Подключить трехфазный двигатель к однофазной сети: Трехфазный двигатель в однофазную сеть: 7 доступных способов | Мое мнение: ремонт

Содержание

Трехфазный двигатель в однофазную сеть: 7 доступных способов | Мое мнение: ремонт

Домашнему мастеру часто приходится возиться с самодельными станками и механизмами, значительно облегчающими работу. Для этих целей используют трехфазный двигатель, подключаемый в однофазную сеть своими руками.

Однако не всегда умельцы добиваются желаемого успеха, а в отдельных случаях они терпят разочарование. Чтобы избежать подобных ошибок рекомендую прочитать материал этой статьи.

Вы узнаете не только технологию работу, но и те трудности, которые сопровождают каждый их семи методов.

Как работает трехфазный двигатель

Изначально его создают для вращения от трех симметрично расположенных в пространстве магнитных потоков, создаваемых протекающими по обмоткам токами от фазных или линейных напряжений сети 380 вольт.

Их в энергетике принято представлять графически: векторными диаграммами.

Другие математические описания, включая методы комплексных чисел, применяются специалистами расчетчиками.

Обмотки трехфазного двигателя в заводском исполнении могут быть собраны по схемам:

· звезды;

· или треугольника.

Более подробно с этой информацией можно отдельно ознакомиться в статье об однофазном подключении трехфазного двигателя. Надеюсь, что вам будет понятно ее изложение.

При таком подключении двигатель работает с минимальными потерями энергии, имеет лучший КПД. Ведь на этот режим он спроектирован, рассчитан и создан.

Когда трехфазный электродвигатель включают в однофазную сеть, то потери его мощности неизбежны. Они могут превышать 50% или даже больше. Это надо всегда учитывать.

Самый простой способ запуска

Если обмотки собраны в треугольник и на два любых вывода подать напряжение 220 вольт, то можно раскрутить ротор простым шнуром. Обмотав его вокруг вала, а затем резко дернув за свободный конец.

Метод не очень эффективный, но иногда он может пригодиться. Потери мощности здесь большие. Им пользуются очень редко.

Способ №2: конденсаторный запуск схемы звезда

Обмотки собирают концами на одной клемме — нейтрали, а началами выводят на калымную колодку для подключения питающих кабелей.

Напряжение 220 подают через две группы конденсаторов:

1. рабочую, сдвигающую ток относительно вектора подводимого напряжения на 90 угловых градусов;

2. пусковую, кратковременно облегчающую раскрутку ротора при начале запуска.

Способ №3: конденсаторный запуск схемы треугольника

Технология сборки обмоток отличается от предыдущего метода: они чередуются соединением начала одной с концом последующей.

Для запуска двигателя также подбираются рабочие и пусковые конденсаторы. Они рассчитываются по эмпирическим формулам и должны выдерживать увеличенное линейное напряжение. Минимальная величина должна быть не менее 500 вольт. Иначе возможен их пробой.

Более подробно с конденсаторным запуском трехфазного двигателя по схеме звезды или треугольника можно ознакомиться в этой статье.

Эти две схемы конденсаторного запуска по системе звезды или треугольника являются самыми популярными и доступными.

Способ №4: без конденсаторный запуск трехфазного двигателя

По этой методике создается электронный ключ, который осуществляет сдвиг фазы тока в одной из подключений обмотке на угол φ.

За счет фазового сдвига происходит приложение вращающего момента к ротору, он начинает вращение.

Электронные ключи и способы подключения обмоток могут значительно отключаться. Варианты включения такой схемы показаны ниже.

Более подробно с описанием подобных устройств рекомендую ознакомиться в моей статье о работе трехфазного двигателя в однофазной сети без конденсаторного запуска.

Там рассмотрены три схемы запуска по разным технологиям. Основной недостаток их — потери энергии до 70% от начальной мощности.

Способ №5: индуктивно-емкостной преобразователь

Специальная схема подключения напряжения позволяет сдвигать токи в трех обмотках разными способами:

1. вперед на 90 градусов — за счет включения конденсаторов в одной;

2. назад на 90 градусов — индуктивным сопротивлением дросселя во второй;

3. оставить без изменения подключением активного резистора в третьей.

Схема отличается хорошим преобразованием приложенной мощности, относительно высоким КПД двигателя. Ее основной недостаток —сам преобразователь потребляет примерно столько же энергии, как и электродвигатель.

По этой причине она экономически не выгодна, да и монтаж индуктивно-емкостного преобразователя с резистором не так уж прост.

Я ее описал в статье по первой ссылке. Можете познакомиться более подробно.

Способ №6: самодельный генератор

Идея этой методики, что из какого-то мощного трехфазного двигателя собирают электрогенератор, подключив его по одной из простых схем.+

От этого генератора питают трехфазной системой другие электродвигатели.

Однако следует учесть, что самодельный генератор необходимо раскрутить и вывести на работу с номинальной мощностью другим однофазным двигателем, тратить на него энергию. Она будет расходоваться во всех последующих преобразованиях, снижать КПД.

Способ №7: частотный преобразователь

За счет проведения технологии специального частотного преобразования происходит формирование синусоиды тока внутри каждой обмотке.

Для работы схемы заложены процессы:

· выпрямления питающего напряжения;

· его стабилизации;

· инвертирования;

· управления.

Этот способ обладает повышенным КПД, хорошо подходит для включения трехфазного двигателя в однофазную сеть.

Но собрать такой преобразователь своими руками вряд ли получится: его монтируют в заводских условиях из сложных электронных компонентов.

О плюсах и минусах использования частотного преобразователя рассказывает владелец видеоролика Александр Шенрок.

Советую обязательно посмотреть, обратив внимание на комментарии. Жду вашей оценки моей статьи.

Подробное описание и схема подключения трехфазного двигателя к однофазной сети

Современный рынок предлагает однофазные и трехфазные электродвигатели. Но, как известно, бытовая сеть – однофазная, отсюда закономерный вопрос: осуществимо ли подключение трехфазного двигателя к однофазной сети?

Приведем несколько вариантов решения обозначенной задачи. Чаще предпочтение отдается методу подключение трехфазного двигателя через конденсатор – один из элементов является рабочим, другой – пусковым. Обозначения Ср и Сп. На схеме рассмотрены варианты включения «звезда» (а) и «треугольник» (б).

Рис.1

За счет действия элемента схемы Сп достигается увеличение пускового момента. После того, как двигатель запущен, Сп отключают. В ситуациях, когда пуск электродвигателя выполняется без нагрузки, необходимость включать в цепь конденсатор Сп отпадает.

Для успешной реализации задачи важно правильно определить емкость рабочего конденсатора. Используется закономерность:

Ср=К(1ном/U), где

Ср – рабочая емкость (мкФ), 1ном – сила тока по номиналу (А), U – напряжение в однофазной цепи (В), К – коэффициент, который зависит от того, какая схема подключения трехфазного двигателя выбрана. Показатель «К» для «звезды» — 2800, «треугольника» — 4800.

Показатели номинального тока и напряжения можно найти в технической документации (паспорте) к каждому виду электрических двигателей.

Подключение трехфазного двигателя через конденсатор чаще предусматривает применение недорогого электролитического конденсатора ЭП. После каждого включения такой конденсатор крайне важно разряжать.

Как показывает практика, подключение трехфазного двигателя к однофазной сети с помощью конденсаторов оправдано. Такая схема дает мощность в 65-85% от приведенных в паспорте данных. Проблемы могут возникнуть только с подбором нужного типа конденсатора. Чтобы не решать подобных задач, большое распространение получила схема подключения трехфазного двигателя с применением активных сопротивлений. 

Рис.2

Но необходимо учесть, что при помощи метода сопротивления часто не получается получить мощность силовой установки больше, чем половина ее номинала. 

Выполняя подключение трехфазного двигателя в однофазную сеть через конденсатор важно понимать, что номинал конденсаторов модификаций КБГ-МН и БГТ приводится на постоянном токе. При работе в условиях переменного тока, величины допустимых напряжений не должны превышать приведенных в таблице ниже показателей.

Номинальное напряжение постоянного тока, В Допустимое напряжение переменного тока, В, при частоте 50Гц и емкости конденсатора, мкФ:
до 2 4-10
400

600

1000

1500

250

300

400

500

200

250

350

Определить величину пусковых активных сопротивлений можно, опираясь на величины, приведенные в таблице ниже. За основу принимаются мощности электрического двигателя в трехфазном режиме.

Мощность двигателя, кВт Пусковое сопротивление, Ом
при включении по схеме Рис.2 (а)

0,6

1,0

1,7

2,8

4,5; 7,0

25-30

20-25

10-15

4-10

3-5

при включении по схеме Рис.
2 (б)

0,6; 1,0

1,7; 2,8

4,5

8-15

3-4

1,5-3

В информационном разделе Дельта Привод вы также можете подробнее ознакомиться с вопросом включения двигателя постоянного тока в сеть 110/220 вольт.

Трехфазный двигатель в однофазной сети. Схема подключения трехфазного двигателя. Как подключить трехфазный двигатель в однофазную сеть своими руками

Доморощенные «кулибины» используют для электромеханических поделок то, что попадется под руку. При выборе электродвигателя, обычно попадаются трехфазные асинхронные. Этот тип получил широкое распространение благодаря удачной конструкции, хорошей балансировке и экономичности.

Особенно это актуально в мощных промышленных агрегатах. За пределами частного дома или квартиры, проблем с трехфазным питанием нет. А как организовать подключение трехфазного двигателя к однофазной сети, если ваш счетчик имеет два провода?

Рассмотрим вариант штатного подключения

Трехфазный двигатель, имеет три обмотки под углом 120°. На контактную колодку выводится три пары контактов. Соединение можно организовать двумя способами:

Подключение по схеме “звезда” и “треугольник”

Каждая обмотка одним концом соединяется с двумя другими обмотками, образуя так называемую нейтраль. Оставшиеся концы соединяются с тремя фазами. Таким образом, на каждую пару обмоток подается 380 вольт:

В распределительной колодке, перемычки соединены соответственно, перепутать контакты невозможно. Понятия полярности в переменном токе нет, поэтому не имеет значения, какую фазу, на какой провод подавать.

При таком способе конец каждой обмотки соединяется со следующей, в результате получается замкнутый круг, точнее треугольник. На каждой обмотке присутствует напряжение 380 вольт.

Схема подключения:

Соответственно, на клемной колодке перемычки устанавливаются по-иному. Аналогично с первым вариантом, полярность отсутствует, как класс.


На каждую группу контактов, ток поступает в разный момент времени, следуя понятию «сдвиг фазы». Поэтому магнитное поле последовательно увлекает за собой ротор, создавая непрерывный крутящий момент. Так работает двигатель при «родном» для него трехфазном питании.

А если вам достался двигатель в отличном состоянии, а подключить его надо к однофазной сети? Не стоит расстраиваться, схема подключения трехфазного двигателя давно отработана инженерами. Мы поделимся с вами секретами нескольких популярных вариантов.

Подключение трехфазного двигателя к сети 220 вольт (одна фаза)

На первый взгляд, работа трехфазного мотора при подключении к одной фазе ничем не отличается от правильного включения. Ротор вращается, практически не теряя оборотов, никаких рывков и замедлений не наблюдается.

Однако достичь штатной мощности при таком питании невозможно. Это вынужденная потеря, ее никак не исправить, приходится с этим считаться. В зависимости от управляющей схемы, снижение мощности колеблется от 20% до 50%.

При этом электроэнергия расходуется так же, как будто вы используете всю мощь. Чтобы выбрать наиболее выгодный вариант, предлагаем ознакомиться с различными способами.

Необходимость использования трехфазного асинхронного электродвигателя самостоятельно чаще всего возникает, когда устанавливается или проектируется самодельное оборудование. Обычно на дачах или в гараже мастера хотят использовать самодельные наждачные станки, бетономешалки, приборы по заточке и обрезке изделий.

Использование трехфазного асинхронного электродвигателя самостоятельно

Тут и возникает вопрос: как подключить электродвигатель, рассчитанный на 380, к сети в 220 Вольт. Кроме того, важно как подключить электродвигатель в сеть, так и обеспечить необходимый показатель коэффициента полезного действия (КПД), сохранить эффективность и работоспособность агрегата.

Особенности устройства двигателя

На каждом двигателе есть пластина или шильдик, где указаны технические данные и схема скрутки обмоток. Символ Y обозначает соединение звездой, а ∆ – треугольником. Помимо этого, на пластине обозначено напряжение сети, для которого предназначен электродвигатель. Разводка для подсоединения к сети находится на клеммнике, куда выводят провода обмотки.

Для обозначения начала и конца обмотки используют буквы С или U, V, W. Первое обозначение было в практике раньше, а английские буквы стали применять после введения ГОСТа.

Не всегда использовать для работы двигатель, предназначенный для трехфазной сети, представляется возможным. Если на клеммник выведено 3 вывода, а не 6 как обычно, то подключение возможно только с напряжением, которое указано в инженерных характеристиках. В этих агрегатах соединение треугольником или звездой уже сделано внутри самого прибора. Поэтому использовать электродвигатель на 380 Вольт с 3 выводами для однофазной системы невозможно.

Можно частично разобрать двигатель и переделать 3 вывода на 6, но это сделать не так просто.

Существует разные схемы того, как лучше подключать приборы с параметрами в 380 Вольт в однофазную сеть. Чтобы использовать трехфазный электродвигатель в сети 220 Вольт, проще воспользоваться одним из 2 способов подключения: «звезда» или «треугольник».

Хотя можно осуществить запуск трехфазного двигателя с 220 без конденсаторов. Рассмотрим все варианты.

На рисунке показано, как выполняется этот тип подключения. В работе электродвигателя следует дополнительно воспользоваться фазосдвигающими конденсаторами, которые ещё называют пусковыми (Спуск.) и рабочими (Сраб.).

Тип подключения «Звезда»

При подключении звездой все три конца обмотки соединяются. Для этого используют специальную перемычку. Питание подается на клеммы с начала обмоток. При этом начало обмотки С1(U1) через параллельно подключенные конденсаторы поступает на начало обмотки С3(U3). Далее этот конец и С2(U2) надо подключить к сети.

В этом виде подключения, как и в первом примере, используются конденсаторы. Для того чтобы подключить по этой схеме скрутки потребуются 3 перемычки. Они будут соединять начало и конец обмотки. Выводы, идущие с начала обмотки С6С1 через такую же параллельную схему, как и в случае с подключением «звезда», соединяются с выводом, идущим от С3С5.

Затем полученный конец и вывод С2С4 следует подключить к сети.

Тип подключения «Треугольник»

Если на шильдике указаны показатели 380/220ВВ, то подключение в сеть возможно только по «треугольнику».

Как подсчитать емкость

Для рабочего конденсатора применяется формула:

Сраб.=2780хI/U, где
U – номинальное напряжение,
I – ток.

Существует и другая формула:

Сраб.= 66хР, где Р – это мощность трехфазного электродвигателя.

Получается, что 7мкФ емкости конденсатора рассчитаны на 100Вт его мощности.

Значение для емкости пускового устройства должно быть на 2,5-3 порядка больше рабочего. Такое расхождение показателей по емкости у конденсаторов требуется, потому что пусковой элемент включается при работе трехфазного двигателя на непродолжительное время. К тому же при включении высшая нагрузка на него значительно больше, оставлять в рабочем положении это устройство на более длительный период не стоит, иначе из-за перекоса тока по фазам через некоторое время электродвигатель начнет перегреваться.

Если вы используете для работы электродвигатель, мощность которого меньше 1кВт, то пусковой элемент не потребуется.

Иногда емкости одного конденсатора для начала работы не хватает, тогда схема подбирается из нескольких разных элементов, соединенных последовательно. Общую емкость при параллельном соединении можно рассчитать по формуле:

Cобщ=C1+C1+…+Сn.

На схеме подобное подключение выглядит следующим образом:

О том, насколько правильно подобраны емкости конденсаторов, можно будет понять только в процессе использования. Из-за этого схема из нескольких элементов более оправдана, ведь при большей емкости двигатель будет перегреваться, а при меньшей – выходная мощность не достигнет нужного уровня. Подбор емкости лучше начать с минимального ее значения и постепенно доводить до оптимального. При этом можно замерить ток с помощью токоизмерительных щипцов, тогда подобрать оптимальный вариант станет проще. Подобный замер делают в рабочем режиме трехфазного электродвигателя.

Какие выбрать конденсаторы

Для подключения электродвигателя чаще всего используют бумажные конденсаторы (МБГО, КБП или МПГО), но все они обладают небольшими емкостными характеристиками и достаточной громоздкостью. Другой вариант – подобрать электролитические модели, хотя здесь придется дополнительно подключить в сеть диоды и резисторы. К тому же при пробое диода, а это случается довольно часто, через конденсатор начнет поступать переменный ток, что может привести к взрыву.

Кроме емкости, стоит обратить внимание на рабочее напряжение в домашней сети. При этом следует подбирать модели с техническими показателями не меньше 300Вт. Для бумажных конденсаторов подсчет рабочего напряжения для сети немного другой, и рабочее напряжение у данного типа устройств должно быть выше 330-440ВВ.

Пример подключения в сеть

Посмотрим, как это подключение рассчитывается на примере двигателя со следующими характеристиками на шильдике.

Характеристики двигателя

Итак, возьмем со схемой соединения для сети в 220 Вольт «треугольником» и «звездой» для 380 Вольт.

В данном случае мощность взятого для примера электродвигателя составляет 0,25 kW, что значительно меньше 1 kW, пусковой конденсатор не потребуется, а общая схема будет выглядеть следующим образом.

Для подключения в сеть необходимо найти емкость рабочего конденсатора. Для этого стоит подставить значения в формулу:
Сраб.= 2780 2А/220В=25 мкФ.

Рабочее напряжение устройства выбирается выше показателя в 300 Вольт. Исходя из этих данных, сортируют соответствующие модели. Некоторые варианты можно найти в таблице:

Зависимость емкости и напряжения от типа конденсатора

Тип конденсатора Емкость, мкФ Номинальное напряжение, В
МБГ0 1
2
4
10
20
30
400, 500
160, 300, 400, 500
160, 300, 400
160, 300, 400, 500
160, 300, 400, 500
160, 300
МБГ4 1; 2; 4; 10; 0,5 250, 500
К73-2 1; 2; 3; 4; 6; 8; 10 400, 630
К75-12 1; 2; 3; 4; 5; 6; 8; 10 400
К75-12 1; 2; 3; 4; 5; 6; 8 630
К75-40 4; 5; 6; 8; 10; 40; 60; 80; 100 750

Подключение тиристорным ключом

Трехфазный электродвигатель, предназначенный для 380 Вольт, используют для однофазного напряжения, применяя тиристорный ключ. Для того чтобы запустить агрегат в таком режиме, потребуется вот эта схема:

Схема трехфазного электродвигателя для однофазного напряжения

В работе использованы:

  • транзисторы из серии VT1, VT2;
  • резисторы МЛТ;
  • кремниевые диффузионные диоды Д231
  • тиристоры серии КУ 202.

Все элементы рассчитаны на напряжение 300 Вольт и ток 10А.
Собирается тиристорный ключ, как и другие микросхемы, на плате.

Сделать такое устройство под силу всем, кто имеет начальные познания в создании микросхем. При мощности электродвигателя меньше 0,6-0,7kW при подключении в сеть нагрева тиристорного ключа не наблюдается, поэтому дополнительное охлаждение не потребуется.

Подобное подключение может показаться слишком сложным, но все зависит от того, какие у вас есть элементы, чтобы переделать двигатель из 380Вт в однофазный. Как видно, использовать трехфазный двигатель для 380 через однофазную сеть не так сложно, как это кажется на первый взгляд.

Подключение. Видео

Видео рассказывает о безопасном подключении наждака к сети 220 В и делится советами, что для этого нужно.

Содержание:

Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода — фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.

Подключение 3х фазного двигателя на 220 без конденсаторов

Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности — от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.

В этих схемах применяются , под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.

Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения. При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.

Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа — параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.

Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120 0 С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.

Подключение электродвигателя 380в на 220в через конденсатор

Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.

При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.

Расчет конденсатора для трехфазного двигателя в однофазной сети:

  • При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
  • Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов — рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
  • Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.

В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй — к нулевому, а третий — к фазному проводу. Если подобная схема способствует или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.

Подключение 3х фазного двигателя на 220 без потери мощности

Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.

Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.

При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.

Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.

Различают несколько типов электродвигателей – трехфазные и однофазные. Главное отличие трехфазных электродвигателей от однофазных заключается в том, что они более производительные. Если у вас дома есть розетка на 380 В, то лучше всего купить оборудование с трехфазным электродвигателем.

Использование такого типа двигателя позволит вам сэкономить на электроэнергии и получить прирост мощности. Также вам не придется использовать различные устройства для запуска двигателя, так как благодаря напряжению в 380 В вращающее магнитное поле появляется сразу после подключения в электросеть.

Схемы подключения электродвигателя на 380 вольт

Если у вас нет сети на 380 В, то вы все равно сможете подключить трехфазный электродвигатель в стандартную электросеть на 220 В. Для этого вам понадобиться конденсаторы, которые нужно подключить по данной схеме. Но при подключении в обычную электросеть вы будете наблюдать потерю мощности. Об этом бы можете почитать .

Электродвигатели на 380 В устроены таким образом, что в статоре у них есть три обмотки, которые соединяются по типу треугольника или звезды и уже к их вершинам осуществляется подключение трех различных фаз.

Нужно помнить, что, используя подключение по типу звезды, ваш электродвигатель не будет работать на полную мощность, но зато его запуск будет плавным. При использовании схемы треугольник вы получите прирост мощности по сравнению со звездой в полтора раза, но при таком подключении возрастает шанс повредить обмотку при запуске.

Перед использованием электродвигателя нужно в первую очередь ознакомиться с его характеристиками. Все необходимые сведения можно найти в техпаспорте и на шильдике двигателя. Особое внимание следует обратить на трех фазные двигатели западноевропейского образца, так как они предназначены для работы от напряжения в 400 или 690 вольт. Для того, чтобы подключить такой электродвигатель к отечественным сетям, необходимо использовать только подключение по типу треугольник.

Если вы хотите сделать схему треугольник, то вам необходимо соединить обмотки последовательно. Нужно соединить конец одной обмотки с началом следующей и затем к трем местам соединений нужно подключить три фазы электросети.
Подключение схемы звезда-треугольник.

Благодаря этой схеме мы можем получить максимальную мощность, но у нас не будет возможности изменить направление вращения. Для того, чтобы схема заработала будут нужны три пускателя. На первый (К1) с одной стороны подключается питание, а с другой подключаются концы обмоток. К К2 и к К3 подключаются их начала. С пускателя К2 начала обмоток присоединяются на другие фазы по типу соединения треугольник. Когда К3 включается, то все три фазы закорачиваются и, в итоге, электродвигатель работает по схеме звезда.

Важно, чтобы К2 и К3 не запускались одновременно, так ка это может привести к аварийному отключению. Данная схема работает следующим образом. При запуске К1 реле временно включает К3 и запуск двигателя происходит по типу звезда. После запуска двигателя отключается К3 и запускается К2. И электромотор начинает работать по схеме треугольник. Прекращение работы происходит путем отключения К1.

Собираемся рассмотреть, как производится подключение трехфазного двигателя к однофазной сети, дать рекомендации по управлению агрегатом. Чаще люди хотят варьировать скорость вращения или направление. Как это сделать? Описывали размыто ранее, как подключить трехфазный двигатель на 230 вольт, теперь озаботимся деталями.

Стандартная схема включения трехфазного двигателя в однофазную сеть

Процесс подключения трехфазного двигателя к напряжению 230 вольт прост. Обычно ветка несет синусоиду, разница составляет 120 градусов. Формируется фазовый сдвиг, равномерный, обеспечивает плавность вращения электромагнитного поля статора. Действующее значение каждой волны составляет 230 вольт. Это позволит подключить трехфазный двигатель к домашней розетке. Фокус цирковой: получить три синусоиды, используя одну. Сдвиг фаз равен 120 градусов.

На практике означенное сделать можно, заручившись помощью специальных приборов фазовращателей. Не тех, что используются высокочастотными трактами волноводов, а специальных фильтров, сформированных пассивными, реже активными элементами. Любители заморочкам предпочитают применение заправского конденсатора. Если обмотки двигателя соединить треугольником, сформировав единое кольцо, получим сдвиги фаз 45 и 90 градусов, хватает худо-бедно для неуверенной работы вала:

Схема подключения трехфазного двигателя коммутацией обмоток треугольником

  1. На одну обмотку подается фаза розетки. Провода цепляют разницу потенциалов.
  2. Вторая обмотка запитывается конденсатором. Формируется сдвиг фаз 90 градусов относительно первой.
  3. На третьей за счет приложенных напряжений образуется слабо похожее на синусоиду колебание со сдвигом еще на 90 градусов.

