Принцип работы дроссель: Для чено нужен дроссель для люминесцентных ламп, поговорим подробно

Содержание

Гидродроссель с обратным клапаном

гидродроссель ДК

Тип: гидродроссель с обратным клапаном.

Гидродроссели с обратным клапаном ДК предназначены для регулирования скорости перемещения рабочих органов  путем изменения величины потока рабочей жидкости.

Гидродроссели обеспечивают дросселирование рабочей жидкости в одном направлении и свободный проход – в обратном.

Структура условного обозначения  гидродросселя ДК:

Гидродроссель ДК-С 20 УХЛ4.

ДК — Гидродроссель с обратным клапаном;

Исполнение по присоединению:

без буквы — резьбовое, С –стыковое;

Климатическое исполнение и категория размещения:

УХЛ4 — для районов с умеренным и холодным климатом, 04 — для районов с тропическим климатом.

Основные технические данные гидродросселей ДК

Основные технические данные гидродросселей  ДК при работе на минеральном масле вязкостью 30-35 мм

2/с (сСТ).

Вид управления: ручной.

Условный проход: 12, 20, 32 мм.

Гидродроссели работают на чистых минеральных маслах кинематической вязкостью от 10 до 250 мм2/с (сСт)  при температуре масла от 10 до 50 оС и при температуре окружающей среды от 1 до 55 оС.

Параметр ДК -*12 ДК   -*20 ДК-*32
Условный проход, мм 12 20 32
Давление на входе, Мпа (кгс/см2) номинальное 32 (320)
Давление на входе, Мпа (кгс/см2) максимальное 35 (350)
Давление на входе, Мпа (кгс/см2) минимальное 0,6 (6) 0,7 (7)
Расход рабочей жидкости номинальный, л/мин: 25 63 160
Расход рабочей жидкости максимальный, л/мин: 40 100 250
Утечка из дренажа, см3/мин. , не более 180 180 240
Утечка из отвода, см3/мин., не более 500 500 800
Перепад давления через полностью открытый дроссель при номинальном расходе, Мпа (кгс/см2), не более 0,3 (3) 0,3 (3) 0,4 (4)
Масса, кг 5 6,8 12,7

Устройство и принцип работы гидродросселя ДК

Устройство гидродросселя с обратным клапаном ДК показано на чертеже ниже.

1. корпус; 2. клапан; 3. крышка; 4. лимб; 5. винт; 6. дроссель
на условном графическом изображении: А. подвод; В. отвод; L. дренаж
гидродроссель ДК состав

Изменение потока масла от минимального до максимального осуществляется с помощью дросселя 6 и связанного с ним лимба 4, поворачивающегося в пределах 300 оС.

При повороте лимба 4 по часовой стрелке расход масла увеличивается и наоборот, при повороте лимба против часовой стрелки — уменьшается; фиксация лимба осуществляется винтом 5. В обратном направлении масло свободно проходит через обратный клапан, минуя дроссельную щель.

Порядок установки гидродросселя ДК

При распаковке гидродросселя проверить его осмотр и проверьте комплектность поставки.

Для расконсервации гидродросселя с его наружных поверхностей снимите консервационную смазку и протрите их салфетками, смоченными в бензине; внутренние поверхности расконсервации не подвергается.


Гидродроссель ДК должен устанавливаться в удобном и легко доступном для обслуживания и регулирования на месте.

Гидродроссель ДК стыкового исполнения крепится четырьмя винтами к панельной или промежуточной плите с шероховатостью поверхности не более 1,6 мкм  и неплоскостностью не более 0,01 мм на длине 100 мм

Уплотнение стыковой плоскости осуществляется резиновыми кольцами.

Гидродроссель резьбового исполнения присоединяется к гидросистеме через штуцера соответствующих размеров.

Габаритные и присоединительные размеры гидродросселей ДК

А. подвод; В. отвод; L. дренаж А. подвод; В. отвод; L. дренаж
гидродроссель ДК стыкового исполнения размеры гидродросселя ДК резьбового исполнения размеры
Гидродроссель А1 А2 А3 А4 А5 В1 В2 Н Н1 Н2 Е М
ДК-12 150 45 32 18 48 50 75 106 М27х2
ДК-С12 45 36 18 50 150 94 80 28 60 80 11
ДК-20 175 60 26 24 38 50 90 120 М33х2
ДК-С20 75 34 24 51 170 99 85 40 70 100 17
ДК-32 210 90 32 30 73 65 120 155 М48х2
ДК-С32 84 49 30 72 200 118 112 56 90 122 21

Дроссель сварочного трансформатора

Дроссель сварочного трансформатора является устройством позволяющим регулировать величину сварочного тока. Устройство представляет собой стержневой


магнитопровод разомкнутого типа прямоугольной формы. В разомкнутой части имеется подвижный сегмент стержня, снабженный винтовым приводом. Движение подвижного сегмента обеспечивает обеспечение воздушного зазора в магнитопроводе дросселя. Величина зазора определяет индуктивное сопротивление дросселя.

Дроссель сварочного трансформатора включается последовательно во вторичную цепь. Поскольку образование сварочной дуги между электродом и свариваемым металлом требует определенного напряжения при выбранной силе тока, то дроссель, создавая смещение зависимости тока и напряжения, способствует возникновению дуги и стабильности ее горения.

Электрическая часть дросселя состоит из обмоток выполненных одним проводом на двух стержнях одного замкнутого магнитопровода. Один конец обмотки подсоединяется к проводу вторичной обмотки трансформатора, а второй идет на сварочный электрод. Прохождение переменного тока по обмотке дросселя вызывает магнитный поток в магнитопроводе направленный вдоль сердечника, имеющего воздушный зазор (разрыв стержня).

Воздушный зазор создает сопротивление магнитному потоку за счет рассеивания. Сопротивление возрастает с увеличением зазора. Магнитный поток индуцирует в обмотке ЭДС, которая направлена навстречу тока в обмотке, что создает дополнительное индуктивное сопротивление сварочному току. Таким образом, минимальный воздушный зазор будет соответствовать максимальному магнитному потоку и максимальному индуктивному сопротивлению, что даст на выходе минимальный ток сварки. Увеличение зазора повышает сварочный ток за счет уменьшения значения индуктивного сопротивления. Винтовой привод дросселя приводит в движение подвижный сегмент магнитопровода и позволяет вручную регулировать сварочный ток, что определяет скорость сварки.

Второе назначение дросселя определяется его высокой индуктивностью. Вольтамперная характеристика для процесса сварки должна носит падающий характер. Такое возможно при наличии высокого сопротивления цепи. Индуктивное сопротивление дросселя, как раз обеспечивает необходимую падающую характеристику сварочному устройству.

Индуктивности самого трансформатора недостаточно для обеспечения необходимых параметров падающей характеристики.

Дросселя используются не только в трансформаторах для ручной дуговой сварки, но и для полуавтоматической в среде углекислого газа.

Читайте также


Дроссель для ламп дневного света

ОСК Лампы.РФ осуществляет оптовую реализацию светотехнической продукции. В условиях постоянно растущего спроса на производительные энергосберегающие приборы предприятие делает упор на инновационные изделия, отвечающие современным требованиям.

Стандартное напряжение домашней сети для люминесцентных ламп не подходит. Использование специальных приборов, дросселей, позволяет преобразовать силу тока до номинального показателя. Это катушка с проводом, намотанным на специальный ферромагнитный сердечник. Индуктивные свойства дросселя дают возможность использовать его для запуска люминесцентных ламп.

