Подключение трехфазного двигателя: Схема подключения трехфазного асинхронного двигателя 380 на 220

Содержание

Подключение трехфазного двигателя

Трехфазные асинхронные электродвигатели имеют значительно больший вращающий момент, чем однофазные. Поэтому многие самодеятельные мастера стремятся использовать их при реализации своих проектов, а для домашней мастерской станок с трехфазным двигателем – это просто находка. Однако на пути прогресса стоит банальнейшее препятствие – подключение трехфазного двигателя к бытовой сети 220 вольт напрямую технически невозможно. Традиционно для этого используется схема со сдвигом фаз посредством электролитического конденсатора, однако она сводит на нет все преимущества электрической машины такого типа – она становится такой же нестабильной, что и ее однофазный аналог, а ее мощность падает минимум на треть. Сегодня мы предлагаем вам ознакомиться с более совершенным способом включения асинхронной трехфазной электрической машины в бытовую однофазную сеть 220 вольт 50 Гц. Для этого понадобится преобразователь частоты ESQ-A500-021.

Знакомимся с ESQ-A500-021

Преобразователи частоты этой серии являются однофазными – они подключаются к бытовой сети переменного тока 220 вольт 50 Гц. Однако на выходе у них три клеммы, линейное напряжение (измеренное между фазой и землей) на каждой из которых равно 220 вольт, а сдвиг фаз между ними 1200.  Это нормальные условия для того, чтобы питать трехфазный двигатель мощностью от 0,2 до 2,2 кВт. Используя этот прибор, вы сможете управлять и частотой, и направлением вращения его вала.

Собираем электрическую установку

Чтобы подключение трехфазного двигателя было выполнено по всем правилам, необходимо соблюсти нормы, установленные Правилами Эксплуатации Электроустановок.

В первую очередь организуется возможность полного обесточивания на случай аварии и для безопасного проведения ремонта. Для этого можно использовать механический рубильник с так называемыми ножевыми контактами. Обычно в их конструкции предусмотрена установка трех плавких предохранителей. Однако лучший вариант – это автоматический выключатель (АВ). Он меньше размерами, а кроме перегрузки по току (короткое замыкание), защищает еще и от перегрева в цепи. Вам необходимо взять так называемый двухполюсный АВ, подключаемый одновременно к фазной линии и нейтрали. Остается выбрать лишь номинал тока срабатывания. Он должен быть в три раза больше, чем тот, что на выходной клемме частотного преобразователя. Например, у вас есть асинхронный трехфазный двигатель мощностью 0,75 кВт, для управления им подходит модель ESQ-A500-021-0,75. Номинальный ток на выходе у него 4,5 ампера. Поэтому берите автоматический выключатель на 16 ампер. Менее мощный будет отключаться во время пуска.

Второй элемент – так называемое УЗО или Устройство Защитного Отключения, которое необходимо на случай нарушения целостности изоляции силовых кабелей, из-за чего при касании корпуса электрического прибора можно получить удар током. Включается он последовательно с АВ, однако надо не перепутать фазную линию с нейтралью: тот провод, при касании которого светится лампа отвертки-пробника подключается к клемме L, а другой к N. Номинал тока утечки выбираем как для группового потребителя – 30 мА.

Шина заземления в каждой электроустановке должна присутствовать обязательно! В магазинах электротехнических товаров их продают в виде бронзового бруска с отверстиями и винтовыми зажимами. Они бывают разной длины. Подключать к ним можно только клеммы, обозначенные PE или специальным значком, похожим на ↓. Она служит для подключения к заземляющему контуру. Обратите внимание на то, что клемма N – это так называемая техническая нейтраль, обеспечивающая работу электротехнических устройств. Ее еще называют занулением, поскольку она имеет нулевой потенциал относительно фазного провода или клеммы. По ней во время работы течет ток, она так же опасна, как и токоведущая шина. Соединять ее с корпусом приборов нельзя!

Частотные преобразователи ESQ всех серий имею одинаковую маркировку силовых клемм. У однофазных приборов 021 входные зажимы объединены в группу Power, имеют обозначение L1 и N. Выходные – Motor и U, V, W или T1, T2, T3. Рядом с ними есть клеммы для  подключения тормозного резистора PR. Их можно использовать, если вы хотите, чтобы двигатель останавливался после снятия питания без выбега – инерционного прокручивания – вала.

Подключение трехфазного двигателя  может осуществляться как по схеме «Звезда», тогда у него на обмотках 220 вольт, так и «Треугольник», с обмотками под напряжением 380 вольт. При использовании однофазного частотного преобразователя применяется схема «Звезда», как наименее нагруженная по току во время пуска. Треугольника однофазная электроустановка не выдержит, будут гореть плавкие предохранители или срабатывать АВ.

Все элементы, кроме двигателя, устанавливаются внутри металлического ящика с дверцей, запирающейся на ключ. Для монтажа используется DIN-рейка.

Подключение дистанционного управления

Управлять электродвигателем можно с помощью кнопок FWD (вперед), REV(назад) и STOP на центральной панели частотника.

Однако лучше это делать дистанционно, чтобы не лезть в силовой ящик. На схеме указаны клеммы, к которым подключаются кнопки пуска и реверса. Ниже находится блок, который управляет частотой вращения. К клеммам подключается стандартный потенциометр номиналом 220 вольт. Обозначения клемм соответствуют тем, что расположены на приборе выше силовых контактов.

Настройка и пробное включение

Настройка подключения электродвигателя к частотному преобразователю сводится к установке частоты питающего напряжения. Это делается верньером на лицевой панели прибора. Перед этим надо нажать и удерживать в течение 5 секунд кнопку SET. Они указаны на рисунке стрелкой. Обычно ограничиваются номиналом 60 Гц, для большинства выполняемых в домашних условиях задач этого достаточно.

Включение осуществляется по следующей схеме:

— Убедитесь, что все элементы соединены согласно схеме, нет кабелей с оголенными и неподключенными концами.

— Подайте питание – рычаг АВ поднять вверх. На частотнике загорятся индикаторы Hz и Mon.

— Нажмите кнопку, подключенную к клемме STF.

— Поверните бегунок потенциометра по часовой стрелке. Двигатель должен начать вращение.

— Нажмите кнопку STR. Двигатель изменит направление вращения.

