Принцип сварки: Принципы дуговой сварки

Содержание

Принципы дуговой сварки

Дуговая сварка – это один из нескольких способов соединения металлов методом сплавления. Для этого в зоне соединения значительно повышают температуру, из-за чего края двух деталей плавятся и перемешиваются друг с другом или с расплавленным буферным металлом. После охлаждения и застывания между ними образуется металлургическая связь. Так как соединение представляет собой смесь металлов, чаще всего оно обладает такими же прочностными характеристиками, что и металл соединяемых деталей. Это большое преимущество над методами соединения без расплавления металлов (пайки и т. д.), которые не позволяют продублировать физические и механические характеристики основных металлов.

 

Рис. 1. Схема контура дуговой сварки

 

 

При дуговой сварке необходимое для плавления металла тепло выделяется электрической дугой. Эта дуга образуется между рабочим изделием и электродом (в виде стержня или сварочной проволоки), которую вручную или механически направляют в сварочную ванну.

Электрод может быть неплавким и служить исключительно для замыкания контура между рабочим изделием и наконечником. Также помимо переноса тока он может быть предназначен для добавления в сварочную ванну присадочного металла. В производстве металлоизделий чаще используется второй тип электродов.


Сварочный контур
Упрощенная схема сварочного контура показана на Рис. 1. Он состоит из источника постоянного или переменного тока, который подключается кабелями к свариваемой детали и электрододержателю.

Дуга возникает в момент, когда кончиком электрода прикасаются к рабочему изделию и сразу же приподнимают его от поверхности.

Температура дуги составляет около 3600ºC. Этого достаточно, чтобы расплавить основной металл и материал электрода, образуя при этом сварочную ванну, которую иногда называют «кратером». После того, как электрод переместится дальше, кратер застынет и образует сварочное соединение.


Газовая защита
Однако для соединения металлов простого перемещения электрода недостаточно. При высокой температуре металлы склонны вступать в реакцию с содержащимися в воздухе химическими элементами – кислородом и азотом. Когда расплавленный металл в сварочной ванне вступает в контакт с воздухом, в нем начинают образовываться оксиды и нитриды, из-за которых намного падают прочностные характеристики металла. Поэтому многие процессы дуговой сварки предполагают какой-либо способ изолировать дугу и сварочную ванну с помощью защитного газа, пара или шлака. Это называют защитой дуги. Такая защита предотвращает или минимизирует контакт расплавленного металла с воздухом. Кроме того, защита может улучшить сварочно-технологические характеристики. В качестве примера можно назвать гранульный флюс, который, помимо прочего, содержит деоксиданты.  

 

Рис. 2. Защита сварочной ванны с помощью покрытия электрода и слоя флюса на наплавлении.

 

На Рисунке 2 показана типичная схема газовой защиты дуги и сварочной ванны. Выступающее за границы электрода покрытие плавится в точке контакта с дугой и образует облако защитного газа, а слой флюса защищает еще не застывший металл наплавления позади дуги.

Электрическая дуга представляет сбой достаточно сложное явление. Хорошее понимание физики дуги поможет сварщику лучше контролировать свою работу.


Природа дуги

Электрическая дуга представляет собой ток через дорожку ионизированного газа между двумя электродами. При этом возникающая между отрицательно заряженным катодом и положительно заряженным анодом дуга выделяет много тепла, так как в ней постоянно сталкиваются положительные и отрицательные ионы.

В некоторых условиях сварочная дуга не только вырабатывает необходимое для плавления электрода и основного металла тепло, но и переносит расплавленный металл с кончика электрода на рабочее изделие. Существует несколько технологий переноса металла. Например, среди них можно отметить:

  1. Перенос силами поверхностного натяжения (Surface Tension Transfer®), когда капля расплавленного металла касается сварочной ванны и втягивается в нее силами поверхностного натяжения;
  2. Струйный перенос металла – когда электрический разряд выталкивает каплю из расплавленного металла на кончике электрода в сварочную ванну. Такой процесс хорошо подходит для потолочной сварки.

При использовании плавкого электрода жар от дуги расплавляет кончик электрода. От него отделяются капли металла, которые пермещаются через дугу к рабочему изделию. При использовании плавкого электрода жар от дуги расплавляет кончик электрода. От него отделяются капли металла, которые направляются через дугу к рабочему изделию. При использовании угольного или вольфрамового (TIG) электрода этого не происходит. В таком случае металл наплавления поступает в соединение из второго электрода или проволоки.

Большая часть тепла дуги поступает в сварочную ванну через расходуемые электроды. Это позволяет обеспечить более высокую термическую эффективность и сконцентрировать зону термического воздействия.

Так как для замыкания электрического контура нужна ионизированная дорожка между электродом и рабочей поверхностью, простого включения тока будет недостаточно. Необходимо «поджечь» дугу. Этого можно добиться кратковременным повышением напряжения или прикосновением электрода к контактной поверхности до тех пор, пока она не нагреется.

Для сварки может использоваться как постоянный ток (DC) прямой или обратной полярности, так и переменный (AC). Выбор рода и полярности тока зависит от конкретного процесса сварки, типа электрода, газовой среды в зоне дуги и свариваемого металла.

Принцип действия электродуговой сварки

Электродуговая сварка в настоящее время является одной из наиболее широко применяемых технологией в процессе сварки металлических элементов. Она при помощи электродугового разряда расплавляет кромки элементов, которые необходимо соединить. Для процесса сварки необходим источник питания с низким напряжением и сильным током, к которому подсоединяется сварочный электрод и свариваемая деталь.

Принцип действия дуговой электросварки: дуговой разряд преобразует электрическую энергию в тепловую. Температура достигает 3000–5500 градусов Цельсия, тогда газ в разряде переходит в ионизированные частицы, влияющие на присадочный металл. На характер разряда влияют используемый присадочный металл, характеристики электрической цепи и защитной среды. Напряжение дуги зависит от ее длины. Электродуговая сварка может быть ручной или выполняться с помощью сварочного оборудования. Ручная сварка с защитой зоны сварки является наиболее распространенным видом электросварки. Данная технология используется для сварки стали легированной и мягкой, нержавейки, чугуна и цветных металлов. Электрод представляет собой стержень диаметром до 1 см, который закрепляется электрододержателем. Затем, электрод прикасается к свариваемой детали и замыкает электрическую цепь. При этом происходит нагревание конца электрода. После этого электрод отводится от детали на 3–5 мм, и возникает дуговой разряд, который продолжает поддерживать ток в цепи. В непосредственной близости от дугового разряда происходит интенсивный нагрев и в месте стыка основной металл детали расплавляется. Конец электрода также начинает расплавляться, и оба металла соединяются в сварочной ванне.

Важно следить за тем, чтобы размер дуги не менялся, и вести электрод таким образом, вдоль кромок стыка. В процессе прохождения электрода вдоль кромок стыка образуется сварочная ванна из расплавленного основного и электродного металлов, которая сразу же затвердевает. В результате чего образуется сварочный валик по контуру сварки. В данной технологии важным является создание плотного флюса — защитной обмазки электрода, который защищает дугу и сварочную ванну от загрязнения атмосферными газами, способствует очистке сварочного металла окислителями, повышает стабильность дугового разряда и ускоряет наплавку. При работе сварочным оборудованием можно использовать переменный или постоянный ток. Также существует сварка неплавящимся электродом из вольфрама или графита, когда расплавляется только основной или дополнительный присадочный металл, сварка косвенной дугой между двумя неплавящимися электродами и сварка трехфазной дугой, которая идет между самими электродами и между электродом и основным металлом.
Двухфазные портативные сварочные трансформаторы. Плавная регулировка тока. Защита от перегрузки. Укомплектованы аксессуарами.

принципы классификации. Особенности, сферы применения

1 / 1

Мосты, корабли, самолёты – всё, чем так гордится человечество, первоначально строилось при помощи ковки либо клёпки. В конце 19-го века были проделаны первые опыты по свариванию металлов. Уже в начале 20-го века появились значительные успехи сварки в области создания ответственных конструкций.

Первый мост, созданный методом сваривания, был сделан в СССР в городе Киеве. Он соединил левый и правый берега Днепра. Мощный толчок развитию сварочных технологий, как ни странно, принесла беда. В годы Великой Отечественной Войны на заводах, эвакуированных за Урал, танки стали собирать сваркой. Время потребовало технологию быстрой и качественной сборки, и она была создана в кратчайшие сроки.

После окончания войны, необходимость быстрого восстановления страны подтолкнула внедрение сварочных технологий в различные отрасли народного хозяйства. Не осталась в стороне от этой прогрессивной технологии и космонавтика. Поскольку Советский Союз был пионером в освоении космоса, то сварка на орбите впервые в мире была произведена на советском космическом корабле «Союз-6» в 1969 году.

Именно в это время сваривание металлов прочно вошло во все отрасли народного хозяйства. Клёпка и ковка остались разве что в арсенале мастеров художественных изделий.

Дальнейшее развитие сварочных технологий в современном мире пошло в сторону улучшения самого процесса, наращивания возможностей сварочных аппаратов и расширения областей применения этой прогрессивной техники.


Принципы классификации сварки

Количество способов и видов сваривания различных материалов уверенно перевалило за полторы сотни. Для того, чтобы качественно сварить металлы, необходимо правильно выбрать метод сваривания. В этом поможет классификация видов сварки. Существует множество «самодельных» классификаций, которые создают хаос в данном вопросе и способствуют закупке оборудования, несоответствующего поставленным задачам. Единственно правильным подходом следует считать практику классифицирования по принципу осуществления физического воздействия, степени технического обеспечения и применению различных технологий.

Признаки физического воздействия

Для определения класса сварки необходимо рассмотреть форму приложенной энергии.

Различают три класса сварки:

Термический класс объединяет в себе процессы, происходящие за счёт использования различных видов тепловой энергии. Наибольший объём работ в этом классе выполняется дуговой и газовой сваркой. Эти два вида обязательны в любых производствах, связанных с созданием металлических конструкций или их ремонтом.

Термомеханический класс предполагает два вида воздействия: нагрев и давление. Ярким примером служит контактная сварка, когда электроды одновременно разогревают и сжимают детали. Гораздо реже встречаются другие представители этого класса: дугопрессовая, диффузионная и кузнечная

.

Состав механического класса не велик, но достаточно интересен. С одной стороны это экономически выгодные виды сварки, а с другой стороны, они требуют столь специфических условий, что имеют очень малую область применения. Экономическая выгода обусловлена отсутствием нагрева. К этому классу относят холодную сварку давлением (гипербарическая), сварку трением, ультразвуковую сварку и сварку взрывом.