Технические характеристики дросселей

Фото

Артикул

Наименование

Напряжение, В

Упаковка

503875. 58

L 7/9/11.851 230V/50HZ 85x41x28 VS — дроссель 2250/п

230V

10

12682600

L 26.826H 230V 0,325А 155x41x26 Schwabe Hellas — дроссель

230V

10

534142.12

L 4/6/8-265H 220V VS — дроссель

220V

10

13283100

L 32.830H 0.45A 230V 155x41x26 Schwabe Hellas — дроссель

230V

10

10707134

NAHJ 70.713.4 230V 1,00A 112x66x52 SCHWABE HELLAS -дроссель

230V

кор. 6

11256134

Q 125.613.4 230V 1,15A 112x66x52 SCHWABE HELLAS — дроссель

230V

1

12282200

L 22.890H 0. 4A 230V 155x41x26 Schwabe Hellas — дроссель

230V

10

534487.11

NAHJ 1000.089 220V 10,3A 203x102x92 метгал-натрий -дроссель Vossloh Schwabe 105/палл

220V

1

12506146

Q 250.614.6 220V 2,13A 145x66x52 SCHWABE HELLAS — дроссель

220V

1

13083000

L 30.832H 0.36A 230V 155x41x26 Schwabe Hellas — дроссель

230V

10

20041210

CD-Z 400M 35-400W 230V 50Hz d35x87 FOTON металл+гайка -ИЗУ

230V

30

20040202

CD-Z 1000 600-1000W 230V 4-5kV 1 метр FOTON металл+гайка — ИЗУ

230V

30

x02564752

FOTON 1000W 230V 10,3А 248x102x92 МГ-натрий -дроссель

230V

1

3545454646

FL-01 2000W 10,3A 400x265x188 IP65 FOTON LIGHTING- моноблок

230V

1

434641

FL-02 BOX 70W 250×85 IP65 FOTON LIGHTING- пустой корпус

230V

1

246466

FL-11 GEAR BOX 70W 224x170x105 IP65 FOTON LIGHTING-моноблок

230V

10

246467

FL-11 GEAR BOX 150W 224x170x105 IP65 FOTON LIGHTING-моноблок

230V

10

20110071

FL-19 GEAR BOX 70 FOTON LIGHTING (моноблок) (225Х125Х75)

230V

8

556444

FL-20 GEAR BOX 2x18w IP20 FOTON LIGHTING моноблок 225x125x75

230V

8

511031

GBP-23 35W зеленый FOTON LIGHTING моноблок 215x82x73

230V

10

Принцип работы дросселя

Дроссель (катушка индуктивности) работает, как электрический трансформатор с одной намоткой. Он представляет собой сдерживающий барьер при резком снижении или сильном росте напряжения в сети. Катушка используется для подавления помех и пульсаций в цепи, изоляции и развязки частей схемы.

В низкочастотном дросселе сердечник и ферромагнитные пластины изолированы для предотвращения помех, вызванных токами Фуко. Такая катушка отличается большой индуктивностью и защищает сеть и приборы от резких скачков напряжения. Высокочастотные устройства не имеют сердечника – многослойная навивка осуществляется на стандартные резисторы или пластиковые каркасы.

Сфера применения дросселей

При покупке изделий необходимо следить за тем, чтобы их мощность соответствовала количеству подключаемых люминесцентных ламп. Особенно это касается больших площадей, например, офисных центров, магазинов, конференц-залов, промышленных цехов.

Дроссели используются:

  • в моноблоках;
  • компактных источниках света;
  • линейных источниках света.

Разновидности дросселей

Катушки индуктивности различаются в зависимости от назначения, места установки, видов ламп, в которых применяются, и объема мощностных потерь.

По назначению выделяют следующие типы дросселей:

  • переменного тока — для ограничения напряжения в сети;
  • сглаживающие — для подавления пульсаций выпрямленного тока;
  • насыщения — для установки в стабилизаторах напряжения;
  • усилители — с подмагничивающимся от постоянного тока в сети сердечником, который допускает изменение значений индуктивного сопротивления.

По типу ламп, с которыми используются, различают два вида катушек индуктивности:

  • однофазные, рассчитанные на офисные и бытовые системы освещения, работающие от сети 220 В;
  • трехфазные, подходящие для ламп ДРЛ и ДНАТ, рассчитанные на напряжение 220 и 380 В.

По месту установки различают дроссели:

  • открытые — встраиваемые непосредственно в корпус светильника, который защищает устройство от внешних факторов;
  • закрытые герметичные устройства с водостойким корпусом подходят для установки в уличных условиях и помещениях с повышенным уровнем влажности.

В процессе работы люминесцентной лампы сопротивление дросселя уменьшает силу тока, который протекает по цепи, до некого необходимого значения. Какая-то часть мощности тратится на нагрев устройства, не выполняя при этом никакой полезной работы.

По объему мощностных потерь дроссели делятся на следующие виды:

  • В — низкий уровень потерь;
  • С — пониженный уровень;
  • D — обычный уровень.

Гибкий подход к вопросам ценообразования и внимательное отношение к покупателям позволяют ОСК Лампы.РФ занимать одну из лидирующих позиций на рынке реализации светотехнических изделий.

Отзывы наших клиентов

Кристина Алексеевна

В помещениях нашего завода постоянно наблюдалось мерцание света. Удалось решить проблему путем установки дросселей. Важно, что менеджеры уделили внимание всем помещениям, подобрали устройства с расчетом количества ламп, мощности. Теперь все поставленные задачи выполнены, провели установку оборудования, и увеличилась производительность труда! Спасибо!

Кирилл

Убедился, что всегда нужно обращаться к профессионалам. До этого покупал продукцию в другом месте, и постоянно были проблемы с освещением. Все решилось просто, после консультации со специалистами ОСК Лампы.РФ. Поставили на складах дросселя и перестали перегоратьь лампы, что важно — снизилось энергопотребление!

Дмитриев

Заказывал раньше люминесцентные лампы и решил сэкономить на покупке дросселей. Оказалось, сделал ошибку, при малейших сбоях в сети приборы сгорали. В общем, скупой платит дважды, хорошо хоть теперь удалось наладить работу. Хочу поблагодарить вашу компанию за грамотные консультации и быструю поставку продукции!

Смотрите также:

Дроссель насыщения — Энциклопедия по машиностроению XXL

Это трехфазный трансформатор и блок выпрямителей. Для управления сварочным током применен дроссель насыщения. Для уменьшения разбрызгивания металла в сварочную цепь включают дополнительный дроссель, имеющий переключатель для ступенчатого изменения индуктивности. Это расширяет возможности выбора режима сварки.  [c.103]

Плавное регулирование сварочного тока в трансформаторе с дросселем осуществляется изменением индуктивного сопротивления последнего за счет изменения воздушного зазора в его магнитной цепи. Иногда применяется дополнительное ступенчатое витковое регулирование первичной или вторичной обмотки трансформатора. Индуктивное сопротивление дросселя можно регулировать не только механическим, но и электрическим путем. Этот принцип реализован в конструкции трансформатора с дросселем насыщения. Он имеет броневой магнитопровод, обмотку управления, подключенную к вспомогательному источнику постоянного тока, и две последовательно соединенные рабочие обмотки в цепи дуги переменного тока. Принцип действия трансформатора основан на взаимодействии магнитных потоков обмотки управления и рабочих обмоток.[c.119]


QF — блок коммутации Т— трансформатор Ы — дроссель насыщения VSI — блок тиристоров KS3 — тиристоры L2 — дроссель  [c.129]

У большинства машин с центробежным, кинематическим и принудительным возбуждением вибрации осуществлен привод от асинхронных электродвигателей, имеющих, как правило, короткозамкнутые роторы. Применяют различные способы плавного регулирования частоты таких двигателей, в том числе изменением напряжения, подаваемого на статор, изменением электрического тока в катушках дросселей насыщения, несимметрично подключенных к обмоткам статора, изменением частоты тока, питающего обмотки статора, применением каскадных схем включения и импульсного регулирования. От выбора способа регулирования может существенно зависеть эффективность работы системы автоматического управления вибрационной машиной.  [c.461]

Для механизированной воздушно-плазменной резки выпускаются установки «Киев-5», «Киев-6», АПР-404. Источники тока установок «Киев-5» и «Киев-6» выполнены на базе управляемых кремниевых вентилей. Крутопадающая характеристика обеспечивается системой управления. В промышленности работает также большое количество установок предыдущего поколения — АПР-402 и АПР-403 с дросселями насыщения.  [c.239]

QF блок коммутации Т — трансформатор LI — дроссель насыщения VS — блок тиристоров VS2, VS3 — тиристоры L2 — дроссель  [c.129]

Примером выпрямителя с тиристорным управлением во вторичной цепи трансформатора может служить ВДУ-505 УЗ (рис. 5.14). Он состоит из блока коммутации QF, неуправляемого трансформатора Т, блока тиристоров VSI во вторичной обмотке трансформатора с дросселем насыщения L и схемы управления работой тиристоров в блоке VSI на основе тиристоров VS2 и VS3> и дросселя L2.  [c.129]

