумулятор на 12 В будет показывать 12,5 В при полной зарядке или 14 В при зарядке от генератора в автомобиле. Если он показывает 10 В, с генератором что-то не так.
  • Его можно использовать только для определения наличия питания в цепи или ее отсутствии, например, в сетевой розетке.
  • Проверка включения или выключения питания устройств.
  • Мы можем рассчитать ток, измерив напряжение на известном сопротивлении.Это полезно, если у вас нет амперметра.
  • Они используются для создания устройства проверки непрерывности с серийной батареей.
  • Они используются для создания омметра с использованием делителя напряжения с неизвестным резистором.
  • Они используются для создания амперметра путем измерения напряжения на шунтирующем резисторе.
  Также читают: 
  Что такое цифровой вольтметр - как он работает, типы, применение, преимущества 
  Коэффициент мощности - треугольник мощности, типы, коррекция коэффициента мощности, применения, преимущества 
  Тиристор - рабочий, VI-характеристики, типы, применение, преимущества и недостатки  

% PDF-1.OoV} Iʳ ު ۯ M_O) ȥN (wx] FwO. ߷ ooW i j ٴ ᆳ ~ e7w; b ئ]? 7 ~ _ Am iovw oa {6ůmw; û {Ӱk a {i0Ln {Nŗ۶jBP2 ո [j0 ݶ (a : & 5ӲVZSӋ \ 0 8-BVIhqoaqb’a ~ 60Ia! H | xA_baql yM i «? ɠ6 & 0+ Размер: 7xDP = A

Открытые учебники | Сиявула

Математика

Наука

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 7A

        • Марка 7Б

        • 7 класс (A и B вместе)

      • Африкаанс

        • Граад 7А

        • Граад 7Б

        • Граад 7 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 8A

        • Сорт 8Б

        • 8 класс (A и B вместе)

      • Африкаанс

        • Граад 8А

        • Граад 8Б

        • Граад 8 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 9А

        • Марка 9Б

        • 9 класс (A и B вместе)

      • Африкаанс

        • Граад 9А

        • Граад 9Б

        • Граад 9 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 4A

        • Класс 4Б

        • Класс 4 (вместе A и B)

      • Африкаанс

        • Граад 4А

        • Граад 4Б

        • Граад 4 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 5A

        • Марка 5Б

        • Оценка 5 (вместе A и B)

      • Африкаанс

        • Граад 5А

        • Граад 5Б

        • Граад 5 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 6А

        • Марка 6Б

        • 6 класс (A и B вместе)

      • Африкаанс

        • Граад 6А

        • Граад 6Б

        • Граад 6 (A en B saam)

    • Пособия для учителя

Наша книга лицензионная

Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

CC-BY-ND (фирменные версии)

Вам разрешается и поощряется свободное копирование этих версий.Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственным ограничением является то, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

CC-BY (безымянные версии)

Эти небрендированные версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, трансформировать, модифицировать или дополнять их любым способом, с единственным требованием — дать соответствующую оценку Siyavula. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.

Что такое вольтметр? — Определение и типы

Определение: Прибор, который измеряет напряжение или разность потенциалов в вольтах, известен как вольтметр. Он работает по принципу, согласно которому крутящий момент создается током, который возникает из-за измеряемого напряжения, и этот крутящий момент отклоняет стрелку прибора. Прогиб стрелки прямо пропорционален разности потенциалов между точками. Вольтметр всегда подключается параллельно цепи.

Символическое изображение вольтметра

Вольтметр представлен буквой V внутри круга вместе с двумя выводами.

Почему вольтметр подключен параллельно?

Вольтметр устроен таким образом, что его внутреннее сопротивление всегда остается высоким. Если он подключается последовательно с цепью, он сводит к минимуму ток, протекающий из-за измеряемого напряжения. Таким образом нарушают показания вольтметра.

Вольтметр всегда подключается параллельно цепи , так что на ней возникает такое же падение напряжения. Высокое сопротивление вольтметра сочетается с сопротивлением элемента, к которому он подключен.И полное сопротивление системы равно сопротивлению элемента. Таким образом, в цепи не возникает препятствий из-за вольтметра, и счетчик дает правильные показания.

Почему вольтметр имеет высокое сопротивление?