Если мотор вращается не в ту сторону, то отключите электроустановку от питания и поменяйте местами два фазных провода на выходных клеммах частотного преобразователя.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Как подключить 3х фазный двигатель на 380 в: схема подключения электродвигателя

На чтение 5 мин. Просмотров 116 Опубликовано

Те, кто на постоянной основе работает с электрикой, знают, что трехфазные двигатели являются более удобными, чем однофазные на 220 Вт. Если в обычном гараже при этом есть питающий кабель на 3 фазы, то разумней  выгодней всего поставить станок на 380 Вт.

Особенности двигателя

Перед тем, как подключить трехфазный двигатель, стоит разобраться с его конструктивными особенностями. В основе устройства две крупные детали: подвижный ротор и статический статор.

У второй части есть выемка, куда ложится обмотка. При ее расположении продумывают все моменты, чтобы она не мешала остальным деталям. Угловое расстояние при этом оставляют примерно в 120 градусов. Благодаря обмотке появляется две пары полюсов. От их количества меняется частота вращения ротора, а также его мощность и КПД.

Когда происходит подключение трехфазного двигателя, по обмоткам идет ток. За счет этого появляется магнитное поле, которое контактирует с обмоткой и приводит элемент в действие. За счет этих процессов появляется усилие, оно запускает подвижную часть, влияя на нее через разные промежутки времени.

Если схема подключения электродвигателя предполагает наличие только одной фазы и при этом не проводится дополнительная подготовка, то ток пройдет через одну обмотку. Силы воздействия окажется недостаточно для смещения ротора и поддерживания оборотов. По этой причине используют разные виды конденсаторов, которые поддерживают 3х-фазный двигатель на стабильной динамике.

Определение схемы

Если не разобраться с тем, как соединяются между собой фазы обмоток, то включить устройство не удастся. В электродвигателях на 3 фазы соединение происходит в треугольник или звезду, иногда эти методы комбинируют между собой.

Все основные параметры устройства указаны на шильде, поэтому по ней чаще всего определяют возможности мотора. Помимо технических параметров там есть номинал рабочего напряжения. Среди обозначений есть параметры подключения двигателя на 220/380 В. Многое здесь зависит от производителя, иногда указывают обозначения сразу для треугольника и звезды, это предпочтительный вариант.

Шильд есть не на всех двигателях, иногда подключение электродвигателя на 380 В невозможно только потому, что информация с таблички стерлась. В этом случае схему узнают после открытия блока. Когда под крышкой находятся 6 выводов с клеммными соединениями, тип обмотки определить проще всего. Модели с тремя выводами и внутренним способом подключения доставляют больше проблем. Тут для получения информации придется полностью разобрать мотор.

Как подключить электродвигатель с 380 на 220 В?

Схема подключения трехфазного двигателя зависит от конструкции устройства, требуемых характеристик, имеющихся нагрузок. Обычно для этого используют конденсаторы, но определить их количество удается не всем, поэтому мы перечислим несколько доступных вариантов.

Конденсаторы

Для запуска устройства потребуется пусковой и рабочий конденсатор. Первый используется редко, поскольку за счет емкости увеличивается напряжение в обмотке и создается большое усилие.

На рисунке показано, что создается однофазное напряжение, которое концентрируется между несколькими конечными элементами. Двигатель соединяется с двумя обмотками, а третья проходит через переключатели, которые воздействуют на конденсаторы.

Включение двигателя с 380 на 220 В происходит в несколько этапов:

  1. После запуска устройства контакты SA1 и SA2 двигаются, поэтому по обмотке проходит ток.
  2. Если отпустить кнопку пуска, то другой контакт замкнется. Фаза сместится на конденсатор С1. Первый контакт разомкнется и С2 перестанет работать.
  3. Характеристики вернутся к номинальным значениям и двигатель заработает в обычном темпе.

В этом случае ротор вращается только в одну сторону, если используется сеть на 220 В. Для реверсивных движений придется поработать над точками подключения или выбрать другой метод.

Пускатель

При создании высокой пусковой и рабочей нагрузки лучше использовать контактор. Он защитит двигатель на 380 В от поломки и при этом зафиксирует требуемые показатели.

Включение происходит после нажатия пусковой кнопки. Она замыкает цепь и напряжение идет на основной конденсатор. Когда ток идет по катушке, то контакты К 1.1 и К 1.2 замыкаются. Первая пара используется для отключения электролинии, а вторая влияет на пусковую кнопку. После этого она отключается и цепь размыкается.

Реверс

В некоторых ситуациях используется не только прямое, но и обратное вращение двигателя, чтобы при подключении сохранялась последовательность смены напряжения. Некоторые вручную влияют на деталь, но это подходит только для единичных случаев. Когда менять направление требуется по несколько раз в час, проще всего предусмотреть автоматический реверс.

Для этого используется коммутатор с несколькими контактами, которые имеют обратную логику. Схему подбирают в зависимости от технических особенностей устройства. Некоторые используют для этого поворотный переключатель или тумблер, который ставят на место пусковой кнопки.

Схема остается такой же, как при включении конденсаторов. Разница заключается только в наличии двух положений у переключателя (SA). В дном из них напряжение передается с фазы на конденсатор, а во втором оно переходит от проводника. При использовании тумблера происходит чередование обмоток, за счет этого быстро появляется противоположное направление.

Без конденсаторов

Некоторые предпочитают подключать двигатель без каких-либо емкостных элементов. Для этого просто разводят полупроводниковые ключи транзистором, чтобы мощность оставалась стабильной.

После этого напряжение подключается к двум точкам мотора. Затем напряжение идет на третью точку и переходит на времязадающую цепочку. Интервал сдвига регулирует магазин сопротивления обычным бегунком, затем конденсатор пропускает сигнал на симистор. Если работа проходит на высоких оборотах, то используется два симистора и несколько времязадающих элементов.

Независимо от выбранного метода пусковая кнопка иногда перестает работать. Проблемы с ней возникают в 70% случаев, но для их решения достаточно почистить контакты, поскольку они подгорают при появлении высокого напряжения.

Схема подключения трехфазного двигателя через тепловое реле

Что важно знать?

Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).

При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:


Как видно на бирке, номинальный ток электродвигателя 13.6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.