В практике анодной защиты США при разработке схем регуляторов потенциала отдано предпочтение выходным блокам на дросселях насыщения [10, 33—35]. В последнее время и за рубежом находят применение тиристорные выходные каскады.  [c.109]


Выходные блоки на дросселях насыщения и на тиристорах примерно равноценны по надежности и силе выходного тока. Схемы на дросселях насыщения отличаются простотой, однако обеспечивают меньшую глубину регулирования силы тока, а их габариты и масса значительно превосходят тиристорные. Вместе с тем, тиристорные блоки требуют более сложных схем управления углом зажигания. Если учесть, что уже разработаны достаточно надежные схемы управления, а требования производства диктуют условия компактности аппаратуры контроля и регулирования, то применение выходных блоков на тиристорах предпочтительнее.  [c.109]
Фиг. 32.. Электропривод с асинхронным двигателем и дросселями насыщения в цепи статора а — схема б — механические хар актеристики.
Крутопадающие внешние статические характеристики могут быть обеспечены следующими типами источников питания выпрямителями, управляемыми дросселями насыщения, тиристорными выпрямителями с обратной связью по току, источниками питания на базе индуктивно-емкостных преобразователей и транзисторными источниками питания. В отдельных случаях могут использоваться сварочные генераторы, трансформаторы с рассеянием, балластные реостаты [63].  [c.152]

Выпрямители с дросселями насыщения широко применяются для плазменной обработки. Они обладают хорошими регулировочными характеристиками, просты в обслуживании и надежны в работе. Их недостатками являются низкий os ф, значительные габаритные размеры и масса. Не вполне удовлетворительны и динамические характеристики дросселей насыщения, поэтому появляются броски тока при возбуждении дуги в источнике питания для плазменной резки. Используемое в этих источниках питания начальное ограничение тока подмагничивания дросселя насыщения все же не позволяет полностью избавиться от бросков тока. Источники питания с дросселями насыщения постепенно вытесняются более экономичными, компактными и легкими тиристорными выпрямителями.  [c.152]

Применение второго метода позволяет плавно я в широких пределах изменять технологическое напряжение. Однако дроссели насыщения и фазорегуляторы имеют габариты и массу, соизмеримые с силовыми трансформаторами, и обладают значительной инерционностью.  [c.162]

Применение дросселей насыщения в силовой электротехнике предшествовало периоду создания силовых управляемых вентилей — тиристоров. Последние, в силу своих положительных свойств малые габариты, масса, стоимость, высокая надежность и к. п. д. — повсеместно вытесняют электромагнитные, электромеханические элементы и ионные вентили. Изменение моментов зажигания вентилей существенно влияет на ход электромагнитных процессов в выпрямительных установках меняется форма кривых выпрямленного тока и напряжения, обратного напряжения меняются внешние характеристики, коэффициент мощности и гармоники анодных и фазных токов.  [c.162]

В качестве чувствительных элементов в системах защиты по частоте используются резонансные контуры или дроссели насыщения, реагирующие на частоту и управляющие с помощью мостовой схемы.[c.323]

Управление тиристорами Д и Да осуществляется с помощью фазосдвигающего моста, у которого в качестве регулируемой индуктивности служит магнитный усилитель УМ, включенный по схеме дросселя насыщения.  [c.16]

Мощность конечного каскада транзисторного усилителя и, следовательно, выбор типа транзистора этого каскада определяются мощностью, необходимой для выходной цепи, т. е. мощностью нагрузки усилителя. Выходными цепями для транзисторных усилителей в схемах автоматических противокоррозионных установок служат цепи управления тиристорами, обмотки подмагничивания магнитных усилителей и дросселей насыщения.  [c.67]


Магнитные усилители и дроссели насыщения могут рассматриваться как регулируемые индуктивные сопротивления, включаемые в цепь переменного тока. Изменения величины индуктивного сопротивления магнитного  [c.67]

Обмотка переменного тока усилителя МУ через выпрямители включена на обмотки управления силового дросселя насыщения ДН. Таким образом, изме-  [c.70]

Основное свойство дросселя насыщения состоит в том, что величина реактивного (индуктивного) сопротивления обмоток переменного тока зависит от величины постоянного тока в обмотке управления. Это свойство объясняется способностью стали насыщаться. При насыщении сердечника уменьшается его магнитная проницаемость, от которой зависит индуктивность обмоток. Если в обмотке управления нет тока, сопротивление рабочих обмоток будет большим и ток в цепи рабочие  [c.358]

Процесс зарядки емкостных накопителей достаточно подробно изучен /66/ показано, что кпд использования энергии в зарядном контуре rii может достигать 0.95. Этот высокий уровень 7 требует применения повысительно-выпрямительных устройств с высокой добротностью, специальных схем и аппаратуры, обеспечивающих квазипостоянство зарядного тока. В реально используемых в ЭИ промышленных аппаратах типа ВТМ до 6-8% энергии теряется в повышающем трансформаторе, до 12% — в выпрямителе (4% — в кремниевом вьшрямителе), до 6-8% в дросселе насыщения (Н.П.Тузов, диссертация, 1972 г., Кольский научный центр РАН, г. Апатиты).  [c.120]

Электрическая блок-схема стенда создана на базе испытательного трансформатора ИОМ 100/100, однополупериодного выпрямителя на элементах 15ГЕ1440У-М с обратным напряжением 200 кВ, с двумя типами регуляторов (тиристорным и регулируемым дросселем насыщения) и генератора импульсных напряжений, собранного по схеме Аркадьева-Маркса. Особенностью конструкции генератора импульсных напряжений является возможность широкой регулировки энергии импульса как амплитудой (до 350 кВ), так и разрядной емкостью  [c.257]

Общий вид установки представлен на рис.6.19. Особенностью электротехнической части установки на базе выпрямительно-повысительного агрегата АИФ-400 является применение для регулирования частоты срабатывания ГИН дросселя насыщения с низкой стороны повышающего трансформатора. В конструкции камеры для дробления сростков использованы электродная система с продольным щелевым зазором на две стороны от высоковольтного электрода с концентраторами и ковшовый элеватор выгрузки продукта дробления. Последующее обогащение продукта осуществляется системой наклонных плоскостей, а выделение мелкомерной слюды — трехмассным грохотом конструкции института Механобр (г.С.-Петербург).  [c.296]

На циркуляционном контуре, схема которого показана на фиг. 1, можно было работать нрп давлении до 77 ата. Заливаемую в контур дистиллированную воду дегазировали еще до повышения в не.м давления п во время работы постоянно ее обессоливали. Обогреваемые участки представляли собой трубы различной длины из стандартно нержавеющей стали марки. 321. Трубы обогревались постоянным Т0К0Л1 от трансформаторно-выпрямительного устройства через дроссель насыщения, запитываемый от подстанции. С помощью этого дросселя удавалось осуществлять плавную регулировку мощности вплоть до максимального значения, равного 200 кет (80 в, 2500 п).  [c.32]

В силовых блоках А — Г собраны двойные трехфазнь мостовые схемы выпрямления, работающие на общую нафу ку. Между вторичными обмотками трансформаторов и сил1 выми блоками в каждую фазу включены дроссели насыщен ДН-А — ДН-Г, изменяя подмагничивающий ток которь можно регулировать выпрямленное напряжение в предел одной ступени переключающего устройства.  [c.320]

Главными компонентами установки для вакуумного эле тродугового переплава являются источник энергии, тигел] ный агрегат, вакуумные насосы и система управления [5]. качестве источников электроэнергии могут быть использовг ны и дроссели насыщения, и кремниевые выпрямители. В лк бом случае цель заключается в том, чтобы обеспечить раб( ту печи на максимальном желаемом энергетическом уровн при непременно стабильных характеристиках дуги. Очен часто плавление развивается в условиях близких или соо ветствующих режиму короткого замыкания, и система должн быть способна устранить этот мгновенно возникший режи короткого замыкания, восстановить дугу и вернуть к дейст ВИЮ заданный режим работы агрегата.  [c.136]