Итого, третья обмотка отстоит от первой по фазе на 180 градусов. Показывает практика, расклада хватает нормально работать. Разумеется, двигатель иногда «залипает», сильно греется, мощность падает, хромает КПД. Пользователи мирятся, когда подключение асинхронного двигателя к трехфазной сети исключено.

Из чисто технических нюансов добавим: схема правильной раскладки проводов приводится на корпусе прибора. Чаще украшает внутреннюю сторону кожуха, скрывающего колодку, либо вычерчена неподалеку на шильдике. Руководствуясь схемой, поймем, как подключить электродвигатель с 6 проводами (по паре на каждую обмотку). Когда сеть трёхфазная (часто называют 380 вольт), обмотки соединяются звездой. Образуется одна общая катушкам точка, куда стыкуется нейтраль (условный схемный электрический нуль). На прочие концы подаются фазы. Получается три — по числу обмоток.

Как обращаться с треугольником для подключения трехфазного двигателя на 230 вольт, понятно. Дополнительно приводим рисунок, изображающий:

  • Схему электрического соединения обмоток.
  • Рабочий конденсатор, служащий цели создания правильного распределения фаз.
  • Пусковой конденсатор, облегчающий раскрутку вала на начальных оборотах. В последующем отключается от схемы кнопкой, разряжается шунтирующим резистором (для безопасности и пребывания в готовности к новому циклу пуска).

Подключение трехфазного двигателя 230 вольт треугольником

Картинка показывает: обмотка А находится под напряжением 230 вольт. На С подается со сдвигом фаз 90 градусов. Благодаря разности потенциалов, концы обмотки В формируют напряжение, сдвинутое на 90 градусов. Очертания далеки привычной школьным физикам синусоиде. Опущены в целях упрощения пусковой конденсатор, шунтирующий резистор. Считаем, расположение очевидно из сказанного выше. Подобная методика худо-бедно позволит добиться от двигателя нормальной работы. Клавишей пусковой конденсатор замыкается, осуществляя пуск, отключается от фазы, разряжается шунтом.

Пришло время сказать: емкость, обозначенная чертежом 100 мкФ, практически выбирается, учитывая:

  1. Частоты вращения вала.
  2. Мощность двигателя.
  3. Нагрузки, ложащиеся на ротор.

Подбирать нужно конденсатор экспериментальным путем. Согласно нашему рисунку, напряжение обмоток В и С будет одинаковым. Напоминаем: тестер показывает действующее значение. Фазы напряжения будут различны, форма сигнала обмотки В несинусоидальная. Действующее значение показывает: в плечи отдается одинаковая мощность. Обеспечивается боле менее стабильная работа установки. Мотор меньше греется, оптимизируется КПД двигателя. Каждая обмотка сформирована индуктивным сопротивлением, которое также накладывает отпечаток на сдвиг фаз между напряжением и током. Вот почему важно подобрать правильное значение емкости. Можно добиться идеальных условий работы двигателя.

Заставить двигатель крутиться в обратном направлении

Три фазы напряжения 380 вольт

При подключении на три фазы смена направления вращения вала обеспечивается правильной коммутацией сигнала. Применяются специальные контакторы (три штуки). 1 на каждую фазу. В нашем случае коммутации подлежит всего одна цепь. Причем (руководствуясь утверждениями гуру) достаточно обменять местами любые два провода. Будь то питание, место стыковки конденсатора. Проверим правило прежде выдачи напутствия читателям. Результаты демонстрирует второй рисунок, схематично приводящий эпюры, показывающие распределение фаз указанного случая.

Изготавливая эпюры, предполагали: обмотка С соединена последовательно конденсатору, дающему напряжению положительный прирост фазы. Согласно векторной диаграмме, для сохранения баланса на обмотке С должен быть отрицательный знак относительно основного напряжения. С другой стороны конденсатор, катушка В соединены параллельно. Одна ветвь обеспечивают напряжению положительный прирост (конденсатор), другая – току. Сродни параллельному колебательному контуру, токи ветвей текут практически в противоположную сторону. Учитывая сказанное, приняли закон изменения синусоиды противофазно относительно обмотки С.

Эпюры показывают: максимумы, согласно схеме, обходят обмотки против часовой стрелки. Прошлым обзором показывали аналогичным контекстом: вращение идет иным направлением. Получается, действительно при смене полярности питания вал вращается в противоположную сторону. Не будем рисовать распределение магнитных полей, считаем излишним повторяться.

Точнее подобные вещи позволят просчитывать специальные компьютерные программы. Объяснение дали на пальцах. Получилось, что практики правы: поменяв полярность питания, направление движения вала обратим противоположно. Наверняка аналогичное утверждение годится случаю включения конденсатора ветвью другой обмотки. Жаждущим подробных графиков рекомендуем изучать специализированные программные пакеты наподобие бесплатной Electronics Workbench. В приложении проставите угодное число контрольных точек, отследите законы изменения токов, напряжений. Любителям поиздеваться над своим мозгом будет возможность просмотра спектра сигналов.

Потрудитесь правильно задать индуктивности обмоток. Разумеется, влияние вносит нагрузка, препятствующая запуску. Учесть потери подобными программами сложно. Практики рекомендуют избегать заострять внимание указанной точилкой, подбирать номиналы конденсаторов (эмпирическим) опытным путем. Таким образом, точная схема подключения трехфазного двигателя определена конструкцией, предполагаемым целевым назначением. Допустим, токарный станок будет отличаться от хлеборушки развивающимися нагрузками.

Пусковой конденсатор трехфазного двигателя

Чаще подключение трехфазного двигателя к однофазной сети нужно вести с участием пускового конденсатора. Особенно аспект касается мощных моделей, моторов под значительной нагрузкой на старте. В этом случае увеличивается собственное реактивное сопротивление, которое придется компенсировать при помощи емкостей. Проще подобрать опять же экспериментально. Нужно собрать стенд, на котором имеется возможность «на горячую» включать, исключать из цепи отдельные емкости.

Избегайте помогать двигателю запуститься рукой, как демонстрируют «бывалые» мастера. Просто найдите значение батареи, при котором вал бодро вращается, по мере раскрутки начинайте исключать из цепи конденсаторы один за другим. Пока останется такой набор, ниже которого двигатель не вращается. Отобранные элементы образуют пусковую емкость. А правильность своего выбора нужно контролировать при помощи тестера: напряжение в плечах обмоток со сдвинутой фазой (в нашем случае С и В) должно быть одинаковым. Это значит, что отдается примерно равная мощность.

Трехфазный двигатель с пусковым конденсатором

Что касается оценок и прикидок, емкость батарей растет с увеличением мощности, оборотов. А если говорить о нагрузке, большое влияние оказывает на старте. Когда вал раскрутится, в большинстве случаев малые препятствия преодолеваются за счёт инерции. Чем массивнее вал, тем выше шанс, что двигатель не «заметит» возникшего затруднения.

Обратите внимание, что подключение асинхронного двигателя обычно ведется через защитный автомат. Устройство, которое остановит вращение при превышении током некоторого значения. Это не только уберегает пробки местной сети от выгорания, но и спасет обмотки двигателя при заклинивании вала. В этом случае ток резко повысится, и работа устройства прекратится. Небесполезен автомат защиты и при подборе нужного номинала емкости. Очевидцы утверждают, что если подключение 3-фазного двигателя в однофазную сеть ведется через слишком слабые конденсаторы, то нагрузка резко возрастает. В случае наличия мощного мотора это очень важно, потому что даже в нормальном режиме потребление превышает номинальное в 3-4 раза.

И пара слов о том, как оценить заранее пусковой ток. Допустим, нужно подключить асинхронный двигатель на 230 мощностью 4 кВт. Но это для трех фаз. В случае штатной проводки ток по каждой из них течет отдельно. У нас же все это будет складываться. Поэтому смело делим мощность на напряжение сети и получаем 18 А. Понятно, что без нагрузки подобный ток вряд ли будет расходоваться, но для стабильной работы двигателя на полную катушку нужен защитный автомат потрясающей мощности. Что касается простого тестового запуска, то вполне сгодится устройство ампер на 16. И даже есть шанс, что старт пройдет без эксцессов.

Надеемся, читатели теперь знают, как подключить трехфазный двигатель в домашнюю сеть на 230 вольт. Осталось к этому добавить, что возможности стандартной квартиры не превышают с точки зрения отдачи мощности потребителю значения порядка 5 кВт. Это значит, описанный выше двигатель дома попросту включать опасно. Обратите внимание, что даже болгарки редко бывают мощнее 2 кВт. При этом двигатель оптимизирован для работы в однофазной сети 220 вольт. Проще говоря, слишком мощные устройства не только вызовут моргание света, но скорее всего, спровоцируют возникновение других нештатных ситуаций. В лучшем случае выбьет пробки, в худшем – случится возгорание проводки.

На этом говорим «до свидания» и хотим заметить: знание теории иной раз полезно практикам. Особенно если дело касается мощной техники, способной причинить немалый вред.

Подключение трёхфазных электродвигателей к однофазной сети. Трехфазный двигатель в однофазной сети

Промышленность выпускает электродвигатели, предназначенные для работы в различных условиях, в том числе для сети 220 вольт. Однако у многих людей сохранились трёхфазные асинхронные электродвигатели 380В (люди старшего поколения помнят такое явление, как «принёс домой с работы»). Такие аппараты нельзя включать в розетку. Для использования таких приборов в домашних условиях и подключении вместо 380 220 вольт схема сборки и подключения электромашины нуждаются в доработке – переключении обмоток и подключении конденсаторов.

Принцип действия трёхфазного асинхронного электродвигателя

Обмотки в статоре такой машины намотаны со сдвигом в 120°. При подаче на них трёхфазного напряжения появляется вращающееся магнитное поле, приводящее в движение ротор электромашины.

При подключении к трёхфазной электромашине к сети однофазного напряжения 220 вольт вместо вращающегося поля появляется пульсирующее. Для приведения в движение электромотора в однофазной сети пульсирующее поле преобразовывается во вращающееся.

Справка. В аппаратах, изготовленных для работы в сети 220 вольт, для этого служат пусковые обмотки или особенности конструкции статора.

При включении в сеть двигателя 380 на 220 к нему подключаются фазосдвигающие ёмкости. Запуск трехфазного двигателя с 220 без конденсаторов возможен приведением во вращение ротора. Это создаст сдвиг магнитного поля, и электромашина, потеряв в мощности, продолжит работать. Так включают циркулярки и другие подобные механизмы с низким пусковым моментом.

Начала и концы обмоток

В каждой обмотке электромашины есть начало и конец. Они выбираются условно, независимо от направления намотки, однако должны соответствовать направлению намотки остальных катушек.

Важно! В электросхемах начало катушек отмечается точкой.

Соединение катушек при подключении трехфазного двигателя к сети 220В

Большинство электродвигателей предназначены для работы с линейным напряжением 0,4кВ. В этих машинах обмотки включены “звездой”. Это значит, что концы обмоток соединены вместе, а к началам подключается 3 фазы. Напряжение на каждой обмотке составляет 220В.

При включении в сеть с линейным напряжением 220В применяется соединение “треугольник”. При этом начало следующей обмотки подключается к концу предыдущей.

Некоторые аппараты мощностью более 30 кВт изготавливаются для сети с линейным напряжением 660В. В таких аппаратах при включении в сеть 0,4кВ обмотки подключаются “треугольником”.

Как подключить трехфазный электродвигатель в сеть 220в

Обмотки трёхфазной машины при включении от 220 вольт соединяются различными способами. Синхронная скорость и скорость вращения от этого не меняются.

Соединение звездой

При включении трехфазного электродвигателя на 220 вольт проще всего применить имеющееся соединение “звезда”. К двум выводам подаётся питание 220В, а к третьему оно подаётся через фазосдвигающую ёмкость. Однако при этом на каждой из катушек оказывается не 220В, а 110, что приведёт к падению мощности до 30%. Поэтому такое подключение на практике не применяется.

Соединение треугольником

Самая распространенная схема подключения трехфазного электродвигателя к сети 220 – треугольник. При этом питание подаётся на одну сторону треугольника, а параллельно другой стороне подключаются конденсаторы. Реверс осуществляется изменением стороны треугольника, на которой находится ёмкость.

Изменение схемы подключения обмоток трёхфазного электродвигателя на треугольник

Самое сложное при подключении трёхфазной электромашины к бытовой сети 220 вольт – соединить её обмотки треугольником.

Изменение соединений на клеммнике

При подключении к сети 220 вольт проще всего эта операция выполняется, если провода подключены к клеммнику. На нём в два ряда установлены шесть болтов.

Соединение производится попарно, кусочками проволоки или перемычками, идущими в комплекте с двигателем.

Сборка треугольника, согласно маркировке выводов

Если клеммник отсутствует, а на выводах есть маркировка, то задача также простая. Обмотки маркируются С1-С4, С2-С5, С3-С6, где С1, С2, С3 – начала обмоток, и концы соединяются С1-С6, С2-С4, С3-С5.

Интересно. В старых электродвигателях импортного производства вывода маркируются A-X, B-Y, C-Z, а современные обозначения: U1-U2, V1-V2, W1-W2.

Что делать, если есть только три вывода

Сложнее всего собрать схему подключения со «звезды» на «треугольник» в электромашинах, соединение обмоток которых находится внутри корпуса. Эта операция выполняется при полной разборке электромашины. Для переключения обмоток на треугольник необходимо:

  1. разобрать электродвигатель;
  2. найти внутри место соединения обмоток и рассоединить его;
  3. к концам обмоток припаять отрезки гибких проводов и вывести их наружу;
  4. собрать аппарат;
  5. попарно вызвонить вывода катушек;
  6. соединить старый вывод одной катушки с новым проводом следующей;
  7. операцию повторить ещё два раза.

Соединение при отсутствии маркировки

Если маркировки нет, а из корпуса выходит шесть концов, то необходимо определить начало и конец каждой обмотки:

  1. Тестером попарно определить вывода, относящиеся к каждой обмотке. Пометить пары;
  2. В одной из пар выбрать провод. Отметить его как начало обмотки, оставшийся отмечается как конец;
  3. Соединить отмеченную обмотку последовательно с другой парой проводов;
  4. Подключить к соединённым катушкам напряжение ~12-36В;
  5. Замерить вольтметром напряжение на оставшейся паре. Вместо вольтметра можно использовать контрольную лампочку;
  6. Статор с обмотками представляет собой трансформатор и при согласованном соединении вольтметр покажет наличие напряжения. В этом случае во второй паре проводов отмечаются начало и конец катушки. При отсутствии напряжения изменить полярность подключения одной из пар выводов и повторить п.п. 4-5;
  7. Соединить одну из отмеченных пар с оставшейся неразмеченной и повторить п.п. 3-6.

После определения начала и концов во всех обмотках, они соединяются треугольником.

Подключение фазосдвигающих конденсаторов

Для нормальной работы электромашине необходимы пусковые и рабочие ёмкости.

Выбор номинала рабочего конденсатора

Есть разные формулы для определения необходимой ёмкости рабочего конденсатора, учитывающие номинальный ток, cosφ и другие параметры, но чаще всего просто берётся 7мкФ на 100Вт или 70мкФ на 1кВт мощности.

После сборки схемы целесообразно включить последовательно с машиной амперметр и, увеличивая и уменьшая рабочую ёмкость, добиться минимальной величины показаний прибора.

Важно! Рабочие конденсаторы применяются для переменного напряжения не меньше 300В.

Выбор и подключение пусковых конденсаторов

Пуск с использованием только рабочих фазосдвигающих конденсаторов длительный, а при значительном моменте на валу машины невозможен. Для облегчения пуска и уменьшения его длительности на период разгона электромашины параллельно рабочим подключаются пусковые ёмкости. Они выбираются в 2-3 раза больше, чем рабочие. Номинальное напряжение также более 300В. Пуск происходит несколько секунд, поэтому допускается подсоединение электролитических конденсаторов.

Как подключить трехфазный двигатель на 220 вольт с использованием пусковых конденсаторов

Схема запуска должна предусматривать отключение пусковых ёмкостей после пуска электромашины. Если этого не сделать, то машина начнёт перегреваться. Для этого есть разные способы:

  • Отключение пусковых ёмкостей с помощью реле времени. Задержка отключения составляет несколько секунд и подбирается опытным путём;
  • Применение универсального переключателя (ключа УП) на 3 положения. Его диаграмма включения собирается таким образом, чтобы в первом положении все контакты были разомкнуты, во втором замыкались два: питание и пусковые конденсаторы, а в третьем – только питание. Для реверсивной работы используется ключ на 5 положений;
  • Специальная кнопочная станция – ПНВС (пускатель нажимной с пусковым контактом). В этих конструкциях есть 3 контакта. При нажатии “Пуск” замыкаются все, но крайние фиксируются, а средний нужен, чтобы запустить машину, и отпадает после отпускания кнопки. Нажатие на кнопку “Стоп” отключает зафиксированные контакты.

Как переделать схему вращения в реверсивную

Для реверса электродвигателя необходимо изменить направление вращения магнитного поля. При запуске мотора без конденсаторов ему предварительно придаётся вручную необходимое направление вращения, а в конденсаторной схеме производится переключение ёмкости с нулевого провода на фазный. Это производится тумблером, переключателем или пускателями.

Важно! Пусковые конденсаторы подсоединяются параллельно рабочим и переключаются при изменении направления вращения одновременно с ними.

Электронные преобразователи бытового напряжения в промышленное трёхфазное 380В

Эти трёхфазные инверторы применяются для использования в бытовой сети трехфазных двигателей. Электродвигатели подключаются напрямую к выходу аппарата.

Необходимая мощность преобразователя выбирается, в зависимости от тока электрической машины. Есть три режима работы таких приборов:

  • Пусковой. Допускает кратковременное (до 5 секунд) двукратное превышение мощности. Этого достаточно для запуска электродвигателя;
  • Рабочий, или номинальный;
  • Перегрузочный. Допускает в течение получаса превышение тока в 1,3 раза.

Преимущества инвертора 220 в 380:

  • подключение не переделанных трёхфазных электромашин на 220 вольт;
  • получение полной мощности и момента электромашины без потерь;
  • экономия электроэнергии;
  • плавный запуск и регулировка оборотов.

Несмотря на появление электронных преобразователей, конденсаторные схемы включения трёхфазных электродвигателей продолжают применяться в быту и небольших мастерских.

Видео

Для работы разнообразных электрических устройств используются асинхронные двигатели, которые просты и надежны в работе и монтаже – их легко можно установить своими руками. Подключение трехфазного двигателя к однофазной и трехфазной сети осуществляется звездой и треугольником.

Общая информация

Асинхронный трехфазный двигатель состоит из следующих основных частей: обмоток, подвижного ротора и неподвижного статора. Обмотки могут быть соединены межу собой, а к их открытым контактам подключается основное питание сети или последовательно, т. е. конец одной обмотки соединен с началом следующей.

Фото — схема звезда наглядно

Подключение может осуществляться к однофазной, двухфазной и трехфазной сети, при этом двигатели в основном рассчитаны на два напряжения – 220/380 В. Переключение типа соединения обмоток позволяет менять номинальное напряжение. Несмотря на то, что в принципе подключение двигателя возможно и к однофазной сети, оно редко используется, т. к. конденсатор снижает эффективность устройства. И от номинальной мощности потребитель получает приблизительно 60 %. Но если иного варианта нет, то нужно подключать схемой «треугольник», тогда перегрузка мотора будет меньшей, чем при звезде.

Перед подсоединением обмоток в однофазной сети нужно обязательно проверить емкость конденсатора, который будет использоваться. Для этого нужна формула:

C мкф = P Вт /10

Если исходные параметры конденсатора неизвестны, то рекомендуется использовать пусковую модель, которая может «подстроиться» под работу двигателя и контролировать его обороты. Также часто для работы устройства с короткозамкнутым ротором используют реле тока или стандартный магнитный пускатель. Эта деталь схемы позволяет обеспечить полную автоматизацию рабочего процесса. Причем для бытовых моделей (с мощностью от 500 в до 1 кВт) можно использовать пускатель от стиралки или холодильника, в дальнейшем увеличивая емкость конденсатора или изменяя обмотку реле.

Видео: как подключать трехфазный двигатель в 220В

Способы подключения

При однофазной сети необходимо сдвигать фазу при помощи специальных деталей, чаще всего это конденсатор. Но в некоторых условиях его заменят тиристор. Если установить тиристорный ключ в корпус электродвигателя, то при закрытом положении он не только сдвигает фазы, но и значительно увеличивает пусковой момент. Это способствует повышению КПД до 70 %, что является прекрасным показателем для такого подсоединения. Используя только эту деталь можно отказаться от применения вентилятора и основных типов конденсаторов – пускового и рабочего.

Но и это подключение не является идеальным. При работе ЭД с тиристором потребляется на 30 % больше электрического тока, чем с конденсаторами. Поэтому такой вариант применяется только на производстве или при отсутствии выбора.

Рассмотрим, как производится подключение трехфазного асинхронного двигателя к трехфазной сети, если используется схема треугольник.

Фото — простой треугольник

На чертеже указаны два конденсатора – пусковой и рабочий, кнопка пуска, диод, сигнализирующий о начале работы и резисторная система торможения и полной остановки. Также в данном случае применяется переключатель, который имеет три позиции: «удержание», «старт», «стоп». При установке рукоятки в первом положении к контактам начинает поступать электрический ток. Здесь важно сразу же после того, как двигатель заведется перейти в режим «старт», иначе обмотки могут загореться из-за перегрузки. Во время окончания рабочего процесса рукоятка фиксируется в точке «стоп».

Фото — подключение при помощи конденсаторов электролитов

Иногда при подключении в фазу удобнее останавливать трехфазный двигатель за счет энергии, которая запасена в конденсаторе. Иногда вместо них используются электролиты, но это более сложный вариант установки устройства. В этом случае очень важны параметры конденсатора, в частности, его емкость – от неё зависит торможение и время полной остановки движущихся частей. Также в этой схеме используются выпрямляющие диоды и резисторы. Они помогут при необходимости ускорить остановку двигателя. Но их технические характеристики должны иметь следующий вид:

  1. У резистора сопротивление не должно превышать 7 кОм;
  2. Конденсатор должен выдерживать напряжение 350 вольт и выше (в зависимости от напряжения сети).

Имея под рукой схему с остановки мотора, при помощи конденсатора можно осуществить подключение с реверсом. Главным отличием от предыдущего чертежа является модернизация трехфазного двухскоростного двигателя за счет двойного переключателя и магнитного пускового реле. Переключатель также как и в предыдущих вариантах имеет несколько основных позиций, но фиксируется только на «старт» и «стоп» — это очень важно.


Фото — реверс при помощи пускателя

Реверсивное подключение двигателя возможно также через магнитный пускатель. В таком случае нужно изменить порядок очередности фаз статора, тогда можно будет обеспечить перемену направления вращения. Чтобы это сделать, нужно сразу после нажатия на кнопку пускателя «Вперед», нажать кнопку «Назад». После этого блокировочный контакт отключит катушку переднего хода и переведет питание на задний – направление вращения изменится. Но нужно быть внимательным при подключении пускателя – если перепутать местами контакты, то при переходе произойдет не реверсирование, а короткое замыкание.

Еще одним необычным способом, как можно подключить трехфазный двигатель, является вариант с использованием четырехполюсного УЗО. Её особенностью является возможность использования без нуля сети.

  1. В большинстве случаев, ЭД требуется только 3 фазы и 1 провод заземления, ноль необязателен, т. к. нагрузка симметрична;
  2. Принцип подключения таков: фазы питания отводим к автоматическому выключателю, а ноль соединяем прямо с клеммой УЗО – N, после этого её ни к чему не подключаем;
  3. От автомата кабели также аналогично подсоединяются к УЗО. Заземляем двигатель и все.

Теоретический материал, изложенный в первой части темы, посвященной однофазному подключению трехфазного электродвигателя, предназначен для того, чтобы домашний мастер мог осознанно перевести промышленные устройства сети 380 вольт на бытовую электрическую проводку 220.