Вольтметр имеет очень высокое внутреннее сопротивление, поскольку он измеряет разность потенциалов между двумя точками цепи. Вольтметр не изменяет ток измерительного прибора.

Если вольтметр имеет низкое сопротивление, через него проходит ток, и вольтметр дает неверный результат.Высокое сопротивление вольтметра не позволяет току проходить через него и, таким образом, получают правильные показания.

Типы вольтметров

Вольтметры подразделяются на три вида. Классификация вольтметра представлена ​​на рисунке ниже.

По конструкции вольтметр бывает следующих типов.

Вольтметр PMMC

Он работает по принципу, согласно которому проводник с током помещается в магнитное поле, и из-за силы тока на проводник действует сила.В приборе PMMC возникает ток из-за измеряемого напряжения, и этот ток отклоняет стрелку измерителя.

Вольтметр PMMC используется для измерения постоянного тока. Прибор имеет очень высокую точность и низкое энергопотребление. Единственный недостаток инструмента — он очень дорогостоящий. Диапазон вольтметра PMMC увеличивается за счет последовательного подключения к нему сопротивления.

Вольтметр MI

Инструмент MI означает инструмент с подвижным железом. Этот прибор используется для измерения как переменного, так и постоянного напряжения. В приборах этого типа отклонение прямо пропорционально напряжению катушки. Инструмент с подвижным железом подразделяется на два типа.

  • Подвижный утюг типа аттракциона
  • Инструмент с подвижным железом отталкивающего типа

Электродинамометр Вольтметр

Электродинамометрический вольтметр используется для измерения напряжения как переменного, так и постоянного тока. .В приборах этого типа калибровка одинакова как для измерения постоянного, так и переменного тока.

Выпрямительный вольтметр

Прибор такого типа используется в цепях переменного тока для измерения напряжения. Выпрямительный прибор преобразует величину переменного тока в величину постоянного тока с помощью выпрямителя. И затем сигнал постоянного тока измеряется прибором PMMC.

Ниже приведена классификация приборов относительно отображения выходных значений.

Аналоговый вольтметр

Аналоговый вольтметр используется для измерения переменного напряжения. Показывает показания с помощью указателя, закрепленного на калиброванной шкале. Прогиб стрелки зависит от действующего на нее крутящего момента. Величина развиваемого крутящего момента прямо пропорциональна измерительному напряжению.

Цифровой вольтметр

Вольтметр, отображающий показания в числовой форме, известен как цифровой вольтметр. Цифровой вольтметр дает точный результат.

Прибор, который измеряет постоянный ток, известен как вольтметр постоянного тока, а вольтметр переменного тока используется в цепи переменного тока для измерения переменного напряжения.

Принципиальная схема цифрового вольтметра

OLD с использованием CA3162 и CA3161

Эта простая принципиальная схема цифрового вольтметра экономична, проста в использовании. Поскольку она меньше типичной схемы, я полагаю, что после того, как я представил эту схему. Вам обязательно понравится.

Примечание. Также вы можете видеть следующие проекты:

Эту схему можно использовать как универсальную. Характеристики схемы:

— 3-значный цифровой дисплей с 7-сегментным светодиодным индикатором.
— Максимальное отображение +999 мВ и максимальное отрицательное -99 мВ.
— Диапазон измерения регулировки не ограничен сопротивлением, только два варианта.
— Использование одиночного источника питания с напряжением + 5 В не требуется для использования отрицательной печатной платы.
Сердце в работе схемы — это микросхема CA3162E.Которая преобразует аналоговые сигналы в цифровые сигналы в аналого-цифровом преобразовании с двойным наклоном.
Выход IC будет отображать мультиплексный двоичный код. так легко построить, потому что проводов к дисплею немного.

Для входного сигнала мы делимся на два способа:

Первый: 1V.IN для измерения постоянного напряжения, которое имеет напряжение не более 1 вольт.
Второй: Но для тех, кто хочет измерить напряжение выше 1В. Введите входы в точку Vi и измените Rx, Ry по своему усмотрению.
Например: вы хотите, чтобы максимальное значение измерения составляло 99,9 Вольт, вы должны использовать значение Rx = 10M, Ry = 100K
И в диапазоне измерения 999V вы должны использовать Rx = 10M и Ry = 10K и т. Д.
OR… ..