При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров. К примеру, как на реле РТИ-1314:

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Реле снабжены двумя группами контактов нормально замкнутой и нормально открытой группой, которые подписаны на корпусе 96-95, 97-98. На картинке ниже структурная схема обозначения по ГОСТу:Давайте разберемся каким образом собрать схему управления которая бы отключала двигатель от сети при возникновении аварийной ситуации перегрузки или обрыва фазы. Из нашей статьи про подключение двигателя через магнитный пускатель, вы уже узнали некоторые нюансы. Если еще не успели ознакомится то просто перейдите по ссылке.

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
– зачем шесть контактов в двигателе?
– а почему контактов всего три?
– что такое «звезда» и «треугольник»?
– а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
– а как измерить ток в обмотках?
– что такое пускатель?
и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.

Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы – C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая – C2 и C5, а третья – C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.

Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):

Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).

Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):

3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
– использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

– использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:

При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса

Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).

Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

– регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
– при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
– при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.

Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).

Магнитный пускатель наиболее часто используется для управления электродвигателями. Хотя есть у него и другие сферы применения: управление освещением, отоплением, коммутация мощных нагрузок. Их включение и отключение может выполняться как вручную, при помощи кнопок управления, так и с применением систем автоматики. О подключении кнопок управления к магнитному пускателю мы и поговорим.

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки. У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Для дистанционного управления используются кнопочные станции, содержащие две кнопки в одном корпусе. Станция соединяется с местом установки пускателя с помощью контрольного кабеля. В нем должно быть не менее трех жил, сечение которых может быть небольшим. Простейшая рабочая схема пускателя с тепловым реле

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Схема управления пускателем на 220 В

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже). Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Теперь можно подключить провода или кабели силовой цепи, не позабыв о том, что рядом с одним из них на входе присутствует провод на схему управления. И только с этой стороны на пускатель подается питание (традиционно – сверху). Попытка подключить кнопки на выход пускателя ни к чему не приведет.

Схема управления пускателем на 380 В

Все то же самое, но для того, чтобы катушка заработала, проводник от вывода «А2» надо подключить не к нулевой шинке, а к любой другой фазе, не использующейся до этого. Вся схема будет работать от двух фаз.

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать. Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

В описанном выше случае для этого потребуется от вывода «А2» отправить провод на контакт теплового реле, а от второго его контакта – уже туда, где до этого был подключен проводник. В случае с управлением от 220 В это – нулевая шинка, с 380 В – фаза на пускателе. Срабатывание теплового реле у большинства моделей никак не заметно.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает контакты при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Ещё одно интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

Схемы подключения трехфазного двигателя к однофазной сети

Трехфазные двигатели асинхронного типа широко применяются как в быту, так и в промышленности. Ими оборудованы станки, циркулярные пилы, бетономешалки, компрессоры.

Двигатели, которые применяются в производстве обычно питаются от трехфазной сети, что почти невозможно для обычных людей в домах. Поэтому возникает большая необходимость подключения трехфазных двигателей в однофазную сеть.

В данной статье я постараюсь как можно более детально описать, как решить данную проблему.

Содержание страницы

Что такое трехфазный двигатель

Итак, из чего же состоит трехфазный двигатель? Основными конструкционными элементами такого типа двигателей является подвижный ротор и неподвижный статор.

В пазы статора проложены проводники трех обмоток, концы которых выводятся в коробку распределения. Для соединения обмотки стартера используются две схемы: звезда (для 380 вольт) и треугольник (для 220 вольт).

В паспорте двигателя находится информация о рабочем напряжении обмоток, а также схемы их подключения. На корпусе также крепятся специальные таблички, на которых указана вся необходимая информация по подключению и характеристикам.

Если трехфазный двигатель подключен в сеть на три фазы, то в таком случае ток проходит по очереди  по всех его обмотках. В результате этого возникает магнитное поле, которое действует на ротор, заставляя его вращаться. При подключении такого же двигателя в однофазную сеть, создать необходимый крутящий момент для работы мотора уже не получится.

Схемы подключения трехфазного двигателя

Схема подключения «Звезда» – это способ, при котором концы обмоток будут соединены в одной «нейтральной» точке. Преимуществом данной схемы является относительно небольшой нагрев корпуса, благодаря чему не обязательно применять его охлаждение, а также разгон двигателя будет достаточно плавным, в следствии чего напряжение будет более стабильным.

Схема подключения «Треугольник» – это способ, при котором обмотки соединяются последовательно (конец одного присоединяется к концу другого). Это позволяет ему работать с максимальной мощностью, поэтому повышается как вращательный момент, так и тяговые способности.

Теоретически можно проводить подключение трехфазного двигателя как схемой «Звезда», так и схемой «Треугольник», но в схеме «Звезда» есть один большой недостаток – это слишком большая потеря мощности, в следствии чего такой мотор может банально не справиться с возлагаемыми на него задачами, хоть и свои плюсы он все же имеет. Мотор со схемой «Треугольник» мощнее в три раза «Звездочного», поэтому он подойдет для решения большинства производственных задач.

Начала и концы обмоток (различные варианты)

 

Асинхронный трехфазный двигатель обладает шестью выводами, которые представляют собой три обмотки, у которых есть начало и конец. Чтобы правильно подключить двигатель необходимо правильно определить начало и конец каждой из обмоток. Таких вариантов есть достаточно большое количество, поэтому остановлюсь на наиболее популярных, которые применимы в домашних условиях.

Вариант 1

Итак, для определения начала и конца обмотки нам прежде всего нужно определить для каждой из обмоток выводы (определить каждую из обмоток). Для этого нам нужно найти цепь, которая будет между концом и началом обмотки, а помочь нам в этом сможет мультиметр, или если же такого под рукой не найдется, тогда можно применить двухполюсный указатель с функцией определения цепи. При использовании мультиметра один его конец подключаем к одному выводу, а другим концом мультиметра касаемся поочередно к каждому из пяти оставшихся выводов.

Между началом и концом одной обмотки в режиме измерения сопротивления значение у нас будет близким к нулю, а между остальными выводами – бесконечным. Далее определяем начало и кон

ец обмотки. Для начала рассмотрим статор.

