Подключение трехфазного электродвигателя к сети 220 в: Как подключить трехфазный электродвигатель в сеть 220 В: подключаем самостоятельно по схеме трехфазный электродвигатель в сеть | Денис Прокошенков

Схема подключения трехфазного электродвигателя | У электрика.ру

Схема подключения трехфазного электродвигателяЗдравствуйте. Информацию по этой теме трудно не найти, но я постараюсь сделать данную статью наиболее полной. Речь пойдет о такой теме, как схема подключения трехфазного двигателя на 220 вольт и схема подключения трехфазного двигателя на 380 вольт.

Для начала немного разберемся, что такое три фазы и для чего они нужны.  В обычной жизни три фазы нужны только для того, чтобы не прокладывать по квартире или по дому провода большого сечения. Но когда речь идет о двигателях, то здесь три фазы нужны для создания кругового магнитного поля и как результат, более высокого КПД. Двигатели бывают синхронные и асинхронные. Если очень грубо, то синхронные двигатели имеют большой пусковой момент и возможность плавной регулировки оборотов, но более сложные в изготовлении.  Там, где эти характеристики не нужны, получили распространение асинхронные двигатели. Нижеизложенный материал подходит для обоих типов двигателей, но в бóльшей степени относится к асинхронным.

Что нужно знать о двигателе? На всех моторах есть шильдики с информацией, где указаны основные характеристики двигателя. Как правило, двигатели выпускаются сразу на два напряжения. Хотя если у вас двигатель на одно напряжение, то при сильном желании его можно переделать на два. Это возможно из-за конструктивной особенности. Все асинхронные двигатели имеют минимум три обмотки. Начала и концы этих обмоток выводятся в коробку БРНО (блок расключения (или распределения) начал обмоток) и в неё же, как правило, вкладывается паспорт двигателя:шильдик

Если двигатель на два напряжения, то в БРНО будет шесть выводов. Если двигатель на одно напряжение, то вывода будет три, а остальные выводы расключены и находятся внутри двигателя. Как их оттуда «достать» в этой статье мы рассматривать не будем.

Итак, какие двигатели нам подойдут. Для включения трёхфазного двигателя на 220 вольт подойдут только те, где есть напряжение 220 вольт, а именно 127/220 или 220/380 вольт. Как я уже говорил, двигатель имеет три независимых обмотки и в зависимости от схемы соединения они способны работать на двух напряжениях. Схемы эти называются «треугольник» и «звезда»:Схемы «треугольник» и «звезда»

Думаю, даже не нужно объяснять, почему они так называются. Нужно обратить внимание, что у обмоток есть начало и конец и это не просто слова. Если, к примеру, лампочке неважно, куда подключить фазу, а куда ноль, то в двигателе при неправильном подключении возникнет «короткое замыкание» магнитного потока. Сразу двигатель не сгорит, но как минимум не будет вращаться, как максимум потеряет 33% своей мощности, начнёт сильно греться и, в итоге, сгорит. В то же время, нет чёткого определения, что «вот это начало», а «вот это конец».  Тут речь идет скорее об однонаправленности обмоток. Дам небольшой пример.однонаправленность обмоток

Представим, что у нас есть три трубки в некоем сосуде. Примем за начала этих трубок обозначения с заглавными буквами (A1, B1, C1), а за концы со строчными (a1, b1, c1) Теперь, если мы подадим воду в начала трубок, то вода закрутится по часовой стрелке, а если в концы трубок, то против часовой. Ключевое слово здесь «примем». То есть, от того назовём мы три однонаправленных вывода обмотки началом или концом меняется только направление вращения.направленность против часовой

А вот такая картина будет, если мы перепутаем начало и конец одной из обмоток, а точнее не начало и конец, а направление обмотки. Эта обмотка начнёт работать «против течения». В итоге, неважно, какой именно вывод мы называем началом, а какой концом, важно, чтобы при подаче фаз на концы или начала обмоток не произошло замыкания магнитных потоков, создаваемых обмотками, то есть, совпало направление обмоток, или ещё точнее, направление магнитных потоков, которые создают обмотки.

В идеале, для трёхфазного двигателя желательно использовать три фазы, потому что конденсаторное включение в однофазную сеть даёт потерю мощности порядка 30%.

Ну, а теперь непосредственно к практике. Смотрим на шильдик двигателя. Если напряжение на двигателе 127/220 вольт, то схема соединения будет «звезда», если 220/380 – «треугольник». Если напряжения другие, например, 380/660, то для включения двигателя в сеть 220 вольт такой двигатель не подойдет. Точнее, двигатель напряжением 380/660 можно включить, но потери мощности здесь уже будут более 70%. Как правило, на внутренней стороне крышки коробки БРНО указано, как надо соединить выводы двигателя, чтобы получить нужную схему. Посмотрите ещё раз внимательно на схему соединения:схема соединения

Что мы здесь видим: при включении треугольником напряжение 220 вольт подаётся на одну обмотку, а при включении звездой — 380 вольт подаётся на две последовательно соединённых обмотки, что в результате даёт те же 220 вольт на одну обмотку. Именно за счёт этого и появляется возможность использовать для одного двигателя сразу два напряжения.

Существует два метода включения трехфазного двигателя в однофазную сеть.

  1. Использовать частотный преобразователь, который преобразует одну фазу 220 вольт в три фазы 220 вольт (в этой статье мы рассматривать такой метод не будем)
  2. Использовать конденсаторы (этот метод мы и рассмотрим более подробно).

Содержание

Схема включения трехфазного двигателя на 220 вольт

Для этого нам потребуются конденсаторы, но не абы какие, а для переменного напряжения и номиналом не менее 300, а лучше 350 вольт и выше. Схема очень простая.Схема включения трехфазного двигателя на 220 вольт

А это более наглядная картинка:skhema-podklyucheniya-trekhfaznogo-yelekt7

Как правило, используется два конденсатора (или два набора конденсаторов), которые условно называются пусковые и рабочие. Пусковой конденсатор используется только для старта и разгона двигателя, а рабочий включен постоянно и служит для формирования кругового магнитного поля. Для того, чтобы рассчитать ёмкость конденсатора применяются две формулы:рассчитать ёмкость конденсатора

Ток для расчёта мы возьмём с шильдика двигателя:шильдик двигателя

Здесь, на шильдике мы видим через дробь несколько окошек: треугольник/звезда, 220/380V и 2,0/1,16А. То есть, если мы соединяем обмотки по схеме треугольник (первое значение дроби), то рабочее напряжение двигателя будет 220 вольт и ток 2,0 ампера. Осталось подставить в формулу:формула

Ёмкость пусковых конденсаторов, как правило, берётся в 2-3 раза больше, здесь всё зависит от того, какая нагрузка находится на двигателе – чем больше нагрузка, тем больше нужно брать пусковых конденсаторов, чтобы двигатель запустился. Иногда для запуска хватает и рабочих конденсаторов, но это обычно случается, когда нагрузка на валу двигателя мала.

Чаще всего, на пусковые конденсаторы ставят кнопку, которую нажимают в момент запуска, а после того, как двигатель набирает обороты, отпускают. Наиболее продвинутые мастера ставят полуавтоматические системы запуска на основе реле тока или таймера.

Есть ещё один способ определения ёмкости, чтобы получилась схема включения трёхфазного двигателя на 220 вольт. Для этого потребуется два вольтметра. Как вы помните, из закона Ома, сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Сопротивление двигателя можно считать константой, следовательно, если мы создадим равные напряжения на обмотках двигателя, то автоматически получим требуемое круговое поле. Схема выглядит так:схема сопротивления двигателя

Суть метода, как я уже говорил, заключается в том, чтобы показания вольтметра V1 и вольтметра V2 были одинаковые. Добиваются равенства показаний изменением номинала ёмкости «Cраб»

Подключение трехфазного двигателя на 380 вольт

Здесь вообще нет ничего сложного. Есть три фазы, есть три вывода двигателя и рубильник. Нулевую точку (где соединяются три обмотки, началами или концами – как я уже говорил выше, абсолютно неважно, как мы назовём выводы обмоток) при схеме соединения обмоток звездой, подключать к нулевому проводу не надо. То есть, для включения трехфазного двигателя в трехфазную сеть 380 вольт (если двигатель 220/380) нужно соединить обмотки по схеме звезда, и подать на двигатель только три провода с тремя фазами. А если двигатель 380/660 вольт, то схема соединения обмоток будет треугольник, ну а там точно нулевой провод некуда подключать.

Смена направления вращения вала трехфазного двигателя

Независимо от того, будет это конденсаторная схема включения или полноценная трехфазная, для смены вращения вала нужно поменять местами две любые обмотки. Другими словами поменять местами два любых провода.