Технические признаки

Для этой классификации задействованы такие принципы:

  • принцип защиты от окисления;

  • непрерывность процесса;

  • уровень механизации.

Качество шва зависит от степени защиты от окисления. Наиболее распространёнными считаются технологии сваривания в среде защитных газов. Часто встречается защита флюсом, пеной и различными комбинированными способами.

Классификация видов сварки по непрерывности процесса не требует особых разъяснений и имеет всего два вида: непрерывные процессы или прерывистые. По степени механизации тоже сильно не мудрили и остановились на следующем варианте классификации:

  • ручные;

  • механизированные;

  • автоматизированные;

  • автоматические.

Классификация по технологическим принципам

По технологическим принципам виды сварки классифицируются в зависимости от того, какие технологии лежат в основе процесса сваривания. Это очень разветвлённая и не лишённая противоречий классификация, которая постоянно уточняется и обновляется. Например, в отдельный вид выделена технология дуговой сварки, здесь же она разделяется на mig/mag, mma, tig, которые, в свою очередь, разделяются по виду сварочного тока, диаметру и виду электрода и многим другим признакам.

Виды сварки

Ручная дуговая сварка (MMA)

Это основа всех основ. Именно с этого вида сваривания начинался победный марш сварочных технологий по различным отраслям производства. В те времена достаточно было иметь сварочный трансформатор и пачку электродов, чтобы варить везде: от судостроения, трубопроводов, до ворот на даче. В наше время источники сварочного тока стали на порядок легче, намного экономичнее и мощнее. Разработано множество технологий сваривания в зависимости от пространственного положения шва, химического состава и толщины металла.

Основное преимущество данного вида сварки – простота и доступность оборудования, возможность выдвинуться в любую точку на местности (при наличии электросети или мобильного генератора). Из недостатков можно отметить небольшой перечень свариваемых материалов. В основном, это чёрные металлы. Как любой вид ручной работы, требует значительной квалификации сварщика. Особенно это касается сваривания потолочных и вертикальных швов, сваривания толстых листов металла.

Аргонодуговая сварка неплавящимся электродом (TIG)

Этим видом сваривания охвачено не более 1% от всей массы сварочных работ. Но обойтись без него невозможно, если речь идет о цветных металлах. Этот способ позволяет варить практически всё. Причем шов получается высочайшего качества, даже при сваривании тонких листов металла. Отсюда и область применения этого метода распространяется на судостроение, авиастроение, создание космических аппаратов. Самое массовое применение этого вида сваривания можно наблюдать в автомобилестроении и кузовном ремонте.

Сварка осуществляется вольфрамовым или графитовым электродом в среде, которая создаётся подачей защитного газа в район сварочной ванны. Применяются смеси из активных и инертных газов, в зависимости от материала свариваемых деталей. Основными недостатками этого метода принято считать значительную стоимость работ, которая складывается из дорогого оборудования, расхода газов и использования сварщиков высокой квалификации.

Полуавтоматическая сварка (MIG/MAG)

Этот вид соединения деталей очень похож на предыдущий, но в качестве электрода здесь используется специальная проволока, которая подаётся в зону сваривания автоматически. Для этого в аппаратах MIG/MAG предусмотрен подающий механизм. Защита сварочной ванны от воздействия кислорода воздуха может производиться либо подачей защитного газа, либо применением порошковой проволоки, либо флюсом. Основная область применения полуавтоматов – сваривание цветных металлов и легированных сталей.

Чаще всего в качестве защитного газа используется углекислый газ. Работа на полуавтомате не требует высокой квалификации у сварщика. Ещё один плюс этого вида – его высокая производительность. Поэтому повсеместно распространено использование этого способа на массовых производствах, где имеет место сваривание длинных швов на листовых металлах.

Газовая сварка

Этот вид сваривания имеет больше недостатков, чем преимуществ, но остаётся актуальным более 100 лет. Сразу хочется отметить те преимущества, которые позволяют ему оставаться на плаву:

  • простота оборудования;

  • высокая мобильность;

  • широчайший перечень свариваемых материалов;

  • сварка и резка «в одном флаконе».

Недостатки, которые сдерживают её применение на производстве, в основном, определяются неизбежно широкой зоной нагрева. Из-за этого процессы происходят медленно с большим расходом газа, что сказывается на себестоимости работ. Ещё один минус – это невозможность автоматизации таких процессов и как следствие — необходимость высокой квалификации сварщика.

Точечная (контактная) сварка

В более широком понимании эта сварка называется контактной, но большее распространение получила одна из её разновидностей – точечная сварка, поэтому в обиходе этот вид соединения деталей называют точечной сваркой. Чаще всего, таким образом сваривают листовую сталь. Листы укладывают внахлёст, сильно сдавливают электродами, по которым пропускается электрический ток в тысячи ампер.

Этот вид не требует особой рабочей квалификации, но невозможен без дорогого оборудования и ограничен в толщине и форме соединяемых деталей. Зато точечная сварка хорошо автоматизируется и имеет высокую производительность. Наибольшее распространение она получила на массовых производствах, конвейерных линиях. Самый яркий и весомый пример – сварочные роботы в автомобильной промышленности.

Механическая сварка

Чаще её называют сваркой взрывом. С её помощью покрывают одни металлы другими. Выполняется за счёт нагрева, который образуется при трении одного металла о другой.

Электрошлаковая сварка

Очень редкий вид, применяется для получения ковано-сварных изделий. Сварочный ток пропускают через шлак, используя в качестве электродов проволоку, стержни и т.п. Результатом прохождения тока получается плавление кромок и присадочных материалов, которые при остывании образуют шов.

Плазменная сварка

Один из тепловых видов сваривания и резки металлов. Очень производительный вид, поддающийся полной автоматизации. Характеристика плазмотрона позволяет создать мощный концентрированный поток плазмы, которым и производится сваривание (чаще резка) металла.

Электронно-лучевая сварка

В этом виде сваривания тепло создаётся электронным лучом. Понятно, что работы должны проводиться в вакуумной камере или на выходе из неё. Вид очень редкий, требует специального дорогого оборудования и применяется в редких случаях.

Лазерная сварка

В отличие от предыдущего вида, лазерная сварка нашла широкое применение в различных отраслях промышленности. Созданы разные типы лазеров (твердотельные, газовые, жидкостные, полупроводниковые), доступные широким слоям населения. Кроме промышленных установок, имеется большое количество самодельных станков с ЧПУ, созданных на основе лазера и микроконтроллерного управления.

Диффузионная сварка

Одна из разновидностей тепломеханической сварки. Детали разогревают и сдавливают одновременно. Для качественного прохождения процессов необходим вакуум. Как следствие, возникает необходимость создания дорогих установок, поэтому применяется только в очень ответственных узлах космической, авиационной и электронной промышленности.

Сварка высокочастотными токами

Специфический вид создания неразъёмных соединений, который традиционно закрепился на автоматизированных линиях по изготовлению трубопроводов. Очень высокопроизводительный и максимально автоматизированный метод. К месту сваривания труб подводится специальный высокочастотный индуктор и через несколько секунд разогретые токами высокой частоты трубы соединены. Ни огня, ни копоти.

Правильный выбор – основа успеха

Автоматическая сварка – основы и принцип работы

   Автоматической дуговой сваркой, называется такой вид сварки, при котором подача электрода в дугу  и его перемещение, соответственно, и перемещение дуги по линии сварки, происходит в автоматическом, механизированном режиме. Если же в процессе сварки предусмотрена только подача проволоки, при этом дуга перемещается вручную, такая сварка считается полуавтоматической. В принципе, это единственное различие между этими двумя видами сварки, так что в самом технологическом процессе сварки, нет никаких отличий. Но, мы остановимся на автоматической сварке, и посмотрим на нее поближе.

   Сегодня, процесс механизации автоматической сварки является одним из самых важных достижений в современной сварочной технике, и в целом, в сварочном производстве. В сравнении с автоматической сваркой, все остальные виды являются слишком трудоемкими. Вот, например, ручная дуговая сварка – она требует большого числа квалифицированных работников, поэтому сравнительно дорогостоящая, а кроме того, применение ручной сварки не гарантирует однородности выпускаемых продуктов. Поэтому, на важных технических предприятиях, где продукция подлежит тщательной проверке, обязательно применяется автоматическая сварка.

Схема для сваривания под флюсом: А – сварная головка; Б – механизм для перемещения; I, II, III – различные поперечные сечения.

  Итак, о принципе работы автоматической сварки. Так, через передаточный механизм и специальные ведущие ролики, которые соединены с приводом электродвигателя, подается проволока. После того, как проволока преодолела эти ведущие ролики, а также специальный механизм, исправляющий ее кривизну (ведь проволока ранее была намотана на бухту), она попадает в специальный мундштук, или, так называемый, токопровод автомата, в котором прижимается к токоведущим контактам, и начинает по ним скользить, параллельно проводя сварочный ток, который питает дугу. При этом важно расстояние между токоведущими контактами и дугой – оно небольшое, всего пару сантиметров, поэтому это позволяет работать автомату непрерывно, с так называемым, возобновляемым электродом. Автомат подает проволоку самостоятельно, с одинаковой скоростью, причем при остановке процесса, подача прекращается, при начале – соответственно, возобновляется.

   Если же по каким-то причинам, длина дуги увеличивается, скорость подачи проволоки также возрастает, поэтому длина дуги, и ее напряжение, стабилизируются до нормальных значений. Если же во время сварки возникает короткое замыкание, напряжение дуги падает практически до нуля, поэтому в этот момент направление подачи проволоки меняется на противоположное – проволока отдергивается. Таким образом, сварочный процесс начинается сначала, и при возобновлении дуги, проволока подается как обычно. Механическое передвижение электрода происходит при помощи специальных автоматизированных механизмов, которые программируются под специальную траекторию движения сварки.

   Что ж, мы рассмотрели механику работы автоматической сварки. Стоит отметить, что подробная работа автоматической сварки очень трудоемка и сложна для понимания, поэтому для начала важно знать основной принцип работы такой сварки, и тогда самые сложные технологические процессы, будут осознаваться безо всякого труда.

классификация и характеристика способов сварки

Сварочное соединение считается одним из самых прочных, поэтому используется в строительстве, изготовлении техники и других областях. Но видов сварки существует несколько. Принцип действия везде один — разогрев двух сторон металла до перемешивания состава, чтобы получилась общая молекулярная решетка. Достигается это разными методами. Рассмотрим, какие бывают виды сварки металлов, чтобы лучше ориентироваться при выборе сварочного оборудования.

В этой статье:


Термитная сварка

Соединение металлов осуществляется путем разогрева кромок при помощи термита. Это специальный порошок, состоящий из мелкой фракции алюминия и железной окалины. Вместо алюминия допустимо применение в составе магния.