Ry можно рассчитать по формуле:
Ry = 10,000,000 / (Ei-1)
Когда Rx = 10M фиксировано.
Ei: это мера звонила как хотите.
C2 — интегрирующий конденсатор.

Компоненты этой схемы

IC1: CA3162E, аналого-цифровой преобразователь для 3-значного дисплея
IC2: CA3161, драйвер декодера-декодера BCD в семисегментный
Q1, Q2, Q3: BC548, 45V 100mA NPN-транзистор

0.Резисторы 25 Вт, допуск: 5%
R1: 1M
R2: 470 Ом
Rx: см. Текст
Ry: см. Текст, например: 100 кОм при 100 В

VR1: 50 кОм, Trimpot 18T
VR2: 10K, Trimpot 18T
Полиэфирный конденсатор
C1: 0,01 мкФ 63 В
C2: 0,22 мкФ 63 В
C3: 0,1 мкФ 63 В
C4: 100 мкФ Электролитические конденсаторы 25 В
Дисплей: см. Схему.

Как собрать этот проект

Прежде всего, мы делаем печатную плату и размещаем все компоненты как Рисунок 3. На что следует обратить внимание, так это на полярность электролитических конденсаторов и диодов, на светодиодном 7-сегментном дисплее правильно.Контакт IC не является ошибкой.


Рисунок 3 схемы печатных плат и компонентов этого проекта.

Настройка, у вас должно быть опорное напряжение и цифровой вольтметр в порядке. Сравнить измерения. А затем…
VR1 для настройки ZERO ADJ, VR2 для настройки КАЛИБРОВКИ схемы.
Эта схема предназначена для использования с блоком питания от 6 В до 12 В, в нем IC3-uA7805 используется в качестве регулятора постоянного напряжения 5 Вольт.

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Что такое цифровой вольтметр? Блок-схема, работа, типы и применение цифрового вольтметра

Определение : Цифровой вольтметр — это устройство, чувствительное к напряжению . Он измеряет переменное напряжение или постоянного тока. и отображает значение непосредственно в числовой форме вместо отклонения указателя. DVM — это аббревиатура от цифрового вольтметра . DVM был впервые изобретен в 1954 Эндрю Кей .

Существует множество факторов, влияющих на точность измерения цифрового вольтметра (DVM). В основном это температура, входное сопротивление, изменение напряжения источника питания и т. Д.

Как мы знаем, аналоговый прибор дает результаты по отклонению стрелки на на непрерывной шкале. Напротив, цифровой прибор выдает результаты в виде дискретных цифр . Таким образом обеспечивается точность и универсальность.

Входной диапазон DVM может варьироваться от ± 1 В до 1000 В .Precision DVM предлагает входное сопротивление 1 ГОм или высокое для диапазона напряжений менее 20 В .

Блок-схема цифрового вольтметра

На рисунке ниже показана блок-схема типичного цифрового вольтметра.

Как видим, блок-схема состоит из аттенюатора с аналого-цифровым преобразователем после него. Этот блок АЦП в основном различает различные типы цифровых вольтметров, которые мы обсудим позже.

Секция счетчика также используется в схеме, которая обычно представляет собой декадный счетчик . Система считывания используется для отображения цифрового напряжения входного сигнала.

Работа цифрового вольтметра

Давайте теперь посмотрим на подробную схему цифрового вольтметра. Рисунок ниже поможет вам понять работу DVM.

Секция аттенюатора состоит из последовательного сопротивления, которое ослабляет входной сигнал.Напряжение в точке A будет точно таким же, как входное напряжение V в .

По правилу деления напряжения ясно, что напряжение на B будет меньше, чем напряжение на A. Аналогично, напряжение на C определенно будет меньше, чем напряжение в обеих точках A и B. Таким образом, секция аттенюатора работает.

Теперь, что приходит в голову, это то, что нужно для этого аттенюатора в начале схемы?

Причина этого в том, что размещенный здесь аттенюатор минимизирует избыточное напряжение, которое может повредить другие компоненты устройства.По сути, это предварительно определенная резистивная сеть , которая выполняет ослабление для защиты цепи.

Здесь затухание называется декадным затуханием, поскольку это цифровой вольтметр, и нам требуется десятичного отсчета . Это означает, что если произойдет затухание, оно будет в степени 10 .