Выпрямители, управляемые трансформатором с дросселем насыщения, имеют тот же принцип действия дросселя в цепи переменного тока, что и у сварочных трансформаторов аналогичногЪ ипа. Примером выпрямителя с такой схемой управления может служить ВДГ-303-3 УЗ. Жесткая ВВАХ выпрямителя с повышенным напряжением холостого хода обусловливается использованием дросселя насыщения с самоподмагничиванием, потери напряжения у которого при больших токах не зависят от нагрузки. Выпрямленное напряжение плавно регулируется изменением тока обмотки управления.  [c.128]

Выпрямители, имеющие жесткую характеристику, состоят из трансформатора с нормальным рассеянием Тр, нерегулируемого выпрямительного блока Вб и спещ1ального дросселя насыщения Др (рис. 18.10), который включается во вторичную цепь между трансформатором и выпрямительным блоком.  [c.383]

В аппаратуре, предложенной Конгером [34], на одном защищаемом объекте используются два электрода сравнения. Защита непрерывно работает от одного электрода сравнения, а второй является контрольным. Если оба электрода исправны, разность потенциалов между ними небольшая если один из них выходит из строя, разность потенциалов резко увеличивается. Вероятность одновременного выхода из строя обоих электродов сравнения маловероятна. Частые срабатывания, которые наблюдаются в пусковой период или при случайных нарушениях пассивности, неблагоприятно влияют на работу периодических поляризующих устройств, поэтому Конгер [35] предлагает использовать дроссели насыщения, уменьшающие частоту срабатываний в эти периоды. Инерционность дросселя не позволяет силе поляризующего тока быстро упасть до нуля после прекращения импульса управления, что увеличивает длительность паузы.  [c.113]


Установки комплектуются выпрямителями типа ВПР-402М для плазменной резки, которые состоят из трехфазного трансформатора, управляемого трехфазного дросселя насыщения выпрямительного блока и пускорегулирующей аппаратуры. Дроссель насыщения служит для получения круто падающих внешних характеристик. Обмотки переменного тока дросселя включены встречно-последовательно в линейную цепь трансформатора. Управляющая обмотка (подмагничиваемая) охватывает все шесть сердечников трех фаз дросселя и питается выпрямленным током.  [c.151]

Для аргоно-дуговой сварки применяют установки УДГ-301, УДГ-501 Шторм . Установки для аргоно-дуговой сварки (рис. 57) состоят из источника питания переменного тока (трансформатор с дросселем насыщения), шкафа управления, комплекта сварочных горелок и газового баллона с редуктором. Сварочные горелки имеют три исполнения малая — для сварки при силе тока до 200А электродами диаметром 2—4 мм средняя—для сварки при силе тока до 400А электродами диаметром 3—6 мм большая — для сварки при силе тока до 550А электродами диаметром 5—10 мм.  [c.197]

И направление отклонения сигнала от его номинального значе ния, усиленный магнитными усилителями 14 и 15, подается Ht дроссель насыщения 9. В зависимости от величины и направ ления усиленного импульса изменяется характер командногс импульса, снимаемого с дросселя насыщения и передаваемогс через выпрямитель 8 электромагниту 7.  [c.94]


Частотные преобразователи. Сетевой дроссель для преобразователя частоты.

Фактические параметры электрической сети отличаются от эталонных значений. Отклонения параметров (колебания напряжения, искажение синусоидальной формы напряжения, импульсные перенапряжения, пониженное напряжение и т.д.) от нормативных значений вызваны различными факторами, которые приводят к ухудшению качества электроэнергии. В свою очередь от качества электроэнергии зависит стабильность работы и долговечность подключенных электропотребителей данной сети.

Одной из причин отклонений параметров электрической сети являются преобразователи частоты, широко применяемые в промышленности для регулирования оборотов электрических двигателей. Преобразователь частоты имеет входной неуправляемый трёхфазный выпрямитель для преобразования переменного напряжения питающей сети в постоянное напряжение, далее инвертор преобразователя частоты преобразует постоянное напряжение в переменное требуемой частоты и амплитуды.

 

Выпрямитель преобразователя частоты вызывает искажения в линии питающей сети, причиной которых является принцип работы диодного моста выпрямителя. Ток протекает через диод когда напряжение на аноде выше, чем на катоде, т.е. на пике каждой фазы. Это приводит к гармоническим искажениям в питающей сети и большому пиковому току на входе преобразователя частоты. Данные искажения приводят к ряду проблем, как для питающего преобразователь частоты силового трансформатора, так и для другого оборудования в этой сети. Если мощность трансформатора не достаточно велика относительно мощности преобразователя частоты, пиковые токи могут вызвать перегрев трансформатора и выход его из строя. Гармонические искажения могут приводить к нестабильной работе и сбоям передачи данных чувствительного оборудования запитанного от той же сети, что и преобразователь частоты.

 

Входной ток преобразователя частоты: а) без дросселя, б) с сетевым дросселем.

Самым простым способом снижения генерируемых гармоник в питающую сеть и улучшения формы входного тока, является установка сетевого дросселя перед преобразователем частоты. Индуктивное сопротивление сетевого дросселя позволяет снизить пульсацию тока и снижению гармонических искажений в питающей сети. Так же сетевой дроссель защищает сам преобразователь частоты от внешних негативных воздействий питающей сети и соответственно увеличивает срок его службы.

 

Сетевой дроссель для преобразователя частоты позволяет:

  • снизить воздействия преобразователя частоты на питающую сеть и работу других потребителей в этой сети

  • защитить преобразователь частоты от всплесков (импульсных перенапряжений) и провалов напряжения питающей сети, тем самым снижает вероятность аварийной остановки преобразователя частоты

  • увеличивает срок службы конденсаторов звена постоянного тока преобразователя частоты

  • уменьшает значение аварийного тока (короткого замыкания) и скорость его нарастания, тем самым снижая вероятность термического разрушения силовых полупроводников преобразователя частоты

 

 

 

Принцип работы и типы датчика положения дроссельной заслонки

Датчик положения дроссельной заслонки также известен как датчик открытия дроссельной заслонки или переключатель дроссельной заслонки. Его основная функция — обнаруживать, что двигатель находится в состоянии холостого хода или в состоянии нагрузки. Это ускорение и сокращение. По сути, это переменный резистор и несколько переключателей, установленных на дроссельной заслонке

Каталог

I. Принцип работы датчика положения дроссельной заслонки

Принцип действия датчика положения дроссельной заслонки на самом деле является скользящим. варистор.Когда дроссельная заслонка нажата, сигнальная линия холостого хода отключается, скользящий варистор также следует за вращением, компьютер определяет значение напряжения, данные, полученные путем сравнения, анализа и контроля базовой вводимой величины.

Датчик положения дроссельной заслонки имеет два переменных сопротивления, отвечающих за обратную связь с системой.

Одно из электрических сопротивлений дроссельной заслонки линейно увеличивается, а значение сопротивления электрического дросселя электронного дросселя уменьшается.Результирующий сигнал напряжения (информация о положении дроссельной заслонки) передается в блок управления двигателем, чтобы отражать изменение открытия дроссельной заслонки и скорость открытия скорости открытия, и используется для обработки информации и управления дроссельной заслонкой, которая может возвращать информация о положении дроссельной заслонки. Блок управления формирует систему управления с обратной связью. Таким образом, когда блок управления передает команду двигателю регулировки. Электродвигатель может правильно повернуть дроссельную заслонку, чтобы повернуть дроссельную заслонку в соответствии с информационной обратной связью датчика.Два датчика предназначены для точного и резервного.

Датчик положения дроссельной заслонки входит в систему защиты от сбоев.

1) Когда поступает сообщение о датчике, используется сигнал другого датчика. Реакция на нажатие педали акселератора без изменений, но будет слабость разгона, отключение круиз-системы. Индикатор неисправности EPC горит, сохраните код неисправности.

2) Когда два сигнала прерываются. Двигатель работает около 1500 об / мин. При нажатии на педаль акселератора без реакции горит индикатор неисправности EPC и сохраняется код неисправности.

Внимание! Датчик положения дроссельной заслонки, воздушный клапан холостого хода и корпус дроссельной заслонки являются интегрированными конструкциями. При выходе из строя датчика положения дроссельной заслонки или клапана управления холостым ходом. Необходимо заменить дроссельную заслонку.