На чём хочется остановиться более подробно. Когда мы считали ёмкость рабочего конденсатора, то мы использовали номинальный ток двигателя. Проще говоря, такой ток в двигателе будет только тогда, когда он будет полностью нагружен. Чем меньше нагружен двигатель, тем меньше будет ток, поэтому ёмкость рабочего конденсатора, полученная по этой формуле будет МАКСИМАЛЬНО ВОЗМОЖНОЙ ёмкостью для данного двигателя. Чем плохо использовать максимальную емкость для недогруженного двигателя – это вызывает повышенный нагрев обмоток. В общем, чем-то приходится жертвовать: маленькая ёмкость не даёт двигателю набрать полную мощность, большая ёмкость при недогрузке вызывает повышенный нагрев. Обычно в этом случае я предлагаю такой выход – сделать рабочие конденсаторы из четырёх одинаковых конденсаторов с переключателем или набором переключателей (что будет доступнее). Допустим, мы посчитали ёмкость 40 мкФ. Значит, для работы нам надо использовать 4 конденсатора по 10 мкФ (или три конденсатора 10, 10 и 20 мкФ) и в зависимости от нагрузки использовать 10, 20, 30 или 40 мкФ.

Ещё один момент по пусковым конденсаторам. Конденсаторы для переменного напряжения стоят гораздо дороже конденсаторов для постоянного. Использовать конденсаторы для постоянного напряжения в сетях с переменным, крайне не рекомендуется по причине того, что конденсаторы взрываются. Однако, для двигателей существует специальная серия конденсаторов Starter, предназначенная именно для работы, как пусковые. Использовать конденсаторы серии Starter в качестве рабочих тоже запрещено.

И в завершение нужно отметить такой момент – добиваться идеальных значений нет смысла, поскольку это возможно только, если нагрузка будет стабильной, например, если двигатель будет использоваться в качестве вытяжки.  Погрешность в 30-40% это нормально. Другими словами, конденсаторы надо подбирать так, чтобы был запас по мощности в 30-40%.

 

Поделиться ссылкой:

Похожее

Как подключить трёхфазный электродвигатель к однофазной сети 220 В

Не редко в быту возникает необходимость в трёхфазной электрической сети для подключения трёхфазных электродвигателей. В данной статье будет рассмотрено три способа реализации включения трёхфазных асинхронных электрических двигателей в бытовую однофазную сеть 220В.

необходимость в трёхфазной электрической сети для подключения трёхфазных электродвигателей

Содержание:
  1. Способ 1. Использование пусковых и рабочих фазосдвигающих конденсаторов
  2. Способ 2. Использование преобразователя частоты “Частотника”
  3. Способ 3. Использование асинхронного электродвигателя в качестве генератора

Способ 1. Использование пусковых и рабочих фазосдвигающих конденсаторов

Данный способ является самым распространённым и наверное самым простым для повторения в бытовых условиях. Суть данного способа заключается в том что трёхфазный электродвигатель получает две фазы со сдвигом в 120 ° каждая относительно другой это ноль и фаза, а третью фазу мы создаём искусственно с помощью фазосдвигающего конденсатора.

Основным недостатком данного способа является то что трёхфазный двигатель работающий в однофазной сети 220В развивает только 70% от своей номинальной мощности.

Для реализации данного подключения необходимо разобраться со способом подключения обмоток нашего электродвигателя, они могут быть включены как по схеме звезда, так и по схеме треугольник.

Схема подключения электродвигателя звезда и треугольник

В нашем случае обмотки электродвигателя должны быть включены по схеме “треугольник”, если подключить обмотки по схеме “звезда” наш двигатель при работе в однофазной электрической сети 220В потеряет более 50% своей мощности. Вся необходимая информация о параметрах асинхронного электродвигателя находится на закреплённом на нём информационном шильдике.

Шильдик электродвигателя

Трёхфазный асинхронный электродвигатель включается в однофазную электрическую сеть 220В по следующей схеме:

Пусковой и рабочий контенсатор электродвигателя схема

В схеме одна из точек подключения питания электродвигателя запитывается через рабочий конденсатор Ср и подключаемый пусковой конденсатор Сп. Пусковой конденсатор Сп подключается путём нажатия кнопки SB только в момент включения и пуска электродвигателя до момента когда электродвигатель наберёт свои номинальные рабочие обороты, после чего кнопка SB отпускается и в работе остаётся только фазосдвигающий рабочий конденсатор Ср.

Собрать подобную схему под силу каждому, единственное что нужно, это правильно рассчитать ёмкость рабочего и пускового конденсатора.

Для расчёта ёмкости рабочего конденсатора применяется формула:

Сраб = K * Iф / Uсети
  • K – является специальным коэффициентом. Его значение составляет 4800 для схемы «треугольник».
  • – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Вся информация для расчёта присутствует на информационном шильдике используемого электродвигателя, для примера расчёта возмём информацию с шильдика на фото выше:

  • K = 4800 (для любых электродвигателей обмотка которых подключена по схеме “треугольник”)
  • Iф = 2,8 (на шильдике указано, что при подключение обмотки электродвигателя по сжеме треугольник номинальный ток статора = 2,8А, а при подключении по схеме звезда номинальный ток статора = 1,8А)
  • Uсети = 220 (Напряжение бытовой электрической сети – 220В)

Подставляем все значения в формулу для расчёта ёмкости рабочего конденсатора:

4800 * 2,8 / 220 = 61,09090909090909 мкФ

Округляем полученное значение и получаем число 61 данное значение измеряется в микрофорадах, т.е. ёмкость рабочего конденсатора для приведённого к примеру асинхронного электродвигателя будет составлять 61 мкФ или μF в буржуйском варианте обозначения.

Для расчёта ёмкости пускового конденсатора применяется следующая формула:

Сп = Сраб * 2,5

В нашем случае ёмкость пускового конденсатора будет составлять:

61 * 2,5 = 152,5 мкФ

Если нагрузка у асинхронного электрического двигателя не значительная например в виде заточного круга на валу, то пусковым конденсатором можно пренебречь и не использовать его, а если нагрузка большая в виде редуктора подключенного к исполнительному механизму – то без пускового конденсатора нам никак не обойтись, электродвигатель в этом случае просто не запустится.

При выборе конденсаторов нужно учитывать то, что это должны быть специальные неполярные пусковые конденсаторы с рабочим напряжением 450В, пусковые и рабочие конденсаторы с номинальным напряжением ниже 450В использовать запрещается, они могут взорваться.

Если при подборе конденсаторов с необходимым значением ёмкости в ваших закромах или в продаже не оказалось, то можно набрать необходимую ёмкость из нескольких конденсаторов с разной номинальной ёмкостью подключив их параллельно, при этом ёмкость всех конденсаторов суммируется.

Параллельное включение конденсаторов

У конденсаторов существует процент погрешности номинальной ёмкости при их изготовление на производстве, и если расчётная ёмкость отличается от типовых номиналов промышленных конденсаторов в пределах от +/-5% до +/- 10%, то этим можно пренебречь и установить конденсатор который у Вас имеется или набрать батарею параллельно включенных конденсаторов в рамках этой погрешности.


Купить пусковые конденсаторы с доставкой Вы можете в нашем партнёрском магазине:


1. Пусковой конденсатор переменного тока CBB61 номинальной ёмкостью от 1 мкФ до 20 мкФ – 450 В.

Пусковой конденсатор переменного тока от 1 мкФ до 20 мкФ - 450 В

Цена на AliExpress: US $0.73 – 4.27


2. Пусковой конденсатор переменного тока CD60 номинальной ёмкостью от 75 мкФ до 800 мкФ – 250/450 В.

Пусковой конденсатор переменного тока CD60 номинальной ёмкостью от 75 мкФ до 800 мкФ - 250/450 В

Цена на AliExpress: US $6.00 – 11.00


3. Пусковой конденсатор переменного тока CBB60 номинальной ёмкостью от 4 мкФ до 100 мкФ – 450 В.

Пусковой конденсатор переменного тока CBB60 номинальной ёмкостью от 4 мкФ до 100 мкФ - 450 В

Цена на AliExpress: US $5.00 – 12.00


4. Пусковой конденсатор переменного тока CBB65 номинальной ёмкостью от 20 мкФ до 80 мкФ – 450 В.

Пусковой конденсатор переменного тока CBB65 номинальной ёмкостью от 20 мкФ до 80 мкФ - 450 В

Цена на AliExpress: US $7.20 – 10.79


Внимание! Техника безопасности!

При работе с конденсаторами возникает опасность поражением электрическим током даже при отключенном оборудование от сети 220В. Конденсатор накапливает в себе электрический заряд из сети 220В и сохраняет его довольно длительный период времени. Данное свойство конденсатора при небрежной эксплуатации обеспечит Вас не только неприятными ощущениями, но и возможно фатальными последствиями. Если после отключения схемы от электрической сети 220В рабочий конденсатор имеет постоянное включение и постепенно разряжается на обмотку, то пусковой конденсатор не имеет такой возможности, его необходимо разрядить после отключения двигателя от сети 220В нажатием с задержкой кнопки SB замкнув тем самым на обмотку двигателя. Также необходимо ограничить доступ к неизолированным контактам конденсаторов и токоведущих частей схемы разместив все компоненты в закрытом изолированном корпусе.

Способ 2. Использование преобразователя частоты “Частотника”

Асинхронный преобразователь частоты служит для преобразования сетевого трёхфазного или однофазного переменного тока частотой 50 (60) Гц в трёхфазный или однофазный ток, частотой от 1 Гц до 800 Гц.