Итак, на входе АЦП у нас будет входное напряжение Vin / N.

: N = 1, 10, 100, 1000

Используемый в схеме АЦП преобразует аналоговый сигнал в цифровой, чтобы обеспечить цифровой выход.Цифровой сигнал — это сигнал, имеющий 2 уровня , то есть 0 и 1 .

Итак, вход ADC V в / N преобразуется в цифровой сигнал. Это даст нам последовательность цифровых импульсов. Один импульс на 1 мВ, поскольку на АЦП мы приняли разрешение 1 мВ / шаг.

Эти цифровые импульсы затем поступают в счетчик. Здесь мы использовали декадный счетчик . Десятичный счетчик считает в десятичной системе счисления, несмотря на двоичную.

Счетчик в целом состоит из трехдесячных счетчиков , которые соединены каскадом.Эти декадные счетчики могут считать от 0-9 , то есть 10 отсчетов . Следовательно, эти три будут считать до 1000.

DC 7447 преобразует значение BCD в 7-сегментный дисплей . Это означает, что теперь введенное значение будет отображаться здесь в цифровом формате. Селектор десятичной точки в конце схемы выберет позицию десятичной точки в соответствии с величиной напряжения.

Типы цифровых вольтметров

Классификация DVM основана на различных методах преобразования АЦП —

  1. Тип рампы DVM

В ЦВМ линейного типа работа в основном зависит от измерения времени.Время, за которое линейное напряжение изменяется от уровня входного напряжения до нулевого или наоборот. Электронный счетчик временного интервала используется для измерения временного интервала, и счет отображается цифрами как выходной сигнал вольтметра.

Рассмотрим блок-схему и принцип работы цифрового вольтметра рампы.

Здесь, как мы видим на рисунке ниже, показано отрицательное линейное напряжение. Это линейное напряжение сравнивается с неизвестным напряжением.Входной компаратор, используемый в схеме, генерирует импульс, когда линейное напряжение становится равным измеряемому напряжению.

Теперь линейное напряжение падает до нулевого значения. Компаратор заземления, используемый в схеме, генерирует стоп-импульс. Этот стоп-импульс закрывает ворота.

Время открытия ворот составляет , пропорционально значению входного напряжения . Используемый здесь мультивибратор частоты дискретизации используется для определения частоты, с которой начинается цикл измерения.

2. Двухканальный интегрирующий тип DVM

На рисунке ниже показана блок-схема DVM с двухканальной интеграцией.

В течение фиксированного интервала времени аналоговый вход подается на интегратор через переключатель S. Уровень входного напряжения повышается в компараторе до некоторого желаемого положительного значения, как мы можем видеть на рисунке ниже.

В конце фиксированного интервала времени скорость увеличения напряжения будет пропорциональна входному напряжению.

В это время счетчик установлен на 0, и переключатель переводит на опорное напряжение . Теперь выходной сигнал интегратора начнет уменьшаться и падать, пока не станет ниже опорного напряжения компаратора. В это время управляющая логика получит сигнал, чтобы остановить отсчет.

Счетчик, показываемый счетчиком, который пропорционален входному напряжению, будет измеренным значением и, следовательно, будет отображаться на цифровом считывании.

3. Интегрирующий тип DVM

В этой категории цифровых вольтметров истинное значение входного напряжения измеряется в течение фиксированного времени измерения.

Здесь используется метод интеграции, который использует преобразование напряжения в частоту . Этот преобразователь напряжения в частоту действует как система управления с обратной связью . Это в основном определяет скорость генерации импульсов, пропорциональную величине приложенного входного напряжения.

В технике преобразования напряжения в частоту генерируется последовательность импульсов .Частота этих импульсов зависит от измеряемого напряжения.

Затем подсчитываются эти импульсы, появляющиеся в определенном временном интервале. В конце концов, частота импульсов является функцией входного напряжения, а количество импульсов является показателем входного напряжения.

4. Последовательное приближение DVM

В этой категории DVM используемый АЦП использует преобразователь последовательного приближения . Таким образом он назван так. Они способны производить 1000 чтений в секунду.

Вначале пусковой импульс подается на мультивибратор старт / стоп. Из-за этого старший бит регистра управления устанавливается на высокий уровень, а все остальные биты на низкий. Итак, для 8-битного управляющего регистра чтение будет 10000000.