Благодаря ей вы не просто механически повторите наши рекомендации, а будете выполнять их осознанно.


Оптимальные схемы для подключений трехфазного двигателя к бытовой однофазной сети

Среди многочисленных способов подключения электродвигателя на практике широкое распространение получило всего два, именуемые коротко:

  1. звездой;
  2. треугольником.

Название дано по методу соединения обмоток в электрической схеме внутри статора. Оба способы отличаются тем, что у них на каждую фазу двигателя прикладывается напряжение разной величины.

В схеме звезды линейное напряжение подводится сразу на две обмотки, соединенные последовательно. Их электрическое сопротивление складывается, осуществляет бо́льшее противодействие проходящему току.

У треугольника линейное напряжение подается на каждую обмотку индивидуально и поэтому ему оказывается меньшее сопротивление. Токи создаются выше по амплитуде.

Обращаем внимание на два этих отличия и делаем практические выводы для их использования:

  1. схема звезды обладает пониженными токами в обмотках, позволяет эксплуатировать электродвигатель длительно с минимальными нагрузками, обеспечивать небольшие крутящие моменты на валу;
  2. более высокие токи, создаваемые схемой треугольника, обеспечивают лучшую выходную мощность, позволяют использовать двигатель в экстремальных нагрузках, поэтому ему требуется надежное охлаждение для длительной работы.

Два этих отличия подробно объяснены на картинке. Внимательно посмотрите на нее. Красными стрелками для наглядности специально помечены приходящие напряжения с линии (линейные) и приложенные к обмоткам (фазные). У схемы треугольника они совпадают, а для звезды — снижены за счет подключения двух обмоток через нейтраль.


Эти способы следует проанализировать применительно к условиям работы вашего будущего механизма на этапе проектирования, до начала его создания. Иначе двигатель схемы звезды может не справляться с подключенными нагрузками и будет останавливаться, а у треугольника — перегреваться и в итоге сгорит. Нагрузку по току двигателя можно предусмотреть выбором схемы подключения.

Как узнать схему подключения обмоток статора у асинхронного двигателя

На каждом заводе принято на корпусе электротехнического оборудования помещать информационные таблички. Пример ее исполнения для трехфазного электродвигателя показан на фотографии.


Домашнему мастеру можно обращать внимание не на всю информацию, а только на:

  1. мощность потребления: по ее величине судят о работоспособности подключаемого привода;
  2. схему соединения обмоток — вопрос только что разобран;
  3. число оборотов, которое может потребовать подключения редуктора;
  4. токи в фазах — под них созданы обмотки;
  5. класс защиты от воздействий внешней среды — определяет условия эксплуатации, включая защиту от атмосферной влаги.

Сведениям завода обычно можно доверять, но они создавались для нового двигателя, поставляемого в продажу. Эта схема за все время эксплуатации может подвергаться реконструкции несколько раз, потеряв свой первозданный вид. Старый двигатель при неправильном хранении может потерять работоспособность.

Следует выполнить электрические измерения его схемы и проверить состояние изоляции.

Как определить схемы подключения обмоток статора

Для проведения электрических замеров необходимо иметь доступ к каждому окончанию всех трех обмоток. Обычно шесть их выводов подключены на свои болты внутри клеммной коробки.

Но, среди способов заводского монтажа встречается такой, когда специальные асинхронные модели изготовлены по схеме звезды так, что нейтральная точка собрана концами обмоток внутри корпуса, а на вводную коробку заведена одной жилой ее сборка. Этот неудачный для нас вариант потребует раскручивания на корпусе шпилек крепления крышек для снятия последних. Затем надо подобраться к месту соединения обмоток и разъединить их концы.

Электрическая проверка концов обмоток статора


После нахождения обоих концов для одной обмотки их необходимо пометить собственной маркировкой для проведения последующих проверок и подключения.

Замеры полярности у обмоток статора

Поскольку обмотки навиты строго определённым образом, то нам необходимо точно найти у них начала и окончания. Для этого существует два простых электрических метода:

  1. кратковременная подача постоянного тока в одну обмотку для создания импульса;
  2. использование источника переменной ЭДС.

В обоих случаях работает принцип электромагнитной индукции. Ведь обмотки собраны внутри магнитопровода, хорошо обеспечивающего трансформацию электроэнергии.

Проверка импульсом от батарейки

Работа выполняется сразу на двух обмотках. Картинка показывает этот процесс для трех — так меньше рисовать.


Процесс состоит из двух этапов. Вначале определяются однополярные обмотки, а затем проводится контрольная проверка, позволяющая исключить возможную ошибку у выполненных измерений.

Для поиска однополярных зажимов на любую свободную обмотку подключается вольтметр постоянного тока, переключенный на предел чувствительной шкалы. По нему будем осуществлять , появляющегося за счет трансформации импульса.

Минусовой вывод батарейки жестко соединяют с произвольным концом второй обмотки, а плюсом кратковременно дотрагиваются до ее второго окончания. Этот момент на картинке показан контактом кнопки Кн.

Наблюдают поведение стрелки вольтметра, реагирующей на подачу импульса в своей цепи. Она может двигаться к плюсу или минусу. Совпадение полярностей обеих обмоток будет показано положительным отклонением, а отличие — отрицательным.

При снятии импульса стрелка пойдет в обратную сторону. На это тоже обращают внимание. Затем маркируют концы.

После этого замер выполняют на третьей обмотке, а контрольную проверку осуществляют переключением батарейки на другую цепочку.

Проверка понижающим трансформатором

Источник ЭДС переменного тока на 24 вольта рекомендуется использовать в целях обеспечения электрической безопасности. Пренебрегать этим требованием не рекомендуется.

Вначале берут две произвольные обмотки, например, №2 и №3. Попарно соединяют вместе их вывода и к этим местам подключают вольтметр, но уже переменного тока. В оставшуюся обмотку №1 подают напряжение от понижающего трансформатора и наблюдают появление показаний от него на вольтметре.


Если вектора направлены одинаково, то они не будут влиять друг на друга и вольтметр покажет их общую величину — 24 вольта. Когда же полярность перепутана, то на вольтметре встречные вектора сложатся, дадут в сумме число 0, которое отобразится на шкале показанием стрелки. Сразу после замера тоже следует маркировать концы.

Затем необходимо проверить полярность для оставшейся пары и выполнить контрольный замер.

Такими простыми электрическими опытами можно надёжно определить принадлежность концов к обмоткам и их полярность. Это поможет их правильно собрать для схемы конденсаторного запуска.

Проверка сопротивления изоляции обмоток статора

Если двигатель при хранении находился в неотапливаемом помещении, то он контактировал с влажным воздухом, отсырел. Его изоляция нарушилась, способна создавать токи утечек. Поэтому ее качество надо оценивать электрическими измерениями.

Тестер в режиме омметра не всегда способен выявить такое нарушение. Он покажет только явный брак: слишком маленькая мощность его источника тока не обеспечивает точный результат замера. Для проверки состояния изоляции необходимо пользоваться мегаомметром — специальным прибором с мощным источником питания, обеспечивающим приложение к измерительной цепи повышенного напряжения 500 или 1000 вольт.

Оценка состояния изоляции должна проводиться до подачи рабочего напряжения на обмотки. Если выявлены токи утечек, то можно попытаться просушить двигатель в теплой, хорошо проветриваемой среде. Часто этот прием позволяет восстановить работоспособность электрической схемы, собранной внутри сердечника статора.

Запуск асинхронного двигателя по схеме звезды

Для этого способа концы всех обмоток К1, К2, К3 соединяются в точке нейтрали и изолируются, а на их начала подается линейное напряжение.


К одному началу жестко подключается рабочий ноль сети, а к двум другим — потенциал фазы следующим способом:

  • первая любая обмотка соединяется жестко;
  • вторая врезается через конденсаторную сборку.

Для стационарного подключения асинхронного двигателя необходимо предварительно определить фазу и рабочий ноль питающей сети.

Как подобрать конденсаторы

В схеме запуска электродвигателя используется две цепочки для подключения обмотки через конденсаторные сборки:

  • рабочая — подключенная во всех режимах;
  • пусковая — используемая только для интенсивной раскрутки ротора.

В момент запуска параллельно работают обе эти схемы, а при выводе на рабочий режим цепочка пуска отключается.

Емкость рабочих конденсаторов должна соответствовать потребляемой мощности электрического двигателя. Для ее вычисления используют эмпирическую формулу:

C раб=2800∙I/U.

Входящие в нее величины номинального тока I и напряжения U как раз и вводят корректировку по электрической мощности двигателя.

Емкость пусковых конденсаторов обычно в 2÷3 крата превышает рабочую.

Правильность подбора конденсаторов влияет на образование токов в обмотках. Их необходимо проверять после запуска двигателя под нагрузкой. Для этого замеряют токи в каждой обмотке и сравнивают их по величине и углу. Хорошая эксплуатация осуществляется при минимально возможном перекосе. В противном случае двигатель работает нестабильно, а какая-то обмотка или две станут перегреваться.

В пусковой схеме показан выключатель SA, который вводит в работу на короткое время запуска пусковой конденсатор. Существует много конструкций кнопок, позволяющих выполнять эту операцию.

Однако, хочется обратить внимание на специальное устройство, выпускаемое в советские времена промышленностью для стиральных машин с активатором — центрифугой.


В его закрытом корпусе спрятан механизм в составе:

  • двух контактов, работающих на замыкание от нажатия на верхнюю кнопку «Пуск»;
  • одного контакта, размыкающего всю цепь от кнопки «Стоп».

При нажатии на кнопку Пуск подается фаза схемы на двигатель через рабочие конденсаторы одной цепочкой и пусковые — другой. Когда же кнопку отпускают, то один контакт разрывается. Его подключают к пусковым конденсаторам.

Запуск асинхронного двигателя по схеме треугольник

Больших отличий этого способа от предыдущего практически нет. Пусковая и рабочая цепочки работают по тем же алгоритмам.


В этой схеме приходится учитывать повышенные токи, протекающие в обмотках и иные методы подбора для них конденсаторов.

Их расчет выполняется по похожей на предыдущую, но другой формуле:

C раб=4800∙I/U.

Соотношения между пусковыми и рабочими конденсаторами не изменяются. Не забывайте оценивать их подбор контрольными замерами токов под номинальной нагрузкой.

Заключительные выводы

  1. Существующие технические способы позволяют подключать трехфазные асинхронные двигатели к однофазной сети 220 вольт. Многочисленные исследователи предлагают для этого свои экспериментальные схемы большим ассортиментом.
  2. Однако, этот метод не обеспечивает эффективное использование ресурса электрической мощности из-за больших потерь энергии, связанных с некачественным преобразованием напряжения для подключения к фазам статора. Поэтому двигатель работает с низким КПД, повышенными затратами.
  3. Длительная эксплуатация станков с подобными двигателями экономически не обоснована.
  4. Способ можно рекомендовать только для подключения неответственных механизмов на короткий участок времени.
  5. С целью эффективного использования асинхронного электродвигателя необходимо применять полноценное трехфазное подключение либо современный дорогой инверторный преобразователь соответствующей мощности.
  6. Однофазный электродвигатель с такой же мощностью в бытовой сети лучше справиться со всеми задачами, а его эксплуатация обойдется дешевле.

Таким образом, конструкции асинхронных двигателей, ранее массово подключаемые к домашней проводке, сейчас не пользуются популярностью, а способ их подключения морально устарел, используется редко.


Вариант подобного механизма показан фотографией наждака со снятым для наглядности защитным щитком и ограничительным упором. Даже при таком исполнении работать на нем затруднительно из-за потерь мощности.

Практические советы Александра Шенрок, изложенные в его видеоролике, наглядно дополняют материал статьи, позволяют лучше осмыслить эту тему. Рекомендую его к просмотру, но, критически отнеситесь к замеру сопротивления изоляции тестером.

Задавайте вопросы в комментариях, делитесь статьей с друзьями через кнопки социальных сетей.

Владелец гаража или частного дома часто нуждается в работе станка либо наждака с асинхронным электродвигателем для обработки металлов, древесины. А в наличии имеется только напряжение 220 вольт.

Подключение трехфазного двигателя к однофазной сети в этом случае можно выполнить несколькими способами. Здесь я буду рассматривать три доступные и распространенные схемы конденсаторного запуска.

Все они не раз опробованы на личном опыте.

Сразу предупреждаю опытных электриков, открывших эту статью: материал подготовлен для начинающих мастеров. Поэтому он объемный. Если нет желания все читать, то вот вам краткие советы:

  • используйте схему треугольник, предварительно проверив исправность двигателя;
  • выбирайте рабочие конденсаторы из расчета 70 микрофарад на 1 киловатт мощности, а пусковые увеличьте в 2-3 раза;
  • в процессе наладки откорректируйте емкости по величине нагрузки и нагреву обмоток;
  • не забывайте соблюдать меры безопасности с электрическим током и инструментом.

На своем опыте не раз убеждался, что первоначальная проверка технического состояния оборудования позволяет исключить многие ошибки, экономит общее время работы, значительно предотвращает травмы и аварии.

Трехфазный асинхронный двигатель: на что обратить внимание до его подключения

За небольшим исключением асинхронник нам достается в неизвестном состоянии. Очень редко на него есть свидетельство о проверке и заверенная гарантия от электролаборатории.

Механическое состояние статора и ротора: что может мешать работе двигателя

Неподвижный статор состоит из трех частей: среднего корпуса и двух боковых крышек, стянутых шпильками. Обращайте внимание на зазор между ними, усилие стягивания гайками.

Корпус должен быть плотно сжат. Внутри него на подшипниках вращается ротор. Попробуйте покрутить его от руки. Оцените приложенное усилие: как работают подшипники, нет ли биений.

Без должного опыта мелкие дефекты таким способом не выявить, но случай грубого заклинивания сразу проявится. Послушайте шумы: нет ли при вращении задевания ротором элементов статора.

После включения двигателя на холостой ход и непродолжительной работы еще раз послушайте звуки вращающихся частей.

В идеале лучше разобрать статор, оценить визуально его состояние, промыть загрязненные подшипники ротора и полностью заменить их смазку.

Электрические характеристики статорных обмоток: как проверять схему сборки

Все основные параметры электродвигателя производитель указывает на специальной табличке, прикрепленной к корпусу статора.

Этим заводским характеристикам можно верить только в том случае, если вы уверены, что после завода никто из электриков не изменил схему подключения обмоток и не сделал непроизвольных ошибок. А случаи такие мне попадались.

Да и сама табличка со временем может стереться или потеряться. Поэтому предлагаю разобраться с технологией раскрутки ротора.

Для понимания электротехнических процессов, протекающих внутри статора двигателя, удобно представить его в виде обыкновенного тороидального трансформатора, когда на кольцевом сердечнике магнитопроводе симметрично расположены три равнозначные обмотки.

Схема статора собрана внутри закрытого корпуса, из которого выведены только шесть концов обмоток.

Они маркируются и подключаются на закрытом крышкой клеммнике для сборки по схеме звезды или треугольника типовой перестановкой перемычек.

На правой части картинки показана сборка треугольника. Схему расположения перемычек для звезды публикую ниже.

Электрические методики проверки схемы сборки обмоток

Но не все так однозначно, как может показаться на первый взгляд. Существует целый ряд двигателей с отклонением от этих правил.

Например, производитель может выпускать электродвигатели не универсального использования, а для работы в конкретных условиях с подключением обмоток по схеме звезды.

В этом случае он может собрать три конца обмоток внутри корпуса статора, а наружу вывести только четыре провода для подключения к потенциалам фаз и нуля.

Монтаж этих концов обычно выполняется в районе задней крышки. Для переключения обмоток на треугольник потребуется вскрывать корпус и делать дополнительные выводы.

Это не сложная работа. Но она требует бережного обращения с лаковым покрытием медного провода. При изгибах проволоки возможно его повреждение, что повлечет нарушение изоляции и создаст межвитковое замыкание.

Что делать, если маркировка выводов отсутствует

На старом асинхронном двигателе провода могут быть сняты с клемм, а заводская маркировка утеряна. Попадались и такие экземпляры, когда из корпуса просто торчали наружу шесть концов. Их необходимо вызвонить и промаркировать.

Работу выполняем в два этапа:

  1. Проверяем принадлежность концов обмоткам.
  2. Определяем и маркируем каждый вывод.

Если в обмотке возникло межвитковое замыкание, то его, как правило, можно определить замером мультиметра в режиме омметра. Для этого внимательно анализируйте и сравнивайте активные сопротивления каждой цепочки.

Как проверяют магнитное поле статора на заводе

При подаче напряжения на исправный электродвигатель создается вращающееся магнитное поле. Его визуально оценивают с помощью металлического шарика, который повторяет вращение.

Я не призываю вас повторять такой опыт. Пример этот призван помочь понять, что работа асинхронного двигателя основана на взаимодействии магнитных полей статора и ротора.

Только правильное подключение обмоток обеспечивает вращение шарика или ротора.

Мощность электродвигателя и диаметр провода обмотки

Это две взаимосвязанных величины потому, что поперечное сечение проводника выбирается по способности противостоять нагреву от протекающего по нему току.

Чем толще провод, тем большую мощность можно передавать по нему с допустимым нагревом.

Если на двигателе отсутствует табличка, то о его мощности можно судить по двум признакам:

  1. Диаметру провода обмотки.
  2. Габаритам сердечника магнитопровода.

После вскрытия крышки статора проанализируйте их визуально.

Подключение трехфазного двигателя к однофазной сети по схеме звезды

Начну с предупреждения: даже опытные электрики во время работы допускают ошибки, которые называются «человеческий фактор». Что уж говорить про домашних мастеров…

Схема подключения звезды показана на картинке.

Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.

Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.

Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.

При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.

Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.

Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.

Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.

Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.

Подключение трехфазного двигателя к однофазной сети по схеме звезды используется для маломощных устройств, отличается повышенными потерями энергии до 50% от трехфазной системы питания.

Схема треугольник: преимущества и недостатки

Подключение электродвигателя по этому способу предполагает использование той же внешней цепочки, что и у звезды. Фаза, ноль и средняя точка нижних обкладок конденсаторов монтируются последовательно на три перемычки клеммной коробки.

За счет переключения выводов обмоток по схеме треугольника подводимое напряжение 220 создает больший ток в каждой обмотке, чем у звезды. Здесь меньшие потери энергии, выше КПД.

Подключение двигателя по схеме треугольника в однофазной сети позволяет полезно использовать до 70-80% потребляемой мощности.

Для формирования фазосдвигающей цепочки здесь требуется использовать меньшую емкость рабочих и пусковых конденсаторов.

При включении двигатель он может начать вращение не в ту сторону, которая требуется. Нужно сделать ему реверс.

Для этого достаточно в обеих схемах (звезды или треугольника) поменять местами приходящие от сети провода на клеммной колодке. Ток потечет по обмотке в противоположную сторону. Ротор изменит направление вращения.

Как подобрать конденсаторы: 3 важных критерия

Трехфазный двигатель создает вращающееся магнитное поле статора за счет равномерного прохождения синусоид токов по каждой обмотке, разнесенных в пространстве на 120 градусов.

В однофазной сети такой возможности нет. Если подключить одно напряжение на все 3 обмотки сразу, то вращения не будет — магнитные поля уравновесятся. Поэтому на одну часть схемы подают напряжение, как есть, а на другую сдвигают ток по углу вращения конденсаторами.

Сложение двух магнитных полей создает импульс моментов, раскручивающих ротор.

От характеристик конденсаторов (величины емкости и допустимого напряжения) зависит работоспособность создаваемой схемы.

Для маломощных двигателей с легким запуском на холостом ходу в отдельных случаях допустимо обойтись только рабочими конденсаторами. Всем остальным движкам потребуется пусковой блок.

Обращаю внимание на три важных параметра:

  1. емкость;
  2. допустимое рабочее напряжение;
  3. тип конструкции.

Как подобрать конденсаторы по емкости и напряжению

Существуют эмпиреческие формулы, позволяющие выполнять простой расчет по величине номинального тока и напряжения.

Однако люди в формулах часто путаются. Поэтому при контроле расчета рекомендую учесть, что для мощности в 1 киловатт требуется подбирать емкость на 70 микрофарад для рабочей цепочки. Зависимость линейная. Смело ей пользуйтесь.

Доверять всем этим методикам можно и нужно, но теоретические расчеты необходимо проверить на практике. Конкретная конструкция двигателя и прилагаемые нагрузки на него всегда требуют корректировок.

Конденсаторы рассчитываются под максимальное значение тока, допустимого по условиям нагрева провода. При этом расходуется много электроэнергии.

Если же электродвигатель преодолевает нагрузки меньшей величины, то емкость конденсаторов желательно снизить. Делают это опытным путем при наладке, замеряя и сравнивая токи в каждой фазе амперметром.

Чаще всего для пуска асинхронного электродвигателя используют металлобумажные конденсаторы.

Они хорошо работают, но обладают низкими номиналами. При сборке в конденсаторную батарею получается довольно габаритная конструкция, что не всегда удобно даже для стационарного станка.

Сейчас
промышленностью выпускаются малогабаритны электролитические конденсаторы, приспособленные для работы с электродвигателями на переменном токе.

Их внутреннее устройство изоляционных материалов приспособлено для работы под разным напряжением. Для рабочей цепочки оно составляет не менее 450 вольт.

У пусковой схемы с условиями кратковременного включения под нагрузку оно уменьшено до 330 за счет снижения толщины диэлектрического слоя. Эти конденсаторы меньше по габаритам.

Это важное условие следует хорошо понимать и применять на практике. Иначе конденсаторы на 330 вольт взорвутся при длительной работе.

Скорее всего для конкретного двигателя одним конденсатором не отделаться. Потребуется собирать батарею, используя последовательное и параллельное соединение их.

При параллельном подключении общая емкость суммируется, а напряжение не меняется.

Последовательное соединение конденсаторов уменьшает общую емкость и делит приложенное напряжение на части между ними.

Какие типы конденсаторов можно использовать

Номинальное напряжение сети 220 вольт — это . Ее амплитудное значение составляет 310 вольт. Поэтому минимальный предел для кратковременной работы при запуске выбран 330 V.

Запас напряжения до 450 V для рабочих конденсаторов учитывает броски и импульсы, которые создаются в сети. Занижать его нельзя, а использование емкостей с большим резервом значительно увеличивает габариты батареи, что нерационально.

Для фазосдвигающей цепочки допустимо использовать полярные электролитические конденсаторы, которые созданы для протекания тока только в одну сторону. Схема их включения должна содержать токоограничивающий резистор в несколько Ом.

Без его использования они быстро выходят из строя.

Перед установкой любого конденсатора необходимо проверить его реальную емкость мультиметром, а не полагаться на заводскую маркировку. Особенно это актуально для электролитов: они зачастую преждевременно высыхают.

Схема сдвига фаз токов конденсаторами и дросселем: что мне не понравилось

Это третья обещанная в заголовке конструкция, которую я реализовал два десятка лет назад, проверил в работе, а потом забросил. Она позволяет использовать до 90% трехфазной мощности двигателя, но обладает недостатками. О них позже.

Собирал я преобразователь трехфазного напряжения на мощность 1 киловатт.

В его состав входят:

  • дроссель с индуктивным сопротивлением на 140 Ом;
  • конденсаторная батарея на 80 и 40 микрофарад;
  • регулируемый реостат на 140 Ом с мощностью 1000 ватт.

Одна фаза работает обычным способом. Вторая с конденсатором сдвигает ток вперед на 90 градусов по ходу вращения электромагнитного поля, а третья с дросселем формирует его отставание на такой же угол.

В создании фазосдвигающего магнитного момента участвуют токи всех трех фаз статора.

Корпус дросселя пришлось собирать механической конструкцией из дерева на пружинах с резьбовой настройкой воздушного зазора для наладки его характеристик.

Конструкция реостата — это вообще «жесть». Сейчас его можно собрать из мощных сопротивлений, купленных в Китае.

Мне даже приходила мысль использовать водяной реостат.

Но я от нее отказался: уж слишком опасная конструкция. Просто намотал на асбестовой трубе толстую стальную проволоку для проведения эксперимента, положил ее на кирпичи.

Когда запустил двигатель циркулярной пилы, то он работал нормально, выдерживал приложенные нагрузки, нормально распиливал довольно толстые колодки.

Все бы хорошо, но счетчик намотал двойную норму: этот преобразователь берет такую же мощность на себя, как и двигатель. Дроссель и проволока неплохо нагрелись.

Из-за высокого потребления электроэнергии, низкой безопасности, сложной конструкции я не рекомендую такой преобразователь.