Датчик положения дроссельной заслонки также известен как датчик открытия дроссельной заслонки или переключатель дроссельной заслонки. Его основная функция — обнаруживать, что двигатель находится в состоянии холостого хода или в состоянии нагрузки. Это ускорение и сокращение. По сути, это переменный резистор и несколько переключателей, установленных на дроссельной заслонке, есть два контакта: полностью открытые контакты и холостые контакты.Когда дроссельная заслонка находится в положении холостого хода, контакт холостого хода замкнут, и сигнал рабочего состояния холостого хода выводится на компьютер; когда дроссельная заслонка находится в других местах, контакт холостого хода размыкается, выходной сигнал выводится относительно сигнала напряжения различных углов дроссельной заслонки, в соответствии с сигналом. Значение напряжения определяет нагрузку двигателя; изменение увеличения напряжения сигнала в определенный период времени является рабочим условием ускорения или замедлением.Компьютер корректирует количество топлива в соответствии с этой рабочей информацией или выполняет масляно-масляный контроль.

II. Типы датчиков положения дроссельной заслонки

Традиционные датчики положения можно разделить на датчик положения с сопротивлением скольжению, датчик положения переключения холостого хода и датчик положения с интегрированным сопротивлением скольжению. Датчики положения дроссельной заслонки, используемые в новой интеллектуальной электронной системе управления дверцей вала дроссельной заслонки, представляют собой двойные датчики сопротивления скольжения и линейные двойные датчики Холла.

В настоящее время в системе электрического управления двигателем в основном используется датчик положения дроссельной заслонки с датчиком компонентов Холла и датчик двойного сопротивления скольжения. Toyota Camry, Carolla и др. Используют датчик Холла; В Nissan Scorpio, General Excelle используется двойной датчик сопротивления скольжению.

1. Датчик положения дроссельной заслонки

Модель Toyota Camry Mixed Power 2016 (модель двигателя 6Ar-FSE) использует бесконтактный датчик положения дроссельной заслонки с двойным элементом Холла. Он в основном состоит из элементов Холла и магнитов, причем магниты установлены на оси дросселя и могут вращаться вокруг элемента Холла.

Схема управления датчиком положения дроссельной заслонки Холла показана на рисунке выше. При изменении открытия дроссельной заслонки магнит вращается, тем самым изменяя относительное положение между элементом Холла, и интегральная схема Холла окружена ярмом. Интегральная схема Холла преобразует изменение магнитного потока в электрический сигнал и выдает его в ECM в виде сигнала положения дроссельной заслонки.

Датчик положения дроссельной заслонки имеет две цепи датчиков: VTA1 и VTA2, каждая из которых выдает сигнал.VTA1 используется для обнаружения открытия дроссельной заслонки, а VTA2 используется для обнаружения отказов VTA1. Напряжение сигнала датчика пропорционально открытию дроссельной заслонки, изменяется от 0 до 5 В и передается на клеммы VTA1 и VTA2 контроллера ЭСУД.

При закрытии дроссельной заслонки выходное напряжение датчика понижается; при открытии дроссельной заслонки выходное напряжение датчика возрастает. ЕСМ рассчитывает открытие дроссельной заслонки в соответствии с этими сигналами и управляет исполнительным элементом дроссельной заслонки, чтобы реагировать на действия водителя.Эти сигналы также используются для расчета значений коррекции воздушно-топливного отношения, значений коррекции подъемной мощности и управления отсечкой подачи топлива.

Схема датчика положения дроссельной заслонки модели Toyota Camry Mixed Power 2016 года выпуска показана ниже.

Датчик положения дроссельной заслонки встроен в блок дроссельной заслонки E16. E16 имеет 6 контактов. Контакты 1 и 2 Для дроссельной заслонки выполняется порт управления двигателем. Контакты 6 и 4 оставляют выходной сигнал положения дроссельной заслонки VTA1 и VTA2 до 122 # и 88 # порта E81 (f) блока управления двигателем.Контакт 5 представляет собой опорное напряжение VCTA 5 В, подаваемое от блока 121 управления двигателем; Контакт 3 заземлен через блок управления двигателем 120 #.

Тестирование

(1) Проверьте источник питания датчика: отсоедините разъем дроссельной заслонки E16, измерьте мультиметром напряжение между E16 / 5 и E16 / 3, которое должно быть от 4,5 до 5,5 В. В противном случае проверьте цепь питания ЭБУ. Если цепь питания ЭБУ в норме, ЭБУ заменяется.

(2) Проверьте напряжение сигнала датчика: подключите диагностику неисправности, включите зажигание, нажмите на педаль акселератора и прочитайте данные VTA1 и VTA2 датчика положения дроссельной заслонки.

Проверьте жгут датчика и разъем: Отсоедините разъем E16 дроссельной заслонки и разъем E81 блока управления двигателем, и проверьте сопротивление между вилкой или массой между разъемом и кузовом.

2. Датчик положения дроссельной заслонки с сопротивлением скольжению

Датчик положения дроссельной заслонки с сопротивлением скольжению, также известный как датчик положения дроссельной заслонки с линейным выходом, регулируемый резистивный датчик положения дроссельной заслонки, потенциальный датчик положения дроссельной заслонки.В настоящее время датчик положения дроссельной заслонки с двойным регулируемым сопротивлением применяется на большом количестве автомобилей.

Датчик положения дроссельной заслонки с сопротивлением скольжению представляет собой трехпроводной датчик, в котором два контакта находятся на обоих концах резистора и служат в качестве клеммы питания и металлических клемм ЭБУ двигателя, а третий контакт подключен к скользящей контакт. Вал дроссельной заслонки связан с контактом (или контактом). Когда дроссельная заслонка вращается, скользящий контакт может перемещаться на резисторе, вызывая изменение потенциала скользящего контакта для преобразования сигнала положения дроссельной заслонки в значение напряжения.Поскольку это напряжение является линейным, его также называют датчиком положения дроссельной заслонки с линейным выходом. В соответствии с этим линейным значением напряжения, ЭБУ может определять степень открытия дроссельной заслонки для корректировки ЭБУ.

Тестирование

Схема датчика положения дроссельной заслонки Buick Excelle 2013 года выпуска показана ниже. Модуль управления двигателем обеспечивает цепь опорного напряжения 5 В на датчик положения дроссельной заслонки и обеспечивает заземление цепи низкого опорного напряжения. Напряжение сигнала, выдаваемое датчиком положения дроссельной заслонки, изменяется при открытии дроссельной заслонки.Напряжение сигнала датчика положения дроссельной заслонки меньше 0,5 В на холостом ходу. Напряжение датчика положения дроссельной заслонки обычно близко к 0 В на холостом ходу, но может достигать 0,5 В. При полностью открытой дроссельной заслонке (WOT) напряжение датчика положения клапана должно быть увеличено до 4 В.

Датчик положения дроссельной заслонки проверяется следующим образом:

(1) Выключите зажигание и отсоедините разъем жгута проводов на дроссельной заслонке.

(2) Измерьте сопротивление между клеммой 2 # опорного напряжения 5 В датчика положения дроссельной заслонки и опорной клеммой 1 # низкого давления равно 5.От 0 до 5,3 кОм. Если сопротивление не соответствует указанному диапазону, замените дроссельную заслонку.

(3) Измерьте сопротивление между сигнальной клеммой 3 # сборщика дроссельной заслонки и опорной клеммой 1 # низкого давления. Датчик дроссельной заслонки определяется во всем диапазоне. Электрическое сопротивление должно быть от 2,5 до 6,8 кОм без пиков или провалов. Если резистор находится за пределами указанного диапазона или не меняется, замените дроссельную заслонку.

(4) Используйте напряжение 5 В и заземлите соответствующую концевую клемму датчика дроссельной заслонки, чтобы определить напряжение между сигнальной клеммой и опорной клеммой низкого давления.Датчик дроссельной заслонки определяется во всем диапазоне. Напряжение должно изменяться от 0,6 до 4,7 В без пиков или провалов. Если напряжение не в пределах указанного или нет, замените дроссельную заслонку.

Руководство для начинающих: что такое дроссельная заслонка и для чего она нужна?

Сколько дроссельных заслонок?