В нем есть три обмотки, и если сделать соединение одного конца обмотки к концу другой обмотки и подать на один конец подать напряжение, то в месте подключения электродвижущая сила (ЭДС) будет примерно равна нулю, поскольку ЭДС одной обмотки компенсирует другую, причем в третьей обмотке ЭДС не будет наводится.

Вариант 2

Второй вариант – если вы соединили конец одной обмотки с началом другой. В этом случае в каждой из обмоток наводится ЭДС, в результате чего они суммируются. В следствии электромагнитной индукции в третьей обмотке наводится ЭДС.

При применении данного метода представляется возможным найти конец и начало каждой из обмоток. Чтобы это сделать нужно подключить к выводам одной из обмоток обычную лампочку, или вольтметр, затем выберите два любых других вывода и соедините их между собой. В результате у вас останется два вывода, которые подключаем в сеть 220 вольт. Если получилось так, что соединены конец одной обмотки с концом другой обмотки, вольтметр покажет близкое

 

к нулю значение.

В случае правильного подключения конца одной обмотки к началу другой, то вольтметр покажет значение в диапазоне от 10В до 60В, в зависимости от конструктивных особенностей двигателя. Повторяем данную процедуру еще дважды, до того момента, пока не определим конец и начало всех обмоток. Рекомендую результаты записывать, дабы не повторять процедуру, запутавшись в результатах.

Схемы подключения трехфазного двигателя в однофазную сеть

При бытовой сети для лучших показателей мощности более целесообразным является подключение по схеме «Треугольник». В таком случае показатель мощности может достигать до 70% от номинальной.

Для подключения 2 контакта распределительной коробки подключаются напрямую подсоединяются к проводам однофазной сети, третий же – через конденсатор к проводам сети или к одному из первых контактов. Возможен пуск двигателя и с помощью рабочего конденсатора, но есть риск того, что он будет очень медленно набирать обороты или не запустится вовсе в случае, если двигатель имеет нагрузку.

Для быстрого пуска тогда нужен еще один дополнительный пусковой конденсатор, но задействовать его можно только на 2-3 секунды, чтобы двигатель сам по себе запустился и набрал обороты. Более удобным способом является запуск двигателя с помощью специального выключателя, в котором несколько контактов замыкаются при нажатии этого выключателя, а при отпускании контакты размыкаются, но все, обеспечивая работу двигателя. Также можно управлять и направление вращения двигателя с помощью специального конденсатора и тумблера. За направление вращения двигателя отвечает контакт, к которому подсоединена третья обмотка.

По схеме «Звезда» подключаются электродвигатели, у которых сами обмотки рассчитаны на показатель напряжения 200/127В.

Есть возможность подключить также однофазный двигатель в однофазную сеть с помощью частотного преобразователя. Это специальное устройство, которое предназначено для регулирования и управления двигателей переменного тока. Он способен изменять и регулировать частоту вращения с помощью изменения напряжения.

Применяется для подключения двигателя в сеть 220В. Также он способен устранить некоторые недостатки запуска через конденсатор. Среди них:

  • сильный шум;
  • сильный нагрев;
  • достаточно низкий КПД.

Преобразователь подключают в сеть только 220В, а запас мощности должен быть не менее 2кВт. Во время работы трехфазного двигателя в однофазной сети будут наблюдаться броски напряжения, а если у преобразователя показатель мощности будет достаточно низкий, привод будет работать нестабильно. Чтобы правильно подключить двигатель, нужно выполнить следующие действия:

  1. Проверьте визуальную составляющую двигателя. Все крышки должны плотно прилегать друг к другу, а внешние повреждения – отсутствовать. Измеряем сопротивление обмоток и определяем начала и концы обмоток.
  2. Соедините обмотки по схеме «Треугольник». Если используете для подключения преобразователь частоты, нужно достигнуть межфазного напряжения в 220В при соединении обмоток.
  3. Подключите сам двигатель к частотному преобразователю с помощью специальных экранированных кабелей, характеристики которых соответствуют требуемым мощностям.
  4. Преобразователь частоты обычно самостоятельно проведет настройку и корректировку показателей после запуска.

Обычно трехфазные двигатели не подключают в однофазную сеть, поскольку такая сеть существенно меняет набор характеристик двигателя. В промышленности такой способ подключения применяется только в крайних случаях, например для экстренного запуска оборудования и только маломощных двигателей.

Общие обмотки двигателя и проводка для трехфазных двигателей

Трехфазные двигатели почти всегда будут иметь пучок проводов, выходящий сбоку, предназначенный для подключения как к входящей линии питания, так и для установления соединений между обмотками. Однако это гораздо больше, чем просто соединительные провода — есть как высокое, так и низкое напряжение, а также внутренние соединения по схеме «звезда» и «треугольник». Мало того, в каждой из этих категорий двигателей есть много разных номеров проводов.


 

В производстве трехфазных двигателей, приводящих в действие тяжелые промышленные нагрузки, существует большое разнообразие. Было бы неправильно говорить, что какой-то один тип мотора лучше, иначе существовал бы только такой тип мотора. Вместо этого мы видим несколько разных типов двигателей, часто обозначаемых проводами и табличкой с техническими данными сбоку.

Разнообразие двигателей, как правило, наиболее очевидно по количеству проводов, требующих подключения.Для электрика нет ничего более важного, чем понимание того, какие провода должны быть подключены к линиям входящего напряжения для правильной работы.

 

Трехфазные двигатели с девятью проводами

Наиболее распространенным типом трехфазного двигателя является двигатель с девятью маркированными (и часто окрашенными) проводами, выходящими из коробки сбоку. Есть много двигателей с большим или меньшим количеством проводов, но чаще всего используется девять.

Эти девятипроводные двигатели могут быть соединены внутри по схеме «звезда» или «треугольник», установленной изготовителем.Оба имеют разные цели, но, к счастью, обычно их можно использовать взаимозаменяемо.

Независимо от типа внутренней проводки, эти двигатели могут быть подключены к источнику питания по схеме «звезда» или «треугольник» — питание и двигатель — это две совершенно разные вещи.

Однако, если двигатель подключен к низкому напряжению, НИКОГДА не подключайте его к источнику высокого напряжения (звезда или треугольник), так как он перегреется. С другой стороны, если двигатель подключен к высокому напряжению, он не будет работать при подключении к источнику низкого напряжения.