Меры безопасности при подключении трехфазного двигателя: напоминание

Работы по наладке схемы под напряжением должны выполнять обученные люди. Знание ТБ — обязательное условие.

Использование разделительного трансформатора значительно сокращает риск попасть под действие тока. Поэтому используйте его при любых наладочных работах под напряжением.

Специальный инструмент электрика с диэлектрическими рукоятками не только облегчает работу, но и сохраняет здоровье. Не пренебрегайте им!

Если остались вопросы или заметили неточности, то воспользуйтесь разделом комментариев.

В домашнем хозяйстве иногда возникает необходимость запустить 3х фазный асинхронный электродвигатель (АД). При наличии 3х фазной сети это не составляет трудностей. При отсутствии 3х фазной сети двигатель можно запустить и от однофазной сети, добавив в схему конденсаторы.

Конструктивно АД состоит из неподвижной части – статора, и подвижной – ротора. На статоре в пазах укладываются обмотки. Обмотка статора представляет собой трёхфазную обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120 эл. градусов. Концы и начала обмоток выводятся в соединительную коробку. Обмотки образуют пары полюсов. От числа пар полюсов зависит номинальная частота вращения ротора двигателя. Большинство общепромышленных двигателей имеют 1-3 пары полюсов, реже 4. АД с большим числом пар полюсов имеют низкий КПД, больше габариты, поэтому используются редко. Чем больше пар полюсов, тем меньше частота вращение ротора двигателя. Общепромышленые АД выпускаются с рядом стандартных скоростей вращения ротора: 300, 1000, 1500, 3000 об/мин.

Ротор АД представляет собой вал, на котором находится короткозамкнутая обмотка. В АД малой и средней мощности обмотку обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями отливают короткозамкнутые кольца и торцевые лопасти, осуществляющие вентиляцию машины. В машинах большой мощности обмотку выполняют из медных стержней, концы которых соединяют с короткозамкнутыми кольцами при помощи сварки.

При включении АД в 3ф сеть по обмоткам по очереди в разный момент времени начинает идти ток. В один период времени ток проходит по полюсу фазы А, в другой по полюсу фазы В, в третий по полюсу фасы С. Проходя через полюса обмоток, ток поочередно создает вращающее магнитное поле, которое взаимодействует с обмоткой ротора и заставляет его вращаться, как бы подталкивая его в разных плоскостях в разный момент времени.

Если включить АД в 1ф сеть, вращающий момент будет создаваться только одной обмоткой. Действовать на ротор такой момент будет в одной плоскости. Такого момента не достаточно, чтоб сдвинуть и вращать ротор. Чтобы создать сдвиг фазы тока полюса, относительно питающей фазы, применяют фазосдвигающие конденсаторы рис.1.

Конденсаторы можно применять любых типов, кроме электролитических. Хорошо подходят конденсаторы типа МБГО, МБГ4, К75-12, К78-17. Некоторые данные конденсаторов приведены в таблице 1.

Если необходимо набрать определенную емкость, то конденсаторы следует соединить параллельно.

Основные электрические характеристики АД приводятся в паспорте рис.2.


Рис.2

Из паспорта видно, что двигатель трехфазный, мощностью 0,25 кВт, 1370 об/мин, есть возможность менять схему соединения обмоток. Схема соединения обмоток «треугольник» при напряжении 220В, «звезда», при напряжении 380В,соответственно ток 2,0/1,16А.

Схема соединения «звезда» изображена на рис.3. При таком включении к обмоткам электродвигателя между точками АВ (линейное напряжение U л) подводится напряжение в раза больше напряжения между точками АО (фазное напряжение U ф).


Рис.3 Схема подключения «звезда».

Таким образом линейное напряжение в раза больше фазного напряжения: . При этом фазный ток I ф равен линейному току I л.

Рассмотрим схему соединения «треугольник» рис. 4:


Рис.4 Схема соединения «треугольник»

При таком соединении линейное напряжение U Л равное фазному напряжению U ф., а ток в линии I л в раза больше фазного тока I ф: .

Таким образом если АД рассчитан на напряжение 220/380 В, то для его подключения к фазному напряжению 220 В используется схема соединения обмоток статора «треугольник». А для подключения к линейному напряжению 380 В – соединение «звезда».

Для пуска данного АД от однофазной сети напряжением 220В нам следует включить обмотки по схеме «треугольник», рис.5.


Рис.5 Схема соединения обмоток ЭД по схеме «треугольник»

Схема соединение обмоток в выводной коробке показана на рис. 6


Рис.6 Соединение в выводной коробке ЭД по схеме «треугольник»

Чтобы подключить электродвигатель по схеме «звезда» необходимо две фазные обмотки подключить непосредственно в однофазную сеть, а третью – через рабочий конденсатор С р к любому из проводов сети рис. 6.

Соединение в выводной коробке для схемы «звезда» изображено на рис. 7.


Рис.7 Схема соединения обмоток ЭД по схеме «звезда»

Схема соединение обмоток в выводной коробке показана на рис. 8


Рис.8 Соединение в выводной коробке ЭД по схеме «звезда»

Емкость рабочего конденсатора С р для данных схем рассчитывается по формуле:
,
где I н — номинальный ток, U н — номинальное рабочее напряжение.

В нашем случае, для включения по схеме «треугольник» емкость рабочего конденсатора C р = 25 мкФ.

Рабочее напряжение конденсатора должно быть в 1.15 раз больше номинального напряжения питающей сети.

Для пуска АД не большой мощности обычно достаточно рабочего конденсатора, но при мощности более 1.5 кВт двигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применить еще пусковой конденсатор С п. Емкость пускового конденсатора должна быть в 2.5-3 раза больше емкости рабочего конденсатора.

Схема соединения обмоток электродвигателя, соединенных по схеме «треугольник» с применением пусковых конденсаторов С п представлена на рис. 9.


Рис.9 Схема соединения обмоток ЭД по схеме «треугольник» с применением пусковых конденсатов

Схема соединения обмоток двигателя «звезда» с применением пусковых конденсаторов представлена на рис. 10.


Рис.10 Схема соединения обмоток ЭД по схеме «звезда» с применением пусковых конденсаторов.

Пусковые конденсаторы С п подключают параллельно рабочим конденсаторам при помощи кнопки КН на время 2-3 с. При этом скорость вращения ротора электродвигателя должна достигнуть 0.7…0.8 от номинальной скорости вращения.

Для запуска АД с применением пусковых конденсаторов удобно применять кнопку рис.11.


Рис.11

Конструктивно кнопка представляет собой трехполюсный выключатель, одна пара контактов которого замыкается, когда кнопка нажата. При отпускании контакты размыкаются, а остальная пара контактов остается включенной, до тех пор, пока не будет нажата кнопка стоп. Средняя пара контактов выполняет функцию кнопки КН (рис.9, рис.10), через которую подключают пусковые конденсаторы, две остальных пары работают как выключатель.

Может оказаться так, что в соединительной коробке электродвигателя концы фазных обмоток выполнены внутри двигателя. Тогда АД можно подключить только по схемам рис.7, рис. 10, в зависимости от мощности.

Существует еще схема соединения обмоток статора трехфазного электродвигателя — неполная звезда рис. 12. Выполнение соединения по данной схеме возможно, если начала и концы фазных обмоток статора выведены в соединительную коробку.


Рис.12

Подключать ЭД по такой схеме целесообразно, когда необходимо создать пусковой момент, превышающий номинальный. Такая необходимость возникает в приводах механизмов с тяжелыми условиями пуска, при пуске механизмов под нагрузкой. Следует отметить, что результирующий ток в питающих проводах превышает номинальный ток на 70-75%. Это необходимо учитывать при выборе сечения провода для подключения электродвигателя

Емкость рабочего конденсатора С р для схемы рис. 12 рассчитывается по формуле:
.

Емкости пусковых конденсаторов должны быть в 2.5-3 раза больше емкости С р. Рабочее напряжение конденсаторов в обеих схемах должно быть в 2.2 раза больше номинального напряжения.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого следует взять любой из 6 наружных выводов электродвигателя и присоединить его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1 ,а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их С2 и С5, а начало и конец третьей — С3 и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигатели согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим электродвигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную часто­ту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке следует поменять местами выводы С1 и С4. Если это не помогает, концы первой обмотки необходимо вернуть в первоначальное положение и теперь уже выводы С2 и С5 поменяйте местами. То же самоё сделайте; в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов обмоток строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора АД, включенного в однофазную сеть по схеме «треугольник» (см. рис.5), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения АД, включенного в однофазную сеть по схеме «звезда» (см. рис.7), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний, шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, и смазать их.

Способы пуска асинхронного трехфазного двигателя от однофазной сети ~ Электропривод

Как запускать трехфазный асинхронный двигатель от однофазной сети?

Самый простой способ запуска трехфазного двигателя в качестве однофазного, основывается на подключении его третьей обмотки через фазосдвигающее устройство. В качестве такого устройство может выступать активное сопротивление, индуктивность или конденсатор.

 

Прежде, чем подключать трехфазный двигатель в однофазную сеть, необходимо убедиться, что номинальное напряжение его обмоток соответствуют номинальному напряжению сети. Асинхронный трехфазный двигатель имеет три статорных обмотки. Соответственно в клемной коробке должно быть выведено 6 клемм для подключения питания. Если открыть клеммную коробку, то мы увидим борно двигателя. На борно, выведены 3 обмотки двигателя. Их концы подключены к клеммам. На эти клеммы и подключается питание двигателя.

Каждая обмотка имеет начало и конец. Начала обмоток маркируют как С1, С2, С3. Концы обмоток промаркированы соответственно С4, С5, С6. На крышке клемной коробки мы увидим схему включения двигателя в сеть при разных напряжениях питания. Согласно этой схемы мы и должны подключить обмотки. Т..е. если двигатель допускает использование напряжений 380/220, то для его подключения к однофазной сети 220В, необходимо переключить обмотки в схему «треугольник».

Если же его схема подключения допускает 220/127 В, то к однофазной сети 220 В, его необходимо подключать по схеме «звезда», как показано на рисунке.

Схема с пусковым активным сопротивлением

На рисунке показана схемы однофазного включения трехфазного двигателя с пусковым активным сопротивлением. Такая схема используется только в двигателях малой мощности, так как в резисторе теряетя большое количество энергии в виде тепла.

Схемы конденсаторного пуска асинхронного двигателя

Наибольшее распространение получили схемы с конденсаторами. Для изменения направления вращения двигателя необходимо применять переключатель. В идеале для нормальной работы такого двигателя необходимо, чтобы емкость конденсатора изменялась в зависимости от числа оборотов. Но такое условие выполнить довольно трудно, поэтому обычно применяют схему двухступенчатого управления асинхронным электродвигателем. Для работы механизма, приводимого в движение таким двигателем, используют два конденсатора. Один подключается только при запуске, а после окончания пуска его отключают и оставляют только один конденсатор. При этом происходит заметное снижение его полезной мощности на валу до 50…60% от номинальной мощности при включении в трехфазную сеть. Такой пуск двигателя получил название конденсаторного пуска.

При применении пусковых конденсаторов имеется возможность увеличить пусковой момент до величины Мп/Мн=1,6-2. Однако, при этом значительно увеличивается емкость пускового конденсатора, из за чего вырастают его размеры и стоимость всего фазосдвигающего устройства. Для достижения максимального пускового момента, величину емкости необходимо выбирать из соотношения, Xc=Zk, т. е. емкостное сопротивление равно сопротивлению короткого замыкания одной фазы статора. По причине высокой стоимости и габаритов всего фазосдвигающего устройства конденсаторный пуск применяется лишь при необходимости большого пускового момента. В конце пускового периода пусковой обмотки необходимо отключить, в противном случае пусковая обмотка перегреется и сгорит. В качестве пускового устройства можно применять индуктивность— дроссель.

Пуск трехфазного асинхронного двигателя от однофазной сети, через частотный преобразователь

Для пуска и управления трехфазным асинхронным двигателем от однофазной сети, можно применять преобразователь частоты с питанием от однофазной сети. Структурная схема такого преобразователя представлена на рисунке. Пуск трехфазного асинхронного двигателя от однофазной сети с помощью преобразователя частоты является одним из самых перспективных. Поэтому именно он наиболее часто используется в новых разработках систем управления регулируемыми электроприводами. Принцип его лежит в том, что, меняя частоту и напряжение питания двигателя, можно в соответствии с формулой, изменять его частоту вращения.

Сам преобразователь состоит состоят из двух модулей, которые обычно заключены в один корпус:
— модуль управления, который управляет функционированием устройства;
— силовой модуль, который питает двигатель электроэнергией.

Применение преобразователя частоты для пуска трехфазного асинхронного двигателя. позволяет значительно снизить пусковой ток, так как электродвигатель имеет жесткую зависимость между током и вращающим моментом. Причем значения пускового тока и момента можно регулировать в достаточно больших пределах. Кроме того с помощью частотного преобразователя можно регулировать обороты двигателя и самого механизма, уменьшая при этом значительную часть потерь в механизме.

Недостатки применения частотного преобразователя для пуска трехфазного асинхронного двигателя от однофазной сети: достаточно высокая стоимость самого преобразователя и периферийных устройств к нему. Появление несинусоидальных помех в сети и снижение показателей качества сети.

Способы подключения трехфазного двигателя к однофазной сети. Подключение тиристорным ключом. Напряжения и их соотношение

Содержание:

Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

Схемы подключения

Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

Подключение может выполняться двумя основными способами — звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

Использование схемы «звезда-треугольник»

Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

Данная схема подключения довольно сложная, требующая использования сразу трех , устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой — к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

Трехфазный двигатель с магнитным пускателем

Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Некоторые мастера самостоятельно собирают станки по обработке древесины или металла в домашних условиях. Для этого могут использоваться любые доступные двигатели подходящей мощности. В некоторых случаях приходится разбираться с тем, как подключить трехфазный двигатель к однофазной сети. Именно этой теме и посвящена статья. Также будет рассказано о том, как правильно подобрать требуемые конденсаторы.

Однофазные и трехфазные


Чтобы правильно понимать предмет обсуждения, который объясняет подключение двигателя 380 на 220 вольт, необходимо разобраться, в чем лежит принципиальное отличие таких агрегатов. Все трехфазные двигатели являются асинхронными. Это означает, что фазы в нем подключены с некоторым смещением. Конструктивно двигатель состоит из корпуса, в который помещена статическая часть, которая не вращается, ее называют статором. Также есть вращающийся элемент, который называется ротором. Ротор находится внутри статора. На статор подается трехфазное напряжение, каждая фаза по 220 вольт. После этого происходит образование электромагнитного поля. Из-за того, что фазы находятся в угловом смещении, появляется электродвижущая сила. Она и заставляет ротор, который находится в магнитном поле статора вращаться.

Обратите внимание! Напряжение на обмотки трехфазного двигателя подается через тип соединения, которое выполняется в форме звезды или треугольника.

Однофазные асинхронные агрегаты имеют немного иной тип подключения, т. к. питаются от сети 220 вольт. В ней есть только два провода. Один называется фазным, а второй нулевым. Чтобы запуститься, двигателю необходимо иметь только одну обмотку, к которой подключается фаза. Но только одной будет мало для пускового импульса. Поэтому присутствует еще она обмотка, которая задействована во время пуска. Чтобы она выполнила свою роль, она может быть подключена через конденсатор, что бывает чаще всего, или кратковременно замыкаться.

Подключение трехфазного двигателя


Обычное подключение трехфазного двигателя к трехфазной сети может стать непростой задачей для тех, кто никогда не сталкивался с ней. В некоторых агрегатах есть только три провода для подключения. Они позволяют сделать это по схеме «звезда». В других приборах есть шесть проводов. В таком случае появляется выбор между треугольником и звездой. Ниже на фото можно видеть реальный пример подключения звездой. В белой обмотке подходит питающий кабель, и он подключается только к трем выводам. Дальше установлены специальные перемычки, которые обеспечивают правильное питание обмоток.

Чтобы было понятнее, как это реализовать самостоятельно, ниже будет приведена схема такого подключения. Подключение треугольником несколько проще, т. к. три дополнительные клеммы отсутствуют. Но это говорит лишь о том, что механизм перемычек реализован уже в самом двигателе. При этом нет возможности повлиять на способ соединения обмоток, а значит необходимо будет соблюсти нюансы при подключении такого двигателя в однофазную сеть.

Подключение к однофазной сети


Трехфазный агрегат с успехом можно подключить к однофазной сети. Но стоит учитывать, что при схеме, которая называется «звезда», мощность агрегата не будет превышать половины его номинальной мощности. Чтобы увеличить этот показатель, необходимо обеспечить подключение по типу «треугольник». В таком случае можно будет добиться лишь 30-процентного падения мощности. Бояться при этом не стоит, ведь в сети 220 вольт невозможно возникновение критического напряжения, которое бы повредило обмотки двигателя.

Схемы подключения


Когда трехфазный двигатель подключен к сети 380, тогда каждая его обмотка запитана от одной фазы. При соединении его к 220 вольтовой сети на две обмотки приходит фазный и нулевой провод, а третья остается незадействованной. Чтобы исправить этот нюанс, необходимо подобрать правильный конденсатор, который в требуемый момент сможет подать на нее напряжение. В идеале в цепи должно быть два конденсатора. Один из них является пусковым, а второй рабочим. Если мощность трехфазного агрегата не превышает 1,5 кВт, и нагрузка на него подается уже после того, как он наберет требуемые обороты, тогда можно использовать только рабочий конденсатор.

Обратите внимание! Без дополнительных конденсаторов или других приспособлений подключить напрямую двигатель на 380 к 220 не получиться.

В этом случае его необходимо его необходимо установить в разрыв между третьим контактом треугольника и нулевым проводом. Если необходимо добиться эффекта, при котором двигатель будет вращаться в обратном направлении, тогда необходимо на один вывод конденсатора подключить не нулевой, а фазный провод. Если двигатель по мощности превосходит, указанную выше, тогда понадобится еще и пусковой конденсатор. Он монтируется параллельно рабочему. Но стоит учитывать, что в провод, который дет между ними, на разрыв должен быть установлен выключатель без фиксации. Такая кнопка позволит задействовать конденсатор только во время пуска. При этом придется после включения двигателя в сеть несколько секунд удерживать эту клавишу для того, чтобы агрегат набрал требуемые обороты. После этого ее необходимо отпустить, чтобы не сжечь обмотки.

Если потребуется реализовать включение такого агрегат реверсивно, тогда монтируется тумблер на три вывода. Средний должен быть постоянно подключен к рабочему конденсатору. Крайние должны быть подключены к фазному и нулевому проводу. В зависимости от того, в какую сторону должно быть вращение, потребуется выставить тумблер либо на ноль, либо на фазу. Ниже схематически изображена схема такого подключения.

Подбор конденсатора


Не существует универсальных конденсаторов, которые бы подходили ко всем агрегатам без разбора. Их характеристикой служит емкость, которую они способны держать. Поэтому каждый придется подбирать индивидуально. Основным требованием для него будет работа при напряжении сети в 220 вольт, чаще они рассчитаны на 300 вольт. Чтобы определиться, какой именно элемент потребуется, необходимо воспользоваться формулой. Если соединение осуществляется звездой, тогда необходимо силу тока разделить на напряжение в 220 вольт и умножить на 2800. Показателем силы тока берется цифра, которая указана в характеристиках двигателя. Для подключения треугольником формула остается такой же, но последний коэффициент изменяется на 4800.

Например, если на агрегате написано, что номинальный ток, который может протекать по его обмоткам составляет 6 ампер, тогда емкость рабочего конденсатора будет 76 мкФ. Это при подключении звездой, для подключения треугольником результат будет 130 мкФ. Но выше говорилось, что если агрегат испытывает нагрузку при старте или имеет мощность больше 1,5 кВт, тогда понадобится еще один конденсатор — пусковой. Его емкость обычно в 2 или в 3 раза больше рабочего. То есть для соединения звездой понадобится второй конденсатор с емкостью 150-175 мкФ. Подбирать его придется опытным путем. В продаже может не быть конденсаторов требуемой емкости, тогда можно собрать блок для получения требуемой цифры. Для этого доступные конденсаторы соединяются параллельно, чтобы их емкость сложилась.

Обратите внимание! Есть некоторое ограничение по мощности трехфазных агрегатов, которые можно запитать от однофазной сети. Оно составляет 3 кВт. При превышении этого значения может выйти из строя проводка.

Почему пусковые конденсаторы лучше подбирать опытным путем начиная с наименьшего? Дело в том, что при недостаточном его значении будет подаваться ток большего значения, что может вывести из строя обмотки. Если его значение будет больше требуемого, тогда агрегату будет недостаточно импульса для запуска. Более наглядно представить себе подключение можно с помощью видео.

Вывод


Во время работы с электрическим током соблюдайте технику безопасности. Не запускайте ничего, если до конца неуверены в правильности выполненного подключения. Обязательно посоветуйтесь с опытным электриком, который подскажет, сможет ли проводка выдержать требуемую нагрузку от агрегата.

Трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 вольт. Если у Вас в доме или гараже есть ввод на 380 Вольт, тогда обязательно покупайте компрессор или станок с трехфазным электродвигателем. Это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.

Выбор схемы включения электродвигателя

Схемы подключения 3-х фазных двигателей при помощи магнитных пускателей Я подробно описывал в прошлых статьях: « » и « «.

Подключить трех фазный двигатель возможно и в сеть 220 Вольт с использованием конденсаторов по . Но будет значительное падение мощности и эффективности его работы.

В статоре асинхронного двигателя на 380 В расположены три отдельные обмотки, которые соединяются между собой в треугольник или звезду и к трем лучам или вершинам подключаются 3 разноименные фазы.

Вы должны учитывать , что при подключении звездой пуск будет плавным, но для того что бы достичь полной мощности необходимо подключить мотор треугольником. При этом мощность возрастет в 1.5 раза, но ток при запуске мощных или средних моторов будет очень высоким, и да же может повредить изоляцию обмоток.

Перед подключением электродвигателя ознакомьтесь с его характеристиками в паспорте и на шильдике. Особенно это важно при подключении 3 фазных электродвигателей западно-европейского производства, которые рассчитаны на работу от сети напряжением 400/690. Пример такого шильдика на картинке снизу. Такие моторы подключаются только по схеме «треугольник» к нашей электросети. Но многие монтажники подключают их аналогично отечественным в «звезду» и электромоторы при этом сгорают, особенно быстро под нагрузкой.

На практике все электродвигатели отечественного производства на 380 Вольт подключаются звездой. Пример на картинке. В очень редких случаях на производстве для того что бы, выжать всю мощность используется комбинированная схема включения звезда-треугольник. Об этом подробно узнаете в самом конце статьи.

Схема подключения электродвигателя звезда треугольник

В некоторых наших электромоторах выходит всего 3 конца из статора с обмотками- это означает, что уже внутри двигателя собрана звезда. Вам только остается подключить к ним 3 фазы. А для того, что бы собрать звезду необходимы оба конца, каждой обмотки или 6 выводов.

Нумерация концов обмоток на схемах идет слева направо. К номерам 4, 5 и 6 подключаются 3 фазы А-В-С от электросети.

При соединении звездой трёхфазного электродвигателя начала его обмоток статора соединяются вместе в одной точке, а к концам обмоток подключаются 3 фазы электропитания на 380 Вольт.

При соединении треугольником статорные обмотки между собой соединяются последовательно. Практически, необходимо соединить конец одной обмотки с началом следующей. К трем точкам соединения их между собой подключаются 3 фазы питания.

Подключение схемы звезда-треугольник

Для подключения мотора по довольно редкой схеме звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Так Мы сможем выжать максимум мощности, но получается довольно сложная схема без возможности реверсирования или изменения направления вращения.

Для работы схемы необходимы 3 пускателя. На первый К1 подключено электропитание с одной стороны, а с другой — концы обмоток статора. Их же начала подключены к К2 и К3. С пускателя К2 начала обмоток подключаются соответственно на другие фазы по схеме треугольник. При включении К3 все 3 фазы закорачиваются между собой и получается схема работы звездой.

Внимание , одновременно не должны включаться магнитные пускатели К2 и К3, а то произойдет произойдет аварийное отключение автомата защиты из-за возникновения межфазного короткого замыкания. Поэтому и делается электрическая блокировка между ними- при включении одного из них размыкается блок контактами цепь управления другого.

