Размеры солнечных панелей: Обзор солнечных батарей и модулей, описание, производство

Содержание

Как выбрать солнечную батарею для дома.Какие солнечные батареи лучше

Выбор солнечных панелей

Одним из факторов выбора солнечной батареи является климатическая зона, сколько солнечных дней в вашей местности в году, продолжительность светового времени суток.

Посмотреть, как подходят солнечные батареи для вашей местности, можно на карте освещенности. Определить, какую мощность электроэнергии вам необходимо получать за час работы, за сутки, год.

Также нужно учитывать и аварийную ситуацию, когда не смогут работать солнечные панели. Немаловажное значение имеет выбор хорошего производителя, тип солнечных панелей.Важное значение имеет толщина фотоэлемента, которая обеспечивает эмиссию электронов длительное время.

Качество изготовления батареи также влияет на ее срок службы. Текстурированное стекло увеличивает эффективность работы панелей в пасмурную погоду.

Карта солнечных энергоресурсов

Стоимость солнечных панелей

Мощность солнечных модулей влияет на ее стоимость. Панели большой мощности стоят дороже. От мощности зависит размер батареи. Различные типы солнечных модулей имеют разные размеры.

Перед тем как выбрать солнечные батареи для дома нужно знать место установки панелей, их мощность, чтобы хватило отведенного для них места. Если в дальнейшем будете увеличивать мощность солнечных панелей, нужно предусмотреть резервное место.

Солнечная панель из аморфного кремния

Таким образом, стоимость модуля определяется выбранной мощностью, размером, надежностью и долговечностью. Если остановиться на выборе батареи по низкой стоимости, вы рискуете получить некачественно систему солнечного энергоснабжения, с заниженной мощностью.

Приблизительная стоимость солнечных панелей:

Гибкие панели из аморфного кремния оценивают в 1,1 $ за Вт.

Из этой же группы микроморфные модули – 1,2 $ за Вт.

Поликристаллические панели – 1,3 $ за Вт.

Самые дорогие монокристаллические батареи – 1,5 $ за Вт.

Выбор типа солнечных панелей

Наиболее эффективными, и меньших размеров являются монокристаллические фотоэлементы. Монокристаллическим модулям необходимо меньше места на крыше. Однако стоимость их высока. Если вопрос о цене не стоит так остро, тогда их выбор будет лучшим вариантом.

Микроморфная солнечная панель

Поликристаллические батареи немного уступают монокристаллическим модулям по эффективности, но имеют меньшую стоимость. Поэтому они пользуются высокой популярностью. Последние разработки поликристаллических панелей и все сильнее сближают их с характеристиками монокристаллов.

Поликристаллическая солнечная панель

Тонкопленочные солнечные батареи имеют меньшую эффективность и мощность на 1 м², чем первые два. На рынке появился новый тип солнечной модулей из микроморфного кремния. Эти новые батареи аморфного поколения хорошо работают в видимой и инфракрасной области спектра. Эти панели вырабатывают больше суммарной годовой мощности, чем другие.

Монокристаллическая солнечная панель

Точная ориентация на солнце для них не столь важна. Также эти модули имеют более дешевую технологию изготовления. Срок эксплуатации качественных батарей не меньше 25 лет. По внешнему виду можно отличить монокристаллические модули от поликристаллических. Первый собран из псевдоквадратов черного цвета, а вторые имеют ровные квадраты синих оттенков.

В заключении сделаем вывод, что для областей с преобладающей пасмурной погодой подходят панели из микроморфного кремния, для более южных областей выбор можно остановить на поликристаллических батареях.

принцип работы панелей, готовые комплекты российского производства для частного дома

Ежеминутно на поверхность нашей планеты попадает много солнечной энергии, без которой жизнь на Земле невозможна. Однако это еще не все, на что она способна, сегодня мы вступаем в эру альтернативных возобновляемых источников энергии, используя активность Солнца, ветра и воды. Крупнейшие солнечные электростанции уже вырабатывают около 1% всей мировой электроэнергии, поэтому будущее за новыми разработками. И этим мы обязаны науке и современным технологиям, благодаря которым это стало возможным.

Устройство панелей

Растущая в цене электроэнергия поневоле заставляет задуматься об экономии. И отличной альтернативой в данном случае считаются природные источники энергии. Оптимальным решение для частного дома является альтернативная электростанция – солнечная батарея.

Изначально может показаться, что вся система солнечной батареи слишком большая, а принцип ее работы невероятно сложен. И чтобы понять, как функционирует солнечная батарея в деле, необходимо детально рассмотреть ее конструкцию.

В действительности гелиосистема устроена довольно просто и состоит из четырех основных элементов.

  • Солнечная батарея – по форме и размерам представляет собой прямоугольную панель с определенным количеством пластинок. В основу солнечной батареи входят полупроводниковые материалы. Миниатюрные преобразователи собираются в модули, а модули – в единую систему гелиоколлектора.
  • Контроллер – выполняет функцию посредника между солнечным модулем и аккумулятором. Он необходим для отслеживания уровня заряда аккумулятора. Его роль крайне важна во всей цепи – контроллер не дает закипать или падать электрическому потенциалу, который необходим для стабильного функционирования всей системы.
  • Инвертор – преобразует постоянный ток солнечного модуля в переменный 220-230 вольт. Гибридный сетевой инвертор может использовать для своей работы как постоянный, так и переменный ток. Но стоит учитывать, что для работы инвертора тоже необходима энергия, и его расход составляет порядка 30% потерь на преобразование. И в пасмурную погоду или в темное время суток вся энергия для работы будет расходоваться из аккумулятора. То есть если аккумулятор разрядится, то инвертор перестанет работать.
  • Аккумулятор – преобразованная в электричество солнечная энергия не всегда используется в доме в полном объеме. Излишки могут накапливаться в аккумуляторе и использоваться в темное время суток и в пасмурную погоду.

Но перед тем как приступить к выбору и установке солнечной батареи на крыше, необходимо разобраться в принципах работы устройства, а также рассчитать рабочие узлы гелиосистемы.

Технические характеристики

Основным элементом каждой солнечной батареи является фотоэлектрический преобразователь.

В массовом производстве используется три типа элементов из кремния.