Таким образом, выходное напряжение ЦАП становится половиной от опорного напряжения.

Теперь компаратор сравнивает выход преобразователя с входным напряжением и выдает выходной сигнал, который заставит регистр управления сохранить 1 в своем старшем разряде.

Кольцевой преобразователь, используемый в схеме, продвигается вперед на один счет, таким образом сдвигая 1 во втором. Это приведет к тому, что старший бит регистра управления и его чтение будут равны 11000000.

Таким образом, ЦАП увеличивает свое задание на один шаг, и происходит еще одно сравнение входного напряжения с эталонным. Таким образом, через последовательное приближение продолжается цикл измерения. По достижении последнего отсчета цикл измерения останавливается.

Выход в цифровом формате в регистре управления показывает окончательное приближение входного напряжения.

Преимущества цифрового вольтметра
  1. DVM обеспечивает числовые показания, которые устраняют ошибки наблюдений . Таким образом обеспечивается лучшая читаемость .
  2. DVM предлагает лучшую точность и универсальность по сравнению с аналоговыми вольтметрами.
  3. DVM имеет на более высокую скорость снятия показаний напряжения по сравнению с аналоговыми приборами.
  4. Выход DVM может быть передан в устройства памяти для дальнейших вычислений.
  5. Уменьшенный размер DVM увеличивает портативность если прибор.

DVM обеспечивает точность 0,5% + 1 разряда, а диапазон рабочих температур составляет от -5 C до 55 ⁰C .

(решено) — Обычный вольтметр переменного тока со средним показанием (вольт-омный мультиметр) … (1 ответ)

Электромеханические измерительные механизмы переменного тока бывают двух основных типов: основанные на конструкции механизма постоянного тока и разработанные специально для переменного тока. использовать.

Движение измерителя с подвижной катушкой с постоянным магнитом (PMMC) не будет работать правильно, если оно напрямую подключено к переменному току, потому что направление движения стрелки будет изменяться с каждым полупериодом переменного тока. (Рисунок ниже)

Движение счетчика с постоянными магнитами, как и двигатели с постоянными магнитами, — это устройства, движение которых зависит от полярности приложенного напряжения (или, вы можете думать об этом с точки зрения направления тока).

Пропуск переменного тока через этот механизм измерителя Д’Арсонваля вызывает бесполезное трепетание стрелки.

Для использования механизма измерения постоянного тока, такого как конструкция D’Arsonval, переменный ток должен быть выпрямлен на на постоянный.

Это проще всего осуществить с помощью устройств, называемых диодами . Мы видели диоды, используемые в примере схемы, демонстрирующей создание гармонических частот из искаженной (или выпрямленной) синусоидальной волны. Не вдаваясь в подробности того, как и почему диоды работают именно так, просто помните, что каждый из них действует как односторонний клапан для протекания тока.

Стрелка в каждом символе диода указывает на допустимое направление тока.

Расположенные в виде моста, четыре диода будут служить для управления переменным током через движение счетчика в постоянном направлении на всех этапах цикла переменного тока:

При прохождении переменного тока через этот счетчик выпрямленного переменного тока, он будет двигаться в одном направлении.

Еще одна стратегия для практического движения измерителя переменного тока заключается в изменении конструкции механизма без присущей типам постоянного тока чувствительности к полярности.

Это означает отказ от использования постоянных магнитов. Вероятно, самая простая конструкция заключается в использовании немагнитной железной лопасти для перемещения иглы против натяжения пружины, при этом лопатка притягивается к неподвижной катушке с проволокой, на которую подается напряжение переменного тока, которое необходимо измерить, как показано на рисунке ниже.

Электромеханический счетчик с металлической крыльчаткой.

Электростатическое притяжение между двумя металлическими пластинами, разделенными воздушным зазором, является альтернативным механизмом для создания силы перемещения иглы, пропорциональной приложенному напряжению.

Это работает для переменного тока так же хорошо, как и для постоянного тока, или, я бы сказал, так же плохо! При этом задействованные силы очень малы, намного меньше, чем магнитное притяжение между возбужденной катушкой и железной лопастью, и поэтому эти «электростатические» движения измерителя имеют тенденцию быть хрупкими и легко нарушаются физическим движением.

Добавить комментарий

Ваш адрес email не будет опубликован.