Схема работает следующим образом. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. По истечении заданного промежутка, достаточного для полного запуска двигателя реле времени отключает пускатель К3 и включает К2. Мотор переходит на работу обмоток по схеме треугольник.

Отключение происходит пускателем К1. При повторном запуске все снова повторяется.

Похожие материалы:

    попробовал еще такой вариант.соединение звезда.запускаю двигатель 3 киловатт при помощи конденсатора 160 микрофарад.а дальше убираю его из сети(если не убрать из сети то конденсатор начинает греться) .и двигатель работает самостоятельно на довольно таки неплохих оборотах. возможно ли в таком варианте его использовать?не опасно?

    Роман :

    Здравствуйте! Есть Частотник Веспер на 1,5 квт, который трансформирует от одной фазы 220 вольт сети в 3 фазы на выходе с межфазным 220в для питания асинхронного 1,1 квт. дв. 1500 об/мин. Однако при отключении сети 220 вольт необходимо запитать его от Инвертора прямого тока, который в качестве резервного источника питания использует АКБ. Вопрос в том, возможно ли сделать такое через перекидной рубильник АВВ (т.е. перейти вручную на питание Веспера от инвертора прямого тока) и не повредится ли при этом Инвертор прямого тока?

    1. Опытный Электрик :

      Роман, здравствуйте. Для этого надо читать инструкцию или задавать вопросы производителю инвертора, а именно, способен ли инвертор на подключение к нагрузке (или другими словами его перегрузочная способность в течение короткого времени). Если же не рисковать, то проще (когда пропадает 220 вольт), отключить автоматом или рубильником электродвигатель, включить перекидным рубильником питание от инвертора (таким образом запитать частотник) и затем уже включить двигатель. Или делать схему бесперебойной работы — на постоянной основе подавать сетевое напряжение на инвертор, а с инвертора забирать на частотник. В случае отключения электричества, инвертор остается в работе благодаря АКБ и перерыва в электроснабжении не наступает.

  1. Сергей :

    Добрый день. Однофазный двигатель от старой, советской стиральной машины при каждом запуске вращается в разные стороны (нет системы). У двигателя есть 4 вывода(2 толстых,2 тонких. Подключил через выключатель с третьим отходящим контактом. После запуска двигатель работает устойчиво (не греется). Не могу понять почему идет вращение в разные стороны.

    1. Опытный Электрик :

      Сергей, здравствуйте. Все дело в том, что однофазному двигателю без разницы куда вращаться. Поле не круговое (как в трехфазной сети), а пульсирующее 1/50 секунды на фазе «плюс» относительно нуля, а 1/50 — «минус». Все равно что сто раз в секунду вы будете крутить батарейку. Только после того, как двигатель раскрутился тогда уже он сохраняет свое вращение. В старой стиральной машине могло и не предусматриваться строгое направление вращения. Если предположить такое, то в момент запуска на «положительной» полуволне синусоиды он запускается в одну сторону, при отрицательной полуволне — в другую. Есть смысл попробовать задать смещение тока пусковой обмотки через конденсатор. Ток в пусковой обмотке начнет опережать напряжение и будет задавать вектор вращения. Я так понимаю, у вас сейчас два провода (фаза и ноль) идут на двигатель от рабочей обмотки. Один из проводов пусковой обмотки объединен с фазой (условно, просто фактически намертво с одним из проводов), а второй провод через третий нефиксирующийся контакт идет на ноль (тоже условно, по факту на другой из сетевых проводов). Вот и попробуйте между проводом и нефискирующимся контактом установить конденсатор емкостью от 5 до 20 мкФ и понаблюдайте за результатом. В теории вы должны жестко задать этим направление магнитного поля. По факту это конденсаторный двигатель (однофазные асинхронные все конденсаторные) и тут возможны только три момента: либо конденсатор работает всегда и тогда надо подбирать емкость, либо он задает вращение, либо запуск происходит без него, но в любую сторону.

  2. Галина :

    Здравствуйте

  3. Сергей :

    Добрый день. Собрал схему, как вы говорили, конденсатор установил на 10 мкф, запускается двигатель устойчиво теперь только в одну сторону. Смена направления вращения только в случае если поменять местами концы пусковой обмотки. Поэтому теория на практике сработала безупречно. Спасибо большое за совет.

  4. Galina :

    Спасибо за ответ, Я купила в китае фрезерный станок с чпу, двигатель 3х фазный на 220, а у нас (я живу в аргентине) сеть однофазная на 220, либо 3х фазная на 380
    консультировалась у местных специалистов — говорят что надо менять двигатель, но очень не хочется. Помогите советом как подключить станок.

  5. Galina :

    Здравствуйте! Огромное Вам спасибо за информацию! Через пару дней приходит станок. посмотрю что там на самом деле, а не только на бумаге, и я полагаю у меня ещё будут к Вам вопросы. Ещё раз спасибо!

  6. Здравствуйте! А возможен такой вариант: провести линию 3 фазы 380 v и поставить понижающий трансформатор, чтобы иметь 3 фазы 220v? В станке 4 двигателя, основной мощностью 5,5 kw. Если это возможно, то какой тр-р нужен?

  7. Юра :

    Здравствуйте!
    Подскажите пожалуйста — можно ли запитать асинхронный трехфазный эл-двигатель 3,5 кВт от 12-ти вольтовых аккумуляторов? Например с помощью трёх бытовых инверторов 12-220 с чистой синусоидой.

    1. Опытный Электрик :

      Юрий, здравствуйте. Чисто теоретически это возможно, но на практике вы столкнетесь с тем, что при запуске асинхронный двигатель создает большой пусковой ток и вам придется брать соответствующий инвертор. Второй момент это полное фазирование (сдвиг частоты у трех инверторов на угол 120° относительно друг друга), что невозможно сделать, если это не предусмотрено производителем, потому добиться синхронизации вручную при частоте 50 Гц (50 раз в секунду) вы не сможете. Плюс мощность двигателя довольно большая. Исходя из этого я бы вам порекомендовал обратить внимание на связку «аккумулятор-инвертор-частотный преобразователь». Частотный преобразователь способен выдавать требуемые сихнронизированные фазы того напряжение, которое будет на входе. Практически все двигатели имеют возможность включения на 220 и 380 вольт. Следовательно, получив нужный вольтаж и получив нужную схему соединения можно с помощью частотного преобразователя сделать плавный запуск избежав больших пусковых токов.

      1. Юра :

        я немного не понял — инверторы у меня на 1,5кВт, то есть вы советуете использовать батарею аккумуляторов и один такой инвертор в связке с частотником? а как он вытянет???
        или же вы советуете использовать инвертор соответсвующей мощности — 3,5кВт? тогда непонятна необходимость частотного преобразователя…

        1. Опытный Электрик :

          Постараюсь объяснить.
          1. Изучите информацию о трехфазном токе. Три фазы, это не три напряжения на 220 вольт. Каждая фаза имеет частоту 50 герц, то есть 100 раз в секунду меняет свое значение с плюса на минус. Для того, чтобы асинхронный двигатель начал работать, ему нужно круговое поле. В этом поле три фазы сдвинуты друг относительно друга на угол 120°. Другими словами фаза А достигает своего пика, через 1/3 времени этого пика достигает фаза В, через 2/3 времени фаза С, затем процесс повторяется. Если смена пиков синусоиды будет происходить хаотично, двигатель не начнет вращаться, он будет просто гудеть. Следовательно, либо ваши инверторы должны быть сфазированы, либо в них нет смысла.
          2. Изучите информацию об асинхронных двигателях. Пусковой ток достигает значений 3-8 кратных номинальному. Следовательно, если взять примерное значение 5 ампер, то при запуске двигателя ток может быть 15-40 ампер или 3,3 — 8,8 кВт на фазу. Инвертор меньшей мощности сгорит сразу, значит надо брать инвертор по максимальной мощности, даже если она будет длиться всего полсекунды или еще меньше, а это будет дорогое удовольствие.
          3. Изучите информацию по частотному преобразователю. Частотник может обеспечить как плавный запуск, так и преобразование одной фазы в три. Плавный запуск позволит избежать больших пусковых токов (и покупки сверхмощного инвертора), а преобразование одной фазы в три позволит избежать дорогостоящей процедуры сфазирования инверторов (если они изначально к этому не приспособлены, то своими силами вы точно не сможете это сделать и вам придется найти хорошего электронщика).

          Я советую взять мощный инвертор в связке с частотным преобразователем, если вам очень необходимо получить полную мощность от вашего двигателя.

  8. Валерий :

    Здравствуйте. Подскажите, пожалуйста, можно ли использовать этот двигатель (импортный) для включения в нашу сеть 220V для деревообрабатывающего станка?
    На шильде 4 варианта:
    — 230, треугольник, 1.5kw, 2820 /мин., 5.7А, 81.3%
    — 400, звезда, 1.5kw, 2800/мин., 3.3А, 81.3%
    — 265, треугольник, 1.74kw, 3380/мин, 5.7А, 84%
    — 460, эвезда, 1.74kw, 3380/мин, 3.3А, 84%
    Судя по этому, данный двигатель очень хорошо подойдет для д.о. станка (по 1-му варианту). Наверное, в коробке 6 контактов? Хорошие (относительно) обороты. Смущает 230V — как поведет себя в сети 220V? Почему максимальный ток именно по варианту 1, 3?
    Можно ли использовать этот двигатель для д/о станка и как подключать в сеть 220V?

  9. Валерий :

    Спасибо большое за все. За терпение, повторное разъяснение всего, что много раз повторялось в других комментариях. Все это я перечитал, местами не раз. Я много читал инф. на разных сайтах по переводу 3-х ф.двиг. в сеть 220v. (с момента, как мне помощники подпалили эл. двиг. самодельного небольшого станка). Но у вас я почерпнул намного больше, такие особенности, о которых не знал и не встречал раньше. Сегодня после поисковика зашел на этот сайт, перечитал почти все комментарии и был поражен полезностью, доступностью информации.
    По поводу моих вопросов. Дело вот в чем. На моем старом станке (бывшем, отца) стоит такой же старый эл. дв. Но потерял мощность, «бьется» с корпуса (наверное, подгоревшая обмотка коротит). Там нет бирки, классический треугольник, без клем — когда-то переделывался, наверное. Мне предлагают новый двиг, польский, кажется, с приведенными вариантами на бирке. Кстати, там 50 Гц по каждому варианту. И после отправки комментария внимательно посмотрел все 4 приведенные варианта и понял почему в треугольнике ток выше.
    Буду брать, включать в 220 по 1 варианту в треугольник через конденсаторы с 70% мощности. Передаточное число можно увеличить, но мощности для станка могло бы быть и больше.
    Да, кроме классического треугольника и звезды встречаются другие варианты включения 380 в сеть 220. И существует (Вы знаете) более простой способ определения начала обмоток с помощью батарейки и стрелочника.

  10. Валерий :

    Сегодня получил фото шильды эл. дв. Вы правы. Там по 3 и 4 варианту 60Гц. И теперь понятно, что не могло быть иначе и что при 50Гц — максимум 3000 об. Еще вопрос. Как надежно и продолжительно при одном включении работают электролитические конденсаторы через мощный диод в качестве рабоч. конд.?

  11. Александр :

    Здравствуйте,подскажите- как прикрепить файл с фоткой, чтобы задать вопросик?

  12. Сергей :

    Добрый день.
    Немного истории. На водогрейном котле (промышленный большой — для отопления предприятия) использую два циркуляционных насоса ВИЛО с германским электродвигателем 7,5 кВт каждый. При получении обоих насосов мы их подключили «треугольником». Проработали неделю (все нормально было). Приехали наладчики автоматики водогрейного котла и сказали нам, что схему подключения обоих двигателей переключить на «звезду». Проработали неделю и один за другим оба движка сгорели. Подскажите, может ли переподключение с треугольника на звезду явиться причиной перегоревших германских двигателей? Спасибо.

  13. Александр :

    Здравствуйте Опытный Электрик) Скажите свое мнение по поводу такой схемы подключения двигателей, наткнулся на нее на одном форуме

    «Неполная звезда встречная, с рабочими конденсаторами в двух обмотках»
    Ссылка на схему и диаграмму с описанием принципа работы такой схемы — https://1drv.ms/f/s!AsqtKLfAMo-VgzgHOledCBOrSua9

    Говориться, что такая схема подключения двигателя была разработана для двухфазной сети и наилучшие результаты показывает при подключении на 2 фазы. Но в однофазной сети 220в она применяется потому что,имеет лучшие характеристики чем классические:звезда и треугольник.
    Что скажите про такой вариант подключения трех-фазного двигателя в сеть 220в. Имеет право на жизнь? хочу попробовать ее на самодельной газонокосилке.

    1. Опытный Электрик :

      Александр, здравствуйте. Ну что вам сказать? Во-первых, невероятно сильно «подкупает» грамотность как изложения материала, так и грамотность языка статьи. Во-вторых, про этот способ почему-то знает очень мало людей. В-третьих, если бы этот способ был действенным и лучшим, его бы давно включили в учебную литературу. В-четвертых, нигде нет теоретической выкладки этого способа. В-пятых есть пропорции, но нет формул для расчета емкости (то есть, условно, можно взять за точку отсчета 1000 мкФ или 0,1 мкФ — главное — соблюсти пропорции???). В-шестых, тему писал совсем не электрик. В седьмых, лично у меня не укладывается в голове первая обмотка, которая включена задом наперед и через конденсатор — все это наводит на размышления, что кто-то что-то придумал и хочет что-то выдать за изобретение, которое якобы лучше работает для двухфазной сети. Теоретически, такое можно допустить, но для размышлений мало теоретических данных. В теории, если каким-то образом получать то одну, то другую полуволну из одной или другой фазы, но схема тогда должна иметь другой вид (при использовании двух фаз, это однозначно звезда, но с использованием нулевого провода и двух конденсаторов к нему или от него… и опять же, получается фигня. В общем, поэкспериментируйте, а потом отпишитесь — мне интересно, что получится, но я лично, подобные эксперименты проводить не хочу, ну или если мне дадут двигатель и скажут — его можно убивать, тогда поэкспериментирую. По поводу подбора конденсаторов я уже писал и в комментариях, и в ссылках на статью «Конденсатор для трехфазного двигателя» на этом сайте и на сайте «потомственного мастера» — бездумно ставить конденсатор по формуле не надо. Надо учитывать нагрузку двигателя и подбирать конденсатор по рабочему току в конкретном цикле работы.

      1. Александр :

        Спасибо за ответ.
        На форуме где я на это наткнулся, несколько человек пробовали эту схему на своих двигателях (включая человека который ее выложил)-говорят что результатами ее работы очень довольны. По поводу компетентности человека ее предложившего, я так понял он вроде в теме (и модератор того форума), схема не его, как он говорил сам ее нашел в каких то старых книгах по двигателям.Но то такое, у меня есть движок подходящий для экспериментов, попробую на нем.
        По поводу формул, я просто не все записи с той ветки представил, там много чего написано,из главного вот еще добавил если интересно посмотрите по той же ссылке.

        1. Опытный Электрик :

          Александр, поэкспериментируйте, и напишите результат. Я могу сказать одно — я любознательный товарищ, но про такую схему ни из учебников, ни из уст многих авторитетных старших товарищей не слышал. У меня сосед еще более любознательный электронщик с уклоном в электричество тоже не слышал. На днях попробую спросить его.
          Компетентность штука такая… сомнительная, когда речь идет об интернете. Вы никогда не знаете, кто сидит с той стороны экрана и что он из себя представляет, и висит ли у него на стене диплом, о котором он говорит, и знает ли он что либо из предметов, которые указаны в дипломе. Я нисколько не пытаюсь обхаять человека, просто пытаюсь сказать, что не всегда надо верить на сто процентов человеку с той стороны экрана. Случись что, вы его не сможете за вредный совет прижать к стенке, а это рождает полную безответственность.
          Есть еще один «черный» момент — форумы зачастую создаются для того, чтобы приносить доход и для этого хороши все средства, как вариант, предложить какую-то хитрую тему, раскрутить ее, пусть даже она не совсем рабочая, но уникальная, то есть, только на его сайте. А «несколько» человек, это может быть как раз модератор, под несколькими никами сам с собой побеседовать для раскрутки темы. Опять же не хаю конкретно того человека, но такой вот черный пиар форума уже встречал.
          Теперь коснемся старых книг и советского союза. В СССР было мало дураков (среди тех, кто занимался разработками) и если бы схема себя зарекомендовала, наверняка она была бы включена в учебники, по которым я учился, хотя бы для упоминания и для общего развития, что такой вариант возможен. Да и преподаватели у нас были не дураки, а по электрическим машинам дядька так вообще давал очень много интересной информации сверх учебного плана, но и он об этой схеме не слыхивал.
          Вывод, я не верю, что эта схема лучше (возможно для двух фаз и лучше, но это еще надо посмотреть и нарисовать «правильную» схему, чтобы было понятно действие токов и их смещение), хотя и допускаю, что она работает. Таких вариантов, когда кто-то что-то намудрил, а оно работает — полно 🙂 Как правило, человек сам не понимает, что сделал и не вникает в суть, но пытается усиленно что-то модернизировать.
          Ну и еще один вывод: если бы эта схема реально была бы лучше, то она была бы как минимум известна, но я о ней узнал только от вас при всей своей неуёмной любознательности.
          В общем, жду от вас мнений и результатов, а там глядишь и сам проведу эксперимент с соседом уже на практико-теоретической базе.

      2. Александр :

        Добрый день всем. Могу теперь, как обещал рассказать об экспериментах при подключении моего двигателя АОЛ по найденой на одном форуме схеме — так называемой
        «неполная звезда, встречная» В общем сделал саму косилку и установил движок на нее. Рассчитал конденсаторы по формулам которые давались в описании схемы, которых не было — купил на рынке, оказалось высоковольтные на 600В или выше найти не так просто. Все собрал по приведенной схеме, да схемка оказалась не простенькой! (для меня, по сравнению с треугольником)Два раза все перепроверял. Оказалось, двигатель с ножами шустро запустился только когда к расчетным пусковым конденсаторам добавил еще 30mkF (на расчетных запускался туговато). Пол часа покрутил двигатель в холостую в мастерской и понаблюдал за нагревом — все оказалось хорошо, двигатель почти не грелся.Работа двигателя в холостую очень понравилась,на звук и визуально двигатель работал вроде как от родных 380В (проверял на работе от 380в) Выехал покосить уже на следующий день с утра. В общем косил больше часа,высокую траву (чтобы дать нагрузку) — результат отличный, двигатель нагрелся но руку вполне держать можно (учитывая что и на улице было +25,)Пару раз двигатель «глох» в высокой траве, но у него всего 0,4 кВт. Рабочие конденсаторы во второй цепи немного нагрелись (добавил 1,5мкф к расчетным), остальные были холодными. Потом косил еще два раза — двигатель работал «как часы»,в общем результатом подключения двигателя доволен, вот только двигатель чуть мощнее бы был, (0,8 кВт) была бы вообще красота)Конденсаторы в итоге поставил следующие:
        Пусковые = 100мкФ на 300в.
        Рабочие 1 обмотка = 4,8 мкф на 600в.
        Рабочие 2 обмотка = 9,5 мкф на 600в.
        На моем двигателе такая схема работает. Интересно пробовать такое подключение на двигателе по мощнее 1,5-2 кВт.

    2. Александр :

      Здравствуйте. Вы правы) я треугольником сразу подключал в мастерской, правда не косил на нем, и работу двигателя могу оценить только визуально,на слух и по своим ощущениям) так как делать замеры тех же токов на разных схемах у меня нечем. Я от серьезной электрики далекий, могу в основном по готовой схеме с уже известными деталями что то в кучу скрутить, прозвонить да 220-380 вольтметром проверить). В описании схемы было сказано, что ее преимущество в меньших потерях мощности двигателя и в режиме его работы, приближенном к номинальному. Скажу, что на треугольнике мне легче было затормозить вал на двигателе, чем на этой схеме. Да и вращался он на ней, я бы сказал шустрее. У меня на этом двигателе она работает и как работает сам двигатель мне понравилось, поэтому собирать и запихивать по очереди две схемы в одну коробку и проверять как косит я не стал. Я пока конденсаторы во временную коробку запихнул, чтоб посмотреть как будет работать еще (может добавить или убрать придется чего то еще), а потом думал все это дело красиво и компактно оформить с защитой какой то может. Мне вот интересно там где я на эту схему наткнулся, люди по ней подключали мало мощные двигатели и никто не писал про подключение хотя бы 1,5 или 2 кВт. Для них я так понимаю нужно много (по сравнению с треугольником) конденсаторов, да еще и на высокое напряжение должны быть. Я здесь и решил поспрашивать про эту схему,так как действительно нигде раньше о ней не слышал и думал может спецы скажут с точки зрения теории и науки — должна она работать или нет.
      Точно могу сказать двигатель крутиться и как по мне — очень даже неплохо, а вот что там должно быть с токами, напряжениями и что там должно отставать или опережать по этой схеме и хотелось бы услышать от кого то знающего. Может эта схемка просто развод? и она от того же треугольника ничем не отличается (кроме лишних проводов и конденсаторов. У меня дома сейчас уже нет надобности в мощных двигателях, что бы попробовать подключить их через конденсаторы по этой схеме и посмотреть как бы они работали. Раньше были и циркулярка и фуганок, так на них двигатели около 2,5 кВт подключенные по треугольнику, глохли если чуть больше нагрузку дашь, как будто в них не больше киловатта было. Сейчас просто все это в цеху есть в котором 380 есть. Еще пару-тройку раз покошу, и если все будет «гут» оформлю свою чудо-косилку грамотно и выложу фото, может кому то пригодиться.

      Владимир :

      Добрый вечер подскажите как поменять направление вращения вала электродвигателясинхронного 380В подключенный со звезды на треугольник.

Самыми распространенными приводами различных электрических машин в мире являются асинхронные двигатели. Они были изобретены еще в XIX веке и очень быстро, в силу простоты своей конструкции, надежности и долговечности, используются широко и в промышленности, и в быту.

Однако далеко не все потребители электрической энергии обеспечены трехфазным электроснабжением, что затрудняет применение надежных помощников человека – трехфазных электродвигателей. Но выход, достаточно просто реализуемый на практике, все же есть. Нужно только сделать подключение двигателя, используя специальную схему.

Но вначале стоит немного узнать о принципах работы и о их подключении.

Каким образом асинхронный двигатель будет работать при подключении в двухфазную сеть

На статоре асинхронного двигателя помещаются три обмотки, которые обозначаются буквами C1, C2— C6. Первой обмотке принадлежат выводы C1 и C4, второй С2 и C5, а третьей C3 и C6, причем C1— С6 – это начала обмоток, а C4— C6 – их конец. В современных двигателях принята несколько иная система маркировки, обозначающая обмотки буквами U, V, W, а их начало и конец обозначают цифрами 1 и 2. Например, началу первой и обмотки C1 соответствует U1, концу третей C6 соответствует W2 и так далее.

Все выводы обмоток смонтированы в специальной клеммной коробке, которая есть у любого асинхронного двигателя. На табличке, которая должна быть на каждом двигателе обозначены его мощность, рабочее напряжение (380/220 В или 220/127 В), а также возможность Подключения по двум схемам: «звездой» или «треугольником».

Стоит учитывать, что мощность асинхронной машины при подключении в однофазную сеть всегда будет на 50-75% меньше, чем при трехфазном подключении.

Если просто подключить трехфазный двигатель к сети 220 вольт просто соединив обмотки с питающей сетью, то ротор не будет двигаться по той простой причине, что отсутствует вращающееся магнитное поле. Для того, чтобы его создать необходимо сдвинуть фазы на обмотках при помощи специальной схемы.

Из курса электротехники известно, что конденсатор, включенный в электрическую цепь переменного тока, будет сдвигать фазу напряжения. Это происходит из-за того, что во время его заряда происходит постепенное возрастание напряжения, время которого определяется емкостью конденсатора и величиной протекающего тока.

Получается, что разность потенциалов на выводах конденсатора будет всегда опаздывать по отношению к питающей сети. Этим эффектом и пользуются для подключения трехфазных двигателей в однофазную сеть.

На рисунке представлена схема подключения однофазного двигателя при разных способах. Очевидно, что напряжение между точками A и C , также B и C будет расти с запаздыванием, что создаст эффект вращающегося магнитного поля. Номинал конденсатора в соединениях типа «треугольник рассчитывается по формуле: C=4800*I/U, где I – это рабочий ток, а U– напряжение. Емкость в этой формуле вычисляется в микрофарадах.