  • Монокристаллические – искусственно выращенные кремниевые кристаллы нарезаются на тонкие пластины. В основу модуля входит очищенный чистый кремний. Поверхность больше похожа на пчелиные соты или небольшие ячейки, которые соединяются между собой в единую структуру. Готовые маленькие пластинки соединяются между собой сеткой из электроводов. В данном случае процесс производства более трудоемкий и энергозатратный, что отражается на конечной стоимости солнечной батареи. Но монокристаллические элементы обладают большей производительностью, а средний КПД составляет около 24%. Срок службы монокристаллических батарей больше, они прослужат в среднем около 30 лет.
  • Поликристаллические – в основе кремниевый расплав. Такие модули считаются оптимальным решением для жилого частного дачного дома. Несколько кристаллов из кремния объединяются в один фотоэлемент. Поверхность поликристаллической солнечной батареи имеет неоднородную поверхность, из-за чего хуже поглощает свет. И КПД, соответственно, ниже, находится в пределах 20%. Срок службы поликристаллической панели составляет 20-25 лет. Они имеют характерное отличие – темно-синий цвет покрытия. Такие модули дешевле аналогов, что позволяет окупить всю систему примерно за 3 года.
  • Тонкопленочные
    – имеют гибкую подложку, что позволяет монтировать батарею на любую поверхность с углами и изгибами. Тонкий слой полупроводников наносится методом напыления на поверхность батареи. Такие системы имеют очевидный недостаток – маленький КПД. Производительность в среднем составляет около 10%. То есть для обеспечения энергией дома потребуется в два раза больше тонкопленочных батарей, чем поликристаллических. И срок службы таких панелей меньше других аналогов – в среднем ресурс работы составляет около 20 лет.

Идеально, если солнечные батареи могут полностью обеспечить дом электроэнергией. Но довольно часто энергия Солнца используется для горячего водоснабжения или же для отопления. Но чтобы выполнить любую из этих целей, необходимо высчитать реальную мощность на квадратный метр и необходимое количество модулей. Мощность солнечного модуля зависит от количества солнечных лучей, которые попадают на поверхность батареи. Чтобы правильно сделать выбор, также следует изучить принцип действия домашней мини-электростанции.

Принцип действия

Первый прототип гелиоколлектора, который всем известен еще с прошлого века – это дачный летний душ. Он представлял собой большую емкость, которая окрашивалась в черный цвет, в течение дня вода в ней нагревалась, что позволяло каждому дачнику вечером принимать теплый душ.

Гелиоколлектор – это плоская панель, которая располагается на улице, как правило, на крыше, и способна преобразовывать 90% солнечного излучения в энергию. В дальнейшем энергия отправляется в систему и распределяется на нужды электроснабжения. Но если гелиосистема используется для отопления или горячего водоснабжения, то энергия при помощи маломощного насоса направляется в бак-аккумулятор.

В разное время суток и в разные сезоны уровень освещения меняется. Поэтому для обеспечения бесперебойной поставки энергии в дом солнечная батарея имеет целую систему. Ученые научились управлять таким микрофизическим явлением, как фотоэлектрический эффект. И хотя, на первый взгляд, принцип действия кажется технически сложным, в действительности, принцип действия и схема электрической цепи выглядят очень просто.

Основная задача всей системы заключается в том, чтобы преобразовать энергию солнца и выдать постоянный ток определенной величины.

Плюсы и минусы

Установить солнечные батареи в своем доме может каждый желающий.

К тому же они имеют множество преимуществ.

  • Энергоэффективность – в зависимости от своего вида солнечные батареи имеют разный показатель. Но в среднем КПД составляет от 14 до 30%.
  • Солнечные батареи особенно востребованы на дачных участках. И этому есть два разумных объяснения. Во-первых, дачные участки зачастую находятся вдали от централизованных источников энергоснабжения в районах с малоразвитой инфраструктурой. И во-вторых, преобразование солнечных лучей в энергию особенно актуально именно в разгар дачного сезона – летом.
  • При необходимости мини-электростанцию можно дополнять новыми солнечными батареями для увеличения мощности.
  • Экономия – для южных регионов страны использование солнечной батареи для горячего водоснабжения позволяет сэкономить до 60% энергии в среднем за год: 30% зимой и 100% летом.
  • Подобные системы актуальны не только для частного использования, например, для дома, но и для предприятий, образовательных и медицинских учреждений. В производственном цехе солнечную батарею можно использовать в качестве дополнительного источника тепла для центрального отопления зимой, а летом – для подачи технологической горячей воды.
  • Выгода – заплатить за оборудование необходимо только один раз, впоследствии система не требует никаких вложений и обслуживания.
  • Экологический источник энергии – особенно важный аспект в планетарном плане, потому что запасы энергоносителей на Земле не безграничны.
  • Надежность – в данном случае многое зависит от выбранной модели и правильности установки.

Несмотря на множество плюсов, солнечные батареи имеют один весомы недостаток: их разумнее использовать в регионах с малым числом пасмурных дней в году, а таких на территории России очень ограниченное количество.

Стоит отметить, что система окупается через несколько лет и позволяет владельцу в будущем экономить колоссальные деньги. К примеру исходя из сегодняшних тарифов на электричество и дизель, можно с уверенностью сказать, гелиосистема окупится за 3-4 года в частном загородном коттедже для семьи из 5-7 человек. А при переходе с газа – окупаемость составит до 8-10 лет.

Виды

Сегодня различные виды солнечных батарей набирают все большую популярность. На первый взгляд, может показаться, что все солнечные модули одинаковые: большое количество отдельных маленьких фотоэлементов соединены между собой и закрыты прозрачной пленкой. Но, в действительности, все модули отличаются по мощности, конструкции и размерам. И на данный момент производители поделили гелиосистемы на два основных типа: кремниевые и пленочные.

Для бытовых целей устанавливаются солнечные батареи с фотоэлементами из кремния. Они являются на рынке самыми популярными. Из которых можно также выделить три вида – это поликристаллические, монокристаллические, о них уже было рассказано более подробно в статье, и аморфные, на которых остановимся подробнее.

Аморфные – изготавливаются также на основе кремния, но, кроме того, имеют также и гибкую эластичную структуру. Но производятся не из кристаллов кремния, а из силана – другое название кремневодород. Из особенностей аморфных модулей можно отметить отличную эффективность даже при пасмурной погоде и возможность повторять любую поверхность. Но КПД значительно ниже – всего 5%.

Второй тип солнечных панелей – пленочные, вырабатывается на основе нескольких веществ.