Суть термитной сварки состоит в сведении двух сторон изделия, между которыми предусматривается зазор. Концы помещаются в огнеупорную форму, изолирующую металл от внешней среды и задающую ширину и высоту сварочного соединения. К форме подведен бункер (тигль) с термитным порошком.

Стороны изделия предварительно разогревают. Обычно используют пропано-кислородное или керосино-кислородное пламя. После этого термит поджигают в бункере пламенем или запалом и накрывают крышкой. Одновременно открывают подачу из бункера снизу в зону стыковки.

Жидкий металл заливает форму и расплавляет собой окончательно кромки. Происходит сваривание сторон. Затем выжидают, пока изделие не остынет, и убирают форму. На поверхности возможны неровности, наплывы, поэтому может потребоваться механическая обработка.

Термическая сварка применяется для соединения:

  • рельс;
  • труб;
  • контуров заземления;
  • наплавки металлов;
  • заполнения трещин.
  • Подходит для сварки углеродистых сталей и чугуна толщиной 10-15 см. В миниатюрном варианте таким методом сплавляют кабеля и провода. Технология позволяет соединять металлы большого сечения в труднодоступных местах, экономит время. Но швы получаются очень грубыми и нуждаются в шлифовке, поэтому для фасадной части изделий не подходят.

    Чаще всего при помощи термитной сварки ремонтируют железнодорожные пути. Соединения выполняют по ГОСТ Р 57179-2016, а стыки обозначаются аббревиатурой «ССР» — «стыковое соединение рельсов».

    Электродуговая контактная сварка

    Сварка электрической дугой является одной из самых распространенных, поскольку подходит для соединения большинства типов металлов и проста в реализации. Все подвиды электродуговой сварки имеют общий принцип — задействуется ток с пониженным напряжением (для безопасности сварщика) и повышенной силой (для расплавления металла).

    Между положительным и отрицательным концами, подключенными к источнику тока, при касании, возбуждается электрическая дуга. Если удерживать зазор между полюсами в 3-5 мм, дуга горит стабильно и выделяет температуру до 5000º С. Этого достаточно, чтобы плавить кромки основного металла. Способ защиты сварочной ванны и заполнение стыка осуществляются по-разному, от чего электродуговая контактная сварка делится на несколько разновидностей.

    Ручная дуговая сварка (ММА, РДС)

    В международной системе классификации обозначается как ММА — Manual Metal Arc. Наиболее бюджетный способ сварки, поскольку аппараты ММА стоят дешевле остальных. Подходит для работ в гараже, на даче и для неответственных соединений на производстве. Электрическая дуга горит здесь между изделием и концом плавящегося электрода, размещенного в держателе.

    Электрод состоит из металлического стержня и обмазки. Стержень тоже плавится от температуры дуги и жидкий металл переносится на изделие, заполняя стык. Обмазка выступает в качестве защиты жидкой сварочной ванны. Покрытие электрода плавится, создавая газовое облако, препятствующее воздействию внешней среды.

    Сварщик манипулирует держателем и электродом, задавая ширину, высоту шва и глубину проплавления. Электрод постоянно укорачивается, поэтому требуется навык, чтобы научиться удерживать зазор между концом электрода и изделием в пределах 3-5 мм.

    После остывания соединения на поверхности образуется шлаковая корка. Она удаляется шлакоотделителем и шов осматривается на предмет дефектов. Выполняется ММА сварка на переменном или постоянном токе, для чего задействуются трансформаторы или инверторы, выпрямители.

    При помощи ручной дуговой сварки (РДС) можно соединять:

  • мало- и высокоуглеродистые стали;
  • чугун;
  • нержавеющую сталь;
  • алюминий.
  • Для создания однородного шва используются электроды с аналогичным составом стержня. Сварка возможна во всех пространственных положениях, но отличается низкой производительностью. Возможно сваривание сторон толщиной до 30 мм с глубокой разделкой кромок.

    Аргоновая сварка (TIG)

    В международной системе прописывается TIG — Tungsten Inert Gas. При аргонодуговой сварке электрическая дуга горит между концом вольфрамового электрода и изделием. Сварщик манипулирует горелкой. Вольфрамовый электрод не плавится, поэтому зазор выдерживать легче. Защита сварочной ванны осуществляется путем подачи аргона от баллона, через редуктор в горелку. Газ запускается за полсекунды до начала сварки и продолжает дуть еще пару секунд после. Это надежно изолирует расплавленый металла от внешнего воздействия.

    Для заполнения зазоров и увеличения высоты сварочного шва используется присадочная проволока или присадочные прутки. Они должны быть из такого же сплава, что и основной металл. На плотно сведенных сторонах листовых сталей 1.0-1.5 мм возможна сварка без присадки, если на изделие не будут оказываться высокие механические нагрузки.

    За счет остро заточенной вольфрамовой иглы сварочные швы получаются узкими и аккуратными, поэтому после наложения часто не нуждаются в обработке. Толщина проплавления зависит от силы тока. Самые мощные аппараты для аргоновой сварки выдают 400 А, чего хватит для сваривания деталей толщиной 30 мм. В таком случае применяются горелки с водяным охлаждением. При сварке тонких сталей до 5 мм подойдут аппараты с воздушным охлаждением.

    Аргоновой сваркой соединяют:

  • черные металлы;
  • легированные стали;
  • алюминий;
  • титан;
  • медь.
  • Аргоно-дуговая сварка обеспечивает высокое качество проплавления и универсальна по свариваемым материалам. Возможна на переменном или постоянном токе, швы не нуждаются в зачистке, но стоят аппараты для TIG сварки дороже, чем для ММА.

    Сварка полуавтоматом (MIG/MAG)

    Сварка полуавтоматом имеет два обозначения в международной системе. MIG подразумевает защиту сварочной ванны инертным газом (Manual Inert Gas), а MAG — защиту активным газом (Manual Active Gas). К инертным газам относятся аргон и гелий, к активным — углекислота. Возможна сварка смесью аргона 80% и углекислоты 20%.

    При сварке полуавтоматом дуга горит между концом проволоки и изделием. Проволока подается через горелку. Задействуется подающий механизм с роликами (чаще всего толкательный, хотя бывает и тянущий), барабан, катушка. Возможна установка кассеты весом 1-15 кг, что зависит от вместимости отсека полуавтомата.

    Проволока одновременно выступает присадочным материалом. Поскольку подается она автоматически, то сварщику только остается управлять горелкой, задавая ширину и высоту шва. На аппарате есть регулировка силы тока и скорости подачи проволоки. Сварка ведется постоянным током, но есть модели AC/DC.

    Полуавтоматы бывают моноблочными и с раздельным исполнением источника тока и подающего механизма. Есть оборудование с жидкостным и водяным охлаждением. Максимальная сила тока возможна до 500 А. Благодаря полуавтоматической сварке швы качественные, аккуратные, не нуждаются в зачистке, а скорость выполнения высокая. При установке соответствующей проволоки, MIG сваркой соединяют:

  • черные металлы;
  • легированную сталь;
  • алюминий.
  • Существует разновидность полуавтоматической сварки без газа. Тогда сварочная ванна защищается газом от порошка, расположенного в полой части проволоки. Порошковая проволока позволяет выполнять соединение металлов, не используя громоздкий баллон, что упрощает транспортировку. Но качество швов порошковой проволокой значительно проигрывает сварке в газовой среде, поэтому подходит только для неответственных изделий или применения в полевых условиях, труднодоступных местах.

    Сварка под флюсом

    Стандарты флюсовой сварки прописаны в ГОСТ 8713-79. Дуга в сварке под флюсом горит между концом проволоки и изделием. Проволока служит электродом и присадочным материалом, подаваясь автоматически от барабана. Впереди сварочной головки движется бункер, из которого подается флюс.

    Флюс — это гранулированное вещество для защиты сварочной ванны. Оно плавится и выделяет газ, отталкивающий воздух. Дуга горит в слое порошка, поэтому искры практически не вырываются на поверхность, обеспечивается минимальное разбрызгивание металла. Есть модели, которые после сварочной головки имеют всасывающее сопло. Оно снимает флюс с уже наложенного шва, чем достигается экономия расходного материала и очищение поверхности. Флюсы различаются по составу (высококремниевые, низкокремнистые, безкремнистые), что определяет их пригодность для сварки конкретных металлов.

    Сварка под флюсом бывает автоматическая и полуавтоматическая. Сварочное исполнительное устройство (каретка) перемещается по изделию при помощи роликов, цепи. Источник тока располагается рядом на стационарном месте и связан с кареткой кабелями. Технология применяется для соединения труб большого диаметра, прокладки магистралей.

    Газопламенная сварка

    Ведется при помощи пламени от горелки. Для создания пламени используется ацетилен или пропан (в качестве горючего газа) и кислород (для увеличения мощности пламени). Температура факела достигает 2800-3100º С, что позволяет плавить кромки металла. Для заполнения сварочной ванны используется присадочная проволока, подающаяся свободной рукой сварщика.

    Газовой сваркой чаще всего соединяют черные металлы, трубы, латают емкости. Энергонезависимость разрешает применять сварку в полевых условиях, на крышах, в тоннелях, подвалах. Подключение к баллонам выполняется через редукторы с манометрами. У кислородного редуктора манометров два — высокого и низкого давления. Потребуются дополнительные комплектующие (шланги, мундштуки, ниппели), чтобы все соединить в одну систему.

    Горелки рабочей части и диаметру сопла:

  • Для сварки труб используют небольшие модели с длиной 40 см.
  • Для разогрева битума при укладке рубероида нужны длинные версии до 90 см.
  • Ювелирная сварка выполняется маленькими горелками длиной 16 см.

  • Электрошлаковая сварка

    Суть электрошлаковой сварки заключается в соединении двух сторон металла за счет тепла, выделяемого шлаковой ванной. Для этого зону стыковки заполняют токопроводящим флюсом. К нему подводится сварочный электрод (проволока), который разогревает флюс, образуя жидкий шлак. Электрод продолжает проводить ток, будучи погруженным в сварочную шлаковую ванну. Метод бездуговой. Температура повышается и кромки металла сплавляются между собой.

    Диапазон толщины свариваемых металлов таким методом составляет 20-3000 мм. Шлаковой сваркой можно соединять:

  • алюминий;
  • никель;
  • медь;
  • жаропрочные стали;
  • титан.
  • Задействуется технология в химической промышленности, машиностроении, кораблестроении, авиационной промышленности.