Частотный преобразователь вх. 1ф 220В, вых. 220. 3ф 0,75 кВт - 5 кВт.

Для нашей цели подойдут частотные преобразователи для преобразования однофазной электрической сети в трёхфазную. Промышленностью выпускаются два типа подобных преобразователей с выходом на три фазы рабочего напряжения 220В и выходом на три фазы рабочего напряжения 380В. В первом случае 220В асинхронный электродвигатель подключается к частотному преобразователю по схеме “треугольник”, во втором случае 380В по схеме “звезда”.

Использование частотного преобразователя с асинхронным электродвигателем имеет массу преимуществ:

  • Экономичность — использование частотного управления электродвигателем снижает энергопотребление.
  • Защита электродвигателя по многим параметрам — замыкание обмотки на корпус (землю), защита двигателя от перенапряжения, защита от тока перегрузки, защита от возможного понижения напряжения, контроль фаз выходной цепи, контроль фаз питающей цепи, защита электропривода от работы с недогрузкой, защита двигателя от заклинивания, защита двигателя от перегрузок.
  • Возможность управления электродвигателем — регулировка частоты вращения электродвигателя, включение/выключение и изменение частоты оборотов электродвигателя по контролю параметров различных датчиков.
  • КПД 100% при преобразовании однофазной сети в трёхфазную — трёхфазный асинхронный электродвигатель работает на 100% своей мощности.

Хотя использование частотного преобразователя для получения трёхфазной сети из однофазной и имеет огромное преимущество перед другими способами, есть и спорный момент, подключить к частотнику электродвигатель согласно идущей в комплекте инструкции не составит труда и двигатель будет работать при включении как надо, но для того чтобы использовать весь его функционал нужны навыки по работе с ЧПУ (числовое программное управление).


Купить частотный преобразователь с доставкой Вы можете в нашем партнёрском магазине:


1. Преобразователь частоты SAKO SKI780 вход 220 В 1 – фаза выход / 220 В 3 – фазы 0.75 кВт/1.5 кВт/2.2 кВт (на выбор)

Преобразователь частоты SAKO SKI780 вход 220 В 1 - фаза выход / 220 В 3 - фазы 0. 75 кВт/1. 5 кВт/2. 2 кВт
  • Название бренда: SAKO
  • Тип: Преобразователи DC/AC
  • Размер: 160*100*130 мм.
  • Номер модели: SKI780-0D75-1/SKI780-1D5-1/SKI780-2D2-1
  • Частота на выходе: 0 – 500 HZ
  • Вес: 1.5 кг.
  • Выходной ток: 5 A.
  • Входное напряжение: 220 В. одна фаза
  • Выходное напряжение: 220 В. три фазы

Цена на AliExpress: US $47.39 – 66.26


2. Преобразователь частоты AT1 вход 220 В 1 – фаза выход / 220 В 3 – фазы 1.5 кВт/2.2 кВт/4 кВт/5,5 кВт (на выбор)

Преобразователь частоты AT1 вход 220 В 1 - фаза выход / 220 В 3 - фазы 1.5 кВт/2.2 кВт/4 кВт/5,5 кВт
  • Название бренда: COOLCLASSIC
  • Тип: AC-DC-AC
  • Размер: 165*115*109 мм.
  • Номер модели: AT1-1.5KW; AT1-2.2KW; AT1-4KW; AT1-5.5KW
  • Частота на выходе: 0-400hz
  • Выходная мощность: 1,5 – 5,5 кВт.
  • Вес: 1.65 кг.
  • Выходной ток: 8A, 12A, 20A, 25A
  • Входное напряжение: 220 В Одна фаза
  • Выходное напряжение: 220 В Три фазы

Цена на AliExpress: US $41.50 – 216.00


3. Частотный преобразователь YaLang вход 220 В 1 – фаза выход / 220 В 3 – фазы 3KW 4KW 5.5KW 7.5KW (на выбор)

Частотный преобразователь YaLang вход 220 В 1 - фаза выход / 220 В 3 - фазы 3KW 4KW 5.5KW 7.5KW (на выбор)
  • Название бренда: YaLang
  • Тип: AC-DC-AC
  • Размер: 101*171*137 мм.
  • Частота на выходе: 0-400hz
  • Выходная мощность: 3 – 7,5 кВт.
  • Вес: 1.65 кг.
  • Входное напряжение: 220 В Одна фаза
  • Выходное напряжение: 220 В Три фазы

Цена на AliExpress: US $49.90 – 176.32


Способ 3. Использование асинхронного электродвигателя в качестве генератора

Данный способ основан на использование трёхфазного асинхронного электрического в качестве преобразователя/генератора однофазной электрической сети 220В в трёхфазную электрическую сеть 380В

Схема преобразователя/генератора однофазной электрической сети 220В в трёхфазную электрическую сеть 380В выглядит следующим образом:

Использование асинхронного электродвигателя в качестве генератора

Порядок работы следующий, при подключении преобразователя/генератора к электрической сети 220В нажимаем и удерживаем кнопку SA1 подключая тем самым пусковой конденсатор С1 до выхода электродвигателя используемого в качестве преобразователя/генератора на рабочие обороты, после этого можно разомкнуть кнопку SA1 и подключить нагрузку к выходу 380В.

Отключение производят в следующей последовательности – отключаем трёхфазную нагрузку от выхода 380В преобразователя/генератора, а затем отключаем от сети 220В сам преобразователь/генератор.

В качестве преобразователя/генератора можно использовать любой трёхфазный асинхронный электродвигатель с обмотками включенными по схеме “звезда”. Мощность этого двигателя должна быть минимум на 30% больше мощности подключаемой нагрузки. Лучше для этих целей использовать электромоторы с частота вращения ротора 1000 об/мин и меньше.

Электродвигатель в качестве нагрузки подключается по схеме звезда.

Конденсатор C1 в данной схеме выполняет роль пускового, его ёмкость рассчитывается по следующей формуле:

Сраб = (K * Iф / Uсети) * 2,5
  • K – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда».
  • – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Основным недостатком данного преобразователя/генератора является повышенное энергопотребление, общая мощность потребления будет складываться из мощьности подключаемой нагрузки и примерно 45-50% мощности электромотора используемого в качестве преобразователя/генератора.

Внимание! Техника безопасности!

Используя в быту трёхфазную сеть с напряжением 380В Вы подвергаете себя и своих близких высокой опасности поражением электрическим током. Все монтажные и электромонтажные работы необходимо производить только со снятием питающего напряжения, все токопроводящие элементы оборудования и электропроводки должны быть заизолированные, металлические части корпусов электрооборудования должны быть надёжно заземлены!


Поделиться ссылкой:


Подключение трехфазного двигателя к однофазной сети

В разных любительских электромеханических станках и устройствах в большинстве случаев используются трехфазные асинхронные двигатели с короткозамкнутым ротором. Увы, трехфазная сеть в обиходу — явление очень редкое, потому для их питания от обыкновенной электрической сети любители используют фазосдвигающий конденсатор, чтоне разрешает в полном объеме воплотить мощность и пусковые свойства мотора.

Асинхронные трехфазные электродвигатели, а конкретно именно их, в следствии широкого распространения, нередко приходится применять, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку.

Подключение «треугольник» (для 220 вольт)






Подключение «звезда» (для 380 вольт)

Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме звезда

 При включении трехфазного мотора к трехфазной сети по его обмоткам в различный момент времени по очереди начинает идти ток, создающий крутящееся магнитное поле, которое ведетвзаимодействие с ротором, принуждая его крутиться. При подключении мотора в однофазовую сеть, крутящий момент, способный двинуть ротор, не создается.

В случае если вы можете подсоединить движок на стороне к трехфазной сети то опредилить мощьность не тяжело. В разрыв одной из фаз ставим амперметр. Запускаем. Показания амперметра умнажаем на фазовое напряжение.

В хорошей сети оно 380. Получаем мощьность P=I*U. Отнимаем % 10-12 на КПД. Получаете фактически верный результат. 

Для измерения оборотов есть мех-ские приборы. Хотя на слух также возможно определить. 

 Посреди различных методов включения трехфазных электродвигателей в однофазную сеть наиболее обычный — включение третьего контакта через фазосдвигающий конденсатор.

Подключение трехфазного двигателя к однофазной сети

 Частота вращения трехфазного мотора, работающего от однофазовой сети, остается практически той же, как и при его подключении в трехфазную сеть. Увы, этого невозможно заявить о мощности, потери которой достигают значимых величин. Четкие значения потери силы находятся в зависимости от схемы включения, условий работы мотора, величины емкости фазосдвигающего конденсатора. Приблизительно, трехфазный движок в однофазовой сети утрачивает в пределах 30-50% собственной силы. 