Большинство автомобилей имеют только один большой корпус дроссельной заслонки, но некоторые автомобили с большим двигателем могут иметь по одному на каждый блок цилиндров или даже по одному на каждый цилиндр, хотя это относительно редко.В некоторых системах используется корпус дроссельной заслонки с двумя меньшими горловинами и бабочками вместо одного большого, особенно в ранних двигателях Ford Truck EFI, но функция остается той же.

Хороший воздушный фильтр имеет решающее значение для работы корпуса дроссельной заслонки, потому что скопившаяся на его поверхности грязь со временем может склеить дроссельную заслонку, что приведет к резкому холостому ходу и проблемам с управляемостью. В зависимости от того, как сапун PCV прикреплен к двигателю вашего автомобиля, вы также можете накопить остатки масла.

Как можно очистить корпус дроссельной заслонки?

Вот почему дроссельная заслонка и дроссельная заслонка нуждаются в периодической чистке.После снятия его с впуска очистите корпус дроссельной заслонки с помощью аэрозольного растворителя для очистки карбюратора / впрыска топлива и небольшой щетки или хлопчатобумажной ткани. Обратите особое внимание на дроссельную заслонку, которая прикреплена небольшими винтами (часто прикрепленными к оси дроссельной заслонки, чтобы предотвратить снятие), но вам не нужно снимать ее для очистки.

Если датчик положения дроссельной заслонки (TPS) или датчик расхода воздуха находятся на корпусе дроссельной заслонки, будьте осторожны с ними. После удаления TPS может потребоваться повторная калибровка.Датчики массового расхода воздуха (MAF) очень чувствительны к загрязнению и имеют специальный спрей растворителя только для их очистки.

Проблемы с корпусом дроссельной заслонки

Другие проблемы с корпусом дроссельной заслонки могут включать неисправные клапаны регулировки холостого хода (IAC) или датчики абсолютного давления в коллекторе (MAP). Клапан IAC позволяет компьютеру управлять скоростью холостого хода, стравливая небольшое количество воздуха во впускное отверстие. Датчик MAP превращает разрежение двигателя в коллекторе в электронный сигнал, сообщающий компьютеру, сколько топлива нужно впрыснуть.

Двигатель с высокими оборотами на холостом ходу или с холостым ходом, который колеблется вверх и вниз, может иметь утечку вакуума или порванный впускной шланг. Постоянно высокие обороты холостого хода могут означать, что клапан IAC заедает в открытом положении, или может потребоваться регулировка механического упора дроссельной заслонки.

Принцип работы электронной системы управления дроссельной заслонкой

Принцип работы электронной дроссельной заслонки и тросовой дроссельной заслонки

В связи с быстрым развитием автомобильной промышленности, уже в 1990-х годах производители автомобилей в США, Германии, Японии и другие производители автомобилей внедрили электронную систему управления дроссельной заслонкой.Электронная система управления акселератором в основном состоит из педали акселератора, датчика перемещения педали, ЭБУ, шины данных, серводвигателя и привода дроссельной заслонки.

В настоящее время электронные ускорители широко используются в более новых моделях. Так называемый электронный ускоритель — это бывший кабельный ускоритель. Традиционный трос акселератора напрямую соединяет педаль акселератора с дроссельной заслонкой тонким стальным тросом. Глубина педали акселератора напрямую соответствует размеру открытия и закрытия дроссельной заслонки.Электронный ускоритель не имеет кабеля. При установке потенциометра (переменное сопротивление) в педаль акселератор нажимается. Глубина дроссельной заслонки преобразуется в значение сопротивления сопротивления. Электронная система автомобиля косвенно определяет глубину нажатия педали акселератора, измеряя значение сопротивления. Наконец, ЭБУ приводит в действие шаговый двигатель для управления открытием дроссельной заслонки. Нетрудно найти, что характеристики троса дроссельной заслонки простая система, прямое управление, а открытие педали акселератора и дроссельной заслонки составляет 1: 1.Характеристики электронной дроссельной заслонки — это дроссельная заслонка. Педаль представляет собой только намерение водителя действовать, а окончательное управление дроссельной заслонкой передается ЭБУ.

Принцип работы мощного усилителя


(1) Ускорение открытия дроссельной заслонки для улучшения статической реакции
Ускорение мощного усилителя в основном достигается за счет улучшения чувствительности отклика дроссельной заслонки. Когда управляющий компьютер обнаруживает, что водитель намеревается ускориться, он заставляет дроссельную заслонку быстро открываться через сигнал цепи, так что чувствительность отклика дроссельной заслонки улучшается.

(2) Компенсация ускорения сигнала дроссельной заслонки и улучшение динамической характеристики
Когда акселератор нажимает педаль акселератора, мощный усилитель рассчитывает скорость изменения сигнала акселератора в соответствии с амплитудой и временем нажатия. Чем быстрее изменение, тем сильнее требования к ускорению, и мощный усилитель увеличит скорость изменения, чтобы максимизировать динамический отклик ускорения транспортного средства.

(3) Предоставление ЭБУ ложного стиля вождения для регулировки параметров двигателя
ЭБУ современного двигателя, как правило, обладает способностью к самоадаптации стиля вождения.Если водитель часто нажимает на акселератор (обычно известный как скорость тяги), ЭБУ будет постепенно думать, что стиль водителя имеет тенденцию быть жестоким, поэтому двигатель будет медленно регулировать дроссельную заслонку, систему впрыска топлива и т. Д., Чтобы получить наилучшую регулировку. параметры двигателя в этом стиле. После длительного использования мощного усилителя, даже при вождении в соответствии с предыдущим мягким стилем вождения, двигатель все равно будет получать интенсивные впечатления от вождения, что эквивалентно настройке параметров ECU.Со временем движок автоматически изменит свои параметры, чтобы адаптироваться к стилю.

Как работает электронное управление дроссельной заслонкой

Новые автомобили сбивают с толку. Со всеми компьютерами, датчиками и гаджетами может показаться, что под капотом происходит какое-то волшебное колдовство. Мы здесь, чтобы показать вам, как работают современные автомобильные компьютерные системы управления. На прошлой неделе мы посмотрели карбюраторы. Сегодняшняя тема: электронное управление дроссельной заслонкой.

Раньше дроссельная заслонка автомобиля была прикреплена к педали акселератора с помощью стального троса Боудена.Сегодня эта механическая связь заменила собой электронное управление дроссельной заслонкой. Посмотрим, как это работает. Для многих из вас это обзор, но если мы хотим, чтобы новое поколение автолюбителей заботилось об автомобилях, не помешает объяснить, как они на самом деле работают.

ЭЛЕКТРОННОЕ УПРАВЛЕНИЕ ДРОССЕЛЬНОЙ ЗАСЛОНКОЙ: FLY BY WIRE

G / O Media может получить комиссию

Электронное управление дроссельной заслонкой (ETC)

— это система «Fly by Wire» для автомобильной промышленности. В системах ETC электронный блок управления транспортного средства использует информацию от датчика положения дроссельной заслонки (TPS), датчика положения педали акселератора (датчик APP), датчиков скорости колес, датчика скорости автомобиля и множества других датчиков, чтобы определить, как регулировать положение дроссельной заслонки.

Давайте посмотрим на два основных датчика, которые составляют «Fly by Wire»: датчик положения педали акселератора и датчик положения дроссельной заслонки. Хотя многие думают об автомобильных датчиках как о маленьких черных пластиковых зажимах, в которых хранится всякая магия, то, что происходит внутри этих датчиков, довольно просто. Датчик положения педали акселератора и датчик положения дроссельной заслонки работают вместе, преобразуя вводимые пользователем данные в движение дроссельной заслонки. До недавнего времени в этих датчиках использовались потенциометры, которые работали как делители напряжения.Делители напряжения используют резистивный элемент и рычаг стеклоочистителя для «деления» входного напряжения (называемого опорным напряжением). Затем они отправляют это «разделенное» напряжение на компьютер, который использует его для регулировки положения дроссельной заслонки.

Изображение выше помогает проиллюстрировать основной принцип работы делителя напряжения. Резистивный элемент, также называемый углеродной дорожкой, в основном представляет собой кусок графита. Перемещение плеча через резистивный элемент эффективно изменяет сопротивление по обе стороны плеча (R1 и R2).При перемещении дворника по часовой стрелке R2 увеличивается, а R1 уменьшается, а при перемещении против часовой стрелки происходит обратное.