    Плазменная сварка

    Для расплавления кромок и присадочного металла используется плазма. Оборудование состоит из источника постоянного тока, газового аргонового баллона, плазмотрона. Для отвода лишнего тепла от сопла плазмотрона (горелки), нередко предусматривается водяное охлаждение.

    Газ подается в плазмотрон и нагревается электрической дугой. Благодаря этому он увеличивается в объеме до 100 раз. За счет теплового расширения он начинает истекать из сопла на высокой скорости. Это и есть плазма. Ее температура составляет 30 000º С, что превосходит характеристики других методов сварки.

    По реализации технологии возможно два варианта:

  • горение плазменной дуги между плазмотроном и изделием;
  • горение дуги между двумя неплавящимися электродами плазмотрона и выдувание плазмы газовой струей.
  • При помощи плазменной сварки соединяют металлы толщиной до 9 мм во всех пространственных положениях. Метод подходит для сваривания:

  • молибдена;
  • вольфрама;
  • никеля — тех металлов, которые соединить другим способом невозможно из-за высокой температуры плавления.

  • Термомеханический класс сварки

    Все перечисленные выше виды сварки относятся к термическому классу. В них соединение сторон осуществляется за счет высокой температуры, вырабатываемой дугой, пламенем или прохождением тока.

    Существует еще термомеханический класс, где воздействие теплом комбинируется с давлением или прижатием. К таким видам сварки относятся: контактная стыковая, газопрессовая, диффузионная. Кромки металла разогреваются прохождением тока, за счет возросшего сопротивления в зоне контакта двух сторон, а затем дополнительно сдавливаются для лучшего соединения. Это образует сплошной, прочный шов. Нагрев может быть местным или общим. Метод применяется при выпуске металлопроката, кузнечной продукции, сборки конструкций.

    Источник видео: FUBAG

    Ответы на вопросы: какие виды сварки бывают: способы и классификации

    Какой вид сварки легче всего освоить? СкрытьПодробнее

    Легче всего научиться варить полуавтоматом. Проволока подается автоматически, вылет электрода постоянный, хорошо видно сварочную ванну (нет шлака).

    Какой аппарат купить для гаража, дачи? СкрытьПодробнее

    Зависит от будущих решаемых задач. Для сварки мангала, калитки — хватит простого ММА инвертора. Чтобы варить двери, ворота, теплицы — купите полуавтомат MIG. Если предстоит работать с нержавейкой или алюминием, используйте инвертор TIG AC/DC.

    Существуют ли универсальные аппараты? СкрытьПодробнее

    Да, есть сварочное оборудование 2 в 1 или 3 в 1. В них сочетается ММА с MIG или TIG, или все три режима сразу. Купив такой аппарат, можно легко переключаться с одной задачи по сварке на другую.

    Чем газовая сварка пропаном отличается от сварки ацетиленом? СкрытьПодробнее

    По принципу выполнения — ничем. По характеристикам — у ацетилена температура факела достигает 3100 градусов, а у пропана — 2800º С. Если предстоит варить толстые металлы 4-5 мм — используйте ацетилен. Для сварки тонких трубок больше подойдет пропан

    Взаимозаменяемы ли пропановая и ацетиленовые горелки? СкрытьПодробнее

    Нет! У них разная форма мундштуков.

    Остались вопросы

    Оставьте Ваши контактные данные и мы свяжемся с Вами в ближайшее время

    Обратная связь


    Принцип сварки металла электронным лучом в вакууме (1 часть)

    Сущность процесса сварки электронным лучом в вакууме состоит в использовании кинетической энергии электронов, быстродвижущихся в глубоком вакууме. При бомбардировке электронами поверхности металла подавляющая часть кинетической энергии электронов превращается в теплоту, которая и используется для расплавления металла.

    Для сварки необходимо получить свободные электроны, сконцентрировать и сообщить им большую скорость, с целью увеличения их энергии, которая должна превратиться в теплоту при торможении электронов в свариваемом металле.

    Получение свободных электронов достигается применением раскаленного металлического катода, эмитирующего электроны. Ускорение электронов обеспечивается электрическим полем с высокой разностью потенциалов между катодом и анодом. Фокусировка — концентрация электронов достигается использованием магнитных полей. Резкое торможение электронного потока происходит автоматически при внедрений электронов в металл.

    Рис.70. Изменение температуры в слое вещества с увеличением времени импульса т2 > т1 х2 < х1

    Рис.71. Физическая картина явлений, сопровождающих проникновение электронов в вещество:1 —молекулы металла; 2 — ионы; 3 — луч; 4 — рентгеновское излучение;5—отраженные и вторичные термоэлектроны 6—тепловое излучение

    Электронный луч, используемый для сварки, создается с специальном приборе — электронной пушке.

    Электронная пушка представляет собой устройство, с помощью которого получают узкие электронные пучки с большой плотностью энергии (рис. 72). Пушка имеет катод 1, который может нагреваться до высоких температур. Катод размещен внутри прикатодного электрода 2. На некотором удалении от катода находится ускоряющий электрод (анод) 3 с отверстием. Прикатодный и ускоряющий электроды имеют форму, обеспечивающую такое строение электрического поля между ними, которое фокусирует электроны в пучок с диаметром, равным диаметру отверстия в аноде. Положительный потенциал ускоряющего электрода может достигать нескольких десятков тысяч вольт, поэтому электроны, эмитированные катодом, на пути к аноду приобретают значительную скорость и энергию.

    После ускоряющего электрода электроны двигаются равномерно. Питание пушки электрической энергией осуществляется от высоковольтного источника 7 постоянного тока. Электроны имеют одинаковый заряд, поэтому они отталкиваются друг от друга, вследствие чего диаметр пучка увеличивается, а плотность энергии в пучке уменьшается.

    Для увеличения плотности энергии в луче после выхода электронов из первого анода электроны фокусируются магнитным полем в специальной магнитной линзе 4. Сфокусированные в плотный пучок летящие электроны ударяются с большой скоростью о малую, резко ограниченную площадку на изделии 6, при этом кинетическая энергия электронов, вследствие торможения в веществе, превращается в теплоту, нагревая металл до очень высоких температур.

    Для перемещения луча по свариваемому изделию на пути электронов помещают — магнитную отклоняющую систему 5, позволяющую устанавливать электронный луч точно по линии сварки.

    Для обеспечения свободного движения электронов от катода к аноду и далее к изделию, для тепловой и химической изоляции катода, а также для предотвращения возможности возникновения дугового разряда между электродами в установке создается глубокий вакуум порядка 10-4 мм рт. ст. (133х10-4 Н/м2), обеспечиваемый насосной системой установки.

    Движение электронов в вакууме не сопровождается световыми эффектами и поэтому луч не виден, но его действие на вещество можно наблюдать по нагреву места бомбардировки, свечению люминофоров и т. п.

    Плотность энергии в источнике нагрева определяет его эффективный коэффициент использования теплоты, форму провара, размеры зоны термического влияния и другие параметры. Электронный луч — наиболее эффективный источник нагрева металла при сварке, поскольку плотность энергии в луче не более чем на два порядка превосходит плотность энергии электрической сварочной дуги.

    На рис. 73 по оси абсцисс отложены диаметры (d0) эффективных пятен нагрева, характеризующие возможность использования источника теплоты для сварки микроизделий.

    Рис.72. Схема установки для сварки электронным лучом

    Рис.73. Плотность энергии и диаметр пятна нагрева для различных источников теплоты: ГП — газовое пламя; ДПС — дуговая плазма; СД — сварочная дуга; ЭЛ—электронный луч; ОКГ— оптический квантовый генератор

    Виды и принцип работы электросварки

    Сварка является технологическим процессом для получения неразъемных соединений материалов с помощью установления межатомных связей между свариваемыми металлами. С помощью сваривания соединяют однородные и разнородные металлы, а также материалы, содержащие неметаллические элементы.Сварочный процесс экономически выгоден и значительно производительнее, чем другие процессы со схожим результатом работы.

    При сваривании электросваркой, тепло, которое необходимо для расплавления металла, получается в результате образования электрической дуги. Расплавленный металл обеих деталей смешивается, образовывая однородную массу в сварочной ванне. Таким способом при затвердевании металла образовывается сварочный шов.

    Стальные электроды для сварки электросваркой содержат в своем составе специальное покрытие, которое при плавлении создает защиту для ванночки в виде шлака и различных газов. При сваривании электрической сваркой необходима защита от азота и других газов, содержащихся в атмосфере.

    Для поддержания электрической дуги на сварочный электрод и свариваемую деталь подается электроэнергия от сварочного аппарата. Под воздействием температуры, которая возникает от дуги, края электрода и свариваемого металла начинают плавиться.

    В этом случае образовывается сварочная ванночка, которая некоторое время остается расплавленной. Температура дуги внутри ванночки составляет около 4 000 градусов по Цельсию. В данной ванночке металл хорошо расплавляется и сплавляется с расплавленным металлом другого изделия. При плавлении шлак всплывает и образовывает защитное покрытие. Энергия, благодаря которой возможно горение сварочной дуги, получается от специального трансформатора.

    На сегодняшний день электрическую сварку производят с применением постоянного и переменного тока. При сваривании металлических деталей с помощью постоянного тока применяются специальные выпрямители. Однако в этом случае могут использоваться и преобразователи.

    При сваривании переменным током используются сварочные трансформаторы со специальной конструкцией. Чаще всего в этом случае применяется электрическая дуговая сварка с использованием плавящегося электрода. Данный вид сваривания является наиболее распространенным. Такую сварку используют для наплавки самых разнообразных легированных и углеродистых сталей, чугуна и цветных металлов.

    При сваривании электрической сваркой нужно учитывать то, что сварочная дуга должна быть как можно короче. Дуга дает небольшое количество мелких металлических капель. Помимо этого электрод плавится в спокойном темпе и дает ровный пучок искр. В таком случае глубина проплавления металла становится большей. Если ручное электросваривание не обеспечивает достаточную глубину проплавки, то при плавлении сварочный электрод будет окисляться и сильно разбрызгиваться, понижая качество сварочного шва.


    Принципы сварки | Что такое сварка? | Основы автоматизированной сварки

    На этой странице в качестве примеров объясняются принципы сварки плавлением, сварки давлением и пайки / пайки посредством дуговой сварки, точечной контактной сварки и пайки.

    Обязательно к прочтению всем, кто занимается сваркой! Это руководство включает в себя базовые знания о сварке, такие как типы и механизмы сварки, а также подробные знания, касающиеся автоматизации сварки и устранения неисправностей.Скачать

    Сварка плавлением — это наиболее распространенный метод сварки.
    Сварка плавлением — это процесс сварки путем плавления одного или обоих из основного материала и присадочного материала.
    Дуговая сварка — распространенный пример сварки плавлением. Дуговая сварка и лазерная сварка обычно используются для автоматической сварки с использованием манипуляторов. На сложных линиях сборки продукции, например, для автомобильных деталей, в зависимости от характеристик или условий технологического процесса используются роботизированная сварка и сварка людей.