 Не многие трехфазные электродвигатели готовы хорошо действовать в однофазовых сетях, но большая часть из них справляются с данной задачей полностью удовлетворительно — в случае если не считать потери мощности. В главном для работы в однофазовых сетях используются асинхронные движки с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

 Асинхронные трехфазные движки рассчитаны на 2 номинальных напряжения сети — 220/127, 380/220 и так далее Более всераспространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220  — для «треугольника»). Наибольшее напряжение для «звезды», наименьшее — для «треугольника». В паспорте и на табличке движков не считая прочих характеристик указывается рабочее напряжение обмоток, схема их соединения и вероятность ее изменения. 

Таблички трехфазных электродвигателей

 Обозначение на табличке А гласит о том, что обмотки мотора имеют все шансы быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При подключении трехфазного мотора в однофазовую сеть лучше применять схему «треугольник», так как в данном случае движок растеряет меньше силы, нежели при включении «звездой».

 Табличка Б информирует, что обмотки мотора подсоединены по схеме «звезда», и в разветвительной коробке не учтена вероятность переключить их на «треугольник» (имеется не более чем 3 вывода). В данном случае остается либо смириться с большой утратой мощности, подключив движок по схеме «звезда», либо, внедрившись в обмотку электродвигателя, попробовать вывести отсутствующие концы, чтоб соединить обмотки по схеме «треугольник».

В случае если рабочее напряжение мотора составляет 220/127В, то к однофазной сети на 220В движок возможно подключить лишь по схеме «звезда». При включении 220В по схеме «треугольник», двигатель сгорит.

Начала и концы обмоток (различные варианты)

 Наверное, главная сложность включения трехфазного мотора в однофазовую сеть состоит в том, чтоб разобраться в электропроводах, выходящих в распределительную коробку либо, при неимении последней, просто выведенных наружу мотора. 

 Самый обычный вариант, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В данном случае необходимо просто подсоединить токоподводящие электропровода и рабочий и пусковой конденсаторы к клеммам мотора согласно схеме подключения.

 В случае если в двигателе обмотки соединены «звездой», и имеется вероятность поменять ее на «треугольник», то такой случай также нельзя отнести к трудоемким. Необходимо просто поменять схему включения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит труднее, в случае если в распределительную коробку выведено 6 проводов без указания про их принадлежности к конкретной обмотке и обозначения начал и концов. В данном случае дело сводится к решению 2-ух задач  (Хотя до того как этим заниматься, необходимо попробовать поискать в сети некоторую документацию к электродвигателю. В ней быть может описано к чему относятся электропровода различных расцветок. ):

определению пар проводов, имеющих отношение к одной обмотке;

нахождению начала и конца обмоток.

 1-ая задачка решается «прозваниванием» всех проводов тестером (замером сопротивления). Когда прибора нет, возможно решить её при помощи лампочки от фонарика и батареек, подсоединяя имеющиеся электропровода в цепь поочередно с лампочкой. В случае если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Этим методом определяются 3 пары проводов (A, B и C на рисунке ниже) имеющих отношение к 3 обмоткам.

Определение пар проводов относящихся к одной обмотке

 Вторая задача, нужно определить начала и концы обмоток, здесь будет несколько сложнее и будет необходимо наличие батарейки и стрелочного вольтметра. Цифровой для этой задачи не подойдет из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1и 2.

Нахождение начала и конца обмоток

К концам одной обмотки (к примеру, A) подключается батарейка, к концам иной (к примеру, B) — стрелочный вольтметр. Сейчас, когда порвать контакт проводов А с батарейкой, стрелка вольтметра качнется в какую-нибудь сторону. Потом нужно подключить вольтметр к обмотке С и сделать такую же операцию с разрывом контактов батарейки. По мере надобности меняя полярность обмотки С (меняя местами концы С1 и С2) необходимо добиться того, чтоб стрелка вольтметра качнулась в такую же сторону, как и в случае с обмоткой В. Точно так же проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C либо B.

 В конечном итоге всех манипуляций должно выйти следующее: при разрыве контактов батарейки с хоть какой из обмоток на 2-х других должен появляться электрический потенциал одинаковой полярности (стрелка устройства качается в одну сторону). Сейчас остается пометить выводы 1-го пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по нужной схеме — «треугольник» либо «звезда» (когда напряжение мотора 220/127В).

Извлечение отсутствующих концов. Наверное, самый непростой вариант — когда движок имеет слияние обмоток по схеме «звезда», и нет способности переключить ее на «треугольник» (в распределительную коробку выведено не более чем 3 электропровода — начала обмоток С1, С2, С3) .

 В данном случае для включения мотора по схеме «треугольник» нужно вывести в коробку отсутствующие концы обмоток С4, С5, С6.

Схемы включения трехфазного мотора в однофазную сеть

Включение по схеме «треугольник». В случае домашней сети, исходя из убеждений получения большей выходной мощности более подходящим считается однофазное включение трехфазных двигателей по схеме «треугольник». При всем этом их мощность имеет возможность достигать 70% от номинальной. 2 контакта в разветвительной коробке подсоединяются непосредственно к электропроводам однофазной сети (220В), а 3-ий — через рабочий конденсатор Ср к хоть какому из 2-ух первых контактов либо электропроводам сети.

Обеспечивание запуска. Запуск трехфазного мотора без нагрузки возможно производить и от рабочего конденсатора (подробнее ниже), но в случае если эл-двигатель имеет какую-то нагрузку, он либо не запустится, либо станет набирать обороты чрезвычайно медлительно. Тогда уже для быстрого запуска нужен вспомогательный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы врубаются лишь на время запуска мотора (2-3 сек, покуда обороты не достигнут приблизительно 70% от номинальных), потом пусковой конденсатор необходимо отключить и разрядить.

Комфортен пуск трехфазного мотора при помощи особенного выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока же не будет нажата кнопка «стоп».

Выключатель для запуска электродвигателей

Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Направлением вращения возможно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному переключателю, соединенному двумя своими контактами с первой и 2-ой обмотками. Зависимо от положения переключателя движок станет крутиться в одну либо другую сторону.

 На рисунке ниже представлена схема с пусковым и рабочим конденсатором и клавишей реверса, дозволяющая производить комфортное управление трехфазным двигателем. 

Схема подключения трехфазного двигателя к однофазной сети, с реверсом и кнопкой для подключения пускового конденсатора

Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.


Конденсаторы. Нужная емкость рабочих конденсаторов для работы трехфазного мотора в однофазной сети находится в зависимости от схемы включения обмоток мотора и прочих характеристик. Для соединения «звездой» емкость рассчитывается по формуле:

 Cр = 2800•I/U

 Для соединения «треугольником»:

 Cр = 4800•I/U

 Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

 I = P/(1.73•U•n•cosф)

 Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, определяющий соответствие меж линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке мотора. Традиционно их значение располагается в спектре 0,8-0,9.

 На практике значение емкости рабочего конденсатора при подсоединении «треугольником» возможно счесть по облегченной формуле C = 70•Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно данной формуле на каждые 100 Вт мощности электродвигателя нужно около 7 мкФ емкости рабочего конденсатора.

 Корректность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. В случае если её значение оказывается больше, нежели потребуется при этих условиях работы, движок станет перенагреваться. Ежели емкость оказалась менее требуемой, выходная мощность электродвигателя станет очень низкой. Имеет резон подыскивать конденсатор для трехфазного мотора, начиная с небольшой емкости и равномерно повышая её значение до рационального. В случае если есть возможность, гораздо лучше выбрать емкость измерением тока в электропроводах присоединенных к сети и к рабочему конденсатору, к примеру токоизмерительными клещами. Значение тока должно быть более близким. Замеры следует производить при том режиме, в каком движок будет действовать.

 При определении пусковой емкости исходят, сначала, из требований создания нужного пускового момента. Не перепутывать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

 В случае если по условиям работы запуск электродвигателя случается без нагрузки, то пусковая емкость традиционно принимается одинаковой рабочей, другими словами пусковой конденсатор не нужен. В данном случае схема подключения упрощается и удешевляется. Для такового упрощения и основное удешевления схемы, возможно организовать вероятность отключения нагрузки, к примеру, сделав возможность быстро и комфортно изменять положение мотора для падения ременной передачи, либо сделав для ременной передачи прижимающей ролик, к примеру, как у ременного сцепления мотоблоков.

Запуск под нагрузкой требует присутствия доборной емкости (Сп) подключаемой временно пуска двигателя. Повышение отключаемой емкости приводит к возрастанию пускового момента, и при неком конкретном ее значении момент достигает собственного наибольшего значения. Дальнейшее повышение емкости приводит к обратному эффекту: пусковой момент начинает убавляться. 

 Отталкиваясь от условия пуска двигателя под нагрузкой ближайшей к номинальной, пусковая емкость обязана быть в 2-3 раза более рабочей, то есть, в случае если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора обязана быть 80-160 мкФ, что обеспечит пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Хотя в случае если двигатель имеет маленькую нагрузку при запуске, емкость пускового конденсатора быть может меньше либо ее может и небыть вообще.

 Пусковые конденсаторы действуют недолговременное время (всего несколько секунд за весь период подключения). Это дает возможность использовать при запуске двигателя более дешевые пусковые электролитические конденсаторы, специально созданные для данной цели.