В соединениях по способу «звезда», которое наименее предпочтительно нужно использовать в однофазных сетях из-за меньшей отдаваемой мощности, применяют другую формулу C=2800*I/U. Очевидно, что конденсаторы требуют меньших номиналов, что объясняется меньшими пусковыми и рабочими токами.

Представленная выше схема подходит только для тех трехфазных электродвигателей, чья мощность не превышает 1,5 кВт. При большей мощности потребуется применение другой схемы, которая помимо рабочих характеристик гарантированно обеспечит пуск двигателя и его выход в рабочий режим. Такая схема представлена на следующем рисунке, где дополнительно присутствует возможность реверса двигателя.

Конденсатор Сp обеспечивает работу двигателя в штатном режиме, а Cп – нужен при пуске и разгоне двигателя, который делается в течение нескольких секунд. Резистор R разряжает конденсатор после запуска и размыкания кнопочного выключателя Кн , а переключатель SA служит для реверса.

Емкость пускового конденсатора обычно применяется в два раза большей, чем емкость рабочего конденсатора. Для того чтобы набрать нужную емкость, используют собранные батареи из конденсаторов. Известно, что параллельное соединение конденсаторов суммирует их емкость, а последовательное – обратно пропорционально.

При выборе номиналов конденсаторов руководствуются тем, что их рабочее напряжение должно быть больше напряжения в сети минимум на одну ступень, а это обеспечит их надежную работу при пуске.

Современная элементная база позволяет использовать конденсаторы высокой емкости при небольших габаритах, что значительно упрощает подключение трехфазных двигателей в однофазную сеть 220 вольт.

Итоги

  • Асинхронные машины могут подключаться и в однофазные сети 220 вольт при помощи фазосдвигающих конденсаторов, номинал которых рассчитывается, исходя их рабочего напряжения и потребляемого тока.
  • Двигатели, имеющие мощность свыше 1,5 кВт, требуют подключения и пускового конденсатора.
  • Подключение способом «треугольник» является основным в однофазных сетях.

Узнайте как всё подключается на практике из видео

При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

  • Звезда.
  • Треугольник.

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.

Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.

Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.

Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.

При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Подключение электрического двигателя через магнитный пускатель

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению.

Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.


Как подключить трехфазный электродвигатель к однофазной сети | Полезные статьи

Нередко мы сталкиваемся с такой ситуацией, когда в быту необходимо подключить трехфазные электродвигатели к сети 220 В. Причин может быть множество – использование бетономешалки, сверлильного станка и других механизмов. Как же в таком случае быть? Все просто, стоит только соединить обмотки в выводной коробке по схеме «звезда», либо «треугольник».

 

Схемы подключения «звезда» и «треугольник»

Для этих целей применяются конденсаторы для электродвигателей 220 В различных типов, емкость которых следует подбирать в зависимости от мощности электродвигателя. Расчет емкости осуществляется по следующей формуле:

 

где

C – это емкость необходимого конденсатора;

Pнорм – номинальная мощность электродвигателя.

 

На основе расчета видно, что на каждые 100 Вт потребуется около 7 мкФ емкости. Не сложно рассчитать, что подключение электродвигателя мощностью в 600 Вт должно осуществляться при помощи конденсатора на 42 мкФ. Такую емкость можно получить при параллельном соединении конденсаторов емкостью поменьше.

Стоит отметить, что при подключении трехфазного электропривода к однофазной сети при помощи конденсатора, частота вращения ротора остается практически неизменной, однако мощность двигателя снизиться до 50-75 %.

Трехфазные электродвигатели могут запускаться и при помощи одного рабочего конденсатора, однако, в том случае, если мощность привода превышает 1,5 кВт, либо он вообще не запускается, либо медленно набирает обороты, то следует использовать еще и пусковой конденсатор. Его емкость должна в 2,5-3 раза превышать емкость рабочего. Следует помнить, что пусковые конденсаторы для электродвигателей необходимо включать на 2-3 секунды, чего вполне хватает для запуска трехфазного двигателя. После его необходимо отключить и разрядить.

Схема подключения с пусковым конденсатором (C1)

Помимо того, что нужно правильно рассчитать емкость, нужно еще и правильно выбрать тип конденсатора для электродвигателя. В быту наиболее часто применяются бумажные конденсаторы, помещенные в герметичный корпус из металла (КБП, МПГО, МГБП и другие). В качестве пускового и рабочего профессионалы рекомендуют выбирать конденсаторы одного типа.

Бумажные конденсаторы имеют всего два недостатка – небольшая емкость и достаточно большие размеры. Если планируется подключение электродвигателя большой мощности, то получиться достаточно внушительная по размерам «конструкция» параллельно соединенных конденсаторов. Иногда можно встретить мнение, что для этих целей более приемлемо использование электролитических конденсаторов. Однако, такое решение имеет совершенно другую схему подключения и требует использования дополнительных элементов (резисторов, диодов и т. д.).

Конденсатор для электродвигателя МГБО

Нередко могут возникнуть проблемы с определением начал и концов обмотки для соединения. Как правило, они маркируются бирками, но если их нет, то сначала рекомендуется определить, к какой фазе статорной обмотки относится тот или иной провод. Осуществляется это при помощи контрольной лампочки путем «прозванивания». Далее следует определить начало и конец обмоток.

Подключение электродвигателя по схеме «звезда» дает плавный пуск, но в ущерб максимально достижимой мощности привода. Подключение «треугольник» позволяет добиться мощности практически в 1,5 раза больше, чем в первом случае. Однако такое подключение чревато повреждением изоляции проводов механизма. Именно поэтому наиболее мощные электроприводы рекомендуется подключать по комбинированной схеме «звезда-треугольник».

 

Самостоятельное подключение трехфазного двигателя к однофазной сети сложно, но осуществимо. Трехфазный двигатель в однофазной сети. Схема подключения трехфазного двигателя

Одна из причин подключения трехфазного двигателя к однофазной цепи заключается в том, что электроснабжение промышленных объектов и для бытовых нужд принципиально различается.

Для промышленного производства электротехнические предприятия производят электродвигатели с трехфазной системой питания и для запуска двигателя необходимо иметь 3 фазы.

Что делать, если вы приобрели двигатели для промышленного производства и вам нужно подключить их к домашней розетке? Некоторые умелые специалисты с помощью простых электрических схем адаптируют электродвигатель к однофазной сети.

Схема подключения обмоток

Чтобы понять человека, впервые столкнувшегося с подобной проблемой, необходимо знать, как работает трехфазный мотор. Если открыть крышку подключения, можно увидеть колодку и провода, подключенные к клеммам, их количество будет 6.

Трехфазный электродвигатель имеет три обмотки и, соответственно, 6 выводов, они имеют начало и конец и соединены в электрическую конфигурацию, называемую «звезда и треугольник».

Это интересно, но в большинстве случаев стандартное переключение звездообразное, так как соединение треугольником приводит к потере мощности, но обороты двигателя увеличиваются. Бывает, что провода находятся в произвольном положении и не подключены к разъемам или клеммы вообще нет.В этом случае нужно использовать тестер или омметр.

Нужно прозвонить каждый провод и найти пару, это будут три обмотки мотора. Затем подключаемся к конфигурации «звезда» следующим образом: начало-конец-начало. Зажимаем три провода под одну клемму. Выводов должно быть три, значит дальше коммутация будет происходить именно к ним.

Важно знать: в бытовой сети есть однофазная система питания или — «фаза и ноль».Эта конфигурация должна использоваться для подключения двигателя. Сначала подключаем один провод от электродвигателя к любому проводу сети, затем ко второму концу обмотки подключаем сетевой провод и там один конец конденсаторного блока.

Последний провод от мотора и неподключенный контакт комплекта конденсаторов остаются свободными, подключаем их и схема пуска трехфазного мотора в однофазную сеть готова. Графически их можно изобразить следующим образом:

  • A, B, C — линии 3-х фазной цепи.
  • Ф и О — фаза и ноль.
  • С — конденсатор.

В промышленном производстве применяется трехфазная система питания. По нормам ПУЭ все сетевые шины обозначены буквенными значениями и имеют соответствующий цвет:

.

A желтого цвета.

Б — зеленый.

С — красный.

Следует отметить, что независимо от положения фаз, шина «B», выделенная зеленым цветом, всегда должна быть посередине. Внимание! Междуфазное напряжение измеряется специальным прибором, прошедшим государственный осмотр, и рабочим, имеющим соответствующую группу допусков.В идеале линейное напряжение составляет 380 вольт.

Устройство электродвигателя

Чаще всего в руки попадают электродвигатели с трехфазной асинхронной схемой работы. Что такое двигатель? Это вал, на который запрессован короткозамкнутый ротор, по краям которого установлены подшипники скольжения.

Статор изготовлен из трансформаторной стали, с высокой магнитной проницаемостью, цилиндрической формы с продольными канавками для прокладки провода и поверхностным изолирующим слоем.

По специальной технологии провода обмотки размещены в каналах статора и изолированы от корпуса. Симбиоз статора и ротора называется асинхронным двигателем.

Как рассчитать емкость конденсатора

Для запуска 3-х фазного двигателя от бытовой сети необходимо произвести некоторые манипуляции с конденсаторными блоками. Для запуска электродвигателя без «нагрузки» нужно подобрать емкость конденсатора по формуле 7-10 мФ на 100 Вт мощности двигателя.

Если присмотреться к электродвигателю сбоку, то можно найти его паспорт, где указана мощность агрегата. Например: если двигатель имеет мощность 0,5 кВт, то емкость конденсатора должна быть 35-50 мФ.

Следует отметить, что используются только «постоянные» конденсаторы, ни в коем случае не «электролитические». Обратите внимание на надписи сбоку на корпусе, они говорят о емкости конденсатора, измеряемой в микрофарадах, и напряжении, на которое они рассчитаны.

Пусковой конденсаторный блок собирается по этой формуле. При использовании мотора в качестве силового агрегата: подключите его к водяному насосу или используйте как циркулярную пилу, потребуется дополнительная конденсаторная батарея. Такая конструкция называется — рабочие конденсаторные блоки.

Запустите двигатель и при последовательном или параллельном подключении выберите емкость конденсатора, чтобы звук от электродвигателя выходил наиболее тихо, но есть более точный метод сбора емкости.

Для проверенного выбора конденсатора у вас должно быть устройство, называемое контейнерным хранилищем.Экспериментируя с различными комбинациями подключения, вы добьетесь одинакового значения напряжения между всеми тремя обмотками. Затем считывается емкость и выбирается требуемый конденсатор.

Необходимые материалы

В процессе подключения 3-х фазного двигателя к однофазной сети потребуются материалы и приспособления:

  • Набор конденсаторов разного номинала или «конденсаторный магазин».
  • Электропровода типа ПВ-2.5.
  • Вольтметр или тестер.
  • 3-х позиционный переключатель.

Под рукой должны быть основные инструменты: индикатор напряжения, диэлектрические клещи, изолента, крепеж.

Параллельное и последовательное соединение конденсаторов

Конденсатор является электронным компонентом и при различных комбинациях переключения его номинальные значения могут отличаться.

Параллельное соединение:

Последовательное соединение:

Следует отметить, что при параллельном включении конденсаторы емкости складываются, но напряжение будет уменьшаться, и наоборот, последовательный вариант дает увеличение напряжения и уменьшение емкости.

В заключение можно сказать, что безвыходных ситуаций не бывает, просто нужно приложить немного усилий и результат не заставит себя ждать. Электротехника — наука познавательная и полезная.

Как подключить трехфазный двигатель к однофазной сети, смотрите инструкцию в следующем видео:

1. Подключение трехфазного электродвигателя — общая схема

Когда электрик устраивается на работу на какое-либо промышленное предприятие, он должен понимать, что ему придется иметь дело с трехфазными электродвигателями большого количества.И любой уважающий себя электрик (я не говорю о тех, кто делает электропроводку в квартире) должен четко знать схему подключения трехфазного мотора.

Сразу прошу прощения, что в этой статье я часто называю контактор пускателем, хотя подробно это я уже объяснил. Что поделать, это имя скучно.

В статье будут рассмотрены схемы подключения наиболее распространенного асинхронного электродвигателя через магнитный пускатель.

Различные схемы подключения электродвигателей, их плюсы и минусы.От простого к сложному. Схемы, которые можно использовать в реальной жизни, помечены: ПРАКТИЧЕСКАЯ СХЕМА. Итак, приступим.

Подключение трехфазного двигателя

Имеется в виду асинхронный электродвигатель, соединение обмоток — звезда или треугольник, подключение к сети 380В.

Для работы двигателя рабочий нейтральный провод N (Neutral) не нужен, но должен быть подключен защитный (PE, Protect Earth) из соображений безопасности.

В самом общем случае схема будет выглядеть так, как показано в начале статьи.Действительно, почему бы не включить двигатель как обычную лампочку, только тумблер будет «трехклавишным»?

2. Подключение двигателя через выключатель или выключатель

А вот лампочку просто так никто и не включает, сеть освещения и вообще любая нагрузка всегда включается только через автоматические выключатели.

Схема подключения трехфазного двигателя к сети через автоматический выключатель

Поэтому более подробно общий случай будет выглядеть так:

3.Подключение мотора через автоматический выключатель. ПРАКТИЧЕСКАЯ ДИАГРАММА

На схеме 3 показан автоматический выключатель, который защищает двигатель от перегрузки по току («квадратный» изгиб линий питания) и от короткого замыкания («круглый» изгиб). Под автоматом я подразумеваю обычный трехполюсный автоматический выключатель с характеристикой тепловой нагрузки C или D.

Напомню, что для примерного подбора (оценки) необходимого теплового тока уставки тепловой защиты необходимо номинальную мощность трехфазного двигателя (указанную на паспортной табличке) умножить на 2.

Защитный выключатель для включения электродвигателя. Сила тока 10А, через это можно включить мотор мощностью 4кВт. Не больше и не меньше.

Схема 3 имеет право на проживание (из-за бедности или незнания местных электриков).

Он отлично работает, как и много лет назад. И в один «прекрасный» день твист сгорит. Или двигатель сгорит.

Если мы уже пользуемся такой схемой, необходимо тщательно подбирать ток автомата, чтобы он был на 10-20% больше рабочего тока мотора.И характеристику теплового расцепителя нужно подбирать D, чтобы автомат не работал при запуске.

Например, двигатель мощностью 1,5 кВт. Максимальный рабочий ток оцениваем — 3А (реальный рабочий ток может быть меньше, надо замерить). Это означает, что трехполюсный автомат должен быть установлен на 3 или 4А.

Достоинством данной схемы подключения двигателя является цена и простота исполнения и обслуживания. Например, там, где двигатель один, и он включается вручную на всю смену.Недостатки такой схемы с включением через автомат —

.

А что нового в группе Вконтакте SamElektrik.ru?

Подпишитесь и читайте статью дальше:

  1. Неспособность регулировать тепловой ток автомата. Чтобы надежно защитить двигатель, ток отключения автоматического выключателя должен быть на 10-20% выше номинального рабочего тока двигателя. Ток двигателя необходимо периодически измерять клещами и, при необходимости, регулировать ток срабатывания тепловой защиты.А у обычного станка нет возможности регулировки (.
  2. Невозможность дистанционного и автоматического включения / выключения двигателя.

Эти недостатки можно устранить, на схемах ниже будет показано, как это сделать.

Ручной пускатель или автоматический двигатель — более совершенное устройство. На нем есть кнопки «Пуск» и «Стоп» или ручка «Вкл-выкл». Его плюс в том, что он специально разработан для запуска и защиты двигателя. Пуск по-прежнему ручной, но ток срабатывания можно регулировать в определенных пределах.

4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ ДИАГРАММА

Поскольку двигатели обычно имеют высокий пусковой ток, автоматические выключатели (автоматы) защиты двигателей, как правило, имеют характеристику тепловой защиты типа D. выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз превышающие номинальные.

Вот что на боковой стене:

Автоматический выключатель защиты двигателя — характеристики на боковой стенке

Уставка тока (тепловая) — от 17 до 23 А, устанавливается вручную.Ток отключения (срабатывание КЗ) — 297 А.

В принципе, ручной пускатель и автоматический двигатель — это одно и то же устройство. А вот показанный на фото стартер может переключать мощность мотора. А автоматический двигатель постоянно подает питание (три фазы) на контактор, который, в свою очередь, переключает питание на двигатель. Короче разница в схеме подключения.

Плюс схема — можно регулировать уставку теплового тока. Минус такой же, как и в предыдущей схеме, удаленного включения нет.

Схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя следует уделить самое пристальное внимание. Это наиболее распространено во всем промышленном оборудовании, выпущенном примерно до 2000-х годов. И в новых китайских простых машинах используется по сей день.

Электрик, который ее не знает — как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-й статьи Конституции РФ; так танцор, не делающий различий между вальсом и тектоникой.

Три фазы к двигателю проходят в этой цепи не через автомат, а через стартер. А включение / выключение стартера осуществляется кнопками « Старт, » и « Стоп, », которые можно вывести на панель управления по 3-м проводам любой длины.

5. Схема подключения двигателя через пускатель с кнопками старт-стоп

Здесь питание цепи управления идет от фазы L1 (провод 1 ) через нормально замкнутую (НЗ) кнопку «Стоп» (провод 2 ).

Если сейчас нажать кнопку «Пуск», то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3 ), его контакты замкнутся, и на мотор пойдут три фазы. Но в таких схемах, помимо трех «силовых» контактов, у стартера есть еще один дополнительный контакт. Это называется «блокирующим» или «самозакрывающимся контактом».

При включении электромагнитного пускателя нажатием кнопки SB1 «Пуск» замыкается и самозакрывающийся контакт.А если он замкнут, то даже при отпускании кнопки «Пуск» силовая цепь катушки стартера все равно останется замкнутой. И двигатель будет продолжать работать, пока не будет нажата кнопка Стоп.

Так как тема с магнитными пускателями очень обширная, она вынесена в отдельную статью. Статья значительно расширена и дополнена. Там учтено все — подключение различных нагрузок, защита (тепловая и от короткого замыкания), обратимые схемы, управление с разных точек и т. Д.Нумерация цепей сохранена. Рекомендовать.

Подключение трехфазного двигателя через электронные устройства

Все описанные выше методы пуска двигателя называются прямым пуском от сети. Зачастую в мощных приводах такой запуск является тяжелым испытанием для оборудования — прогорают ремни, ломаются подшипники и крепления и т. Д.

Поэтому статья была бы неполной, если бы я не упомянул текущие тенденции. Сейчас все чаще и чаще вместо электромагнитных пускателей подключать трехфазный двигатель электронные силовые устройства… Под этим я подразумеваю:

  1. Твердотельные реле (твердотельные реле) — в них силовыми элементами выступают тиристоры (симисторы), которые управляются входным сигналом от кнопки или с контроллера. Бывают как однофазные, так и трехфазные. …
  2. Устройства плавного пуска (устройства плавного пуска, устройства плавного пуска) — твердотельные усовершенствованные. Можно выставить ток защиты, время разгона / торможения, включить реверс и т.д. И по этой теме. Практическое использование устройств плавного пуска -. Подключение двухскоростных асинхронных двигателей.Ключевые слова: раритет, ретро, ​​СССР.

    Заканчиваю здесь, спасибо за внимание, не смог все охватить, пишите вопросы в комментариях!

    Трехфазные электродвигатели имеют более высокий КПД, чем однофазные 220 вольт. Если у вас в доме или гараже есть ввод 380 вольт, то обязательно купите компрессор или машину с трехфазным электродвигателем. Это обеспечит более стабильную и более экономичную работу устройств. Для запуска мотора не нужны различные пусковые устройства и обмотки, ведь вращающееся магнитное поле появляется в статоре сразу после подключения к сети 380 вольт.

    Выбор схемы включения электродвигателя

    Схемы подключения 3-х фазных двигателей с использованием магнитных пускателей я подробно описал в предыдущих статьях: «» и «».

    Также возможно подключение трехфазного двигателя к сети 220 Вольт с помощью конденсаторов согласно. Но будет значительное падение мощности и КПД.

    В статоре асинхронного двигателя на 380 В есть три отдельные обмотки, которые соединены друг с другом треугольником или звездой, а 3 противоположные фазы соединены с тремя балками или вершинами.

    Необходимо учитывать, что при соединении звездой пуск будет плавным, но для достижения полной мощности необходимо соединить двигатель треугольником. В этом случае мощность увеличится в 1,5 раза, но ток при пуске мощных или средних двигателей будет очень большим, и это может даже повредить изоляцию обмоток.

    Перед тем, как подключить электродвигателя, ознакомьтесь с его характеристиками в паспорте и на шильдике.Это особенно важно при подключении трехфазных электродвигателей западноевропейского производства, которые рассчитаны на работу от сетевого напряжения 400/690. Пример такой таблички представлен на картинке ниже. Такие моторы подключаются только по схеме «треугольник» к нашей электросети. Но многие установщики подключают их так же, как и бытовые в «звезду», и электродвигатели при этом перегорают, особенно быстро под нагрузкой.

    На практике все электродвигатели отечественного производства 380 вольт соединены звездой.Пример на картинке. В очень редких случаях на производстве, чтобы выжать всю мощность, используется комбинированная схема звезда-треугольник. Подробнее об этом вы узнаете в самом конце статьи.

    Схема подключения электродвигателя звезда-треугольник

    В некоторых наших электродвигателях всего 3 торца статора с обмотками — это означает, что звезда уже собрана внутри двигателя. Вам просто нужно подключить к ним 3 фазы. А чтобы собрать звезду, нужны оба конца, каждая обмотка или 6 выводов.

    Нумерация концов обмоток на схемах идет слева направо. Номера 4, 5 и 6 подключены к 3 фазам A-B-C от сети.

    Когда трехфазный электродвигатель соединен звездой, начала его обмоток статора соединяются вместе в одной точке, а к концам обмоток подключаются 3 фазы источника питания 380 вольт.

    При соединении треугольником обмотки статора соединены последовательно друг с другом.На практике необходимо соединять конец одной обмотки с началом следующей. Три фазы питания подключены к трем точкам их подключения.

    Соединение звезда-треугольник

    Подключить электродвигатель по довольно редкой схеме звезды при пуске с последующим переводом на работу в рабочий режим по схеме треугольника. Так что мы можем выжать максимальную мощность, но получается довольно сложная схема без возможности реверсирования или изменения направления вращения.

    Для работы схемы требуется 3 пускателя. Первый К1 с одной стороны подключен к источнику питания, а с другой — к концам обмоток статора. Они также подключены к K2 и K3. От пускателя К2 начало обмоток подключают соответственно к другим фазам по схеме треугольника. При включении K3 все 3 фазы замыкаются накоротко друг на друга и получается схема работы звезды.

    Внимание , магнитные пускатели К2 и К3 нельзя включать одновременно, иначе произойдет аварийное отключение выключателя из-за возникновения межфазного короткого замыкания.Поэтому между ними делается электрическая блокировка — при включении одного из них блок размыкается контактами, цепь управления другого.

    Схема работает следующим образом. При включении стартера К1 включается реле времени К3 и двигатель запускается по схеме звезды. По прошествии заданного интервала, достаточного для полного запуска двигателя, реле времени отключает стартер К3 и включает К2. Двигатель переключается на работу обмоток по схеме треугольника.

    Отключение происходит стартер К1. При повторном запуске все повторяется снова.

    Материалы по теме:

      Тоже пробовал этот вариант. Звездное соединение. Завожу двигатель на 3 киловатта с конденсатором на 160 мкФ. А потом убираю из сети (если не убрать из сети, конденсатор начинает греться). И двигатель работает самостоятельно на довольно хороших оборотах. можно ли это использовать таким образом? это не опасно?

      роман :

      Здравствуйте! Есть 1.Преобразователь частоты Vesper 5 кВт, который преобразует одну фазу сети 220 В в 3 фазы на выходе с межфазным 220 В для питания асинхронной 1,1 кВт. дв. 1500 об / мин. Однако при отключении сети 220 вольт необходимо запитать ее от инвертора постоянного тока, который использует аккумулятор в качестве резервного источника питания. Вопрос в том, можно ли это сделать с помощью кулисного переключателя ABB (т.е. переключиться вручную на питание Vesper от инвертора постоянного тока) и не повредит ли инвертор постоянного тока?