 

Внутренние обмотки звездой

Для тех стандартных девятипроводных двигателей, которые имеют внутренние соединения звездой на заводе, мысленный образ расположения обмотки может дать некоторое представление о причине выполнения определенных соединений.

Для этих двигателей на заводской табличке будет указан индикатор двух различных сценариев подключения — один для низкого напряжения (208-240 В), а другой для высокого напряжения (480 В).

 

Рис. 1.Внутреннее устройство трехфазного двигателя с соединением звездой и девятью выводами. Эти девять выводов обеспечивают возможность подачи питания от источников высокого или низкого напряжения.

 

Для варианта низкого напряжения в инструкциях показано подключение следующего:

T4-T5-T6, T1-T7-Line, T2-T8-Line и, наконец, T3-T9-Line.

Для высокого напряжения меняется проводка:

T4-T7, T5-T8, T6-T9, T1-Line, T2-Line и T3-Line.

Внутри имеется 6 отдельных намотанных катушек, равномерно распределенных по внешней стороне ротора.Основная цель проводки — обеспечить одинаковое питание катушек на противоположных сторонах ротора в любое время.

При более низком напряжении источника эти две противоположные обмотки должны быть параллельны, чтобы одновременно получать надлежащее напряжение. При высоком напряжении последовательно соединенные противоположные обмотки будут давать соответствующее напряжение в один и тот же момент.

 

Проводка низкого напряжения

Когда напряжение питания ниже, общее сопротивление нагрузки также должно быть ниже, чтобы генерировать такую ​​же выходную мощность.Пока сопротивление остается одинаковым, одинаковое приложение напряжения также должно давать одинаковую выходную мощность для каждой обмотки. По закону Ватта:

Мощность = Напряжение2 / Сопротивление

Поскольку напряжение квадратично, удвоение этого напряжения от низкого (240 Ом) до высокого (480 Ом) потребует 4-кратного увеличения сопротивления для поддержания равной выходной мощности.

Для достижения этого более низкого сопротивления идеальной конфигурацией будет параллельная сеть.Это достигается за счет создания в двигателе второго небольшого набора катушек, соединенных звездой. Оба этих небольших параллельных соединения «звезда» будут снабжены вводом входящей линии.

 

Рис. 2. Соединения, необходимые для низковольтной проводки двигателя с обмоткой звездой.

 

На этом изображении показано представление этих двух маленьких звездообразных соединений путем сначала соединения T-выводов 4-5-6, затем путем подключения T4 и T7 к линии, а также T5 и T8, а затем T6 и T9 к линейным выводам. .

Представьте себе, что от линии 1 к линии 2. Ток может проходить от линии через Т7 к Т8 и обратно к линии. Параллельно он может перемещаться из линии через T1, T4, T5 и T2 обратно в Line. Оба параллельных пути содержат две последовательные обмотки. Таким образом, общее сопротивление будет равно сопротивлению одной обмотки.

При входе 240 вольт на каждой из обмоток будет падать 120 вольт, так как в каждом пути последовательно две обмотки.

 

Высоковольтная проводка

Для высокого напряжения общее сопротивление должно быть в 4 раза выше, чем для низкого напряжения, чтобы поддерживать номинальную выходную мощность.

Изображение этой схемы подключения легче визуализировать. Первоначальная схема подключения показывала правильное расположение обмоток для создания более крупной системы «звезда», в которой между любыми двумя выводами имеется четыре равных обмотки.

 

Рис. 3. Соединения, необходимые для высоковольтной проводки двигателя с обмоткой звездой.

 

В этой схеме проводки 4 обмотки соединены последовательно между любыми двумя выводами линии. Сравните это с низким напряжением.От линии 1 к линии 2 ток имеет только один путь через T1, T4, T7, T8, T5 и T2 обратно к линии. Это дает сопротивление, равное 4-кратному значению сопротивления одной обмотки.

Опять же, сравнивая мощность с низким напряжением, если входное напряжение составляет 480 вольт, каждая из 4 последовательных обмоток упадет на 120 вольт. Это то же напряжение, а значит и мощность, что и у низковольтной схемы.

Что произойдет, если вы подключите двигатель 3-Φ к однофазной сети?

Что произойдет с асинхронным двигателем 3-Φ (400 В) при подключении к однофазной сети (230 В)?

Как следует из названия, трехфазный асинхронный двигатель должен быть подключен к трем фазам (линиям) для правильной работы, при этом каждая фаза действует как обратный путь для тока из трех фаз.Но что, если нам нужно, чтобы трехфазный двигатель работал от однофазной сети? Что ж, Ответ 1: Нет: Нельзя и 2: Да! Ты сможешь.

При прямом подключении однофазного источника питания к трехфазному асинхронному двигателю для различных сценариев будут получены следующие результаты:

Если двигатель остановлен:

Двигатель вообще не запускается и останавливается, поскольку в однофазной системе питания нет равномерного крутящего момента и RMF (вращающегося магнитного поля).Вот почему однофазные двигатели не запускаются самостоятельно. В этом случае двигатель может начать дымить и гореть из-за большой величины тока в короткозамкнутых пазах обмотки ротора. Если имеется надлежащая схема защиты, тепловое реле, предохранитель или автоматический выключатель могут отключить двигатель от источника питания.

Если двигатель работает:

Если двигатель запускается и работает из-за фазовращателя, частотно-регулируемого привода или пусковых/рабочих конденсаторов в одной из катушек, двигатель все равно будет работать, но с меньшей выходной мощностью и эффективностью, а также с гудящим шумом и вибрацией.Кроме того, скорость двигателя будет ниже, так как однофазное напряжение меньше, чем трехфазное напряжение, где скорость двигателя зависит от напряжения питания.

Если вы все еще хотите запустить двигатель:

Вы можете сделать это, используя конденсатор фазовращателя (в соответствии с номинальным значением) в одной из последовательных обмоток (чаще всего в соединении треугольником), или поворотный фазоинвертор, или самые последние и надежные частотно-регулируемые приводы (VFD). Вручную вы можете покрутить двигатель (после подключения трехфазного двигателя 400 В к однофазному 230 В), и он будет работать в этом направлении, но с меньшим КПД, мощностью и крутящим моментом.Это возможно только в том случае, если двигатель рассчитан как на однофазное, так и на трехфазное питание (звезда/треугольник). Система питания 400В/230В.