  • Кадмий – такие панели были разработаны еще в 70-х годах прошлого столетия и использовались в космосе. Но на сегодняшний день кадмий применяется также и при производстве промышленных и бытовых солнечных электростанций.
  • Модули на основе полупроводника CIGS – разработаны из селенида меди, индия и представляют собой пленочные панели. Индий также широко используется при производстве жидкокристаллических мониторов.
  • Полимер – также используется при производстве солнечных пленочных модулей. Толщина одной панели около 100 нм, но КПД остается на уровне 5%. Но из плюсов можно отметить, что такие системы имеют доступную цену и не выделяют вредные вещества в атмосферу.

Но также на сегодняшний день на рынке представлены менее громоздкие переносные модели. Они специально разработаны для использования во время активного отдыха. Зачастую такие солнечные батареи используются для подзарядки портативных устройств: небольших гаджетов, мобильных телефонов, фотоаппаратов и видеокамер.

Портативные модули делятся на четыре вида.

  • Маломощные – дают минимальный заряд, которого хватает для подзарядки мобильного телефона.
  • Гибкие – могут сворачиваться в рулон и имеют небольшой вес, благодаря этому и обусловлена большая популярность среди туристов и путешественников.
  • Закрепленные на подложке – имеют значительно больший вес, примерно 7-10 кг и, соответственно, дают больше энергии. Такие модули специально разработаны для использования в дальних автомобильных поездках, а также могут использоваться для частичного автономного снабжения энергией загородного домика.
  • Универсальные – незаменимы в пешем туризме, устройство имеет несколько переходников для одновременного заряда различных устройств, вес может достигать 1,5 кг.

Эффективность работы зимой

Для гелиосистемы морозная погода не играет роли. Главным здесь является количество ясных световых дней. И, к примеру, если использовать солнечную батарею для горячего водоснабжения, даже в зимний период тридцатиградусных морозов можно стабильно иметь в баке воду температурой 40°C – 50°C.

В регионах с резко континентальным климатом и суровой зимой отказаться от центрального отопления не получится. Но можно дополнить систему баками косвенного нагрева, которые позволяют совмещать различные источники тепла с возможностью включения в работу энергии солнца автоматически и по мере необходимости.

А также можно использовать гелиосистему для поддержки отопления в системе «теплый пол». При этом для 100 квадратных метров пола необходимо примерно 8 коллекторов. Но в летнее время такая большая система будет избыточной, разве что можно использовать ее для поддержания температуры в бассейне или сауне.

В зимний период разумнее использовать накопленную за лето энергию. В данном случае необходимо будет дополнительно установить аккумулятор для накопления электрического заряда.

Его роль в системе вполне понятна – аккумулятор позволит запастись электричеством солнечного модуля. И тогда можно будет использовать солнечную энергию в качестве электричества.

Как выбрать?

Установка гелиосистемы на собственном участке обойдется в приличную сумму. Перед тем как приступать к установке солнечной батареи, необходимо определиться с требующейся мощностью для всех приборов. И в первую очередь необходимо вычислить оптимальную пиковую нагрузку в киловаттах и рациональное условно среднее потребление энергии в киловатт/часах для обеспечения нужд дома или участка.

Для рационального использования солнечного электричества необходимо определить:

  • пиковую нагрузку – для ее определения необходимо сложить мощность всех приборов, включенных одновременно;
  • максимум потребляемой мощности – параметр, необходимый для определения категории приборов, которые должны работать в одно время;
  • суточное потребление – определяется умножением индивидуальной мощности отдельно взятого прибора на время, в течение которого он работал;
  • среднесуточное потребление – определяется путем сложения расхода энергии всех электроприборов за одни сутки.

Все эти данные необходимы для комплектации и стабильной последующей работы солнечной батареи. Полученная информация позволит подобрать более подходящие параметры аккумуляторного блока – дорогостоящего элемента солнечной системы.

Для проведения всех расчетов понадобится лист в клетку или, если вы предпочитаете работать на компьютере, то удобнее всего будет использовать файл Excel. Подготовьте шаблон таблицы с 29-ю колонками.

Укажите названия граф по порядку.

  • Название электроприбора, бытовой техники или инструмента – специалисты рекомендуют начинать описывать энергопотребителей с прихожей, а затем двигаться вкруговую по часовой или против часовой стрелки. Если дом имеет более одного этажа, то отправной точкой всех последующих уровней служит лестница. А также укажите уличные электроприборы.
  • Индивидуальная потребляемая мощность.
  • Время суток начиная от 00 и до 23 часов, то есть для этого вам понадобится 24 колонки. В колонках со временем необходимо будет указать два числа в виде дроби: продолжительность работы в течение конкретного часа/ индивидуальную потребляемую мощность.
  • В 27 колонке укажите суммарное время работы электроприбора за сутки.
  • Для 28 колонки необходимо помножить между собой данные из 27 колонки на индивидуально потребляемую мощность.
  • После заполнения таблицы вычисляется итоговая нагрузка каждого прибора на протяжении каждого часа – полученные данные вводятся в 29 колонку.

После заполнения последней колонки определяется среднесуточное потребления. Для этого все данные в последней колонке суммируют. Но в данном расчете не учитывается потребление всей системы гелиоколлектора. Для вычисления этих данных необходимо учитывать вспомогательный коэффициент при итоговых расчетах.

Такой тщательный и кропотливый подсчет позволит получить развернутую спецификацию энергопотребителей с учетом часовых нагрузок. Поскольку солнечная энергия очень дорогая, ее расход необходимо минимизировать и рационально использовать для питания всех приборов. К примеру, если гелиоколлектор будет использоваться в качестве резервного питания дома, то полученные данные позволят исключить энергоемкие приборы от сети до окончательного восстановления основного электроснабжения.

Для постоянного снабжения дома энергией от солнечной батареи при расчетах часовые нагрузки выдвигаются вперед. Потребление электроэнергии необходимо настроить таким образом, чтобы исключить аварийные ситуации при работе системы и выровнять максимальные нагрузки.

В таком случае все максимальные нагрузки должны совпадать с максимальной активностью солнца, то есть попадать на светлое время суток.

На данном графике наглядно показано, как рационально использовать энергию солнца в доме. Первоначальный график показывает, что нагрузка распределялась в течение суток хаотично: среднесуточная почасовая составляла 750 Вт, а показатель потребления – 18 кВт в час. После точных расчетов и грамотного планирования удалось снизить показатель суточного потребления до 12 кВт/час, а среднесуточную почасовую нагрузку до 500 Вт. Данный вариант распределения энергии также подходит и для резервного питания.