 Заметим, что у двигателя присоединенного к однофазной сети через конденсатор, работающего в отсутствии нагрузки, по обмотке, питаемой через конденсатор, следует ток на 20-30% превосходящий номинальный. Потому, в случае если движок используется в недогруженном режиме, то емкость рабочего конденсатора надлежит минимизировать. Но тогда уже, в случае если движок запускался без пускового конденсатора, последний имеет возможность потребоваться.

 Гораздо лучше применять не 1 великий конденсатор, а несколько гораздо меньше, частично из-за способности подбора хорошей емкости, подсоединяя добавочные либо отключая ненадобные, последние применяют в качестве пусковых. Нужное число микрофарад набирается параллельным соединением нескольких конденсаторов, отталкиваясь от того, что суммарная емкость при параллельном соединении подсчитывается по формуле:

 Cобщ = C1   C1   …   Сn.

Параллельное соединение конденсаторов

Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности :

обмотки электродвигателя 220/380 В соединяем треугольником, а конденсатор С1 включаем, как обычно, параллельно одной из них. Конденсатору будет «помогать» дроссель L1, включенный параллельно другой обмотке.

 В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

Быстрое подключение маломощного трехфазного электродвигателя







Определение начала и конца фазных обмоток асинхронного электродвигателя









220В или 380В? — подключение электродвигателя к сети

220В или 380В?

Сложно представить гараж или собственный дом, в котором имеется мастерская без установленных в них электроприборов. Учитывая довольно высокую стоимость, которых владельцы мастерской стараются изготовить их самостоятельно.

Это могут быть заточные станки или более сложные механизмы, использующие электродвигатели. В каждом гараже всегда можно найти двигатель от неисправной бытовой техники.

Электроснабжение гаражей осуществляется от сети напряжением 220 вольт. Двигатели от бытовой техники однофазные, а при изготовлении станка появляется необходимость в схеме подключения двигателя.

Подключение однофазного коллекторного и асинхронного моторов к сети 220 вольт

В бытовой технике используются коллекторные или асинхронные двигатели. Схема подключения однофазного двигателя при использовании таких электродвигателей будет разная. Для того чтобы выбрать правильную схему необходимо знать тип двигателя.

Это сделать очень просто, если сохранился шильдик. При его отсутствии следует посмотреть, имеются ли щетки. При их наличии электродвигатель коллекторный, если они отсутствуют — двигатель асинхронный.

Схема подсоединения коллекторного двигателя очень проста. Достаточно имеющиеся провода подключить к сети 220 вольт и мотор должен заработать.

Основным недостатком таких моторов большой шум в процессе работы. К достоинствам можно отнести легкость регулировки оборотов. Существует более сложная схема для подключения однофазного асинхронного двигателя.

Они бывают однофазные и трехфазные. Однофазные электродвигатели выпускают с пусковой обмоткой (бифилярные) и конденсаторные.

В момент пуска таких моторов пусковая обмотка замыкается, а после достижения необходимых оборотов отключается специальными устройствами. На практике такие электродвигатели включаются специальными кнопками, у которых средние контакты при нажатии замыкаются, а после отпускания кнопки размыкаются. Это так называемые кнопки ПНВС они специально сконструированы для работы с такими электродвигателями.

В конденсаторных имеется две обмотки, которые работают постоянно. Они смещены относительно друг друга на 90º , благодаря чему можно осуществить реверс.

Схема подключения асинхронного двигателя на 220в ненамного сложнее включения коллекторного. Отличие состоит в том, что к вспомогательной обмотке подсоединяется конденсатор. Его номинал рассчитывается по сложной формуле.

 

Но опираясь на эмпирические данные его, подбирают из расчета 70 Мкф на 1 Квт мощности, а рабочий конденсатор в 2–3 раза меньше, и соответственно имеет параметры 25–30 Мкф на 1 Квт.

Для того чтобы осуществить подключение однофазного двигателя необходимо подключить конденсатор к вспомогательной обмотке, схема несложная и ее может собрать любой человек.

Достаточно иметь необходимые комплектующие и не перепутать обмотки. Определить назначение обмоток можно с помощью тестера, измерив, сопротивление. Пусковая обмотка имеет в два раза большее сопротивление, чем рабочая.

Схемы включения однофазного электродвигателя

Для включения двигателя применяются три схемы подключения электродвигателей на напряжение 220 в. Для тяжелого пуска устройств, таких как бетономешалка, применяют схему с подсоединением пускового конденсатора с последующим его отключением. Существует более простая схема подключения однофазного двигателя с постоянным подключением конденсатора малой емкости к пусковой обмотке, она применяется наиболее часто.

 

 

При этом параллельно рабочему конденсатору во время пуска подключается дополнительный конденсатор.

Для того чтобы наиболее полно раскрыть возможности двигателя применяется схема с постоянно подсоединенным конденсатором к вспомогательной обмотке.

Это самая распространенная схема подключения, с помощью которой подключают любой однофазный асинхронный двигатель при изготовлении заточного станка. При использовании таких схем подсоединения следует знать, что двигатель не сможет развивать полную мощность.

Подключение трехфазных электродвигателей

Часто возникает необходимость в подсоединении асинхронного двигателя,предназначенного для подключения к трехфазной сети в однофазную. Схема подключения трехфазного мотора не сильно отличается от подсоединения однофазного.

Подключение к однофазной сети 220 вольт

Основное отличие состоит в конструкции самого двигателя. В нем имеются равнозначные обмотки, которые соединяются звездой или треугольником. Все зависит от рабочего напряжения.

Схема подключения трехфазного двигателя к однофазной сети включает в себя магнитный пускатель, кнопку включения — выключения и конденсатор. Емкость конденсатора рассчитывается по формуле.

Эта формула справедлива для соединения звездой. И позволяет подобрать рабочий конденсатор.

Вторая формула позволяет рассчитать номинальную емкость для работы с электродвигателем при соединении обмоток треугольником.

Номинал конденсатора можно рассчитать по упрощенной формуле:

Часто при запуске по такой схеме используют пусковой конденсатор, который включают параллельно с рабочим. И выбирается из условий:

Если необходимого номинала нет, то подбор конденсаторов возможен из имеющихся комплектующих при соединении их параллельно или последовательно.

При параллельном соединении емкость суммируется, т. е. увеличивается. А при последовательном соединении уменьшается. И будет меньше меньшего номинала. При подборе конденсаторов необходимо учитывать рабочее напряжение, которое должно быть выше сетевого в 1,5 раза.

При монтаже следует иметь в виду, что схема подключения 3х фазного двигателя предполагает включение конденсатора к третьей обмотке, что позволяет использовать моторы в однофазной сети 220 вольт.

Для того чтобы использовать механизм на полную мощность, следует подключить его к трехфазной сети.

Подключение к трехфазной сети

Для подключения 3 х фазного двигателя на напряжение 380 вольт схема представляет собой соединение обмоток звездой. Соединение треугольником применяется при наличии трехфазной сети на 220 вольт.

Схема подключения асинхронного двигателя к трехфазной сети имеет пускатель на три фазы, кнопку «пуск – стоп» и двигатель. Но в быту имеется однофазное подключение к гаражу или мастерской. Поэтому и возникает необходимость подключения 3х фазного двигателя через конденсаторы к сети 220 вольт, когда используется схема с применением фазосдвигающей цепочки.

Для сдвига фазы применяют конденсатор, который подключают к одной из фаз, а две другие подключают к электрической сети. Это стандартная схема подключения асинхронного двигателя, применяемая для подключения к однофазной сети. При изготовлении всевозможных станков возникает необходимость в реверсивном включении механизмов.

Реверсивная схема подключения при включении трехфазного двигателя к однофазной сети производится по следующей методике.

Достаточно переключить сетевой провод с одного контакта конденсатора на другой. В результате вал начнет вращаться в обратную сторону.

Сложнее осуществляется схема реверсивного подключения двигателя на 380 вольт, если имеется трехфазное соединение.

Для этого применяется принципиальная схема подключения электродвигателя с применением двух магнитных пускателей. С помощью одного из них производится переключение фаз на обмотках.

Второй имеет стандартное включение. При монтаже необходимо предусмотреть защиту от одновременного включения пускателей. В противном случае произойдет короткое замыкание.

Техника безопасности

При самостоятельном подключении электродвигателей следует соблюдать несложные правила. Не работать при подключенном напряжении.

Строго соблюдать правила техники безопасности. Во время работы применять средства индивидуальной защиты.

Нельзя допускать к работе с электричеством необученных людей и детей возрастом менее восемнадцать лет.

Следует помнить, что электричество не имеет запаха и нельзя определить на глаз его наличие на контактах. Обязательно, для определения напряжения использовать только разрешенные средства измерения.

Как использовать трехфазный двигатель в однофазном источнике питания

На этот раз я хотел бы поделиться некоторыми важными знаниями, которые я использовал, когда столкнулся с чрезвычайной или критической ситуацией. Что вы делаете, если у вас есть только трехфазный двигатель и однофазный источник питания?

Как использовать трехфазный двигатель в однофазном источнике питания? На самом деле трехфазный двигатель может работать в однофазном источнике питания с помощью постоянного конденсатора. Эта маленькая вещь (конденсатор) очень полезна для того, чтобы трехфазный двигатель работал в однофазном источнике питания. поставка.