    Дуговая сварка

    Сварку давлением можно разделить на три типа: сварка трением использует свойство, при котором, когда материал деформируется под действием определенной силы, деформация сохраняется даже после ее устранения (пластичность). Сварка под давлением в газе соединяет два основных материала, приводя их в контакт под давлением и нагревая их газом. Точечная сварка сопротивлением соединяет два основных материала, удерживая их вместе и проводя электрический ток, чтобы нагреть их теплом, выделяемым электрическим сопротивлением.
    Поскольку точечную сварку трением и сопротивлением можно автоматизировать без вмешательства человека, они широко используются в автоматах для сварки давлением на объектах FA (автоматизация производства).

    Точечная контактная сварка
    1. Сила давления
    2. Протекание электрического тока
    3. Электроды
    4. Сварочные материалы

    Пайка / пайка — это метод соединения основных материалов с использованием присадочного материала (паяльной пасты), который имеет более низкую температуру плавления (точку плавления).Присадочные материалы были смешаны с флюсом, чтобы предотвратить плавление основного материала и обеспечить надлежащее соединение с основным материалом.
    Присадочные материалы должны иметь не только температуру плавления ниже, чем у основного материала, но также обеспечивать высокое сродство для обеспечения атомной связи между расплавленным наполнителем и основными материалами.

    В зависимости от соединяемых материалов используются различные присадочные материалы, такие как алюминий, серебро, фосфорная медь и латунь.Мягкие присадочные материалы с низкой температурой плавления, такие как цинк, свинец, олово и сплавы олово-свинец, обычно называют припоями.
    Поскольку пайка и пайка позволяют легко соединять металлы, она широко используется в производстве товаров народного потребления, изобразительного искусства и ремесел, а также в стоматологии. Пайка, которая использует проводимость присадочных материалов, используется для электронных схем или других устройств в различных отраслях промышленности, от бытовой техники, авиации, ядерной энергетики и химического оборудования.

    1. Присадочный материал или припой
    2. Присоединенная секция

    Дом

    Что такое сварка? — Определение, процессы и типы сварных швов

    Соединение металлов

    В отличие от пайки и пайки, при которых не плавится основной металл, сварка представляет собой процесс с высокой температурой плавления основного материала.Обычно с добавлением наполнителя.

    Нагрев при высокой температуре вызывает образование сварочной ванны из расплавленного материала, которая охлаждается, образуя соединение, которое может быть прочнее, чем основной металл. Давление также можно использовать для создания сварного шва, либо вместе с нагревом, либо отдельно.

    Он также может использовать защитный газ для защиты расплавленного металла и присадочного металла от загрязнения или окисления.

    Соединение пластмасс

    При сварке пластмасс также используется тепло для соединения материалов (но не в случае сварки растворителем), и выполняется в три этапа.

    Во-первых, поверхности подготавливаются перед приложением тепла и давления и, наконец, материалам дают остыть для плавления. Способы соединения пластмасс можно разделить на методы внешнего и внутреннего нагрева, в зависимости от конкретного используемого процесса.

    Соединение дерева

    При сварке древесины для соединения материалов используется тепло, выделяемое трением. Соединяемые материалы подвергаются сильному давлению, прежде чем линейное движение трения создает тепло для соединения деталей друг с другом.

    Это быстрый процесс, который позволяет соединить древесину без клея и гвоздей за считанные секунды.

    стыковое соединение

    Соединение между концами или краями двух частей, образующих угол между собой 135–180 ° включительно в области соединения.

    Т-шарнир

    Соединение между концом или краем одной части и лицевой стороной другой части, при этом части составляют угол друг с другом от более 5 до 90 ° включительно в области соединения.

    Угловой шарнир

    Соединение между концами или краями двух частей, образующих угол друг к другу более 30, но менее 135 ° в области соединения.

    Кромочный стык

    Соединение краев двух частей под углом друг к другу от 0 до 30 ° включительно в области стыка.

    Крестообразный шарнир

    Соединение, в котором две плоские пластины или два стержня приварены к другой плоской пластине под прямым углом и на одной оси.

    Lap Joint

    Соединение между двумя перекрывающимися частями, образующими угол между собой 0-5 ° включительно в области сварного шва или сварных швов.

    Сварные швы на основе конфигурации

    Сварка с пазом

    Соединение между двумя перекрывающимися компонентами, выполненное путем наложения углового сварного шва по периферии отверстия в одном компоненте, чтобы соединить его с поверхностью другого компонента, открытой через отверстие.

    Электрозаклепка

    Сварка, выполненная путем заполнения отверстия в одном компоненте заготовки присадочным металлом так, чтобы соединить его с поверхностью перекрывающегося компонента, открытого через отверстие (отверстие может быть круглым или овальным).

    На основе проникновения

    Сварной шов с полным проплавлением

    Сварное соединение, в котором металл шва полностью проникает в соединение с полным проплавлением корня. В США предпочтительным термином является шов с полным проплавлением (CJP, см. AWS D1.1).

    Сварной шов с частичным проплавлением

    Сварной шов, в котором проплавление намеренно меньше полного проплавления. В США предпочтительным термином является шов с частичным проплавлением (PJP).

    Сварные швы с учетом доступности

    Характеристики завершенных сварных швов

    Под сварку встык

    Угловой шов

    Основной металл

    Металл, соединяемый или покрываемый сваркой, пайкой или пайкой.

    Присадочный металл

    Металл, добавленный во время сварки, пайки твердым припоем или наплавки.

    Сварной металл

    Весь металл расплавился во время сварки и остался в сварном шве.

    Зона теплового воздействия (HAZ)

    Часть основного металла, подвергшаяся металлургическому воздействию тепла сварного шва или термической резки, но не расплавленная.

    Линия Fusion

    Граница между металлом шва и ЗТВ при сварке плавлением. Это нестандартный термин для обозначения сварного соединения.

    Зона сварки

    Зона, содержащая металл шва и ЗТВ.

    Поверхность сварного шва

    Поверхность сварного шва, открытая со стороны, с которой он был выполнен.

    Корень сварного шва

    Зона на стороне первого участка, наиболее удаленной от сварщика.

    Носок под приварку

    Граница между поверхностью шва и основным металлом или между прогонами. Это очень важная особенность сварного шва, так как пальцы ног являются точками высокой концентрации напряжений и часто являются точками зарождения различных типов трещин (например, усталостных трещин, холодных трещин).

    Чтобы снизить концентрацию напряжения, пальцы ног должны плавно переходить в основную металлическую поверхность.

    Избыток металла сварного шва

    Металл сварного шва, лежащий вне плоскости, соединяющей пальцы ног. Другие нестандартные термины для этой особенности: армирование, перелив.

    Примечание: термин «армирование», хотя и обычно используется, не подходит, потому что любой избыток сварочного металла над поверхностью основного металла и над ним не делает соединение более прочным.

    Фактически, толщина, учитываемая при проектировании сварного компонента, является расчетной толщиной горловины, которая не включает излишек металла сварного шва.

    Пробег (проход)

    Металл расплавился или выпал во время одного прохода электрода, горелки или выдувной трубки.

    Слой

    Слой металла шва, состоящий из одного или нескольких прогонов.

    Различные процессы зависят от используемого источника энергии с использованием множества различных доступных методов.

    До конца XIX века кузнечная сварка была единственным методом, который использовался, но с тех пор были разработаны более поздние процессы, такие как дуговая сварка.Современные методы используют газовое пламя, электрическую дугу, лазеры, электронный луч, трение и даже ультразвук для соединения материалов.

    Необходимо соблюдать осторожность при использовании этих процессов, поскольку они могут привести к ожогам, поражению электрическим током, повреждению зрения, воздействию радиации или вдыханию ядовитых сварочных паров и газов.

    Существует множество различных процессов со своими собственными технологиями и приложениями для промышленности, к ним относятся:

    Arc

    Эта категория включает ряд общих ручных, полуавтоматических и автоматических процессов.К ним относятся сварка металла в среде инертного газа (MIG), сварка штучной сваркой, сварка вольфрамовым электродом в среде инертного газа (TIG), также известная как дуговая сварка вольфрамовым электродом (GTAW), газовая сварка, сварка в среде активного газа (MAG), дуговая сварка порошковой проволокой (FCAW), газовая дуговая сварка металлическим электродом (GMAW), дуговая сварка под флюсом (SAW), дуговая сварка металлическим электродом в защитных оболочках (SMAW) и плазменная сварка.

    В этих технологиях обычно используется присадочный материал, и они в основном используются для соединения металлов, включая нержавеющую сталь, алюминий, никель и медные сплавы, кобальт и титан.Процессы дуговой сварки широко используются в таких отраслях, как нефтегазовая, энергетическая, аэрокосмическая, автомобильная и др.

    Трение

    Сварка трением соединяет материалы с использованием механического трения. Это можно сделать различными способами на различных сварочных материалах, включая сталь, алюминий или даже дерево.

    При механическом трении выделяется тепло, которое смягчает смешанные материалы, создавая связь по мере их охлаждения. Способ соединения зависит от точного используемого процесса, например, сварка трением с перемешиванием (FSW), точечная сварка трением с перемешиванием (FSSW), линейная сварка трением (LFW) и ротационная сварка трением (RFW).

    Сварка трением не требует использования присадочных металлов, флюса или защитного газа.

    Трение часто используется в аэрокосмической отрасли, поскольку оно идеально подходит для соединения легких алюминиевых сплавов, которые иначе не поддаются сварке.

    Процессы трения используются в промышленности, а также изучаются как метод склеивания древесины без использования клея или гвоздей.

    Электронный луч

    Этот процесс соединения сплавлением использует пучок высокоскоростных электронов для соединения материалов.Кинетическая энергия электронов преобразуется в тепло при ударе о заготовки, заставляя материалы плавиться вместе.

    Электронно-лучевая сварка (ЭЛС) выполняется в вакууме (с использованием вакуумной камеры) для предотвращения рассеивания луча.

    ЭЛС широко применяется для соединения толстых профилей. Это означает, что его можно применять во многих отраслях, от авиакосмической до атомной энергетики, от автомобильной до железнодорожного транспорта.

    Лазер

    Используется для соединения термопластов или кусков металла, в этом процессе используется лазер для получения концентрированного тепла, идеально подходящего для сварки бугров, глубоких сварных швов и высоких скоростей соединения.Благодаря простой автоматизации, высокая скорость сварки, с которой может выполняться этот процесс, делает его идеальным для применения в больших объемах, например, в автомобильной промышленности.