Похожие сообщения:

В заключение, вы не можете запустить двигатель 3-Φ на двигателе 1-Φ без какого-либо фазовращателя, такого как конденсатор. Если это так, двигатель выйдет из строя из-за чрезмерного тока при отсутствии защиты, в противном случае сработают защитные автоматические выключатели. Если вы все же хотите управлять трехфазным двигателем от однофазного источника питания, вы должны использовать частотно-регулируемый привод, фазовращатель / преобразователь или просто конденсатор, который используется для создания разности фаз (конденсатор используется для той же цели, что и в потолочный вентилятор).

В основном небольшие двигатели соединены звездой «Y». В случае соединения треугольником конденсатор может быть подключен к свободной ветви, так как фаза подключается к первой клемме, нейтральная верхняя вторая клемма. Если вы хотите изменить направление или вращение двигателя, вы можете просто изменить фазу на другую клемму и подключить конденсатор к новой свободной ветви треугольника.

Метод статического конденсатора используется для двигателей малого диапазона. В методе работы конденсаторного пускового конденсатора пусковой конденсатор подключается параллельно свободной ветви соединения треугольником (фаза и нейтраль подключаются к трем клеммам, поэтому третья свободна).Когда двигатель запускается, пусковой конденсатор отключается, а рабочий конденсатор все еще подключен (обратите внимание, что рабочий конденсатор не является обязательным).

Имейте в виду, что описанный выше метод не подходит для постоянной работы двигателя, поскольку он сокращает срок службы двигателя, поскольку в такой конфигурации активны только две фазы (из трех). Кроме того, КПД двигателя может быть уменьшен на 1/3 rd до 2/3 rd ). Например, КПД и выходная мощность трехфазного 5кВт (6.7 л.с.) будет уменьшена с 3,33 кВт (4,46 л.с.) до 1,66 кВт (2,22 л.с.). Короче говоря, работа трехфазного двигателя от однофазной сети с помощью статического конденсатора применима только для временных применений.

Похожие сообщения:

Номинал конденсатора фазовращателя:

Значение пускового конденсатора в качестве фазовращателя можно рассчитать по следующей формуле.

C = 1950 x (I e / U e ) x CosΦ

или

C = 50 x л.с. x (220/В) 2 x 50/ f  

C = 32 x P x (220/В) 2 x 50/ f  

Где:

  • C = емкость конденсатора в мкФ
  • I e = Номинальный ток
  • U e = номинальное напряжение
  • В = 1-Φ Напряжение
  • CosΦ = коэффициент мощности
  • л.с. = мощность двигателя в л.с.
  • P = Мощность в кВт
  • f = Частота питания

Как правило

  • Значение фазовращателя для двигателя в качестве пускового конденсатора = пусковой конденсатор = 50-100 мкФ на л.с. или 746 Вт.
  • Значение фазовращателя для двигателя в качестве рабочего конденсатора = 12-16 мкФ на л.с. или 746 Вт.

Показывает, что значение рабочего конденсатора в микрофарадах в 4-5 раз меньше значения пускового конденсатора. Имейте в виду, что вы можете использовать только неполяризованные конденсаторы, предназначенные для переменного тока, и номинал должен быть на 5-20% выше, чем напряжение питания двигателя.

Похожие сообщения:

Схема подключения трехфазного двигателя и процедура подключения

Привет, в этой статье мы рассмотрим схему подключения трехфазного двигателя и процедуру подключения.Трехфазные двигатели — это двигатели, работающие от трехфазного переменного тока напряжением 440 В. Трехфазные двигатели в основном используются в промышленности, путешествиях, транспортных средствах. Трехфазные двигатели работают по принципу электромагнитной индукции. Они имеют статорную и роторную обмотки. как правило, обмотка статора рассчитана на работу с трехфазным источником переменного тока. Когда на обмотку статора подается трехфазный источник питания, он создает вращающееся магнитное поле. Это вращающееся магнитное поле создает ЭДС на обмотке ротора, а также магнитные потоки.Взаимодействие между магнитным потоком ротора и вращающимся магнитным потоком статора создаст крутящий момент на роторе, поэтому ротор вращается. Помните, что трехфазные двигатели запускаются самостоятельно, для их запуска не требуется конденсатор.

Внутреннее соединение трехфазного двигателя

Трехфазные двигатели имеют три отдельные обмотки, каждая из которых имеет два вывода. Таким образом, общая клемма трехфазного двигателя равна шести (6). Прежде чем подключить трехфазный двигатель к источнику питания, мы должны соединить клеммы двигателя по схеме «звезда» или «треугольник».Здесь вы можете увидеть схему, как мы можем соединить клеммы трехфазного двигателя в звезду или треугольник.

Клеммы верхнего двигателя не подключены. Левый двигатель соединен звездой, а правый двигатель соединен треугольником. Двигатель имеет три обмотки и шесть клемм, таких как (U1, U2), (V1, V2) и (W1, W2). Чтобы соединить двигатель звездой, соедините U1, V1, W1 вместе или U2, V2, W2 вместе. Здесь, на приведенной выше схеме, U2, V2 и W2 соединены вместе, а U1, V1, W1 используются для подключения источника питания.

При соединении треугольником конец обмотки должен быть соединен с началом следующей обмотки. Итак, вы можете видеть на приведенной выше диаграмме, что U2 подключен к V1, V2 подключен к W1, а W2 подключен к U1. И трехфазный источник питания должен быть подключен к U1, V1, W1.

См. также:  

Подключение трехфазного двигателя по схеме «звезда»

Здесь вы можете увидеть подключение трехфазного двигателя по схеме «звезда».


Процедура подключения и подключения

1.Найдите клеммы каждой обмотки двигателя.

2. Соедините любую клемму каждой обмотки вместе, здесь на приведенной выше схеме U2, V2, W2 соединены вместе.

3. Подключите фазу R источника питания к клемме U1 двигателя.

4. Подключите фазу Y источника питания к клемме V1 двигателя.

5. Подключите фазу B источника питания к клемме W1 двигателя.

Подключение трехфазного двигателя по схеме «треугольник»

Здесь вы можете увидеть подключение трехфазного двигателя по схеме «треугольник».


Процедура подключения и проводки

1. Найдите все пары клемм каждой обмотки двигателя.