      1. Опытный электрик :

        Роман, привет.Для этого нужно прочитать инструкцию или задать вопросы производителю инвертора, а именно, способен ли инвертор подключаться к нагрузке (или другими словами, его перегрузочной способности на короткое время). Если не рискуете, то проще (когда пропадает 220 вольт) выключить электродвигатель автоматом или тумблером, включить питание от инвертора тумблером (запитав тем самым преобразователь частоты) и затем включите двигатель. Или составьте схему бесперебойной работы — на постоянной основе подайте сетевое напряжение на инвертор, а подайте его с инвертора на преобразователь частоты.В случае отключения электроэнергии инвертор продолжает работать благодаря аккумуляторной батарее, и питание не прерывается.

  3. Сергей :

    Добрый день. Однофазный мотор от старой советской стиральной машины вращается в разные стороны (без системы). У двигателя 4 вывода (2 толстых, 2 тонких. Подключил через тумблер с третьим отходящим контактом. После запуска двигатель работает стабильно (не греется).Я не могу понять, почему происходит вращение в разные стороны.

    1. Опытный электрик :

      Сергей, привет. Дело в том, что однофазный двигатель вращать неважно. Поле не круговое (как в трехфазной сети), а пульсирующее 1/50 секунды в плюсовой фазе относительно нуля, а 1/50 — в минусовой. Это все равно что включать батарею по сто раз в секунду. Только после того, как двигатель закрутился, он продолжает вращаться. В старой стиральной машине, возможно, не было предусмотрено строгое направление вращения.Если так предположить, то в момент запуска на «положительной» полуволне синусоиды она запускается в одном направлении, с отрицательной полуволной — в другом. Имеет смысл попробовать выставить смещение пускового тока обмотки через конденсатор. Ток в пусковой обмотке начнет опережать напряжение и задаст вектор вращения. Насколько я понял, у вас теперь есть два провода (фазный и нулевой), идущие к мотору от рабочей обмотки. Один из проводов пусковой обмотки совмещен с фазой (условно, просто фактически плотно с одним из проводов), а второй провод уходит в ноль через третий нефиксирующий контакт (тоже условно, фактически к другому из проводов). сетевые провода).Поэтому попробуйте установить между проводом и немигающим контактом конденсатор емкостью от 5 до 20 мкФ и наблюдайте за результатом. Теоретически вам следует жестко задавать это направление. магнитное поле … По сути, это конденсаторный двигатель (однофазный асинхронный все конденсаторный) и здесь возможны только три точки: либо конденсатор всегда работает и тогда надо подбирать емкость, либо он задает вращение, либо старт происходит без него, но в любом направлении.

  4. Галина :

    Привет

  5. Сергей :

    Добрый день.Собрал схему, как вы сказали, выставил конденсатор на 10 мкФ, двигатель теперь стабильно заводится только в одну сторону. Меняйте направление вращения только в том случае, если концы пусковой обмотки перевернуты. Так что теория безупречно работала на практике. Большое спасибо за совет.

  6. Галина :

    Спасибо за ответ, я купил фрезерный станок с ЧПУ в Китае, трехфазный двигатель 220, и у нас (я живу в Аргентине) однофазная сеть 220, или трехфазная 380
    Я проконсультировался с местными специалистами — говорят, что надо двигатель менять, а я очень не хочу.Помогите советом как подключить машину.

  7. Галина :

    Здравствуйте! Большое спасибо за информацию! Машинка приходит через пару дней. Я посмотрю, что там на самом деле, и не только на бумаге, и, полагаю, у меня будут к вам еще вопросы. Спасибо еще раз!

  8. Здравствуйте! Возможен ли такой вариант: провести линию из 3-х фаз по 380 в и поставить понижающий трансформатор, чтобы было 3 фазы по 220 в? В машине 4 мотора, с основной мощностью 5.5 кВт. Если это возможно, какой нужен тр-р?

  9. Юра :

    Здравствуйте!
    Подскажите пожалуйста — можно ли запитать асинхронный трехфазный электродвигатель 3,5 кВт от 12-вольтовых аккумуляторов? Например, с помощью трех бытовых инверторов 12-220 с чистой синусоидой.

    1. Опытный электрик :

      Юрий, привет. Чисто теоретически это возможно, но на практике вы столкнетесь с тем, что при запуске асинхронный двигатель создает большой пусковой ток и вам придется брать соответствующий инвертор.Второй момент — полная фазировка (сдвиг частоты для трех инверторов под углом 120 ° относительно друг друга), чего нельзя сделать, если это не предусмотрено производителем, поэтому нельзя добиться ручной синхронизации на частоте 50 Гц ( 50 раз в секунду). Плюс мощность двигателя довольно большая. Исходя из этого, я бы порекомендовал вам обратить внимание на комбинацию «аккумулятор-инвертор-преобразователь частоты». Преобразователь частоты способен подавать необходимые синхронизированные фазы напряжения, которое будет на входе.Практически все моторы можно включать на 220 и 380 вольт. Поэтому, получив необходимое напряжение и получив необходимую схему подключения, можно осуществить плавный пуск с помощью преобразователя частоты, избегая больших пусковых токов.

      1. Юра :

        Немного не понял — у меня инверторы на 1,5 кВт, то есть советуете ли вы использовать батарею аккумуляторов и один такой инвертор в связке с преобразователем частоты? и как он вытащит ???
        Или посоветуете использовать инвертор соответствующей мощности — 3.5 кВт? то необходимость в преобразователе частоты непонятна …

        1. Опытный электрик :

          Постараюсь объяснить.
          1. Изучите информацию о трехфазном токе … Три фазы — это не три напряжения при 220 вольт. Каждая фаза имеет частоту 50 герц, то есть 100 раз в секунду она меняет свое значение с плюса на минус. Для того, чтобы асинхронный двигатель заработал, ему необходимо круговое поле. В этом поле три фазы сдвинуты друг относительно друга на угол 120 °.Другими словами, фаза A достигает своего пика, через 1/3 времени этот пик достигает фазы B, через 2/3 времени фазы C процесс повторяется. Если смена пиков синусоиды хаотична, мотор не начнет вращаться, а будет просто гудеть. Следовательно, либо ваши инверторы должны быть фазированными, либо они не имеют смысла.
          2. Изучите информацию об асинхронных двигателях. Пусковой ток в 3-8 раз превышает номинальный. Поэтому если брать примерное значение 5 ампер, то при пуске мотора ток может быть 15-40 ампер или 3.3-8,8 кВт на фазу. Инвертор меньшей мощности сразу сгорит, а значит, нужно брать инвертор на максимальную мощность, даже если он проработает всего полсекунды или даже меньше, а это будет дорогое удовольствие.
          3. Изучите информацию о преобразователе частоты. Преобразователь частоты может обеспечить как плавный пуск, так и преобразование одной фазы в три. Плавный запуск позволит избежать больших пусковых токов (и покупки сверхмощного инвертора), а преобразование одной фазы в три позволит избежать дорогостоящей процедуры фазирования инверторов (если они изначально не адаптированы к этому, то вы сами точно не сможет этого сделать и придется искать хорошего электронщика).

          Советую брать мощный инвертор в связке с преобразователем частоты, если вам действительно нужно получить полную мощность от вашего двигателя.

  10. Валерий :

    Здравствуйте. Подскажите, пожалуйста, можно ли использовать этот мотор (импортный) для подключения к нашей сети 220В для деревообрабатывающего станка?
    На заводской табличке 4 варианта:
    — 230, треугольник, 1,5кВт, 2820 / мин., 5,7А, 81,3%
    — 400, звездочка, 1.5 кВт, 2800 / мин., 3,3 A, 81,3%
    — 265, треугольник, 1,74 кВт, 3380 / мин, 5,7 A, 84%
    — 460, evezda, 1,74 кВт, 3380 / мин, 3,3 A, 84%
    Оценка таким образом, этот двигатель очень хорошо подходит для do.o. автомат (по 1-му варианту). Наверное в коробке 6 контактов? Хорошая (относительно) текучесть. Смущает 230В — как он себя поведет в сети 220В? Почему максимальный ток по варианту 1, 3?
    Можно ли использовать этот мотор для станка д / о и как подключить к сети 220В?

  11. Валерий :

    Большое спасибо за все.Для терпения, повторное разъяснение всего, что многократно повторялось в других комментариях. Я все это перечитывал, местами не раз. Я много читаю инф. на разных сайтах за перевод 3 ф.двиг. к сети 220в. (с того момента, когда помощники подожгли электродвигатель самодельной машинки). Но я узнал от вас гораздо больше, таких функций, о которых я не знал и не встречал раньше. Сегодня после поисковика я зашел на этот сайт, перечитал почти все комментарии и был поражен полезностью и доступностью информации.
    По поводу моих вопросов. Вот в чем дело. На моей старой машине (бывшей, отцовской) есть такая же старая электронная почта. дв. Но он потерял мощность, «бьет» от корпуса (видимо, закорачивает перегоревшая обмотка). Бирки нет, треугольник классический, без шипов — видимо когда-то переделывали. Мне предлагают новую емкость, вроде польскую, с данными на бирке опциями. Кстати, для каждого варианта есть 50 Гц. И, отправив комментарий, внимательно просмотрел все 4 приведенных варианта и понял, почему ток в треугольнике выше.
    возьму, включу 220 в 1 вариант в треугольник через конденсаторы с мощностью 70%. Передаточное число можно увеличить, но мощность машины может быть выше.
    Да, кроме классического треугольника и звезды есть и другие варианты подключения 380 к сети 220. А есть (вы знаете) более простой способ определить начало обмоток с помощью батарейки и стрелочника.

  12. Валерий :

    Сегодня получил фото с шильдиком на емайл.дв. Ты прав. Есть 3 и 4 варианта 60 Гц. И теперь понятно, что иначе и быть не могло и что при 50 Гц — максимум 3000 оборотов в минуту. Другой вопрос. Насколько надежно и долго при одном включении электролитические конденсаторы работают через мощный диод как рабочий. конд.?

  13. Александр :

    Здравствуйте, подскажите, как прикрепить файл с фото, чтобы задать вопрос?

  14. Сергей :

    Добрый день.
    Немного истории. На водогрейном котле (крупном промышленном — для отопления предприятия) использую два циркуляционных насоса VILO с немецким электродвигателем 7,5 кВт каждый. Получив оба насоса, мы соединили их «треугольником». Работали неделю (все нормально). Пришли наладчики автоматики котла и сказали, что схему подключения обоих двигателей нужно переключить на «звезду». Мы работали неделю, и один за другим оба двигателя сгорели. Скажите, может ли переподключение с треугольника на звезду стать причиной сгоревших немецких двигателей? Спасибо.

  15. Александр :

    Здравствуйте, опытный электрик) Подскажите свое мнение о такой схеме подключения моторов, наткнулся на один форум

    «Неполная встречная звезда, с рабочими конденсаторами в двух обмотках»
    Ссылка на схему и схему, описывающую принцип работы такой схемы — https://1drv.ms/f/s!AsqtKLfAMo-VgzgHOledCBOrSua9

    Говорят, что такая схема подключения двигателя была разработана для двухфазной сети и лучшие результаты показывает при подключении к 2 фазам.Но в однофазной сети 220В он используется потому, что имеет лучшую производительность, чем классические: звезда и треугольник.
    Что можете сказать об этом варианте подключения трехфазного двигателя к сети 220в. Имеет право на жизнь? Хочу попробовать на самодельной газонокосилке.

    1. Опытный электрик :

      Александр, привет. Что я могу сказать? Во-первых, грамотность как изложения материала, так и грамотность языка статьи невероятно высоки.Во-вторых, об этом методе почему-то мало кто знает. В-третьих, если бы этот метод был эффективным и лучшим, он давно бы вошел в учебную литературу. В-четвертых, нигде нет теоретического расчета этого метода. В-пятых, есть пропорции, но нет формул для расчета емкости (то есть условно за точку отсчета можно взять 1000 мкФ или 0,1 мкФ — главное соблюдать пропорции ???). В-шестых, тему писал не электрик.В-седьмых, мне лично не влезает в голову первая обмотка, которая включается в обратном направлении и через конденсатор — все это говорит о том, что кто-то что-то придумал и хочет выдать что-то за изобретение, которое якобы лучше работает для двухфазных сетей. . Теоретически это можно допустить, но теоретических данных для размышлений мало. Теоретически, если так или иначе получается одна или другая полуволна от той или иной фазы, но тогда схема должна иметь другую форму (при использовании двух фаз это определенно звезда, но с использованием нейтрального провода и двух конденсаторов на него или от В общем, поэкспериментируйте, а потом отпишитесь — мне интересно, что будет, но лично я не хочу проводить такие эксперименты, или если мне дадут двигатель и скажут, что его можно убить, то Буду экспериментировать.По поводу выбора конденсаторов я уже писал в комментариях и в ссылках на статью «Конденсатор для трехфазного двигателя» на этом сайте и на сайте «потомственного мастера» — не надо бездумно ставить конденсатор по формуле. тока в конкретном цикле работы.

      1. Александр :

        Спасибо за ответ.
        На форуме, где я столкнулся с этим, несколько человек опробовали эту схему на своих двигателях (в том числе и человек, который ее разместил), они говорят, что очень довольны результатами ее работы.По поводу компетенции человека, который это предложил, как я понимаю, он вроде бы в теме (и модератор того форума), схема не его, так как сказал сам нашел в каких-то старых книжках по движкам . Но зато у меня есть движок, подходящий для экспериментов, попробую.
        По поводу формул, я просто не все записи из той ветки привел, там много чего написано, из главного добавил, если интересно, посмотрите ту же ссылку.

        1. Опытный электрик :

          Александр, поэкспериментируйте и напишите результат.Могу сказать одно — я любознательный товарищ, но никогда не слышал о такой схеме ни из учебников, ни из уст многих авторитетных старших товарищей. Мой сосед, еще более пытливый электронщик с пристрастием к электричеству, тоже не слышал. На днях попробую его спросить.
          Компетентность настолько … сомнительна, когда дело касается Интернета. Никогда не знаешь, кто сидит по ту сторону экрана и кто он такой, висит ли у него на стене диплом, о котором он говорит, и знает ли он какие-либо предметы, указанные в дипломе.Я вовсе не пытаюсь очаровать человека, я просто пытаюсь сказать, что не всегда нужно верить на сто процентов человеку по ту сторону экрана. В случае чего нельзя прижимать его к стене за плохой совет, а это порождает полную безответственность.
          Есть еще один «черный» момент — форумы часто создаются для того, чтобы приносить доход и все средства для этого хороши, как вариант, предлагать какую-то хитрую тему, продвигать ее, пусть даже не совсем рабочую, но уникальную, то есть только на его сайте.И «несколько» человек, это может быть просто модератор, под несколькими никами разговаривать сам с собой для продвижения темы. Опять же, я не хвалю этого конкретного человека, но я уже встречал такой черный пиар-форум.
          А теперь коснемся старых книг и Советского Союза. В СССР дураков было мало (среди тех, кто занимался разработкой) и если бы схема зарекомендовала себя, ее бы обязательно включили в изученные мной учебники, хотя бы для справки и для общего развития, что такой вариант есть. возможный.Да и наши учителя дураками не были, и по электромобилям дядя вообще давал много интересной информации, выходящей за рамки учебной программы, но и про эту схему он не слышал.
          Заключение, я не считаю, что эта схема лучше (возможно, для двух фаз или лучше, но все же необходимо посмотреть на нее и нарисовать «правильную» схему, чтобы понять действие токов и их смещение), хотя допускаю что это работает. Таких вариантов очень много, когда кто-то что-то придумал, но это работает — как правило, человек сам не понимает, что он сделал, и не вникает в суть, а очень старается что-то модернизировать.
          Ну и еще один вывод: если бы эта схема была действительно лучше, то она была бы хотя бы известна, но я узнал об этом только от вас при всем моем неудержимом любопытстве.
          В общем жду ваших мнений и результатов, а потом вы посмотрите и я сам проведу эксперимент с соседом уже на практической и теоретической основе.

      2. Александр :

        Доброго времени суток всем. Теперь могу, как и обещал, рассказать об экспериментах при подключении своего двигателя AOL по схеме, найденной на одном форуме — так называемая
        «Неполная звезда, встречная» В общем, косилку я сделал сам и установил на нее двигатель .Конденсаторы я рассчитал по формулам, которые были приведены в описании схемы, которых там не было — купил на рынке, оказалось, что высоковольтные на 600В и выше найти не так-то просто. Собрал все по заданной схеме, но схема не простенькая! (для меня по сравнению с треугольником) все перепроверил. Оказалось, что двигатель с ножами быстро заводится только при добавлении еще 30мкФ к расчетным пусковым конденсаторам (с расчетными было немного жестковато).Полчаса выключил двигатель в мастерской на холостом ходу и смотрел прогрев — все хорошо, двигатель почти не прогревался. Двигатель на холостом ходу очень понравился, звук и визуал мотора вроде как у родственников 380В (проверял на работе от 380в) ушел косить уже на следующий день утром. В общем косил больше часа, высокая трава (чтобы дать нагрузку) — результат отличный, мотор прогрелся, но за руку держать вполне можно (учитывая, что на улице было +25,) А пару раз двигатель «глохнул» в высокой траве, но у него всего 0,4 кВт.Рабочие конденсаторы во второй цепи немного нагрелись (прибавили к расчетным 1,5 мкФ), остальные остались холодными. Потом еще два раза косил — двигатель работал «как часы», в целом результатом подключения двигателя доволен, но двигатель был бы чуть мощнее, (0,8 кВт) был бы вообще красивый ) Конденсаторы в итоге поставили так:
        Пусковые = 100мкФ на 300в.
        Рабочая 1 обмотка = 4,8 мкФ при 600в.
        Рабочие 2 обмотки = 9,5 мкФ при 600в.
        Это работает на моем двигателе. Интересно попробовать такое подключение на двигателе мощностью более 1,5-2 кВт.

    2. Александр :

      Здравствуйте. Вы правы) Сразу соединил с треугольником в мастерской, правда на нем не косил, а работу двигателя могу оценить только визуально, на слух и по своим ощущениям) так как измерять одни и те же токи на разных схем у меня ничего нет.Я далеко не серьезный электрик, могу в принципе что-то в кучу покрутить по готовой схеме с уже известными деталями, прозвонить и проверить вольтметром 220-380). В описании схемы было сказано, что ее преимущество в меньших потерях мощности двигателя и в режиме его работы, близком к номинальному. Скажу, что на треугольнике мне было легче тормозить вал на двигателе, чем на этой схеме. Да и он на ней вращался, я бы сказал быстрее. У меня работает на этом движке и мне понравилось, как работает сам движок, поэтому я не стал собирать и пихать по очереди две цепи в одну коробку и проверять, как она косит.А пока я засунул конденсаторы во временную коробку, чтобы посмотреть, как они будут работать (может, придется что-то еще добавить или убрать), а потом подумал, что все это будет красиво и компактно устроено с какой-то защитой. Интересно, где я наткнулся на эту схему, люди использовали ее для подключения маломощных моторов и никто не писал о подключении хотя бы 1,5 или 2 кВт. Для них, как я понимаю, нужно много (по сравнению с треугольником) конденсаторов, да еще и на высокое напряжение должно быть.Я был здесь и решил поспрашивать об этой схеме, так как я действительно нигде о ней не слышал и подумал, может быть, специалисты скажут с точки зрения теории и науки, должна она работать или нет.
      Могу точно сказать, что двигатель крутится и, как по мне, очень хорошо, но что там должно быть с токами, напряжениями и что должно отставать или опережать его по этой схеме и хотелось бы услышать от того, кто знает. Может, эта схема — просто жульничество? и ничем не отличается от того же треугольника (кроме лишних проводов и конденсаторов.Дома сейчас нет необходимости в мощных моторах пытаться соединить их через конденсаторы по этой схеме и посмотреть, как они будут работать. , поэтому на них двигатели мощностью около 2,5 кВт, соединенные треугольником, заглушаются, если дают немного больше нагрузки, как если бы у них было не более киловатта. Сейчас просто все это есть в магазине, в котором их 380. Еще пару раз покослю, и если все «потроха» правильно устрою свою чудо-косилку и выложу фото, может пригодится кому-то.

      Владимир :

      Добрый вечер, подскажите, как изменить направление вращения вала синхронного электродвигателя 380В, подключенного со звезды на треугольник.

Электродвигатели бывают нескольких типов — трехфазные и однофазные. Основное отличие трехфазных электродвигателей от однофазных в том, что они более эффективны. Если у вас дома есть розетка на 380 В, то лучше всего покупать технику с трехфазным электродвигателем.

Использование этого типа двигателя позволит вам сэкономить на электроэнергии и увеличить мощность. Также не нужно использовать различные устройства для запуска двигателя, так как благодаря напряжению 380 В вращающееся магнитное поле появляется сразу после подключения к электросети.

Схемы подключения электродвигателя на 380 В

Если у вас нет сети на 380 В, то вы все равно можете подключить трехфазный электродвигатель к стандартной электросети 220 В. Для этого потребуются конденсаторы, которые нужно подключить по этой схеме.Но при подключении к обычной электросети вы заметите пропадание мощности. Вы можете прочитать об этом.

Электродвигатели на 380 В устроены таким образом, что в статоре у них есть три обмотки, которые соединены в форме треугольника или звезды, а к их вершинам подключены три разные фазы.

Помните, что при соединении звездой ваш двигатель не будет работать на полную мощность, но он будет запускаться плавно. При использовании схемы треугольника вы получите увеличение мощности по сравнению со звездой в полтора раза, но при таком подключении увеличивается шанс повредить обмотку при запуске.

Перед использованием электродвигателя необходимо предварительно ознакомиться с его характеристиками. Всю необходимую информацию можно найти в техническом паспорте и на паспортной табличке двигателя. Особое внимание стоит уделить трехфазным двигателям западноевропейского образца, так как они рассчитаны на работу от напряжения 400 или 690 вольт. Для того чтобы подключить такой электродвигатель к бытовым сетям, необходимо использовать только соединение треугольного типа.

Если вы хотите сделать схему треугольником, то вам нужно соединить обмотки последовательно.Необходимо соединить конец одной обмотки с началом следующей, а затем к трем точкам подключения необходимо подключить три фазы сети.
Соединение звезда-треугольник.

Благодаря этой схеме мы можем получить максимальную мощность, но не сможем изменить направление вращения. Для работы схемы потребуется три стартера. На первом (К1) с одной стороны подключается питание, а с другой стороны подключаются концы обмоток. Их начало связано с K2 и K3.От пускателя К2 начало обмоток подключают к другим фазам по типу соединения треугольником. При включении K3 происходит короткое замыкание всех трех фаз и, как следствие, электродвигатель работает по схеме звезды.

Важно, чтобы K2 и K3 не запускались одновременно, так как это может привести к аварийному отключению. Эта схема работает следующим образом. При запуске К1 реле временно включает К3 и двигатель запускается по схеме звезды. После запуска двигателя К3 отключается, а К2 запускается.И электродвигатель начинает работать по схеме треугольника. Прекращение работы происходит отключением К1.

Рассмотрим, как трехфазный двигатель подключается к однофазной сети, и дадим рекомендации по управлению агрегатом. Чаще всего люди хотят изменить скорость или направление вращения. Как это сделать? Как подключить трехфазный мотор на 230 вольт ранее описывали туманно, теперь займемся деталями.

Стандартная схема подключения трехфазного двигателя к однофазной сети

Процесс подключения трехфазного двигателя на 230 вольт несложный.Обычно ветвь несет синусоиду, разница составляет 120 градусов. Формируется равномерный фазовый сдвиг, обеспечивающий плавное вращение электромагнитного поля статора. Эффективное значение каждой волны 230 вольт. Это позволит включить трехфазный двигатель в бытовую розетку. Цирковой трюк: из одной получить три синусоиды. Сдвиг фазы составляет 120 градусов.

На практике это можно сделать с помощью специальных фазовращателей. Не те, которые используются в высокочастотных трактах волноводов, а специальные фильтры, образованные пассивными, реже активными элементами.Любители заморочек предпочитают использовать заправочный конденсатор. Если обмотки двигателя соединить треугольником, образуя единое кольцо, мы получим сдвиги фаз 45 и 90 градусов, по крайней мере, достаточные для нестационарной работы вала:

Схема подключения трехфазного двигателя путем переключения обмоток с дельта

  1. Фаза розетки подводится к одной обмотке. Провода улавливают разность потенциалов.
  2. Вторая обмотка питается от конденсатора. Формируется фазовый сдвиг на 90 градусов относительно первого.
  3. На третьем из-за приложенных напряжений формируется слегка синусоидальное колебание со смещением еще на 90 градусов.