Сфера применения

Солнечные батареи являются наиболее выдающимся достижением в области альтернативной энергии. Они выполняют важнейшую функцию для энергосбережения и сохранения благ цивилизации. В летний период на даче солнечные батареи могут использоваться для обеспечения энергией электроприборов и бытовой техники, системы отопления или для горячего водоснабжения.

Туристы и путешественники, как правило, выбирают переносные солнечные батареи для зарядки портативных устройств. Они незаменимы в местах, где отсутствует электропитание.

Подобные устройства можно использовать также и для энергоснабжения квартиры. И если окна вашей квартиры выходят на солнечную сторону, вы можете смело установить солнечные батареи на балконе или фасаде дома, только предварительно необходимо будет получить разрешение управляющей компании или ТСЖ.

Схема подключения

Солнечные батареи можно разместить на крыше дома, неважно, скатной или плоской, а также на балконе, фасаде или даже во дворе. Но также необходимо будет выделить место на чердаке или в подвале для всей остальной системы.

Необходимо соблюдать основные рекомендации специалистов при установке солнечной батареи.

  • Внимательно рассмотрите все элементы солнечной системы перед покупкой на отсутствие повреждений и дефектов. Во время перевозки сохраняйте заводскую упаковку комплекта, чтобы не допустить нарушения целостности экрана.
  • Основные элементы контроля и регулировки солнечных батарей занимают минимум места. Как правило, необходимый минимум включает в себя инвертор, контроллер и АКБ. А также если позволяет климат региона и технические особенности участка, то устройства управления и контроля можно установить на улице. Но лучше для всей системы мини-электростанции выбрать отапливаемое сухое помещение, потому что при снижении окружающей температуры воздуха до -5?C емкость батареи уменьшается вдвое.
  • Солнечные модули, контроллеры и инверторы выпускаются под напряжением 12, 24 и 48 вольт. Большое напряжение позволяет использовать провода с меньшим сечением. Но чем меньше напряжение, к примеру, при 12 В проще заменить вышедшие из строя аккумуляторы. При работе с 24 вольтами понадобится заменять аккумуляторы попарно. А при замене аккумулятора 48 вольт понадобится 4 батареи на одной ветке, что, в свою очередь, опасно и может привести к поражению электрическим током.
  • Для системы солнечной батареи необходимо использовать специальные аккумуляторы с меткой Solar. В идеале все аккумуляторы должны быть от одного производителя и из одной партии.
  • Количество фотоэлементов в одном модуле должно быть от 36 до 72 штук – это оптимальное количество для получения заявленного тока. Не стоит устанавливать сдвоенные модули с количеством фотоэлементов от 72 до 144. Во-первых, их проблематично транспортировать. А во-вторых, они первыми выходят из строя при сильных морозах.
  • Большие модули должны иметь усиленный корпус и дополнительную защиту в виде стекла. Поскольку модули устанавливаются на крыше, на них оказываются большие нагрузки в виде осадков и ветра.
  • Собирать комплект солнечной батарее необходимо на открытой площадке или в просторном помещении.
  • Для установки солнечной батареи на участке необходимо выбрать хорошо освещенное открытое место, на котором не появляется тень от рядом стоящих зданий или деревьев. Отлично для этого подойдет крыша дома или любой другой постройки.
  • Угол наклона солнечных модулей играет большую роль при получении энергии. Поток энергии пропорционален положению солнца. Поэтому стоит заранее предусмотреть возможность изменения угла наклона для крепления при смене сезона, когда положение солнца и направление лучей меняется.

Изготовление в домашних условиях

Комплексная гелиосистема потребует немалого вложения средств. Но все потраченные деньги вернутся в будущем. Срок окупаемости в зависимости от количества модулей и способов использования солнечной энергии будет разниться. Но все же можно уменьшить первоначальные расходы не за счет потери качества, а за счет разумного подхода к выбору компонентов солнечной батареи.

Если вы неограничены в площади установки солнечных модулей, и в вашем распоряжении есть приличное пространство, то на 100 кв. м вы можете установить поликристаллические солнечные батареи. Это позволит сэкономить немалую сумму в семейном бюджете.

Не старайтесь покрыть полностью крышу солнечными батареями. Для начала установите пару модулей и подключите к ним ту технику, которая работает от постоянного напряжения. Нарастить мощность и увеличить количество модулей можно всегда со временем.

Если вы ограничены в бюджете, то можете отказаться от установки контроллера – это вспомогательный элемент, который необходим для отслеживания уровня заряда батареи. Вместо него, можно дополнительно подсоединить к системе еще один аккумулятор – это позволит избежать перезаряда и увеличит емкость системы. А для контроля заряда можно использовать обычные автомобильные часы, которыми можно измерять напряжение, да и стоят они в разы дешевле.

И один важный совет, замените все лампы накаливания на современные. В идеале использовать светодиодные – у них гораздо меньшее потребление электроэнергии и работают они от 12 В.

Популярные производители и отзывы

При выборе солнечной батареи для дома следует ориентироваться не только на соотношение цена – качество, но и на бренд. Необходимо абсолютно доверять производителю в этом важном вопросе. А чтобы удостовериться в качестве продукции, стоит ознакомиться с техническим паспортом и отзывами.

Зачастую на рынке можно встретить трубчатый вакуумный гелиоколлектор. Такие панели производятся в основном в Китае и теоретически имеют более высокий КПД. Но в зимнее время года на таких изделиях образуется наледь и на поверхности налипает снег. Слой осадков не пропускает солнечные лучи, а жарким летним днем такая система может «закипеть», если ее вовремя не накрыть для защиты от перегрева.

Рассмотрим самые популярные на рынке солнечные батареи.

Sharp

Sharp – бренд японской корпорации, широко известный в сфере производства мощных солнечных батарей. Выпускаемая продукция подвергается тщательным исследованиям и испытаниям. Солнечные модули имеют три слоя, а КПД составляет от 37,9% до 44,4%.

IES

IES – производится в Испании. Главной особенностью продукции считается два слоя модуля и КПД в пределах 32%, что в конечном счете отображается на стоимости. Солнечные панели испанского бренда значительно дешевле японских аналогов, но все же остаются весьма дорогостоящими для использования в частных домах.

Amonix

Amonix – также находится в числе лидеров по производству солнечных батарей для промышленного использования. Эффективность выпускаемой продукции составляет 36%.