Покажем, как датчик APP работает как делитель напряжения. Когда вы нажимаете педаль газа, вы перемещаете рычаг стеклоочистителя ближе к концу опорного напряжения резистивного элемента (Vref). Как это влияет на выходное напряжение, отправляемое на ЭБУ? Представьте себе ток, текущий от плюса (Vref) к рычагу стеклоочистителя. Перемещая рычаг ближе к опорному напряжению, вы уменьшаете «величину сопротивления», через которую должен протекать ток, прежде чем он достигнет рычага стеклоочистителя.Это увеличивает выходное напряжение на ЭБУ. Точное соотношение между выходным напряжением, опорным напряжением и положением рычага стеклоочистителя можно записать в виде уравнения:

Вывести это уравнение просто. Он включает использование закона Ома (V = IR) и закона Кирхгофа по току или напряжению. Мы откажемся от этого вывода, поскольку ключом здесь является понимание концепции. ЭБУ подает опорное напряжение на датчик APP. Физическое движение педали перемещает стеклоочиститель через элемент сопротивления и изменяет выходное напряжение на ЭБУ.ЭБУ принимает этот сигнал и отправляет соответствующий сигнал приводу дроссельной заслонки, который перемещает дроссельную заслонку.

Датчик положения дроссельной заслонки работает аналогично. Стеклоочиститель потенциометра соединен со шпинделем дроссельной заслонки. Когда дроссельная заслонка открывается и закрывается, она изменяет выходное напряжение от 0 до опорного напряжения. Это выходное напряжение отправляется в ЭБУ. Таким образом, блок управления двигателем узнает положение дроссельной заслонки.

Проблема с датчиками на основе потенциометров заключается в том, что, поскольку рычаг стеклоочистителя и резистивный элемент трутся друг о друга, они со временем изнашиваются.Новые датчики положения педали акселератора и датчики положения дроссельной заслонки не имеют этой проблемы, поскольку они используют эффект Холла в качестве основного принципа работы. Эти датчики содержат преобразователи, которые преобразуют внешние магнитные поля в напряжение. Используя магниты, расположенные на педали и валу дроссельной заслонки в качестве контрольных точек, датчики на эффекте Холла выдают разное напряжение в зависимости от напряженности магнитного поля. Вместе с педалью или дроссельной заслонкой движется магнит. Это движение изменяет напряженность магнитного поля и, таким образом, изменяет выходное напряжение от датчика к ЭБУ.

Теперь давайте посмотрим, как взаимодействуют эти два датчика. Электронное управление дроссельной заслонкой — это система с замкнутым контуром. Дроссельная заслонка открывается на основе пользовательского ввода (который передается в ЭБУ через датчик педали акселератора) и регулируется на основе показаний датчика положения дроссельной заслонки (который измеряет положение шпинделя дроссельной заслонки).

Рассмотрим цикл обратной связи выше. Если вы внезапно нажмете на педаль акселератора, датчик положения педали акселератора подаст на ЭБУ «эталонный вход» — напряжение между 0 и Vref.Контрольный вход указывает, где вы действительно хотите видеть дроссельную заслонку. ЭБУ интерпретирует этот сигнал и активирует привод (двигатель), который открывает или закрывает дроссельную заслонку.

Измеренный выходной сигнал — это положение дроссельной заслонки после первоначального движения привода. Это положение передается в компьютер через выходное напряжение датчика положения дроссельной заслонки. Несоответствие между желаемым пользователем положением дроссельной заслонки (как показывает датчик APP) и текущим положением дроссельной заслонки (как указано в TPS) является «измеренной ошибкой».Компьютер считывает эту ошибку и посылает соответствующий новый сигнал на привод дроссельной заслонки, чтобы дроссельная заслонка оказалась там, где это нужно водителю. Новое положение считывается датчиком положения дроссельной заслонки, и процесс продолжается в цикле.

Основным преимуществом систем «Fly by Wire» является то, что они позволяют легко интегрировать такие системы, как адаптивный круиз-контроль, системы блокировки тормозов и электронный контроль устойчивости. Современные системы Fly by Wire включают в себя несколько датчиков TPS и APP и выдают код неисправности в случае расхождения между резервными датчиками.

Если вы хотите увидеть, как все это работает, посмотрите видео ниже. По иронии судьбы: это видео Тойоты об управлении дроссельной заслонкой.

Фотография предоставлена: kevint3141

Автор фотографии: Брюс Фингерхуд

Лаборатория автомобильной электроники Клемсона: Электронное управление дроссельной заслонкой

Электронное управление дроссельной заслонкой

Базовое описание

В традиционных автомобилях при нажатии на педаль акселератора происходит кабель, который механически соединен с дроссельной заслонкой в ​​дроссельной заслонке двигателя.Положение этого клапана напрямую регулирует количество воздуха, подаваемого в цилиндры и следовательно, определяет частоту вращения и крутящий момент двигателя. Большинство транспортных средств на дорогах сегодня оснащены электронным управление дроссельной заслонкой. В этих автомобилях нажатие на педаль акселератора посылает электрический сигнал в модуль управления двигателем (ECM). Контроллер ЭСУД использует эту информацию для отправки управляющего сигнала на электродвигатель, установленный на корпус дроссельной заслонки, который соответствующим образом регулирует положение дроссельной заслонки.Датчик положения дроссельной заслонки используется для создания системы управления с обратной связью, чтобы гарантировать, что дроссельная заслонка открыта в правильное положение.

Основным преимуществом электронной дроссельной заслонки является то, что ее можно легко подключить к другим системам, таким как система управления двигателем, контроль тяги, электронный контроль устойчивости и круиз-контроль. Эти другие системы могут управлять дроссельной заслонкой, когда это необходимо, чтобы повысить безопасность, удобство и экономию топлива автомобиля. Например, Национальная администрация безопасности дорожного движения предложила правило, согласно которому к сентябрю 2014 года все автомобили должны иметь систему блокировки дроссельной заслонки (BTO).Система BTO будет отдавать приоритет тормозным сигналам, когда педаль тормоза и педаль акселератора задействованы одновременно.

Как и все электронные системы, управляющие критически важными для безопасности функциями в автомобиле, электронное управление дроссельной заслонкой разработано с определенными отказоустойчивыми функциями, включая резервные датчики и возможности самодиагностики. На изображении справа показан тест на устойчивость к магнитному полю, выполняемый на педали акселератора, в которой используются датчики на эффекте Холла.

Можно найти простую демонстрацию того, как работает электронное управление дроссельной заслонкой. здесь.

Датчики
Датчики положения педали, датчики положения дроссельной заслонки
Приводы
Двигатель на корпусе дроссельной заслонки
Передача данных
Обычно соединение шины CAN между ECM и другими системами, способными управлять дроссельной заслонкой.
Производители
Bosch, Continental, Delphi, Денсо, Hitachi, KMS, Magneti Marelli
Для получения дополнительной информации
[1] Электронное управление дроссельной заслонкой, Википедия.
[2] Электронное управление дроссельной заслонкой (Drive By Wire или Fly By Wire), веб-сайт Pico Technology.
[3] Электронное управление дроссельной заслонкой, YouTube, 8 февраля 2010 г.
[4] Усовершенствования электронного управления дроссельной заслонкой, Майкл Ноулинг, Autospeed.com, 2001.
[5] Lexus Safety Features of Electronic Throttle Control Systems (ETCS), YouTube, 26 марта 2010 г.
[6] BMW Multi-Butterfly Throttle Control, YouTube, 6 апреля 2012 г.
[7] Electronic Throttle Controls, YouTube, 8 мая 2013 г.

Что такое контроллер дроссельной заслонки — контроллер дроссельной заслонки Windbooster

Предисловие

В этой статье подробно рассказывается о контроллере дроссельной заслонки: «что такое контроллер дроссельной заслонки» и принципах работы: «Как работает контроллер дроссельной заслонки?» «Функция дроссельной заслонки». Стремитесь помочь вам лучше понять электронный контроллер дроссельной заслонки.