Согласно нашему последнему обсуждению о трехфазном двигателе, обычно у него есть два (2) соединения с общей обмоткой, соединение STAR или DELTA. В этом посте я объяснил, как подключить конденсатор к трехфазному двигателю, как изменить вращение двигателя, как оценить значение емкости и выбрать подходящий конденсатор.

Как установить и подключить конденсатор для трехфазного двигателя с однофазным источником питания?

1) Проводка конденсатора для вращения ВПЕРЕД

-Для вращения ВПЕРЕД, мы должны установить конденсатор в соединении DELTA, как показано на рисунке ниже.

* символ -> Смена клеммы * конденсатора позволяет изменить направление вращения двигателя.

forward rotation capacitor

2) Проводка конденсатора для ОБРАТНОГО поворота

— Для ОБРАТНОГО вращения, мы должны установить конденсатор в любые две фазы обмотки в соединении STAR (Y), как показано на рисунке ниже.

* символ -> Смена клеммы * конденсатора позволяет изменить направление вращения двигателя.

reverse rotation capacitor

Мощность двигателя

Мы должны учитывать выходную мощность двигателя при преобразовании трехфазного в однофазный источник питания, чтобы он соответствовал и соответствовал нашему приложению. Но мы не можем получить фактическое значение из-за большого количества аспектов, которые мы должны рассчитать, и это так сложно. Можно оценить приблизительное значение выходной мощности двигателя в процентах (%) ниже: —

reverse rotation capacitor Как выбрать подходящий конденсатор?

Это очень важное решение, которое мы должны учитывать размер конденсатора при планировании работы трехфазного двигателя в однофазном источнике питания.Если не сделать правильный выбор, это может повлиять на состояние двигателя и производительность, а также может повредить обмотку двигателя.

Ниже приведено приблизительное значение требуемого конденсатора. Мы должны учитывать рабочее напряжение VS Сетевое напряжение, чтобы избежать повреждения обмотки трехфазного двигателя или самого конденсатора. См. Таблицу ниже: —

table of capacitor value

,
Базовая конструкция трехфазных асинхронных двигателей переменного тока, о которых вы должны знать

Трехфазные асинхронные двигатели переменного тока

Для промышленных и горнодобывающих применений асинхронные двигатели переменного тока являются основными двигателями для подавляющего большинства машин. Этими двигателями можно управлять либо непосредственно от сети, либо от преобразователей частоты.

В современных промышленно развитых странах более половины всей электрической энергии, используемой в этих странах, преобразуется в механическую энергию с помощью асинхронных двигателей переменного тока.

Basic construction of 3-phase AC induction motors you should know Basic construction of 3-phase AC induction motors you should know Базовая конструкция трехфазных асинхронных двигателей переменного тока, о которых вы должны знать (фото любезно предоставлено: capolight.wordpress.com)

Применение этих двигателей охватывает практически все стадии производства и обработки.

Приложения

также распространяются на коммерческие здания и бытовые условия. Они используются для привода насосов, вентиляторов, компрессоров, смесителей, мешалок, мельниц, конвейеров, дробилок, станков, кранов и т. Д. И т. Д.

Не удивительно, что этот тип электродвигателя настолько популярен, если учесть его простоту, надежность и низкую стоимость.В последнее десятилетие все более распространенной практикой стало использование трехфазных асинхронных двигателей переменного тока с короткозамкнутым ротором с преобразователями переменного напряжения (VVVF) для применений с частотно-регулируемым приводом (VSD).

Чтобы четко понять, как работает система VSD, необходимо понять принципы работы этого типа двигателя.

Несмотря на то, что базовая конструкция асинхронных двигателей не претерпела существенных изменений за последние 50 лет, современные изоляционные материалы, компьютерные методы оптимизации конструкции и автоматизированные методы производства привели к получению двигателей меньшего физического размера и более низкой стоимости за кВт .

Международная стандартизация физических размеров и размеров рамы означает, что двигатели большинства производителей физически взаимозаменяемы и имеют сходные рабочие характеристики.

Надежность асинхронных двигателей переменного тока с короткозамкнутым ротором по сравнению с двигателями постоянного тока составляет и . Единственные части мотора короткозамкнутого ротора, которые могут износиться, — это подшипники. Скользящие пружины и щетки не требуются для этого типа конструкции. Усовершенствования в современной конструкции подшипников с предварительной смазкой продлили срок службы этих двигателей.

Несмотря на то, что однофазные асинхронные двигатели переменного тока довольно популярны и распространены для применений с малой мощностью до примерно 2,2 кВт, они редко используются в промышленных и горнодобывающих отраслях. Однофазные двигатели чаще используются в быту.

Информация в этой статье в основном относится к 3-фазным асинхронным двигателям переменного тока с короткозамкнутым ротором, который наиболее часто используется с преобразователями VVVF.


Базовая конструкция

Асинхронный двигатель переменного тока состоит из 2 электромагнитных частей:

  • Стационарная часть называется статором
  • Вращающаяся часть, называемая ротором, поддерживаемая на каждом конце на подшипниках

Статор и ротор каждый состоит из:

  • Электрическая цепь, обычно сделанная из изолированной меди или алюминия, для передачи тока
  • Магнитная цепь, обычно изготовленная из ламинированной стали, для переноса магнитного потока

Статор

Статор является внешней стационарной частью двигателя, которая состоит из:

  • Внешняя цилиндрическая рама двигателя , которая изготовлена ​​из сварной листовой стали, чугуна или литого алюминиевого сплава.Это может включать ножки или фланец для монтажа.
  • Магнитный путь , который содержит набор стальных пластин с прорезями, вдавленных в цилиндрическое пространство внутри внешней рамы. Магнитный путь ламинирован, чтобы уменьшить вихревые токи, снизить потери и уменьшить нагрев.
  • Набор изолированных электрических обмоток , которые размещены внутри прорезей многослойного магнитного пути. Площадь поперечного сечения этих обмоток должна быть достаточно большой для номинальной мощности двигателя.Для 3-фазного двигателя требуется 3 комплекта обмоток, по одной для каждой фазы.
Figure 1: Stator and rotor laminations Figure 1: Stator and rotor laminations Рисунок 1: Расслоения статора и ротора
ротор

Это вращающаяся часть двигателя. Как и в случае статора, описанного выше, ротор состоит из набора стальных пластин с прорезями, спрессованных вместе в форме цилиндрического магнитного пути и электрической цепи. Электрическая цепь ротора может быть любой:

  • Намоточный ротор типа , который состоит из 3 комплектов изолированных обмоток с соединениями, выведенными на 3 накладки, установленные на валу.Внешние соединения с вращающейся деталью выполнены через щетки на скользящих пружинах. Следовательно, этот тип двигателя часто называют двигателем скольжения.
  • Ротор с короткозамкнутым ротором типа , который содержит набор медных или алюминиевых стержней, установленных в пазы, которые соединены с торцевым кольцом на каждом конце ротора. Конструкция этих обмоток ротора напоминает «беличную клетку». Алюминиевые стержни ротора обычно отливаются под давлением в пазы ротора, что приводит к очень прочной конструкции.Даже если алюминиевые роторные стержни находятся в непосредственном контакте со стальными пластинами, практически весь ток ротора протекает через алюминиевые бруски, а не через пластинки.

Другие части

Другие детали, необходимые для завершения асинхронного двигателя:

  • Два концевых фланца для поддержки двух подшипников, один со стороны привода (DE), а другой со стороны без привода (NDE)
  • Два подшипника для поддержки вращающегося вала, в DE и NDE
  • Стальной вал для передачи крутящего момента на нагрузку
  • Охлаждающий вентилятор, расположенный в NDE для принудительного охлаждения статора и ротора
  • Клеммная коробка сверху или сбоку для подключения внешних электрических соединений
Figure 2: Assembly details of a typical AC induction motor Figure 2: Assembly details of a typical AC induction motor Рисунок 2. Детали сборки типичного асинхронного двигателя переменного тока

Как работают асинхронные двигатели (ВИДЕО)

Справочник // Практические приводы с регулируемой скоростью и силовая электроника Малколма Барнса

,Программа
Basic PLC для управления трехфазным двигателем переменного тока

Motor Starter

Хотя ранее описанная система управления освещением полезна для объяснения основной работы ПЛК, более практичным и лишь немного более сложным приложением является управление запуском-остановкой двигателя переменного тока. Прежде чем приступить к изучению программы ПЛК, сначала рассмотрим аппаратный подход.

Basic PLC program for control of a three-phase AC motor (for beginners) Базовая программа ПЛК для управления трехфазным двигателем переменного тока — для начинающих (на фото: ПЛК Simatic S7-1500; кредит: SIEMENS)

Следующая линейная схема иллюстрирует, как нормально разомкнутая и нормально замкнутая кнопка может быть подключена для управления трехфазным электродвигателем переменного тока .

В этом примере катушка пуска двигателя (M) подключена последовательно с нормально разомкнутой кнопкой кратковременного пуска, нормально замкнутой кнопкой кратковременного останова и нормально замкнутыми контактами реле перегрузки (OL) .