2. Подсоедините все клеммы двигателя таким образом, чтобы конец одной катушки был соединен с началом следующей катушки. См. приведенную выше диаграмму для лучшего понимания.

3. Подключите фазу R источника питания к клемме U1 двигателя.

4. Подключите фазу Y источника питания к клемме V1 двигателя.

5. Подключите фазу B источника питания к клемме W1 двигателя.

Как изменить направление вращения двигателя?

Изменить направление вращения трехфазного двигателя очень просто. Вам просто нужно поменять местами любые две фазы входящего питания с двигателем.

Читайте также:  

Благодарим Вас за посещение сайта. продолжайте посещать для получения дополнительных обновлений.

Данные двигателя — трехфазные двигатели переменного тока

В приведенной ниже таблице показана информация о сечении проводов двигателя, размере выключателя, номиналах тепловой перегрузки и другие данные для защита цепи трехфазного двигателя переменного тока.

Данные по току полной нагрузки и защите цепи для трехфазных двигателей переменного тока

Мощность двигателя Сила тока двигателя Размер молотка Начальный размер Нагреватель Ампер Размер провода Размер кабелепровода
½
230 В
460 В
2,2
1,1
15
15
00
00
2.53
1.265
12
12
¾
¾
¾
230 В
460 В
3,2
1,6
15
15
00
00
3,68
1,84
12
12
¾
¾
1
230 В
460 В
4,2
2,1
15
15
00
00
4.83
2.415
12
12
¾
¾

230 В
460 В
6
3
15
15
00
00
6,9
3,45
12
12
¾
¾
2
230 В
460 В
6,8
3,4
15
15
0
00
7.82
3,91
12
12
¾
¾
3
230 В
460 В
9,6
4,8
20
15
0
0
11.04
5.52
12
12
¾
¾
5
230 В
460 В
15,2
7,6
30
15
1
0
17.48
8,74
12
12
¾
¾

230 В
460 В
22
11
45
20
1
1
25,3
12,65
10
12
¾
¾
10
230 В
460 В
28
14
60
30
2
1
32.2
16,1
10
12
¾
¾
15
230 В
460 В
42
21
70
40
2
2
48,3
24,15
6
10
1
¾
20
230 В
460 В
54
27
100
50
3
2
62.1
31.05
4
10
1
¾
25
230 В
460 В
68
34
100
50
3
2
78,2
39,1
4
8

1
30
230 В
460 В
80
40
125
70
3
3
92
46
3
8

1
40
230 В
460 В
104
52
175
100
4
3
119.6
59,8
1
6

1
50
230 В
460 В
130
65
200
150
4
3
149,5
74,75
00
4
2
60
230 В
460 В
154
77
250
200
5
4
177.1
88,55
000
3
2
75
230 В
460 В
192
96
300
200
5
4
220,8
110,4
250 тысяч смил
1

100
230 В
460 В
248
124
400
200
5
4
285.2
142,6
350 тысяч смил
2/0
3
2
125
230 В
460 В
312
156
500
250
6
5
358,8
179,4
600 тысяч смил
000

2
150
230 В
460 В
360
180
600
300
6
5
414
207
700 тысяч смил
0000
4

Примечание. Размеры проводов в этой таблице основаны на клеммах для 75°C. и изоляция.См. раздел «Максимально допустимая сила тока для проводников в кабелепроводе, кабеле или заземлении (30°C)», чтобы узнать о других номиналах изоляции.

Размеры проводов двигателя

NEC требует, чтобы цепи, питающие одиночные двигатели, имели номинальную силу тока, превышающую или равную 125 % от номинального тока полной нагрузки двигателя. Для цепей с несколькими двигателями номинальная мощность провода должен составлять не менее 125 % тока полной нагрузки самого большого двигателя плюс сумма токов полной нагрузки остальных двигателей.Например, если в цепи есть три двигателя на 15 А, мощность номинал провода, питающего цепь, должен превышать 15 + 15 + (15 * 1,25) = 48,75 Ампер. Из этого правила случаются некоторые исключения, например, когда двигатели заблокированы и не могут работать одновременно. Как правило, номинальное напряжение системы для двигателя будет выше напряжения, указанного на паспортной табличке, чтобы компенсировать любое падение напряжения в цепи.

Напряжение двигателя, указанное на паспортной табличке, в сравнении с номинальным напряжением системы
Напряжение на паспортной табличке двигателя Номинальное напряжение системы
115 120
230 240
460 480
575 600
4 000 4 160
6 600 6 900
13 200 13 800

Защита двигателя

Обычно при проектировании цепей двигателя используются два разных набора защит.Во-первых, необходимо защитить кабель, питающий двигатель, источник питания и любые компоненты, расположенные выше по течению. цепь от двигателя. Это называется защитой цепи или защитой фидера. Второй — защита обмоток двигателя от тепловых перегрузок от избыточного тока. Это называется защитой обмотки двигателя. Эти два набора защит должны быть согласованы друг с другом, чтобы должным образом защитить ваш двигатель и цепи двигателя.

Размер выключателя должен быть рассчитан как минимум на 125 % тока полной нагрузки защищаемого им двигателя с округлением в большую сторону до следующего стандартного размера выключателя.Например, ток полной нагрузки двигателя мощностью 5 л.с. при напряжении 460 В. составляет 7,6 Ампер. Прерыватель должен быть рассчитан на 7,6 * 1,25 = 10 ампер. Поэтому рекомендуется выбирать автоматический выключатель на 15 ампер.

Нагреватель — это устройство, предохраняющее двигатель от тепловых перегрузок из-за избыточного тока в обмотках. Согласно NEC, номинальная перегрузка не должна превышать 115% тока полной нагрузки двигателя. Например, ток полной нагрузки двигателя мощностью 10 л.с. при напряжении 230 В составляет 28 ампер. Поэтому нагреватель должен быть размером 28*1.15 = 32,2 Ампер.

Размер кабелепровода в этой таблице консервативно основан на жестком металлическом кабелепроводе с некоторой запасной емкостью. Всегда соблюдайте требования NEC при выборе размера кабелепровода.

Ознакомьтесь с Условиями использования и Политикой конфиденциальности для этого сайта. Ваше мнение очень ценится. Дайте нам знать, как мы можем улучшить.