    Сварка лазерным лучом может выполняться на воздухе, а не в вакууме, например, при сварке электронным лучом.

    Сопротивление

    Это быстрый процесс, который обычно используется в автомобильной промышленности. Этот процесс можно разделить на два типа: контактная точечная сварка и контактная сварка швом.

    При точечной сварке используется тепло, передаваемое между двумя электродами, которое прикладывается к небольшой площади, когда детали зажимаются вместе.

    Шовная сварка аналогична точечной сварке, за исключением того, что электроды заменяются вращающимися колесами, что обеспечивает непрерывный сварной шов без утечек.

    TWI предлагает один из самых обширных наборов услуг.

    Введение в типы и принципы сварки основных металлов

    Сварка — это процесс, в котором для соединения двух металлических частей используются «тепло» и «электричество». Тип сварочного металла также влияет на результаты сварки и технические требования; Как и многие другие профессиональные навыки, сварочная техника также имеет разные уровни сложности.Сначала разберитесь с наиболее распространенными типами введения в сварку, обучения принципам и анализа навыков.

    Опубликовано: 09 июля 2020 г.

    1. Защитные газы

      В большинстве случаев сварка чаще всего используется для «стали», но алюминий, медь и другие металлы также могут быть соединены с использованием сварочной технологии, а для разных типов сварки требуются разные защитные газы, используемые сварщиками, в основном используемые Причина для гелия и аргон состоит в том, что все вышеперечисленные инертные газы могут выдерживать чрезвычайно высокие температуры без диссоциации и используются для защиты и изоляции воздуха во время сварки.

      Использование сварки в инертном газе позволяет избежать окисления свариваемого материала, а также гарантировать, что свариваемый металл не будет содержать других загрязнений во время процесса сварки, что делает результат сварки более прочным, безопасным и более чистым.

    2. Существительные собственные, относящиеся к сварочной технике

      При сварке образуется соединяемый шов, называемый «сварным швом». Обе стороны сварочного шва будут подвержены влиянию сварочного тепла во время сварки, а также изменится структура и характеристики.Эта зона называется «зоной термического влияния».

      Из-за различий в материалах заготовок, сварочных материалах и сварочных токах во время сварки в сварном шве и в зоне термического влияния после сварки могут возникать перегрев, охрупчивание, упрочнение или разупрочнение, что также снижает характеристики сварного изделия и влияет на свариваемость; Следовательно, сварка Необходимо понимать и регулировать условия сварки перед сваркой, включая предварительный нагрев границы раздела сварного изделия перед сваркой, сохранение тепла во время сварки и термообработку после сварки, что может улучшить качество сварки.Следовательно, для того, чтобы делать хорошие сварочные работы и методы, помимо практики пациента, вам также необходимо быть знакомым с различными знаниями и принципами сварки.

    3. Виды сварки

      В настоящее время известно более 50 видов и способов сварки металлов, и большинство из них обычно делятся на три категории: сварка плавлением, сварка давлением и пайка.

      • Сварка плавлением

        Сварка плавлением, также известная как «сварка расплавом»; как следует из названия, это способ прямого нагрева поверхности раздела детали до «плавления» во время процесса сварки без какого-либо давления; В это время источник тепла нагревает и расплавляет поверхность раздела между двумя свариваемыми деталями, образуя «ванну расплава», и ванна расплава будет двигаться вперед вместе с источником тепла и, наконец, охладиться, образуя непрерывный сварной шов для соединения две заготовки в одну.

        Характеристики:
        В процессе сварки плавлением, если воздух находится в прямом контакте с высокотемпературной жидкой жидкостью, кислород в воздухе окисляет металл и синтезируется с легирующими элементами объекта; если азот, водяной пар и т. д. из атмосферы попадут в ванну расплава, то в последующем процессе охлаждения в сварном шве образовались такие дефекты, как поры, включения шлака и трещины, что повлияло на качество сварного шва.
        Следовательно, для улучшения качества сварки обычно используют газ для защиты дуговой сварки, а аргон, диоксид углерода и другие газы используются для изоляции других элементов в атмосфере, чтобы защитить дугу и скорость расплавленной ванны во время сварки;
        Другой пример: когда сталь сваривается, добавление «железо-титанового порошка» с большим сродством к кислороду в покрытие электрода для раскисления может защитить полезные элементы марганец и кремний в электроде от окисления и попадания в ванну расплава. после охлаждения можно получить качественные результаты сварки.

      • Сварка давлением

        Сварка давлением, как следует из названия, заключается в использовании давления для превращения двух заготовок в исходное твердое состояние для реализации связи между их атомами, поэтому ее также называют «сплошной сваркой»; Сварка давлением часто используется для контактной сварки. В процессе стыковой сварки давлением, когда ток проходит через соединительный конец двух деталей, температура повышается из-за большого сопротивления там.При нагревании до «пластичного состояния» соединение замыкается под действием осевого давления.

        Общей чертой различных методов сварки давлением является приложение давления во время процесса сварки без добавления других присадочных материалов. Методы сварки давлением, такие как «диффузионная сварка, высокочастотная сварка, сварка холодным давлением и т. Д.» не тают процессы. После завершения сварки не возникает проблем с выгоранием полезных элементов сплава, а также проникновения вредных элементов в сварной шов, что упрощает весь процесс сварки и улучшает безопасность и санитарные условия сварки.

        Поскольку температура нагрева ниже, чем при сварке плавлением, а время нагрева короткое, площадь воздействия тепла также мала. Поэтому многие материалы, которые труднее сваривать сваркой плавлением, часто можно сварить с такой же прочностью, что и основной материал, путем сварки давлением с использованием высококачественных соединителей.

      • Пайка

        Пайка, которая также подразделяется на пайку и пайку, является очень широко используемым методом сварки.Он в основном использует металлические материалы с температурой плавления ниже, чем сама заготовка, в качестве «связующего материала» и нагревает заготовку и припой до «выше, чем температура припоя». «Точка плавления материала, но температура ниже, чем точка плавления заготовки». Сварка заготовки с использованием жидкого материала для заполнения зазора между двумя границами раздела и реализации взаимной диффузии между атомами и заготовкой.

    Перспектива техники автоматизации сварки

    Развитие электронной техники, компьютерных микроэлектронных корпусов и технологий автоматизации способствовало развитию технологий автоматизации сварки.В частности, внедрение единичных технологий, таких как технология числового программного управления, гибкая производственная технология и технология обработки информации, способствовало революционному развитию технологии автоматизации сварки.

    • Интеллектуализация системы управления процессом сварки — одна из основных задач автоматизации сварки и важное направление будущих исследований. Необходимо провести исследование лучших методов управления, включая линейные и различные нелинейные управления.Наиболее представительными являются нечеткое управление процессом сварки, управление нейронной сетью и исследование экспертной системы.
    • Технология гибкости сварки также является предметом исследований. В будущих исследованиях различные оптические, механические, электрические технологии и сварочные технологии будут органично объединены для достижения точной и гибкой сварки. Использование технологий микроэлектроники для преобразования традиционного сварочного оборудования — фундаментальный способ повысить уровень автоматизации сварки.В настоящее время это направление исследований — объединение технологий ЧПУ с различными типами сварочного механического оборудования для повышения его гибкости; Кроме того, комбинация сварочных роботов и экспертных систем реализует такие функции, как автоматическое планирование траектории, автоматическая коррекция траекторий и автоматический контроль проплавления. Это фокус исследования.
    • Интеграция системы управления сваркой — это интеграция людей и технологий, а также интеграция сварочной техники и информационных технологий.Информационный поток и материальный поток в интегрированной системе являются ее важными составляющими. Продвижение их органического сочетания может значительно уменьшить объем информации и требования к управлению в реальном времени. Обратите внимание на способность реагировать и оценивать людей в процессе управления и компьютерной обработки, устанавливать дружественный интерфейс для человека и машины и согласовывать людей и автоматические системы — факторы, которые нельзя недооценивать в интегрированных системах.
    • Повышение надежности, стабильности качества и контроля сварочного источника питания, а также отличные динамические характеристики также являются предметом исследований.Разработка высокопроизводительных сварочных аппаратов, которые могут регулировать движение дуги, подачу проволоки и положение сварочной горелки, могут определять начало наклона сварного шва, температурное поле, состояние расплавленной ванны, состояние проплавления, своевременно предоставлять параметры сварки и активно развивать сварку. Технологии компьютерного моделирования процессов. Эволюция сварочной техники от «мастерской» к «научному» ролику является важным аспектом автоматизации сварки. Первые десять лет этого века будут благоприятным периодом для бурного развития сварочной отрасли.

    Примечания: Когда и где бы ни проводилась сварка, необходимо полностью надевать соответствующее защитное оборудование, включая сварочные маски, сварочные перчатки, сварочный фартук и соответствующую одежду.

    Опубликовано: 09 июля 2020 г. Источник: 1на1
    • Технология металлообработки
    • Производство металлов
    • Сварка металлов
    • Сварочный аппарат
    • Металлообработка

    Что такое сварка TIG: принцип, работа, оборудование, применение, преимущества и недостатки

    Сегодня мы узнаем о том, что такое сварка TIG, ее принципах, работе, оборудовании, применении, преимуществах и недостатках с ее схемой.TIG означает сварку вольфрамовым электродом в среде инертного газа или иногда эту сварку называют дуговой сваркой вольфрамовым электродом. В этом процессе сварки тепло, необходимое для образования сварного шва, обеспечивается очень интенсивной электрической дугой, которая образуется между вольфрамовым электродом и заготовкой. При этой сварке используется неплавящийся электрод, который не плавится. В этом типе сварки обычно не требуется присадочный материал, но, если требуется, сварочный стержень подается непосредственно в зону сварного шва и расплавляется с основным металлом.Эта сварка в основном используется для сварки алюминиевых сплавов.

    Принцип:

    Сварка TIG работает по тому же принципу, что и дуговая сварка . В процессе сварки TIG между вольфрамовым электродом и заготовкой возникает сильная дуга. При этой сварке большая часть заготовки подключается к положительному выводу, а электрод подключается к отрицательному выводу. Эта дуга вырабатывает тепловую энергию, которая в дальнейшем используется для соединения металлических пластин при сварке плавлением . Также используется защитный газ, который защищает поверхность шва от окисления.

    Оборудование

    Источник питания:

    Первой единицей оборудования является источник питания. Источник сильноточного тока, необходимый для сварки TIG. Он использует источники питания как переменного, так и постоянного тока. В основном постоянный ток используется для нержавеющей стали, мягкой стали, меди, титана, никелевого сплава и т. Д., А переменный ток используется для алюминия, алюминиевого сплава и магния. Источник питания состоит из трансформатора, выпрямителя и электронного управления. Обычно для правильного образования дуги требуется 10–35 В при токе 5–300 А.