Sun Power

Sun Power – солнечные панели американского бренда также входят в рейтинг эффективных систем. КПД популярных моделей составляет 21%.

Телеком-СТВ

«Телеком-СТВ» – панели российского производства (г. Зеленоград) также занимают лидирующие позиции среди производителей. Ассортимент выпускаемой продукции очень широкий. Компания предлагает монокристаллические батареи от 18 до 270 Вт, мультикристаллические – от 5 до 250 Вт, для морского применения – от 16 до 215 Вт, и складные – от 120 до 180 Вт. Эффективность солнечных модулей составляет 20-21%, но при этом стоимость батарей ниже на 30% по сравнению с импортными брендами.

Это лишь малая часть известных производителей солнечных батарей. Но не стоит сбрасывать со счетов и другие отечественные бренды. Так, к примеру, компания Hevel (Чувашия, Россия) выпускает микроморфные тонкопленочные батареи. И как показали исследования, улучшенная панель компании эффективнее улавливает лучи рассеянной энергии. И, что немаловажно, солнечные батареи отечественного производителя имеют привлекательный внешний вид и могут устанавливаться не только на крыше, но и на фасаде здания.

Не рассматривайте для установки дешевые сдвоенные солнечные модули с большим количеством фотоэлементов. Как показывает практика, во время аномальных морозов, которые систематически ударяют по многим регионам страны, именно такие панели первыми выходят из строя. Все дело в том, что тонкая прозрачная пленка, натянутая на поверхность модуля, сжимается на холоде и от большого натяжения отслаивается и рвется. Отчего производительность солнечной батареи падает, что может привезти к скорому выходу из строя.

При выборе подходящей системы необходимо также обратить внимание на то, что мощность гелиосистемы со временем снижается на 10%.

Также сократить ресурс панелей могут:

  • поврежденная пленка на поверхности модуля;
  • замутнение пленки;
  • деформация поверхности.

Не так давно ученые пришли к выводу и доказали возможность запасания тепла в грунте. Что открывает колоссальные перспективы для альтернативной энергии. Избытки летнего тепла можно запасать под землей в грунтовых или водяных аккумуляторах тепла, расположенных на глубине от 2 до 35 метров, и расходовать энергию зимой в качестве отопления или электричества.

Советы по поводу солнечных батарей — в следующем видео.

Размеры ячеек фотоэлементов |

Традиционно монокристаллические кремниевые ячейки до 2010 года изготавливались почти исключительно в размере 125 х 125 мм. Затем все больше распространение получили ячейки размером 156 мм x 156 мм. Этот стандарт размера получил официальную маркировку — M1. Из-за одинакового размера ячеек размеры самих солнечных модулей почти не отличались у разных производителей.

Размеры ячейки фотоэлемента

В 2013 году стандарт М1 был незначительно увеличен некоторыми производителями до размеров 156,75 мм х 156,75 мм. Новый стандарт получил маркировку — М2. До 2015 года на рынке доминировали стандартные ячейки M1 и M2.

Современная тенденция к увеличению размера ячейки

В 2018 году некоторые производители начали внедрять фотоэлектрические модули на основе еще более крупных элементов размером 161,70 мм х 161,70 мм, определяемых размером M4. Увеличение площади примерно на 6% позволило оптимизировать производственные затраты не только на ячейку, но и на весь солнечный модуль и, таким образом, снизить удельные затраты на единицу мощности. Несмотря на то, что стандарт M4 еще не успел укрепится на рынке, в 2019 году, некоторые производители стали применять в производстве солнечных батарей ячейки размером 166 мм x 166 мм под названием M6.

Следствием увеличения размера ячеек является увеличение размера самого фотоэлектрического модуля. При переключении с ячеек M2 на ячейки M4 происходит увеличение ширины рамки модуля примерно на 1 см и увеличение длины примерно на 3 см. Это изменение настолько важно, что оно должно быть учтено при проектировании полей фотоэлектрических модулей.

Изменение размера модулей также может вызвать проблему с заменой поврежденного модуля новым, который не будет соответствовать по размеру. В связи с этим необходимо учитывать не только мощностные показатели, но и размеры при выборе солнечных панелей как для нового строительства солнечной станции, так и для модернизации существующих объектов.

Как правильно выбрать солнечные батареи

Мы не так часто в нашей жизни покупаем солнечные батареи или устанавливаем солнечную электростанцию у себя на крыше. И правильно подобрать такое дорогостоящее оборудование одновременно ответственная и сложная задача для покупателя. Давайте попробуем разобраться в некоторых нюансах и возможных подводных камнях перед желанной покупкой.

В первую очередь, необходимо обратить внимание на технические характеристики солнечного фотомодуля. Основные из них перечислены ниже. Также, необходимо проверить качество изготовления и отсутствие визуальных дефектов на фотоэлементах, защитном стекле, ну и конечно, раме солнечного модуля.

Как определить, какое напряжение у модулей?

В последние годы на рынке появились солнечные панели с нестандартным напряжением, которые предназначены для работы в последовательных высоковольтных цепочках. С легкой руки непрофессиональных продавцов, появилась путаница с указанием номинального напряжения солнечных модулей. Мы возьмём на себя смелость и постараемся дать несколько советов, как определить, какое напряжение у солнечной батареи.

Различают несколько напряжений, которые указываются в параметрах солнечных панелей.