В целом третья обмотка отклонена на 180 градусов от первой по фазе. Как показывает практика, раскладки хватает для нормальной работы. Конечно, двигатель иногда «заедает», сильно греется, падает мощность, хромает КПД. Согласны пользователей, когда исключено подключение асинхронного двигателя к трехфазной сети.

Из чисто технических нюансов добавим: схема правильной разводки проводов изображена на корпусе устройства.Украшает чаще внутреннюю сторону кожухом, скрывающим блок, или нарисованным рядом на шильдике. Руководствуясь схемой, разберемся, как подключить электродвигатель с помощью 6 проводов (по паре на каждую обмотку). Когда сеть трехфазная (часто называемая 380 вольт), обмотки соединяются в звезду. Образуется единая точка, общая для катушек, в которую включается нейтраль (условная цепь электрического нуля). Фазы подаются на другие концы. Получается три — по количеству обмоток.

Как обращаться с треугольником для подключения трехфазного мотора на 230 вольт, понятно. Дополнительно представляем рисунок, изображающий:

  • Схема электрического соединения обмоток.
  • Рабочий конденсатор, служащий для создания правильного распределения фаз.
  • Пусковой конденсатор, облегчающий вращение вала на начальной скорости. Впоследствии он отключается от схемы кнопкой, разряженной шунтирующим резистором (для безопасности и готовности к новому циклу пуска).

Подключение трехфазного электродвигателя 230 В, треугольник

На рисунке показано: обмотка A находится под напряжением 230 В. C снабжен фазовым сдвигом 90 градусов. Из-за разности потенциалов концы обмотки B генерируют напряжение, смещенное на 90 градусов. Очертания далеки от синусоиды, знакомой школьным физикам. Пусковой конденсатор и шунтирующий резистор для простоты опущены. Мы полагаем, что расположение очевидно из вышеизложенного. Подобный прием как минимум позволит добиться от двигателя нормальной работы… Ключом пусковой конденсатор замыкается, выполняя пуск, отключается от фазы и разряжается шунтом.

Пора сказать: указанная на чертеже емкость 100 мкФ практически выбрана с учетом:

  1. Частоты вращения вала.
  2. Мощность двигателя.
  3. Нагрузки на ротор.

Подбирать конденсатор нужно экспериментально. Согласно нашему рисунку, напряжение на обмотках B и C будет одинаковым.Напоминание: тестер показывает фактическое значение. Фазы напряжения будут разными, форма волны обмотки B несинусоидальная. Эффективное значение показывает: одинаковая мощность передается на плечи. Тем более менее стабильная работа установки обеспечивается. Двигатель меньше нагревается, оптимизируется КПД двигателя … У каждой обмотки формируется индуктивное сопротивление, что также накладывает свой отпечаток на фазовый сдвиг между напряжением и током. Вот почему так важно найти правильное значение емкости.Могут быть достигнуты идеальные условия работы двигателя.

Заставить двигатель вращаться в обратном направлении

Трехфазное напряжение 380 вольт

При подключении к трем фазам изменение направления вращения вала обеспечивается правильным переключением сигнала. Применяются специальные контакторы (три штуки). По 1 на каждую фазу. В нашем случае коммутации подлежит только одна цепь. Причем (руководствуясь утверждениями гуру) достаточно поменять местами любые два провода.Будь то питание, место подключения конденсатора. Давайте проверим правило, прежде чем напутствовать читателям. Результаты показаны на втором рисунке, на котором схематично показаны диаграммы, показывающие распределение фаз указанного случая.

При составлении схем предполагалось: обмотка С последовательно соединена с конденсатором, который дает положительное увеличение напряжения по фазе. Согласно векторной диаграмме, для сохранения баланса обмотка С должна иметь отрицательный знак относительно основного напряжения.С другой стороны, конденсатор, катушка B подключены параллельно. Одна ветвь обеспечивает положительное увеличение напряжения (конденсатор), другая — ток. Подобно параллельному колебательному контуру, токи ветвей текут практически в противоположном направлении. Учитывая вышесказанное, мы приняли закон изменения синусоиды в противофазе относительно обмотки C.

На диаграммах видно: максимумы, согласно схеме, обходят обмотки против часовой стрелки. Предыдущий обзор показал похожий контекст: вращение идет в другом направлении.Получается, что при смене полярности питания вал вращается в обратном направлении. Распределение магнитных полей рисовать не будем, повторяться считаем излишним.

Точнее такие штуки позволят рассчитывать специальные компьютерные программы … Объяснение давалось на пальцах. Оказалось, что практикующие правы: при изменении полярности источника питания направление движения вала меняется на противоположное. Наверняка подобное утверждение уместно, когда конденсатор включается ветвью другой обмотки.Тем, кто жаждет подробных графиков, мы рекомендуем изучить специализированные программные пакеты, такие как бесплатный Electronics Workbench. В приложении проставьте нужное количество контрольных точек, отслеживайте законы изменения токов, напряжений. Те, кто любит поиздеваться над своим мозгом, смогут просматривать спектр сигналов.

Постарайтесь правильно настроить индуктивность обмотки. Конечно, вводится нагрузка, мешающая запуску. С такими программами сложно учесть убытки.Практики рекомендуют не сосредотачиваться на указанной точилке, выбирая номиналы конденсаторов (эмпирически) эмпирически. Таким образом, точная схема подключения трехфазного двигателя определяется конструкцией, предназначенной для предполагаемой цели. Допустим, токарный станок будет отличаться от хлебопечки развивающими нагрузками.

Пусковой конденсатор трехфазного двигателя

Чаще подключение трехфазного двигателя к однофазной сети необходимо производить с участием пускового конденсатора.Особенно это касается мощных моделей, моторы при старте испытывают значительную нагрузку. В этом случае увеличивается собственное реактивное сопротивление, которое необходимо компенсировать с помощью конденсаторов. Проще снова подобрать экспериментальным путем. Необходимо собрать стенд, на котором можно «горячо» включать, исключая из схемы отдельные емкости.

Старайтесь не помогать двигателю запускаться вручную, как демонстрируют «опытные» техники. Просто найдите номинал аккумулятора, при котором вал энергично вращается, при раскручивании начните по одному исключать конденсаторы из схемы.Пока есть такой набор, ниже которого двигатель не вращается. Выбранные элементы образуют стартовую емкость. И за правильностью своего выбора нужно следить с помощью тестера: напряжение в плечах фазосдвинутых обмоток (в нашем случае С и В) должно быть одинаковым. Это означает, что доставляется примерно равная мощность.

Двигатель трехфазный с пусковым конденсатором

Что касается оценок и оценок, то емкость аккумулятора растет с увеличением мощности, скорости.И если мы говорим о нагрузке, она имеет большое влияние на старте. При вращении вала в большинстве случаев небольшие препятствия преодолеваются по инерции. Чем массивнее вал, тем выше шанс, что двигатель не «заметит» проблему.

Обратите внимание, что подключение асинхронного двигателя обычно осуществляется через автоматический выключатель. Устройство, которое останавливает вращение, когда ток превышает определенное значение. Это не только защищает вилки локальной сети от перегорания, но и спасает обмотки двигателя при заклинивании вала.В этом случае ток резко возрастет и работа устройства прекратится. Автоматический выключатель также полезен при выборе требуемой номинальной мощности. Очевидцы утверждают, что если трехфазный двигатель подключить к однофазной сети через слишком слабые конденсаторы, то нагрузка резко возрастет. В случае с мощным мотором это очень важно, ведь даже в штатном режиме потребление превышает номинальное в 3-4 раза.

И несколько слов о том, как заранее оценить пусковой ток.Допустим, вам необходимо подключить асинхронный двигатель 230 мощностью 4 кВт. Но это для трех этапов. В случае стандартной разводки ток протекает по каждой из них отдельно. Для нас все это складывается. Поэтому смело делим мощность на сетевое напряжение и получаем 18 А. Понятно, что без нагрузки такой ток вряд ли будет потребляться, но для стабильной работы мотору на полную мощность нужен автоматический выключатель огромной мощности. Что касается простого тестового прогона, вполне подойдет устройство на 16 ампер.И даже есть шанс, что старт пройдет без происшествий.

Надеемся, читатели теперь знают, как подключить трехфазный двигатель к домашней сети на 230 вольт. Осталось добавить к этому, что возможности типовой квартиры не превышают значения около 5 кВт по отдаче мощности потребителю. Это значит, что описанный выше двигатель в домашних условиях включать просто опасно. Учтите, что даже болгарки редко бывают мощнее 2 кВт. При этом двигатель оптимизирован для работы в однофазной сети 220 вольт.Проще говоря, слишком мощные устройства не только заставят мигать лампочку, но, скорее всего, спровоцируют другие нештатные ситуации. V в лучшем случае выбьет вилки, в худшем — произойдет возгорание проводки.

На этом мы прощаемся и хотим отметить: знание теории иногда полезно для практиков. Особенно если речь идет о мощных технологиях, способных нанести значительный вред.

СПОСОБ ПОДКЛЮЧЕНИЯ ТРЕХФАЗНОГО ДВИГАТЕЛЯ К ОДНОФАЗНОЙ СЕТИ ЧЕРЕЗ РЕЗОНАНСНЫЙ ЭФФЕКТ

  • Жарилкасин Искаков Алматинский университет энергетики и связи, Институт механики и машиноведения, Алматы
  • Владимир Коссов Алматинский университет энергетики и связи, Алматы

Абстрактные

В этой статье мы предлагаем метод подключения трехфазного двигателя с обмотками, соединенными звездой, и фазовращающим конденсатором в качестве третьего контакта, к однофазной сети с эффективным использованием электроэнергии за счет компенсации. реактивной мощности и за счет эффективного распределения напряжения перед колебательным контуром двигателя.Явление резонанса в колебательном контуре двигателя используется для компенсации реактивной мощности, то есть для увеличения коэффициента активной мощности до максимального значения. Конденсаторная батарея перед схемой используется для эффективного распределения напряжения на входе схемы двигателя с целью увеличения напряжения двигателя от сетевого значения 220 В до номинального значения трехфазного двигателя 380 В. Для экспериментальных исследований была создана специальная установка. Результаты экспериментальных исследований, теоретические расчеты электрической схемы установки, а также векторная диаграмма напряжений цепи двигателя показывают, что в случае, когда напряжения на двигателе составляют U = 380 В (U L = U C5 = 325.4 B) и U = 392 B (U L = U C5 = 375,6 B) наиболее точно соответствует резонансному состоянию колебательного контура двигателя. Предлагаемый метод внедрен в учебный процесс в качестве лабораторных работ для студентов технических специальностей Алматинского университета энергетики и связи и может быть использован конструкторами, изобретателями, учеными и специалистами, интересующимися аналогичными вопросами, для создания устройств, соединяющих три -фазный двигатель, подключенный звездой к однофазной сети.

Раздел

Естественные науки и ИКТ

Авторские права (c) 2019 Авторы

Информация об авторских правах

  1. Авторы сохраняют авторские права и предоставляют журналу право первой публикации с работой, одновременно лицензированной по лицензии Creative Commons Attribution License (Creative Commons Attribution License 3.0 — CC BY 3.0), что позволяет другим делиться работой с признанием ее авторства и первоначальной публикацией в этом журнале.
  2. Авторы могут заключать отдельные дополнительные договорные соглашения о неисключительном распространении опубликованной в журнале версии работы (например, размещать ее в институциональном репозитории или публиковать в книге) с подтверждением ее первоначальной публикации. в этом журнале.
  3. Авторам разрешается и поощряется размещение их работ в Интернете (например,g., в институциональных репозиториях или на их веб-сайтах) до и во время процесса подачи, поскольку это может привести к продуктивному обмену, а также более раннему и большему цитированию опубликованных работ (см. Эффект открытого доступа).

[email protected], www.iseic.cz, ojs.journals.cz

Разница между однофазным и трехфазным двигателями со сравнительной таблицей

Системы электроснабжения в основном подразделяются на два типа: однофазные и трехфазные.Однофазный используется там, где требуется меньшая мощность и для работы с небольшими нагрузками. Эти три фазы используются в крупных отраслях промышленности, на заводах и в производственных цехах, где требуется большое количество энергии.

Одно из основных различий между однофазной и трехфазной состоит в том, что одна фаза состоит из одного проводника и одного нейтрального провода, тогда как трехфазное питание использует три проводника и один нейтральный провод для замыкания цепи. Некоторые другие различия между ними объясняются ниже в сравнительной таблице.

Сравнительная таблица: однофазный, V / S, трехфазный

Основа для сравнения Однофазный Трехфазный
Определение Электропитание по одному проводнику. Питание по трем проводам.
Форма волны
Количество проводов. Требуется два провода для завершения цепи. Требуется четыре провода для завершения цепи.
Напряжение Переносить 230 В Переносить 415 В
Название фазы Расщепленная фаза Без другого названия
Возможность передачи мощности Минимум Максимум
Сеть Простой Сложный
Сбой питания Происходит Не происходит
Убыток Максимум Минимум
Подключение к источнику питания
КПД Меньше Высокая
Экономичный Меньше Больше
Использует Для бытовой техники. Для крупных производств и для работы с большими нагрузками.

Определение однофазного

Для однофазной схемы требуется два провода для завершения цепи, т. Е. Провод и нейтраль. По проводнику проходит ток, а нейтраль — это обратный путь тока. Однофазный питает напряжение до 230 вольт. В основном он используется для работы с мелкими бытовыми приборами, такими как вентилятор, охладитель, мясорубка, обогреватель и т. Д.

Определение трех фаз

Трехфазная система состоит из четырех проводов, трех проводов и одной нейтрали.Провода не совпадают по фазе и находятся на расстоянии 120º друг от друга. Трехфазная система также используется как однофазная система. При низкой нагрузке от трехфазного источника питания можно взять одну фазу и нейтраль.

Трехфазное питание непрерывно и никогда полностью не падает до нуля. В трехфазной системе питание может потребляться по схеме звезды или треугольника. Соединение звездой используется для передачи на большие расстояния, потому что оно имеет нейтраль для тока короткого замыкания.

Соединение в треугольник состоит из трех фазных проводов и без нейтрали.


Ключевые различия между однофазными и трехфазными

  1. При однофазном питании мощность протекает по одному проводнику, тогда как трехфазное питание состоит из трех проводов для питания.
  2. Для однофазного источника питания требуется два провода (одна фаза и одна нейтраль) для замыкания цепи. Три фазы требуют трех фазных проводов и одного нулевого провода для завершения цепи.
  3. Однофазный источник питания обеспечивает напряжение до 230 В, а трехфазный источник питания — до 415 В.
  4. Максимальная мощность передается через три фазы по сравнению с однофазным питанием.
  5. Однофазная двухпроводная сеть упрощает сеть, тогда как трехфазная сеть сложна, так как состоит из четырех проводов.
  6. Однофазная система имеет только один фазный провод, и если в сети происходит неисправность, то питание полностью прекращается.Но в трехфазной системе сеть имеет три фазы, и если неисправность происходит на одной из фаз, две другие будут непрерывно подавать питание.
  7. КПД однофазного источника питания меньше по сравнению с трехфазным питанием. Поскольку трехфазный источник питания требует меньшего количества проводников по сравнению с однофазным питанием для эквивалентной схемы.
  8. Однофазный источник питания требует большего обслуживания и становится более дорогостоящим по сравнению с трехфазным питанием.
  9. Однофазный источник питания в основном используется в доме и для работы с небольшими нагрузками.Трехфазное питание используется в крупных отраслях промышленности и для работы с большими нагрузками.

Соединение трех фаз звездой позволяет использовать два разных напряжения (т. Е. 230 В и 415 В). 230 В питается от однофазного и одного нейтрального провода, а трехфазный питается между любыми двумя фазами.

Amazon.com: Однофазный преобразователь в 3 фазы, MY-PS-7.5, лучше всего подходит для двигателя мощностью 5 л.с. (3,7 кВт), 15 А, 200–240 В, следует использовать только для одного двигателя на один DPS, вход / выход 200–240 В: Инструменты и товары для дома

Модель MY-PS-10 лучше всего подходит для 200-240 В 7.Двигатель 5 л.с. (5,5 кВт, 23 А)

1. Модель MY-PS-7.5 лучше всего подходит для двигателя мощностью 5 л.с. (3,7 кВт, 15 ампер)

2. Его следует использовать только для одного DPS на один двигатель. Один DPS нельзя использовать на нескольких двигателях.

3.Входное / выходное напряжение нашего DPS составляет 200 ~ 240 В.

4. Наши DPS предназначены для использования в двигателях.

5. КПД составляет около 90 ~ 95%.

6. Напряжение двигателя должно быть 200 ~ 240 В. Если напряжение вашего двигателя составляет 380 В или 440 В, вы должны изменить провод двигателя на 200 ~ 240 В, чтобы подключить его к выходу нашего DPS.

7. Толщина проводов должна соответствовать току (в амперах) и мощности (л.с.).

8. Допускается только однофазный моторный тормоз. (Трехфазный моторный тормоз не работает на нашем ДПС)

9. Вы можете измерить 3 фазы на выходе DPS, когда ваш двигатель работает. Таким образом, обычно вы не можете измерить напряжение и ампер для ветвей «V» — «W», если ваш двигатель не работает.

10. Если ваш двигатель оснащен магнитным контактором, электронным переключателем или тормозом, провода управления должны быть подключены к позициям «U» и «W» выхода DPS.

Таким образом, если ваш двигатель не работает должным образом или двигатель вращается в обратном направлении, вы должны немедленно выключить питание и вы должны переключить (поменять местами) провода на выходе (U, V, W) нашего DPS. На самом деле, когда вы подключаете провода от выхода DPS к вашему двигателю, вы можете добиться успеха в первый раз, или во второй раз, или в третий раз.

Разница между однофазной и трехфазной системой питания

Однофазное электричество

Однофазная система является наиболее распространенной и в основном используется в домах, тогда как трехфазная система распространена в промышленных или коммерческих зданиях, где требуются большие нагрузки.

Однофазные системы используют электроэнергию переменного тока (AC), в которой напряжение и ток меняются по величине и направлению циклически, обычно от 50 до 60 раз в секунду.В Великобритании однофазное напряжение составляет 230 вольт.

В электротехнике однофазная электроэнергия относится к распределению с использованием системы, в которой все напряжения источника питания изменяются в унисон.

Проще говоря, однофазное электричество можно рассматривать как каноэ для одного человека. Лопатка входит в воду, чтобы передать мощность, а затем покидает воду, прежде чем вторая лопасть снова войдет в воду, чтобы передать больше мощности, что приведет к изменению мощности.

Время от времени будет нулевая выходная мощность, а в цикле будет два пиковых выхода мощности, см. Диаграмму ниже.

Рис. 9: График однофазной мощности

Однофазное распределение используется, когда нагрузки в основном освещают и обогревают, с небольшим количеством крупных электродвигателей. Однофазный источник питания, подключенный к электродвигателю переменного тока, не создает вращающегося магнитного поля; Однофазные двигатели нуждаются в дополнительных цепях для запуска, и такие двигатели редко встречаются с номинальной мощностью более 10 или 20 кВт.

Специальные однофазные тяговые электрические сети могут работать на частоте 16,67 Гц или других частотах для питания электрических железных дорог.

Трехфазное электричество

Проще говоря, трехфазное электричество можно рассматривать как три однофазных источника электроэнергии, которые подают свою пиковую мощность на расстоянии 120 ° друг от друга.

В качестве аналогии рассмотрим каноэ с тремя каноэ, гребущими на каноэ поочередно. В отличие от одного каноиста, всегда есть выходная мощность и никогда не бывает нулевой выходной мощности, что делает этот источник питания более подходящим для промышленных двигателей и оборудования.

Рисунок 10: График трехфазной мощности

Преобразователь фазы

— Преобразование 1 фазы в 3 фазы

Вы ищете способы преобразования трехфазной энергии в однофазную? Есть несколько способов сделать это.Сначала вам нужно принять во внимание ваши текущие потребности в балансе. Если вы собираетесь использовать одну фазу в работе чувствительных машин, вам нужно искать более точные системы фазового преобразования. Есть другие, которые связаны с игрой с соединительными линиями, а некоторые потребуют от вас покупки чувствительного трансформатора.

Некоторые из методов, которые вы можете применить, включают следующие:

Используйте одну из фаз системы и нейтральный провод

Вы можете игнорировать две фазы в трехфазной линии питания и вместо этого использовать нейтральный провод с одной фазой.Это простой метод, который может привести к получению одной фазы из трехфазной системы, но он менее точен. Вы можете попробовать это, если ваши потребности в питании не слишком чувствительны к балансировке тока.

Преобразуйте трехфазное соединение переменного тока в постоянный, а затем в однофазное

Вы можете использовать электронный выпрямитель для преобразования источника питания в систему постоянного тока. Из системы постоянного тока вы можете затем преобразовать ее обратно в соединение с однофазной линией переменного тока. Это простой метод, при котором вам понадобится только выпрямитель, и вы можете преобразовать источник питания в желаемую фазу.

Используйте однофазный трансформатор

Если у вас есть однофазный трансформатор, вы можете легко преобразовать трехфазное соединение в однофазное соединение. Это простой процесс, который вы легко можете достичь, если купите правильный трансформатор. Он идеально подходит для подключений мощностью менее 5 кВА. Если вы намереваетесь преобразовать мощность более 5 кВА, вам может потребоваться поискать другой метод преобразования.

Трансформаторы с открытым треугольником

Если вы намереваетесь преобразовать более 5 кВА в одну фазу, вам понадобится более мощный трансформатор для этой работы. Применение трансформатора с открытым треугольником работает очень хорошо. Он прочен, чтобы вы могли легко выполнить преобразование. Всегда проверяйте свои требования к нагрузке, прежде чем вы решите применить данный метод в фазовых преобразованиях.

Скотт Т Трансформеры

Это еще один трансформатор, который можно использовать для изменения фазы с трехфазного на однофазное соединение.Подключение предполагает использование тизерного трансформатора и главного трансформатора, которые работают согласованно для достижения фазового преобразования. Достигнутый ток более сбалансирован, что может хорошо работать, если вы используете машины, которым требуется хорошо сбалансированный ток.

Трансформаторы Le-Blanc

Этот трансформатор позволяет преобразовать три фазы с более чем 5 кВА и 400 В в одну фазу. С помощью этого трансформатора вы можете добиться точных преобразований, которые обеспечат надежный ток для работы чувствительных машин.

Вы все еще задаетесь вопросом, как преобразовать трехфазную мощность в однофазную? Выше приведены несколько простых методов, которые можно применить для преобразования. Различные методы позволяют достичь различных уровней текущего баланса, поэтому вам необходимо проверить свои требования к нагрузке, прежде чем вы выберете тот или иной метод.

Что произойдет, если вы неправильно подключите трехфазный двигатель?

Если одна фаза изменила полярность, тогда распределение магнитного поля внутри обмотки двигателя станет неравномерным, и выходной крутящий момент будет «пульсирующим».Обмотки 3 фазного двигателя не в одном направлении. Например, 3 фазы 60 Гц 1770 об / мин двигатель , поэтому 4-полюсный в трехфазном всего 12 групп магнитных проводов катушки .

Щелкните, чтобы увидеть полный ответ

Тогда можно неправильно подключить трехфазный двигатель?

Если фазный двигатель 3, вращается в неправильном направлении , вы можете поменять местами любые два вывода, чтобы изменить направление в нужном направлении. Один из способов проверить направление двигателя состоит в том, чтобы угадать на , как подключить провода, затем запустить двигатель и отметить направление, в котором он вращается. Если вы, , ошиблись , вы, , отключаете два провода и меняете местами провода .

Кроме того, что произойдет, если вы неправильно подключите фазу и нейтраль? Если вы, , поменяли местами провода под напряжением и нулевой провод , то даже при выключенном состоянии все провода и нагрузка внутри прибора находятся под напряжением, поэтому намного легче получить электрошок. Если подключен правильно, то кожух винта будет на стороне , нейтральной, , так что безопасный , если вы случайно прикоснетесь к нему.

Соответственно, что было бы, если бы мотор вращался неправильно?

Что произойдет, если трехфазный асинхронный двигатель вращается в неправильном направлении ? Если это направление вращения поменять местами, это просто будет не служить цели.Он не будет перекачивать воду , если используется в качестве насоса, точно так же он не будет служить цели вентилятора , если он вращается в противоположном направлении .

Добавить комментарий

Ваш адрес email не будет опубликован.