    Горелка TIG:

    Это наиболее важная часть сварки TIG. Эта горелка состоит из трех основных частей: вольфрамового электрода, цанг и сопла. Эта горелка имеет водяное или воздушное охлаждение. В этой горелке цанга используется для удержания вольфрамового электрода. Они доступны в различном диаметре в зависимости от диаметра вольфрамового электрода. Сопло позволяет дуге и защитным газам поступать в зону сварки. Поперечное сечение сопла маленькое, что дает высокую интенсивность дуги. На сопло есть проходы защитных газов.Сопло TIG необходимо регулярно заменять, потому что оно изнашивается из-за наличия интенсивной искры.

    Система подачи защитного газа:

    Обычно в качестве защитного газа используется аргон или другие инертные газы. Основное назначение защитного газа — защита сварного шва от окисления. Защитный газ не допускает попадания кислорода или другого воздуха в зону сварки. Выбор инертного газа зависит от свариваемого металла. Есть система, регулирующая подачу защитного газа в зону сварки.

    Присадочный материал:

    В основном для сварки тонких листов присадочный материал не используется. Но для толстого шва используется присадочный материал. Присадочный материал используется в виде стержней, которые вручную подаются непосредственно в зону сварного шва.

    Рабочий:

    Работу по сварке TIG можно резюмировать следующим образом.
    • Во-первых, низковольтный источник высокого тока, подаваемый источником питания на сварочный электрод или вольфрамовый электрод. В основном электрод
      подключается к отрицательному выводу источника питания, а деталь — к положительному выводу.
    • Этот ток образует искру между вольфрамовым электродом и заготовкой. Вольфрам — неплавящийся электрод, который дает очень интенсивную дугу. Эта дуга вырабатывала тепло, которое плавило основные металлы с образованием сварного шва.
    • Защищенные газы, такие как аргон, гелий, через клапан давления и регулирующий клапан подают в сварочную горелку. Эти газы образуют экран, не пропускающий кислород и другие химически активные газы в зону сварки. Эти газы также создают плазму, которая увеличивает теплоемкость электрической дуги, тем самым повышая сварочные способности.
    • Для сварки тонкого материала присадочный металл не требуется, но для выполнения толстого шва используется присадочный материал в виде стержней, которые вручную подаются сварщиком в зону сварки.

    Применение:

    • В основном используется для сварки алюминия и алюминиевых сплавов.
    • Используется для сварки нержавеющей стали, сплава на основе углерода, сплава на основе меди, сплава на основе никеля и т. Д.
    • Используется для сварки разнородных металлов.
    • В основном используется в аэрокосмической промышленности.

    Преимущества и недостатки:

    Преимущества:
    • TIG обеспечивает более прочное соединение по сравнению с дуговой сваркой в ​​защитной оболочке.
    • Соединение более устойчиво к коррозии и более пластично.
    • Возможна широкая вариативность конструкции шарнира.
    • Не требует флюса.
    • Легко автоматизируется.
    • Эта сварка хорошо подходит для тонких листов.
    • Обеспечивает хорошее качество поверхности благодаря незначительному разбрызгиванию металла или искрам при сварке, которые повреждают поверхность.
    • Безупречный шов может быть получен благодаря неплавящемуся электроду.
    • Больше контроля параметров сварки по сравнению с другими видами сварки.
    • В качестве источника питания можно использовать как переменный, так и постоянный ток.
    Недостатки:
    • Толщина свариваемого металла ограничена примерно 5 мм.
    • Требуется высококвалифицированный труд.
    • Первоначальная стоимость или стоимость настройки высоки по сравнению с дуговой сваркой.
    • Это медленный процесс сварки.

    Это все о сварке TIG, принципе, работе, оборудовании, применении, преимуществах и недостатках.Если у вас есть какие-либо вопросы относительно этой статьи, задавайте их в комментариях. Если вам понравилась эта статья, не забудьте поделиться ею в социальных сетях. Подписывайтесь на наш канал, чтобы получать больше интересных статей. Спасибо, что прочитали.

    Процесс плазменной сварки: принципы работы

    Процесс плазменно-дуговой сварки обычно сравнивают с процессом газовой вольфрамовой дуги.

    Если электрическая дуга между вольфрамовым электродом и изделием сужается в области поперечного сечения, ее температура увеличивается, поскольку по ней проходит такой же ток.

    Эта сжатая дуга называется плазмой или четвертым состоянием материи.

    Этот процесс основан на ионизирующем газе, который происходит при высоких температурах. Когда ионизированный газ может проводить электричество. Затем газ используется для передачи электрической дуги к свариваемой детали. Сильный жар дуги сваривает или сплавляет два куска металла вместе.

    Выбранный газ — аргон плюс вторичный газ гелий, смесь аргона и водорода или аргон. Вторичный газ защищает сварочную ванну, как и при других сварочных процессах.Это снижает степень окисления сварного шва.

    Плазменная горелка содержит электрод из вольфрама, помещенный в сопло из меди. Наконечник насадки имеет небольшое отверстие. Дуга зажигается между электродом и концом сопла. Затем дуга передается на свариваемый материал.

    Небольшое отверстие заставляет газ проходить через «суженное отверстие или отверстие». Это концентрирует тепло на относительно небольшой площади.Способность направлять концентрированное тепло таким образом позволяет сварщику производить сварной шов очень высокого качества.

    В результате получается процесс, который обеспечивает более высокую скорость сварки, меньшую деформацию, более стабильные сварные швы, меньшее разбрызгивание и больший контроль области сварки, снижая риск повреждения любых близлежащих термочувствительных компонентов. Расходные материалы тоже имеют долгий срок службы.

    Видео о процессе плазменно-дуговой сварки

    Режимы работы процесса плазменной сварки

    Плазменно-дуговая сварка

    Существует два режима работы процесса плазменной сварки: непереносимая дуга и перенесенная дуга.

    • Режим дуги без переноса : В режиме без переноса ток проходит от электрода внутри горелки к соплу, содержащему отверстие, и обратно к источнику питания. Он используется для плазменного напыления или тепловыделения неметаллов.
    • Режим перенесенной дуги : В режиме перенесенной дуги ток передается от вольфрамового электрода внутри сварочной горелки через отверстие к заготовке и обратно к источнику питания.

    Разница между этими двумя режимами работы показана на рисунке 10-37 ниже.Режим перенесенной дуги используется для сварки металлов. Для сравнения показан процесс газовой вольфрамовой дуги.

    Перенесенная и непереносимая плазменные дуги — Рис. 10-37

    Как образуется плазма

    Плазма создается за счет сжатия электрической дуги, проходящей через отверстие сопла. Горячие ионизированные газы также пропускаются через это отверстие. Плазма имеет жесткую столбчатую форму и имеет параллельные стороны, поэтому она не вспыхивает так же, как газовая вольфрамовая дуга.Эта высокотемпературная дуга, направленная на изделие, расплавляет поверхность основного металла и присадочный металл, добавляемый для сварки. Таким образом, плазма действует как чрезвычайно высокотемпературный источник тепла, образуя сварочную лужу. Это похоже на газовую вольфрамовую дугу. Однако более высокотемпературная плазма заставляет это происходить быстрее и называется режимом плавления. На Рис. 10-36 показано поперечное сечение головки плазменной горелки.

    Высокая температура плазменной или сжатой дуги и высокоскоростная плазменная струя обеспечивают повышенную скорость теплопередачи по сравнению со сваркой вольфрамовой дугой при использовании одного и того же тока.Это приводит к более высокой скорости сварки и более глубокому проплавлению шва. Этот метод работы используется для сварки очень тонких материалов. и для сварки многопроходных канавок, сварных и угловых швов.

    Процесс сварки замочной скважины

    Еще один метод использования процесса плазменной сварки — это метод сварки «замочная скважина». Плазменная струя проникает через заготовку и образует отверстие или замочную скважину. Поверхностное натяжение заставляет расплавленный основной металл обтекать замочную скважину, образуя сварной шов.Метод замочной скважины можно использовать только для стыков, в которых плазма может проходить через стык. Он используется для неблагородных металлов толщиной от 1/16 до 1/2 дюйма (от 1,6 до 12,0 мм). На него влияет состав основного металла и сварочные газы. Метод замочной скважины обеспечивает сварку с полным проплавлением за один проход, которую можно выполнять вручную или автоматически во всех положениях.

    Совместное проектирование

    Конструкция шарнира основана на толщине металла и определяется двумя способами работы.

    • Метод замочной скважины : Для метода замочной скважины конструкция стыка ограничивается типами с полным проникновением. Предпочтительной конструкцией соединения является квадратная канавка без минимального корневого отверстия. Для корневых проходов, особенно на толстостенных трубах, используется U-образная канавка. Корневая поверхность должна быть 1/8 дюйма (3,2 мм), чтобы обеспечить полное проникновение в замочную скважину.
    • Метод плавления : Для метода плавления при сварке тонкой толщины от 0,020 дюйма (0,500 мм) до 0.Металл 100 дюймов (2.500 мм) следует использовать сварной шов с квадратной канавкой. Для сварки фольги толщиной от 0,005 дюйма (0,130 мм) до 0,020 дюйма (0,0500 мм) следует использовать краевое фланцевое соединение. Фланцы расплавляются, чтобы обеспечить присадочный металл для сварного шва.

    При использовании режима плавления для толстых материалов можно использовать ту же общую деталь соединения, что и при дуговой сварке в защитном металлическом корпусе и дуговой сварке вольфрамовым электродом. Его можно использовать для угловых швов, фланцевых швов, всех типов швов с разделкой кромок и т. Д., а также для соединений внахлест с использованием дуговой точечной сварки и дуговой сварки швов. На рис. 10-38 показаны различные конструкции соединений, которые можно сваривать с помощью процесса плазменной дуги.

    Различные соединения для плазменной дуги — Рисунок — 10-38

    Сварочная цепь и ток

    Сварочная схема для процесса плазменной сварки более сложна, чем для дуговой сварки вольфрамовым электродом в газе.

    Требуется дополнительный компонент в качестве цепи управления, помогающий запускать и останавливать плазменную дугу. Используется тот же источник питания.

    Есть две газовые системы: одна для подачи плазменного газа, а вторая для защитного газа.

    Сварочная схема для плазменной сварки показана на рисунке 10-39. Используется постоянный ток типа постоянного тока (ПС). Переменный ток используется только для нескольких приложений.