  1. Напряжение в точке максимальной мощности (ТММ). Это напряжение при работе модуля с максимальной эффективностью, т.е. когда он выдает свою пиковую мощность при стандартных тестовых условиях (STC). Это напряжение указывается в спецификациях модулей. Нужно учитывать, что измерить напряжение ТММ не так просто. Более того, очень часто нагрузка или аккумуляторные батареи заставляют работать солнечный модуль при напряжении, отличном от напряжения ТММ (обычно на несколько вольт ниже). Номинальная мощность равна произведению напряжения в точке максимальной мощности на ток в ТММ.
  2. Напряжение холостого хода. Напряжение холостого хода измеряется на клеммах солнечной панели без нагрузки, т.е. когда ток равен нулю. Это напряжение указывается в спецификациях на солнечных модуль. Напряжение холостого хода важно для определения максимально возможного напряжения, которое может выдавать модуль и солнечная батарея, собранная из нескольких модулей. Используя коэффициент температурной коррекции напряжения можно вычислить максимально возможное напряжение солнечного модуля при низкой температуре. Это напряжение не должно превышать максимально допустимого напряжения контроллера или инвертора.
  3. Номинальное напряжение. Это напряжение используется для классификации и различения модулей. Этот параметр пришел к нам со времен, когда солнечные панели использовались только для заряда аккумуляторных батарей. Это напряжение часто не указывается в спецификациях солнечной панели. Параметр номинального напряжения был введен для облегчения подбора солнечных панелей к аккумуляторам. Например, 12 В аккумуляторы нужно заряжать солнечной панелью с номинальным напряжением 12 В, а батарею 24 В — солнечной панелью с номинальным напряжением 24 В.
    Здесь ситуация аналогичная напряжениям, указываемым для аккумуляторов. Как известно, для заряда аккумулятора номинальным напряжением 12 В нужно зарядное устройство с напряжением примерно до 15 В. Поэтому 12-ти вольтовая солнечная панель должна выдавать такое напряжение при различной температуре.
    Поэтому, даже несмотря на то, что напряжение в ТММ солнечной панели равно 17 В, она будет заряжать аккумулятор при 14 В, а инвертор питать при 10-15 В, но все эти элементы будут иметь номинальное напряжение 12 В. Таким образом, для потребителя облегчается задача подбора оборудования, совместимого друг с другом.
    Такой подход прекрасно работал до появления MPPT контроллеров и сетевых фотоэлектрических инверторов. Технология MPPT (поиска точки максимальной мощности солнечной батареи, англ. maximum power point tracking) позволяет «отвязать» напряжение солнечной батареи от номинальных напряжений инвертора и аккумулятора.
    Сетевые инверторы и MPPT контроллеры позволили производителям солнечных панелей ориентироваться на размер панелей и их мощность, а не на напряжение. Так появились модули, напряжение которых совершенно не связано с напряжениями на аккумуляторах.

Напряжение солнечной батареи определяется количеством соединенных последовательно солнечных фотоэлементов. Каждый элемент имеет рабочее напряжение чуть менее полвольта. В настоящее время есть модули с количеством элементов 36 шт., 48 шт., 54 шт., 60 шт., 72 шт., 96 шт. и 120 шт. Самые распространённые панели с количеством фотоэлементов 36 шт., 60 шт. или 72 шт. В таблице ниже приведены основные напряжения этих солнечных панелей.

При покупке модулей для автономной системы с аккумуляторами обращайте внимание на напряжение модуля. В последнее время массово производятся модули высокой мощности с нестандартным номинальным напряжением 20 В. Такие модули обычно используются совместно с сетевыми фотоэлектрическими инверторами или с MPPT контроллерами заряда. Если вы хотите удешевить систему за счет менее дорогого ШИМ контроллера, выбирайте модули с номинальным напряжением 12 В или 24 В.

Температурная коррекция напряжения

Напряжение при возможных низких рабочих температурах модуля важно знать, для того, чтобы правильно подобрать солнечный контроллер или инвертор. Как известно, напряжение солнечной батареи растет при понижении температуры. Температурный коэффициент обычно указывается в спецификациях солнечного модуля.

На что обращать внимание при выборе солнечных панелей для вашей солнечной электростанции?

Цена против качества

Кроме того, что не все производители и солнечные модули одинаковы, есть еще ряд параметров и факторов, на которые следует обратить внимание при принятии решения о покупке и при выборе поставщика. Только лишь цена на модули не должна быть определяющим фактором.

Проблемы и ухудшение параметров солнечных модулей может быть вызвано следующими факторами:

  • Качество солнечного элемента — его эффективность может быть разной. Это зависит от множества его параметров — шунтового и последовательного сопротивлений, шумовых токов, обратного сопротивления и т.д. Многое зависит от качества производства солнечного элемента и качества применяемых при его производстве материалов и оборудования. Известны проблемы практически на каждом этапе производства элемента — начиная от качества применённого кремния, до качества применяемых контактных паст и припоя. Мы в данной статье не будем рассматривать эти проблемы, это предмет для отдельной большой статьи.
  • Качество пайки солнечных элементов. При некачественной пайке возможен локальный перегрев контакта и его прогорание.
  • Качество EVA пленки, которая расположена между элементами и стеклом. Старение кристаллических солнечных модулей в основном связано со старением и помутнением этой пленки. Некачественная пленка может начать мутнеть и разрушаться уже через несколько лет. Хорошая пленка будет служить 30 и более лет, при этом ее помутнение (и, следовательно, потеря мощности модулем) не будет превышать 25-30%
  • Качество герметизации модуля и качество задней защитной пленки. Задняя пленка защищает модуль от попадания влаги. В любом модуле происходит диффузия влаги через пленку. Если качество пленки хорошее, то вся влага, которая попадает внутрь модуля, при его нагревании на солнце, выводится наружу. Если же пленка некачественная, то влаги попадает больше, чем может выйти при нагреве, остаточная влага накапливается внутри модуля и разрушает контакты и контактную сетку элементов. Это приводит к преждевременному выходу модуля из строя.
  • Качество алюминиевой рамы. Здесь все понятно: некачественное анодирование может приводить к окислению рамки и ее коррозии. К счастью, этот дефект больше визуальный и вряд ли приводит к преждевременному выходу модуля из строя. Хотя, в некоторых случаях (например, при установке модулей на мачтах, где возможны сильные ветровые нагрузки или там, где среда агрессивная) ускоренная коррозия металла может приводить к его разрушению под нагрузками.
  • В последнее время появились солнечные модули с двойным стеклом, т.е. вместо задней защитной пленки применено стекло. Такие модули имеют ряд преимуществ.

Крыша веранды изготовлена из солнечных панелей с двойным стеклом

Толеранс

Под толерансом подразумевается отклонение реальной мощности модуля от паспортной. Толеранс может быть, как положительным, так и отрицательным. Например, модуль c паспортной мощностью 280 Вт может иметь мощность 275 Вт — это будет означать, что данный модуль имеет отрицательный толеранс. Положительный толеранс означает, что солнечная панель не только гарантированно будет иметь при стандартных тестовых условиях выходную мощность 290Вт, но и даже больше.

Температурный коэффициент

Температурный коэффициент отражает, какое влияние на выходные ток и напряжение модуля будет иметь повышение или понижение температуры модуля. Как известно, напряжение и мощность модуля при повышении температуры уменьшаются, а ток повышается. Чем меньше температурный коэффициент изменения мощности, тем лучше.