Motor starter wiring diagram Motor starter wiring diagram Схема подключения стартера двигателя

Мгновенное нажатие на кнопку «Пуск» завершает путь для протекания тока и подает питание на пускатель двигателя (M). Это замыкает соответствующие контакты M и Ma (вспомогательный контакт, расположенный в пускателе двигателя).

Когда кнопка «Пуск» отпущена , ток продолжает течь через кнопку «Стоп» и контакт мА мА, а катушка М остается под напряжением.

Двигатель будет работать до тех пор, пока не будет нажата нормально замкнутая кнопка «Стоп», если контакты реле перегрузки (OL) не разомкнуты. Когда кнопка «Стоп» нажата, путь для протекания тока прерывается, открывая соответствующие контакты М и Ма, и двигатель останавливается.

Вот как работает аппаратный пускатель двигателя.Теперь давайте немного поговорим о ПЛК, работающем так же //


ПЛК и приложение управления двигателем

Это приложение управления двигателем также может быть выполнено с ПЛК . В следующем примере нормально разомкнутая кнопка «Пуск» подключена к первому входу (I0.0), нормально замкнутая кнопка «Стоп» подключена ко второму входу (I0.1) и нормально замкнутые контакты реле перегрузки (часть двигателя). стартер) подключены к третьему входу (I0.2).

Эти входы используются для управления нормально разомкнутыми контактами в строке лестничной логики , запрограммированной в ПЛК.

PLC Motor Control scheme PLC Motor Control scheme ПЛК Схема управления двигателем

Первоначально бит состояния I0.1 представляет собой логическую единицу, потому что нормально замкнутая (NC) кнопка останова закрыта. Бит состояния I0.2 — это логика 1 , потому что нормально замкнутые (NC) контакты реле перегрузки (OL) замкнуты. Бит состояния I0.0 — это логика 0 , однако, потому что нормально открытая кнопка Старт не была нажата.

Нормально разомкнутый выходной контакт Q0.0 также запрограммирован в сети как уплотнительный контакт. В этой простой сети для включения двигателя требуется выходная катушка Q0.0.

Вернуться к основным темам ↑


Работа программы ПЛК

Когда нажата кнопка «Старт», ЦП получает логику от входа I0.0. Это приводит к замыканию контакта I0.0. Все три входа теперь логические. Процессор отправляет логику на выход Q0.0. Стартер двигателя находится под напряжением, и двигатель запускается.

PLC Program Operation PLC Program Operation ПЛК Работа программы

Бит состояния выхода для Q0.0 теперь a. При следующем сканировании, когда будет разрешен нормально разомкнутый контакт Q0.0, контакт закроется, а выход Q0.0 останется включенным, даже если отпустить кнопку Старт.

Управление программой ПЛК PLC Program Operation PLC Program Operation

Когда нажата кнопка «Стоп»: вход I10.0 отключается, контакт I0.0 размыкается, выходная катушка Q0.0 обесточивается и двигатель выключается.

Управление программой ПЛК PLC Program Operation PLC Program Operation

Вернуться к основным темам ↑


Добавление индикаторов Run и Stop

Приложение может быть легко расширено , чтобы включить световые индикаторы для условий работы и остановки .В этом примере индикаторная лампа RUN подключена к выходу Q0. и индикатор STOP подключен к выходу Q0.2.

Лестничная логика для этого приложения включает нормально разомкнутый контакт Q0.0, подключенный в сети 2 к выходной катушке Q0. и нормально замкнутый контакт Q0.0, подключенный в сети 3 к выходной катушке Q0.2. Когда Q0.0 выключен, нормально разомкнутый контакт Q0.0 в сети 2 разомкнут, а индикатор RUN выключен. В то же время нормально замкнутый контакт Q0.0 замкнут и индикатор STOP включен.

Adding Run and Stop Indicator Lights Adding Run and Stop Indicator Lights Добавление индикаторов хода и остановки

При нажатии кнопки «Пуск» ПЛК запускает двигатель. Выход Q0.0 теперь включен. Нормально разомкнутый контакт Q0.0 в сети 2 теперь замкнут, а индикатор RUN включен. В то же время нормально замкнутый контакт Q0.0 в сети 3 разомкнут, а индикатор STOP, подключенный к выходу Q0.2, не горит.

Adding Run and Stop Indicator Lights Adding Run and Stop Indicator Lights Добавление индикаторов запуска и остановки

Вернуться к основным темам ↑


Добавление концевого выключателя

Приложение можно расширить, добавив концевой выключатель.Концевой выключатель может быть использован в этом приложении для различных функций. Например, концевой выключатель можно использовать для остановки двигателя или предотвращения запуска двигателя.

В этом примере концевой выключатель связан с дверью доступа к двигателю или его соответствующему оборудованию. Концевой выключатель подключен к входу I0.3 и управляет нормально разомкнутым контактом в программе. Если дверца доступа открыта, концевой выключатель LS разомкнут, и нормально разомкнутый контакт I0.3 также разомкнут. Это предотвращает запуск двигателя.

Adding a Limit Switch Adding a Limit Switch Добавление концевого выключателя

Когда дверца доступа закрыта, концевой выключатель LS замкнут , и нормально разомкнутый контакт I0.3 также замкнут. Это позволяет запускать двигатель при нажатии кнопки «Пуск».

Adding a Limit Switch Adding a Limit Switch Добавление концевого выключателя

Вернуться к основным темам ↑


Дальнейшее расширение программы ПЛК

Программа ПЛК может быть дополнительно расширена на для обеспечения широкого спектра коммерческих и промышленных применений.

Могут быть добавлены кнопки Пуск / Стоп, селекторные переключатели, световые индикаторы и столбцы сигнализации. Пускатели двигателей могут быть добавлены для управления дополнительными двигателями. Концевые выключатели превышения хода могут быть добавлены вместе с бесконтактными выключателями для определения положения объекта. Различные типы реле могут быть добавлены для расширения разнообразия контролируемых устройств.

При необходимости можно добавить модули расширения для дальнейшего расширения возможностей ввода-вывода . Приложения ограничены только количеством входов / выходов и объемом памяти, доступным для ПЛК.

Further expansion of a PLC program Further expansion of a PLC program Дальнейшее расширение программы ПЛК

Вернуться к основным темам ↑

Ссылка // Основы ПЛК от SIEMENS

,
3-фазная схема регулятора скорости асинхронного двигателя

В этом посте мы обсудим создание простой 3-фазной схемы регулятора скорости асинхронного двигателя, которая также может применяться для однофазного асинхронного двигателя или буквально для любого типа двигателя переменного тока.

Когда речь идет об управлении скоростью асинхронных двигателей, обычно используются матричные преобразователи, включающие множество сложных ступеней, таких как LC-фильтры, двунаправленные матрицы переключателей (с использованием IGBT) и т. Д.

Все это используется для достижения в конечном итоге прерывистый сигнал переменного тока, рабочий цикл которого можно регулировать с помощью сложной схемы микроконтроллера, что в итоге обеспечивает необходимый контроль скорости двигателя.

Однако мы можем поэкспериментировать и попытаться осуществить управление скоростью трехфазного асинхронного двигателя с помощью гораздо более простой концепции, используя усовершенствованные ИС оптопары с детектором пересечения нуля, силовой триак и схему ШИМ.

Использование детектора пересечения нулевого уровня Opto Coupler

Благодаря серии оптопар MOC, которые сделали цепи управления симистором чрезвычайно безопасными и простыми в настройке, а также обеспечивают беспроблемную интеграцию ШИМ для предполагаемых органов управления.

В одном из моих предыдущих постов я рассмотрел простую схему контроллера двигателя с плавным пуском ШИМ, в которой реализована микросхема MOC3063 для обеспечения эффективного плавного пуска на подключенном двигателе.

Здесь мы также используем идентичный метод для применения предложенной схемы регулятора скорости 3-фазного асинхронного двигателя. На следующем рисунке показано, как это можно сделать:

На рисунке мы видим три идентичных ступени оптопары MOC, сконфигурированные в их стандартном триаке режим регулятора, а входная сторона интегрирована с простой схемой ШИМ IC 555.

3 цепи MOC сконфигурированы для обработки 3-фазного входа переменного тока и подачи его на подключенный асинхронный двигатель.

ШИМ-вход на изолированной светодиодной стороне управления opto определяет коэффициент прерывания 3-фазного входа переменного тока, который обрабатывается MOC ICS.

Использование ШИМ-контроллера IC 555 (переключение при нулевом напряжении)

Это означает, что, регулируя ШИМ-регулятор, связанный с ИС 555, можно эффективно контролировать скорость асинхронного двигателя.

Выход на своем выводе № 3 имеет изменяющийся рабочий цикл, который, в свою очередь, соответственно переключает выходные триаки, что приводит либо к увеличению среднеквадратичного значения переменного тока, либо к его уменьшению.

Увеличение среднеквадратичного значения с помощью более широких ШИМ позволяет получить более высокую скорость вращения двигателя, в то время как снижение среднеквадратичного значения переменного тока с помощью более узких ШИМ дает противоположный эффект, то есть пропорционально замедляет двигатель.