Соединения выводов двигателя — базовое управление двигателем

В трехфазных двигателях используются витки проволоки для создания магнитных полей и вращения.

Стандартные трехфазные двигатели используют шесть отдельных катушек, по две на каждую фазу.Внутренняя конструкция и соединение этих катушек внутри двигателя определяется при его изготовлении. Существует два класса трехфазных двигателей: звезда и треугольник.

Конфигурация «звезда» и «треугольник»

Трехфазные двигатели также сконструированы для работы при двух различных напряжениях , поэтому катушки могут быть подключены либо в их высоковольтной, либо в низковольтной конфигурации.

В высоковольтной конфигурации две катушки каждой фазы соединены в серии друг с другом так, что более высокое значение питающего напряжения делится поровну между ними, и через каждую обмотку проходит номинальный ток.

В низковольтной конфигурации две катушки каждой фазы соединены параллельно друг с другом, так что более низкое значение напряжения питания распределяется поровну между катушками, и через каждую обмотку проходит номинальный ток.

Обратите внимание, что низковольтное соединение обязательно должно потреблять от источника в два раза больше тока, чем высоковольтное соединение. На паспортных табличках большинства двигателей указаны два значения напряжения и тока. Важно выбрать пускатели двигателей и их реле перегрузки на основе ожидаемого значения тока, который должен потреблять двигатель при напряжении, при котором он используется.

Каждая из шести отдельных катушек имеет два питающих провода, всего двенадцать проводов. В конфигурациях «звезда» и «треугольник» три из этих проводов подключены внутри, поэтому из двигателя для подключения выводятся только девять проводов. Эти отведения пронумерованы от 1 до 9, и как в звезде, так и в треугольнике следуют стандартному соглашению о нумерации: начиная с верхней части схемы с провода номер 1, рисуйте нисходящую внутрь спираль от каждой точки соединения, восходя к следующему номеру на каждом шаге. .

В зависимости от внутренней конструкции двигателя эти провода могут быть подключены одним из четырех способов: Высоко- или низковольтная звезда, или высоко- или низковольтная треугольник

Иногда возникает необходимость протестировать или подтвердить конфигурацию двигателя перед окончательным подключением. Если двигатель с обмоткой звездой подключен как двигатель с обмоткой треугольником или наоборот, двигатель не будет работать должным образом.

Рассмотрим следующую ситуацию: у вас есть девять выводов, идущих от двигателя, но нет указаний на то, что он смотан звездой или треугольником.С помощью омметра для простой проверки непрерывности можно определить тип конструкции двигателя.

При соединении по схеме «звезда» каждый из проводов 1, 2 и 3 должен иметь непрерывность только с одним другим проводом (4, 5 и 6 соответственно). Три провода без непрерывности к проводам 1, 2 и 3 должны иметь непрерывность друг с другом.

Соединения двигателя звездой

Если это треугольник, каждый из проводов 1, 2 и 3 должен иметь непрерывность с двумя другими проводами:

  • T1 имеет непрерывность с T4 и T9
  • T2 имеет непрерывность с T5 и T7
  • T3 имеет преемственность с T6 и T8
Соединения двигателя треугольником

Важно отметить, что эти точки представляют собой внутреннее соединение катушек двигателя, а не то, как они должны быть подключены к напряжению.

Низковольтная звезда

В этой конфигурации каждая фаза подведена к двум катушкам, соединенным параллельно друг с другом. Клеммы 4, 5 и 6 соединены вместе для получения второго нейтрального соединения.

Низковольтное соединение звездой
L1 Л2 Л3 Свяжите вместе
1,7 2,8 3,9 4,5,6

Высоковольтная звезда

В этой конфигурации каждая фаза подведена к двум катушкам, соединенным последовательно друг с другом.

Высоковольтное соединение двигателя звездой.

L1 Л2 Л3 Свяжите вместе
1 2 3 4,7 – 5,8 – 6,9

Низковольтный треугольник

В этой конфигурации каждая фаза подводится к центральному соединению двух катушек и к концевым соединениям каждой из двух других групп катушек.

Низковольтное соединение двигателя Delta

L1 Л2 Л3 Свяжите вместе
1,6,7 2,4,8 3,5,9 нет

Треугольник высокого напряжения

В этой конфигурации каждая фаза подведена к двум катушкам, которые соединены последовательно с катушками других фаз.

Высоковольтное соединение двигателя Delta

L1 Л2 Л3 Свяжите вместе
1 2, 3 4,7 – 5,8 – 6,9

В чем разница между 1-фазным, 2-фазным и 3-фазным питанием?

Электричество похоже на воду, поэтому позвольте мне объяснить явление воды:

Ток подобен потоку воды, а напряжение также называют разностью потенциалов.Это похоже на перепад уровня воды. Для соединения их тонкой трубкой используются две бутылки с водой.

Если две бутылки поставить на один уровень, то в тонкой трубке не будет потока воды, но если поднять одну бутыль, то будет генерироваться поток воды, т. е. поток воды будет течь из высокой бутылки в низкая бутылка.

Например, используются 3 бутылки АВС, а затем 3 тонкие трубки используются для соединения 3 бутылок соответственно (то есть для образования углового соединения).поток, B также течет в C.

Если C поднять на 20 см, то окажется, что A течет в BC, а C течет в B. Причина в том, что вода течет сверху вниз.

Ток переменного тока меняется в положительном и отрицательном направлениях, подобно тому, как бутылка движется вверх и вниз по уровню, заставляя направление потока воды в водопроводе меняться на положительное и отрицательное.

Трехфазное электричество, такое как бутылки ABC 3, периодически перемещаются вверх и вниз, но они не перемещаются вверх и вниз одновременно, а в шахматном порядке на 1/3 цикла замены, так что будут различия между ABC и 3 время от времени.Разность потенциалов, которая заставляет подключенную нагрузку генерировать ток.

По этой причине трехфазное электричество может питать нагрузку без использования нулевого провода.

Трехфазный переменный ток является формой передачи электрической энергии, называемой трехфазным электричеством. Трехфазный источник переменного тока представляет собой источник питания, состоящий из трех потенциалов переменного тока с одинаковой частотой, одинаковой амплитудой и разницей фаз 120° друг от друга.

Добавить комментарий

Ваш адрес email не будет опубликован.