    Принципиальная схема плазменно-дуговой сварки (плазменная сварка) — рисунок 10-39

    Советы по использованию процесса

    Вольфрамовый электрод должен быть точно отцентрован и расположен относительно отверстия в сопле. Ток вспомогательной дуги должен поддерживаться достаточно низким, достаточно высоким, чтобы поддерживать стабильную вспомогательную дугу.При сварке очень тонких материалов из фольги вспомогательная дуга может быть всем, что необходимо.

    Когда присадочный металл используется как часть процесса плазменной сварки, он добавляется так же, как при сварке газовой вольфрамовой дугой. Однако чем больше расстояние от резака до детали, тем больше свободы для добавления присадочного металла. Оборудование необходимо правильно отрегулировать, чтобы защитный газ и плазменный газ были в правильных пропорциях. Также необходимо использовать подходящие газы.

    Тепловая нагрузка важна.Плазменный газовый поток также имеет важное значение. Эти факторы показаны на рисунке 10-40.

    Качество плазменной сварки и общие неисправности — Рисунок 10-40

    Присадочный металл и другое оборудование

    Присадочный металл обычно используется в процессе плазменной сварки, за исключением сварки самых тонких металлов. Состав присадочного металла должен соответствовать основному металлу. Размер стержня присадочного металла зависит от толщины основного металла и сварочного тока. Наполнитель обычно добавляется в лужу вручную, но может добавляться автоматически.

    Защитный газ

    Инертный газ, аргон, гелий или их смесь, используется для защиты области дуги от атмосферы. Аргон более распространен, потому что он тяжелее и обеспечивает лучшую защиту при более низких расходах. Для плоской и вертикальной сварки достаточно расхода защитного газа от 15 до 30 куб. Футов в час (от 7 до 14 литров в минуту).

    Сварка над головой требует немного большей скорости потока. Аргон используется в качестве плазменного газа с расходом 1 куб. Фут в час (0.5 литров в минуту) до 5 кубических футов в час (2,4 литра в минуту) для сварки, в зависимости от размера горелки и области применения. Активные газы не рекомендуются для плазменного газа. Кроме того, требуется охлаждающая вода.

    Качество, скорость осаждения и переменные

    Качество процесса плазменной сварки чрезвычайно высокое и обычно выше, чем у сварных швов газовой вольфрамовой дугой, потому что вероятность появления включений вольфрама в сварном шве мала или отсутствует. Скорость наплавки при плазменной сварке несколько выше, чем при сварке вольфрамовым электродом в газе, и показана кривой на рисунке 10-41.

    Графики сварки для процесса плазменной дуги показаны данными в таблице 10-5.

    Скорость наплавки при плазменной сварке — Рисунок 10-41

    Параметры процесса плазменной сварки показаны на рисунке 10-41. Большинство переменных, показанных для плазменной дуги, аналогичны другим процессам дуговой сварки. Есть два исключения: поток плазменного газа и диаметр отверстия в сопле.

    Основные переменные оказывают существенное влияние на процесс. Второстепенные переменные обычно фиксируются в оптимальных условиях для данного приложения.Все переменные должны присутствовать в процедуре сварки.

    Такие переменные, как угол и отклонение электрода и тип электрода, считаются фиксированными для данного приложения.

    Процесс плазменной сварки реагирует на эти переменные иначе, чем процесс газовой вольфрамовой дуги.

    Зазор, или расстояние от резака до детали, менее чувствителен при работе с плазмой, но угол резака при сварке деталей неравной толщины более важен, чем при сварке газовой вольфрамовой дугой.

    Применение вручную расписания процедуры плазменной сварки — Таблица 10-5

    Варианты процесса

    Сварочный ток может быть импульсным, чтобы получить те же преимущества, которые дает импульсная сварка при дуговой сварке вольфрамовым электродом. Сильный импульс тока используется для максимального проникновения, но не работает постоянно, чтобы обеспечить затвердевание металла. Это дает более легко управляемую лужу для работы вне рабочего места. Импульсный режим может выполняться тем же аппаратом, который используется для дуговой сварки вольфрамовым электродом в газе.

    Способ подачи присадочной проволоки

    Метод плазменной подачи присадочной проволоки практически такой же, как и при дуговой сварке вольфрамовым электродом в газе. Можно использовать концепцию «горячей проволоки». Это означает, что к присадочной проволоке подается ток низкого напряжения для ее предварительного нагрева перед попаданием в сварочную ванну.

    Программируемая плазменная дуговая сварка

    Программируемую сварку также можно использовать для процесса плазменной сварки таким же образом, как и для дуговой сварки вольфрамовым электродом в газе.Используется тот же источник питания со способностями к программированию, что дает преимущества для определенных видов работ. Сложность программирования зависит от потребностей конкретного приложения. Помимо программирования сварочного тока, часто необходимо программировать поток плазменного газа. Это особенно важно при закрытии замочной скважины, которая требуется для выполнения корневого прохода сварного шва, соединяющего два отрезка трубы.

    Урок 1 — Основы дуговой сварки

    Урок 1 — Основы дуговой сварки © АВТОРСКИЕ ПРАВА 1999 ГРУППА ЭСАБ, ИНК.УРОК I, ЧАСТЬ B 1.8 ЭЛЕКТРИЧЕСТВО ДЛЯ СВАРКИ 1.8.1 Принципы электричества — Дуговая сварка — это способ соединения металлов обработан путем применения достаточного электрического давление на электрод для поддержания пути тока (дуги) между электродом и заготовкой.В этом процессе электрическая энергия заменяется на тепловая энергия, переводящая металлы в расплавленное состояние; посредством чего они соединяются. Электрод (проводник) либо плавится и добавляется к основному металлу или остается в его твердом состоянии штат. Вся дуговая сварка использует передачу электрической энергии в тепло. энергия, и понять этот принцип, базовые знания об источниках электричества и сварочного тока это необходимо. 1.8.1.1. Три основных принципа статического электричества заключаются в следующем: 1.Есть два вида существующих электрических зарядов — отрицательных и положительных. 2. В отличие от сборов притягивать и отталкивать подобные заряды. 3. Сборы можно переносить из одного места в другое. 1.8.1.2 Наука установила, что все имеет значение состоит из атомов, и каждый атом содержит элементарные частицы. Одна из таких частиц — электрон, имеющий способность к переходить с одного места на другое. Электрон классифицируется как отрицательный электрический заряд.Другая частица, примерно в 1800 раз тяжелее электрона, — это протон. и под нормальным условиях протон останется неподвижным. 1.8.1.3 Говорят, что материал находится в электрически незаряженное состояние, когда его атомы содержат равные количество положительных зарядов (протонов) и отрицательных зарядов (электронов). Этот баланс нарушен когда давление заставляет электроны перемещаться от атома к атому. Это давление, иногда называют электродвигателем сила, обычно известная как напряжение.Следует отметить то напряжение, которое не проходит по проводнику, но без напряжения, есть не было бы тока поток. Для наших целей проще всего рассматривать напряжение как электрическую давление, которое заставляет электроны двигаться. 1.8.1.4 Поскольку мы знаем, что подобные обвинения отталкивают и в отличие от сборов, которые привлекают, тенденция к электроны переходят из положения избыточного запаса (отрицательный заряд) к атому что не хватает электронов (положительный заряд).Эта тенденция становится реальностью, когда выбирается подходящий путь. предусмотрено движение электронов. Перенос электронов с отрицательного на положительный заряд по всей длине проводника составляет электрический ток. Оценка ток, протекающий по проводнику, измеряется в амперах, а слово «ампер» часто используется как синоним срок текущий. Чтобы дать представление о количестве электроны, протекающие по цепи, теоретически установлено, что один ампер равен 6.3 квинтиллиона (6 300 000 000 000 000 000) электронов, проходящих мимо фиксированной точки в дирижере каждую секунду.

    Принцип

    , варианты, контроль и »И Лу, Шу Джун Чен и др.

    Абстракция

    Двухэлектродная газовая дуговая сварка металлическим электродом (DE-GMAW) — это новый процесс сварки, в котором второй электрод, неплавящийся или расходный, добавляется для того, чтобы частично обвести проволочный ток.Байпасный ток снижает подвод тепла в нерасходуемой DE-GMAW или увеличивает скорость наплавки в расходуемой DE-GMAW. Таким образом, фиксированная корреляция подводимого тепла с осаждением в обычном GMAW и его вариантах изменяется и становится управляемой. В Университете Кентукки система DE-GMAW была протестирована / разработана путем добавления горелки для плазменной сварки, горелки GTAW (газовая вольфрамовая дуговая сварка), пары горелок GTAW и горелки GMAW. Стали и алюминиевые сплавы свариваются, и система питается от одного или нескольких источников питания с соответствующими методами управления.Перенос металла был изучен в Университете Кентукки и Университете Шаньдун, в результате чего желаемый перенос распылением был получен при базовом токе менее 100 А для стальной проволоки диаметром 1,2 мм. В Технологическом университете Ланьчжоу была успешно разработана импульсная DE-GMAW для соединения алюминия / магния со сталью. В Adaptive Intelligent Systems LLC принцип DE-GMAW был применен к дуговой сварке под флюсом (SAW), и были разработаны встроенные системы управления, необходимые для промышленного применения.DE-SAW привела к уменьшению тепловложения в судостроении на 1/3, а глубина проплавления шва успешно контролировалась с обратной связью. Кроме того, концепция байпаса расширена на GTAW, в результате чего GTAW с искрящейся проволокой добавляет вторую дугу, возникающую между вольфрамом и наполнителем, к существующей газовой вольфрамовой дуге. DE-GMAW расширен до двухэлектродной дуговой сварки (DE-AW), где основной электрод не обязательно должен быть расходуемым. Недавно Пекинский технологический университет систематически изучал перенос металла в GTAW с электродуговой проволокой и обнаружил, что желаемые режимы переноса металла всегда можно получить, исходя из заданной скорости подачи проволоки, соответствующим образом регулируя ток проволоки и положение / ориентацию проволоки.Таким образом, доступны различные процессы DE-AW для различных применений с использованием существующего оборудования для дуговой сварки.

    Цифровой идентификатор объекта (DOI)

    http://dx.doi.org/10.1016/j.jmapro.2013.08.003

    Ссылка из репозитория

    Лу, Йи; Чен, Шуцзюнь; Ши, Ю; Ли, Сянжун; Чен, Цзиньсонг; Квидал, Ли; и Чжан, Ю Мин, «Процесс двухэлектродной дуговой сварки: принцип, варианты, контроль и разработки» (2014). Публикации факультета электротехники и вычислительной техники .2.
    https://uknowledge.

    Добавить комментарий

    Ваш адрес email не будет опубликован.