Вышеуказанные функции реализованы с большой точностью и безопасностью, поскольку микросхемы имеют множество внутренних сложных функций, специально предназначенных для управления симисторами и тяжелыми индуктивными нагрузками, такими как асинхронные двигатели, соленоиды, клапаны, контакторы, твердотельные реле и т. Д.

Микросхема также обеспечивает идеально изолированную операцию для ступени постоянного тока, что позволяет пользователю выполнять регулировки без страха поражения электрическим током.

Этот принцип также может быть эффективно использован для управления скоростью однофазного двигателя путем использования одной микросхемы MOC вместо 3.

Конструкция фактически основана на теории пропорционального по времени привода симистора. Верхняя схема ШИМ IC555 может быть отрегулирована для создания рабочего цикла 50% при значительно более высокой частоте, в то время как нижняя схема ШИМ может использоваться для реализации операции управления скоростью асинхронного двигателя посредством регулировок соответствующего блока.

Рекомендуется, чтобы эта микросхема 555 имела относительно более низкую частоту, чем верхняя цепь микросхемы 555. Это можно сделать, увеличив конденсатор с выводом № 6/2 до 100 нФ.

ПРИМЕЧАНИЕ. ДОБАВЛЕНИЕ ПОДХОДЯЩИХ ИНДУКТОРОВ В СЕРИИ С ФАЗОВЫМИ ПРОВОДАМИ МОЖЕТ КРАТКО УЛУЧШИТЬ ЭФФЕКТИВНОСТЬ СИСТЕМЫ УПРАВЛЕНИЯ СКОРОСТЬЮ.

Лист данных для MOC3061

Предполагаемое управление осциллограммой и фазой с использованием вышеуказанной концепции:

Описанный выше способ управления 3-фазным асинхронным двигателем на самом деле довольно грубый, поскольку он не имеет управления по напряжению / частоте .

Он просто включает / выключает сеть с разными скоростями, чтобы вырабатывать среднюю мощность двигателя и управлять скоростью, изменяя это среднее значение переменного тока для двигателя.

Представьте, если вы включаете / выключаете двигатель вручную 40 раз или 50 раз в минуту. Это может привести к замедлению вашего двигателя до некоторого относительного среднего значения, но при этом он будет непрерывно двигаться. Вышеуказанный принцип работает аналогичным образом.

Более технический подход заключается в разработке схемы, которая обеспечивает надлежащий контроль соотношения В / Гц и автоматически регулирует его в зависимости от скорости скольжения или любых колебаний напряжения.

Для этого мы в основном используем следующие этапы:

  1. Цепь драйвера IGBT H-моста или полного моста
  2. 3-фазная ступень генератора для питания полной мостовой цепи
  3. В / Гц ШИМ-процессор

Использование полного моста Цепь управления IGBT

Если процедуры настройки вышеупомянутой конструкции на основе симистора кажутся вам утомительными, можно попробовать следующее полное управление скоростью асинхронного двигателя на основе ШИМ:

В схеме, показанной на рисунке выше, используется один полный чип -бриджный драйвер IC IRS2330 (последняя версия 6EDL04I06NT), который имеет все встроенные функции для обеспечения безопасной и безупречной работы трехфазного двигателя.

Микросхеме требуется только синхронизированный 3-фазный логический вход на его выводах HIN / LIN для генерации требуемого 3-фазного осциллирующего выхода, который, в конечном итоге, используется для работы полной мостовой IGBT-сети и подключенного 3-фазного двигателя.

ШИМ-контроль с регулировкой скорости реализован с помощью 3 отдельных полумостовых драйверов NPN / PNP-драйверов, управляемых SPWM-питанием от генератора ШИМ IC 555, как видно из наших предыдущих разработок. Этот уровень ШИМ может в конечном итоге использоваться для управления скоростью асинхронного двигателя.

Прежде чем мы изучим метод управления фактической скоростью для асинхронного двигателя, давайте сначала разберемся, как можно достичь автоматического управления частотой / Гц с помощью нескольких цепей IC 555, как описано ниже. (Замкнутый контур)

В приведенных выше разделах мы изучили конструкции, которые помогут асинхронному двигателю двигаться со скоростью, указанной изготовителем, но он не будет регулироваться в соответствии с постоянным отношением В / Гц, если только следующий ШИМ Процессор интегрирован с входной подачей ШИМ H-Bridge.

Приведенная выше схема представляет собой простой генератор ШИМ, использующий пару IC 555. IC1 генерирует частоту ШИМ, которая преобразуется в треугольные волны на выводе № 6 IC2 с помощью R4 / C3.

Эти треугольные волны сравниваются с синусоидальной пульсацией на выводе 5 IC2. Эти выборочные пульсации получают путем выпрямления 3-фазной сети переменного тока в пульсации 12 В переменного тока и подают на вывод № 5 IC2 для необходимой обработки.

Сравнивая форму волны, генерируется SPWM с соответствующими размерами на выводе 3 IC2, который становится ведущим ШИМ для сети H-моста.

Как работает схема В / Гц

При включении питания конденсатор на выводе № 5 начинается с подачи нулевого напряжения на вывод № 5, что вызывает наименьшее значение SPWM для цепи H-моста, что, в свою очередь, позволяет асинхронный двигатель для запуска с медленным постепенным плавным пуском.

Когда этот конденсатор заряжается, потенциал на выводе 5 увеличивается, что пропорционально увеличивает SPWM и позволяет двигателю постепенно набирать скорость.

Мы также можем видеть цепь обратной связи тахометра, которая также интегрирована с выводом № 5 IC2.

Этот тахометр контролирует скорость вращения ротора или скольжения и генерирует дополнительное напряжение на выводе № 5 IC2.

Теперь, когда скорость двигателя увеличивается, скорость скольжения пытается синхронизироваться с частотой статора, и в процессе она начинает набирать скорость.

Это увеличение индукционного скольжения пропорционально увеличивает напряжение тахометра, что, в свою очередь, приводит к тому, что IC2 увеличивает выход SPWM, что, в свою очередь, еще больше увеличивает скорость двигателя.

Приведенная выше настройка пытается поддерживать отношение В / Гц на достаточно постоянном уровне до тех пор, пока, наконец, SPWM от IC2 не сможет увеличиваться дальше.

В этот момент скорость скольжения и скорость статора приобретают устойчивое состояние, и это поддерживается до тех пор, пока входное напряжение или скорость скольжения (из-за нагрузки) не изменятся. В случае их изменения схема процессора V / Hz снова вступает в действие и начинает регулировать соотношение для поддержания оптимального отклика скорости асинхронного двигателя.

Тахометр

Схема тахометра также может быть дешево построена с использованием следующей простой схемы и интегрирована с описанными выше этапами схемы:

Как реализовать управление скоростью

В приведенных выше параграфах мы понимали процесс автоматического регулирования, который может Это достигается за счет интеграции обратной связи тахометра с цепью контроллера SPWM с автоматическим регулированием.

Теперь давайте узнаем, как можно управлять скоростью асинхронного двигателя, изменяя частоту, что в конечном итоге приведет к падению SPWM и поддержанию правильного соотношения В / Гц.

Следующая диаграмма поясняет стадию управления скоростью:

Здесь мы видим схему трехфазного генератора, использующую IC 4035, частоту фазового сдвига которой можно изменять, изменяя тактовый вход на его выводе № 6.

3-фазные сигналы подаются через вентили 4049 IC для создания необходимых каналов HIN, LIN для сети драйверов полного моста.

Это означает, что, соответствующим образом изменяя тактовую частоту IC 4035, мы можем эффективно изменить рабочую трехфазную частоту асинхронного двигателя.

Это реализуется через простую нестабильную схему IC 555, которая подает регулируемую частоту на вывод № 6 IC 4035 и позволяет регулировать частоту с помощью прилагаемой емкости 100 КБ. Конденсатор С необходимо рассчитать так, чтобы диапазон регулируемой частоты соответствовал правильным характеристикам подключенного асинхронного двигателя.

Когда частота изменяется, эффективная частота асинхронного двигателя также изменяется, что соответственно изменяет скорость двигателя.

Например, когда частота снижается, вызывает уменьшение скорости двигателя, что, в свою очередь, заставляет выходной сигнал тахометра пропорционально уменьшать напряжение.

Это пропорциональное уменьшение выходной мощности тахометра вынуждает SPWM сужаться и, таким образом, пропорционально понижает выходное напряжение для двигателя.

Это действие, в свою очередь, обеспечивает сохранение соотношения В / Гц при управлении скоростью асинхронного двигателя посредством управления частотой.

Предупреждение. Вышеприведенная концепция основана только на теоретических предположениях, поэтому соблюдайте осторожность.

Если у вас есть какие-либо дополнительные сомнения относительно конструкции этого контроллера скорости вращения трехфазного асинхронного двигателя, вы можете опубликовать его в своих комментариях.

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и учебными пособиями.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать через комментарии, я буду очень рад помочь!

Добавить комментарий

Ваш адрес email не будет опубликован.