Эффективность преобразования солнечного света

C этим понятно — чем больше КПД, тем меньшая площадь модулей потребуется для генерации одинаковой мощности и энергии.

Срок службы и гарантии

Заявленный срок службы солнечной панели важен по нескольким причинам. Он может отражать уверенность производителя в качестве произведенной продукции. Солидные производители имеют гарантию 25 лет на 80-90% мощности модуля, а также 5 и более лет на механические повреждения.

Однако, нужно учитывать, что гарантия действует до тех пор, пока существует производитель или импортер. Здесь уже «как карта ляжет» — в последние годы из солнечного бизнеса ушли компании, которые, казалось, будут в нем еще очень долго. Но тем не менее, общее правило остается — покупайте у продавцов и производителей, которые давно на рынке и устойчиво «плывут» в бурном потоке рынка. Так как мало кто покупает модули напрямую от производителя, важно правильно выбрать продавца или установщика, которые обеспечат вам правильный выбор и режимы работы вашей системы солнечного электроснабжения.

Размеры и мощность

Стоимость модуля зависит от его мощности прямо пропорционально. Однако, чем больше единичная мощность модуля, тем меньше будет его стоимость за ватт. Поэтому, если вам нужна определенная мощность, то лучше ее набрать большими модулями, чем маленькими — это будет и дешевле, и надежнее, т.к. у вас будет меньше соединений. Также, стоимость за ватт модулей со стандартным напряжением 12/24 В обычно выше, чем с нестандартным количеством элементов в модуле 48 или 54. Для последних при заряде аккумуляторов нужен более дорогой MPPT контроллер.

Тип солнечных элементов, примененных в модуле, также определяет его размер. Поэтому сначала посчитайте, какая мощность вам нужна для снабжения энергией вашей нагрузки, потом посмотрите, хватит ли вам места для размещения такого количества модулей. Может потребоваться выбрать более дорогие, но более эффективные модули, для того, чтобы обеспечить все ваши потребности в энергии. Не забывайте, кстати, что перед проектированием системы солнечного электроснабжения нужно принять все возможные меры по энергосбережению.

Пиковая мощность всех модулей измерена при стандартных тестовых условиях:
Масса воздуха AM=1.5, радиация E=1000 Вт/м2 и температура фотоэлектрического элемента Tc=25°C. Такие условия при реальной работе модулей не существуют — модули нагреваются обычно до 40-60 градусов, освещенность почти всегда ниже 1000 Вт/м2 (исключение составляют морозные ясные дни). Поэтому многие производители также дают характеристики модулей при NOCT (normal operation conditions) — обычно для температуры модуля 45-47 °C и освещенности 800 Вт/м2, при этом выработка модулей примерно на 25-30% ниже пиковой. В морозный ясный день выработка модулей может доходить до 125% от пиковой.

Типы солнечных элементов: монокристаллические, поликристаллические, аморфные и другие.

Основные типы солнечных элементов, которые сейчас массово продаются на рынке, следующие:

  • Монокристаллические. Имеют наибольшую эффективность и удовлетворительные температурные коэффициенты.
  • Поликристаллические. В настоящее время наиболее популярные, т.к. имеют меньшую стоимость за ватт при примерно таких же характеристиках, как монокристаллические. Последние улучшения в технологии поликристаллических модулей брендовых производителей привели к тому, что их параметры могут быть даже лучше, чем у монокристаллических модулей noname производителей/сборщиков панелей.
  • Аморфные (тонкопленочные). Используют наименьшее количество кремния. Имеют примерно в 2 раза меньший КПД по сравнению с кристаллическими модулями. К преимуществам можно отнести низкий температурных коэффициент (т.е. при нагревании мощность таких модулей падает незначительно) и большую чувствительность при низких освещенностях.
  • CIGs — тонкопленочные модули из кадмий-индий-галлий теллурида. Многообещающая технология, но массового распространения пока не получила. Делают такие модули всего несколько производителей, и цена на них за ватт обычно выше, чем на массово выпускаемые модули из кристаллического кремния.

В последние годы появились солнечные модули, изготовленные с применение новых технологий: PERC, гетероструктурные и т.п. Они имеют больший КПД и улучшенную эффективность. Пока их стоимость превышает стоимость стандартных кристаллических модулей с токосъемными шинами, но технология совершенствуется и рынок постепенно переходит на новые типы модулей, цена которых снижается.

Какие же модули, из перечисленных выше, работают лучше? В последнее время появилось много мифов и необоснованных заявлений насчет того, что какой-то из этих типов модулей работает лучше, чем другие. Некоторые уверяют, что поликристаллические элементы лучше работают при низкой освещенности и в пасмурную погоду. Другие утверждают то же самое, но для монокристаллических элементов. Были даже версии, что поликристаллические элементы лучше преобразуют рассеянный свет, потому что кристаллы в них «повернуты в разные стороны».

Анализ результатов тестирования сотен модулей показывает, что модуль хорош не тот, который моно или поли, а тот, который сделан качественно. Результаты тестирования модулей по PTC (которые ближе к реальным условиям эксплуатации модулей) показывают, что некоторые монокристаллические лучше, чем некоторые поликристаллические, а некоторые поликристаллические лучше, чем некоторые монокристаллические. Этот факт также подтверждают многочисленные результаты сравнений модулей конечными пользователями — можно найти как «доказательства» преимуществ моно перед поли, так и преимуществ поли перед моно. Однако большинство монокристаллических модулей немного лучше работают при нагреве — это подтверждает анализ большого количества данных по PTC мощности солнечных модулей различных производителей.

Что является фактами, так это следующее:

  • Монокристаллические модули обычно имеют больший КПД при STC, т.е. можно получить больше мощности с единицы площади солнечной батареи при ярком солнце.
  • Монокристаллические модули имеют меньшую деградацию со временем.
  • Монокристаллические модули дороже за ватт.
  • На эффективность стандартных модулей в общем случае влияет количество токосъемных шин. Чем их больше, тем лучше работают солнечные элементы. Солнечные элементы с 4 шинами (4BB) постепенно вытеснены элементами с 5 шинами (5BB). Эффективность их выше, чем у элементов с 3 или 4 шинами, но сравнивать при этом нужно элементы производителей одинакового уровня. Хороший (брендовый, Tier1) производитель делает модули с 4BB элементами лучше, чем noname или Tier3 c 5BB.
  • Солнечные элементы, изготовленные по новой технологии (PERC, гетероструктурные и др.) имеют КПД примерно на 10-15% выше. Т.е. в размере стандартного 260-280Вт модуля можно получить до 320Вт.