Что такое контроллер дроссельной заслонки

В наше время, когда технологии захватывают все возможные отрасли, для них не будет шоком занять значительную долю автомобильной промышленности.Сегодняшние автомобили хотят быть самыми быстрыми. Они постоянно развиваются благодаря всем технологическим достижениям. Одним из таких достижений является электронный контроллер дроссельной заслонки . Это более широко известно как проводное управление.

Контроллер электронного газа соединяет педаль акселератора с имеющейся дроссельной заслонкой. Он заменяет спешку механической связи, которая присутствует в автомобиле. Это закрепляет автомобиль и помогает человеку легче управлять автомобилем.Однако у этого электронного контроллера дроссельной заслонки есть некоторые ограничения.

Имеет ограничения

Электронный контроллер дроссельной заслонки принимает на себя управление электронным сигналом, который должен быть отдан инструкциям. Это делается путем определения глубины нажатия педали акселератора. Это также делается путем понимания двигателя, чтобы обеспечить подходящую мощность. Однако во время этого процесса происходит задержка сигнала электронной дроссельной заслонки.Это препятствует регулярному ускорению транспортных средств при определенных обстоятельствах. Эти обстоятельства включают подъем в гору, крутой склон и т. Д.

Ускоряющая сила контроллера электронного газа

Автолюбитель всегда оценит машину, которая понимает потребность в скорости, а также острые ощущения, которые испытывает каждый, когда доводит свой автомобиль до новых пределов. Однако, как упоминалось ранее, электронный контроллер дроссельной заслонки замедляет работу обычного акселератора, поэтому необходимо знать, как исправить эти ошибки, которые могут повлиять на весь опыт вождения человека.

Для решения этой конкретной проблемы компании придумали новую систему, которая была разработана для преодоления ограничений заводских настроек электронного управления дроссельной заслонкой. Это сделано для того, чтобы исключить задержки по времени. Это означает, что контроллер дроссельной заслонки устранит кабели между педалями газа и корпусами дроссельной заслонки.

Как работает контроллер дроссельной заслонки

Контроллер дроссельной заслонки — это в основном устройство, которое отвечает за улавливание сигнала между педалью акселератора и системой управления двигателем.Он также известен как усилитель дроссельной заслонки . Это делается на лету на дроссельной заслонке. Он принимает сигнал от педали и передает измененный сигнал системе управления двигателем. Это помогает автомобилю двигаться быстрее, двигатель предположительно реагирует быстрее, обеспечивает лучшую производительность автомобиля и помогает показать реальный и истинный потенциал автомобиля. Это также помогает устранить фактор задержки газа.

Дроссельная заслонка Fly-by-Wire

Как только эта система была открыта, каждый день появляются новые типы устройств, чтобы преодолеть недостатки прошлых продуктов, существующих на рынке.Одним из таких примеров является регулятор дроссельной заслонки . Большинство традиционных ускорителей и современных транспортных средств чувствуют необходимость использования технологии дроссельной заслонки «по проводам». Эта система обычно зависит от датчика, который измеряет положение педали. Это то, что посылает сигнал в компьютер двигателя автомобиля, который преобразует все это в ускорение. Многие из этих проводных систем имеют заметную задержку по времени, что является для них серьезным недостатком.Здесь в игру вступает контроллер дроссельной заслонки. Это позволяет человеку настраивать сигнал от педали акселератора. Это делается с помощью нескольких встроенных настроек, чтобы убедиться, что каждый найдет настройку, которая соответствует стилю вождения конкретного человека.

Повышение скорости автомобиля

Таким образом, регулятор дроссельной заслонки уникален в своем роде. Усилитель реакции дроссельной заслонки или усилитель реакции дроссельной заслонки также взял на себя большую ответственность за повышение скорости автомобилей.У него есть потенциал для передачи энергии человека на ускоритель. Он устраняет любые задержки или колебания и полностью берет на себя электронный модуль управления. Это заставляет педаль акселератора управлять, реагировать и ускоряться быстрее. Он известен тем, что меняет способ вождения автомобиля. Это не вызывает колебаний или нежелательного «запаздывания педали».

Великие инновации

С усилителем отклика дроссельной заслонки требуется около мили-секунды, чтобы нажать педаль газа для перехода от холостого хода к полностью открытой дроссельной заслонке.Это не просто начало. Благодаря усилителю отклика дроссельной заслонки человек, управляющий автомобилем, чувствует себя более мощным. Ускоритель в диапазоне низких и средних оборотов, когда большинство автомобилей проводят время на улицах. Таким образом, электронный усилитель дроссельной заслонки играет важную роль в повышении скорости любого автомобиля. Контроллер жестов, контроллер приложения Bluetooth — это также некоторые нововведения, появившиеся в современном мире, которые помогают улучшить качество вождения и гонок.

Датчик положения дроссельной заслонки

Датчики положения дроссельной заслонки являются частью систем управления подачей топлива на транспортных средствах, они входят в ассортимент нашей продукции Variohm. У нас есть ассортимент от наших проверенных поставщиков, а также ассортимент, который мы спроектировали и создали сами.

Что такое датчик положения дроссельной заслонки и для чего он нужен?

В двигателе для автоспорта — или в двигателе любого транспортного средства есть дроссельная заслонка.Дроссельная заслонка открывается при нажатии педали акселератора. Датчик положения дроссельной заслонки используется для измерения степени открытия дроссельной заслонки и, следовательно, регулирует количество воздуха, который может поступать во впускной коллектор двигателя.

Датчик положения дроссельной заслонки установлен на корпусе дроссельной заслонки и измеряет движения открытия и закрытия дроссельной заслонки, которые передаются в модуль управления двигателем, эта информация, а также другие измерения, включая: Температура, частота вращения двигателя и массовый расход воздуха (MAF) используются модулем управления двигателем для определения количества топлива, впрыскиваемого в двигатель, и момента зажигания.

Многие датчики положения дроссельной заслонки используют бесконтактную технологию, такую ​​как; Используются эффект Холла, магнитострикционные или индукционные технологии.

Какое значение имеет датчик положения дроссельной заслонки?

Без датчика положения дроссельной заслонки у модуля управления двигателем не было бы возможности контролировать количество необходимого топлива или иметь возможность рассчитывать время зажигания, эффективно вызывая помпаж или остановку двигателя, это может быть очень опасно для водителя и других лиц. пользователи дорог / гусениц.

Датчики положения дроссельной заслонки, поставляемые компанией Variohm

Многие из наших датчиков положения дроссельной заслонки обладают схожими характеристиками;

  • Простой монтаж
  • Превосходная повторяемость
  • Долгая жизнь
  • Степень защиты IP67
  • Работать в широком диапазоне температур

В нашу линейку Euro-XP добавлены дополнительные функции, в том числе:

  • Технология Холла
  • Программируемые углы от 30 до 360
  • Резервный выход
  • Короткие сроки
  • Долгая жизнь
  • Чрезвычайно прочный
  • Степень защиты IP67 / 68

Euro-XP — Программируемый датчик угла

Euro-XPK — Программируемый датчик угла наклона шайбы

Euro-XPD — Программируемый датчик угла вала D

VTP11 — также часть нашей линейки датчиков положения дроссельной заслонки, имеет следующие особенности;

  • Простой фланцевый монтаж
  • Проводящая пластиковая направляющая для прочности
  • Долгая жизнь
  • Степень защиты IP66
  • Более широкий диапазон рабочих температур
  • Отлично при вибрации

CMRK -один из наших новейших датчиков положения дроссельной заслонки и часть нашего микродиапазон.Основываясь на диапазоне диаметров 28 мм Euro-XP, диапазон CMRx может достигать всего 21,50 мм внешнего диаметра. Возможности включают;

  • Дизайн шайбы и магнита
  • Эффект Холла
  • Долгая жизнь
  • Чрезвычайно прочный
  • Степень защиты IP68
  • Резервный выход
  • Настраиваемый корпус

В дополнение к вышеперечисленным продуктам у нас также есть несколько интересных новых дизайнов, над которыми мы работаем, и они скоро появятся в продаже;

HTP11 — Новый продукт, который мы в настоящее время разрабатываем собственными силами, чтобы предоставить клиентам программируемый выход, специфичный для их приложения.

Особенности линейки HTP11;

· Простой фланцевый монтаж (доступен в PCD 32 мм и 38 мм)

.

Добавить комментарий

Ваш адрес email не будет опубликован.