Так что еще раз повторим — если хотите получить солнечные панели с прогнозируемыми параметрами — покупайте брендовые, с указанием реального производителя. Этот производитель должен быть в списке протестированных независимыми лабораториями или рекомендован независимыми агентствами.

На этом пока всё. И не забывайте поделиться прочитанным со своими друзьями!

Принцип работы и устройство солнечной батареи.

В этой статье мы рассмотрим устройство солнечной батареи. Современная солнечная батарея представляет собой соединение фотоэлементов, которое может преобразовывать солнечное электромагнитное излучение в электрическую энергию. Ее основными составляющими являются фотоэлементы, от количества которых зависит вырабатываемое напряжение и сила тока. Устройство солнечной батареи основано на явлении внутреннего фотоэлектрического эффекта, которое впервые было открыто ученым Эдмондом Беккерелем еще в 1839 году. В 1873 году другой ученый Уиллоуби Смит заметил такой эффект во время облучения солнечным светом пластины селена. Наибольшее распространение солнечные батареи получили, начиная с середины двадцатого века.

Виды солнечных батарей и их предназначение


В настоящее время используется несколько разновидностей солнечных батарей. Все они отличаются длительным сроком эксплуатации, который зачастую превышает 30 лет. Это достигается за счет отсутствия в конструкции механических компонентов и расходных частей.

Наибольшее распространение сегодня получили три вида фотоэлементов:

  1. Монокристаллические;
  2. Поликристаллические;
  3. Тонкопленочные;
  4. Аморфные.

Самым распространенным видом являются поликристаллические панели, которые отличаются оптимальным соотношением цены и эффективности. В большинстве случаев их КПД достигает 12-13 %. Эти батареи отличаются кристаллической структурой и синим цветом. Монокристаллические солнечные панели являются более эффективными, так как их КПД достигает 15-16%. Однако, с учетом стоимости одного ватта мощности, их использовании обходиться дороже.

Хотите экономить на электроэнергии? Тогда узнайте, как работают ветряные мельницы и где выгодно их устанавливать

Монокристаллические и поликристаллические батареи имеют схожие функции:

  • освещение жилых домов, хозяйств, тепличных комплексов;
  • освещение садовой, парковой зоны, улиц;
  • обеспечение электроэнергией медицинские и телекоммуникационные приборы;
  • энергоснабжение систем подачи и очистки воды;
  • подзарядка ноутбуков, мобильных телефонов.

Тонкопленочные обладают самым низким КПД, который не превышает 12%. В то же время, за счет низкой цены фотоэлементов, которые входят в конструкцию, один ватт мощности электроэнергии здесь обходиться дешевле, чем в остальных батареях. К тому же, тонкопленочные панели занимают в 2-3 раза большую площадь, чем моно- и поликристаллические. Поэтому, их лучше использовать для питания крупных систем мощностью более 10 кВт. Интересное: Солнечные батареи на 5 кВт.

Из какого материала изготавливаются солнечные батареи

Наиболее распространенным материалом для изготовления солнечных панелей является кристаллический кремний. Монокристаллический кремний изготавливается по методу Чохральского или тигельным способом. Более простым для изготовления считается поликристаллический кремний, который по структуре представляет собой совокупность кристаллов. Также в качестве материала для изготовления фотоэлементов может использоваться ленточный кремний. Для его производства два тонких слоя кремния накладываются друг на друга. Он более дешевый в изготовлении, но и менее эффективный.

Узнайте больше о самовозобновляемой и бесплатной энергии будущего. Солнечные батареи в действии.

Устройство солнечной батареи: основные элементы

Современное устройство солнечной батареи предусматривает обязательное наличие прочного корпуса, в котором будут размещаться фотоэлементы. Это связано с хрупкостью панелей. Корпус представляет собой коробку небольшого размера с небольшими боковыми ребрами. При этом, ребра не должны мешать солнечному свету попадать на выходы элементов. Размер коробки определяется количеством солнечных элементов. Следующим элементом конструкции является подложка, которая располагается в корпусе прямо на панели. Перед установкой подложки корпус нужно обработать специальными красками, которые имеют стойкость к микроорганизмам и влаге. Кроме того, в корпусе должны быть вентиляционные отверстия, за счет которых будет поддерживаться определенная температура и выводиться газы, которые выделяются при работе батареи в незначительном количестве.

Технология изготовления

Вначале следует спаять фотоэлементы между собой. Если вы купили элементы с металлическими выступами, то тогда можно просто спаять ушки батарей между собой. Делать это нужно очень внимательно и аккуратно. После пайки соединенные компоненты необходимо приклеить к подложке в верхней части панели. Это лучше сделать при помощи специального силиконового клея, который никак не препятствует проникновению солнечных лучей. Кроме того, он способствует нормальному теплообмену. Однако, не переусердствуйте с клеем, так как это может привести к повреждению батарей. Клеить нужно только центр клеток. Далее все элементы нужно соединить с проводом, который подается в одной из заранее предусмотренных вентиляционных отверстий. Для закрепления провода к солнечным элементам лучше использовать силиконовую замазку. Интересное: Солнечная панель своими руками.

На следующем этапе поверх панелей устанавливается оргстекло. Однако, до этого следует подключить диод Шоттки от чувствительных теплопроводящих компонентов. Этот диод послужит блокирующим устройством, которое защитит фотоэлементы при перепадах напряжения. Кроме того, диод Шоттки будет отключать питание системы при маленькой мощности электросети. Так аккумуляторы, заряжаемые от солнца, не будут разряжаться при прекращении питания. Когда диод будет подключен, можно ставить оргстекло и закреплять его винтами. Технология изготовления солнечных панелей является достаточно простой и понятной. Единственное, важно правильно соблюдать последовательность соединения, иначе вся система не будет работать.

Как работает солнечная батарея

Принцип работы солнечной батареи основан на наличии полупроводника в виде двух пластин, соединенных друг с другом. Каждая пластина изготавливается из кремния с использованием дополнительных примесей. Благодаря этому пластины обладают своими уникальными свойствами. Первая из них имеет избыток валентных электронов, а вторая имеет недостаток этих электронов. Эти полупроводники получили название n и p. Если эти полупроводники соединить в единое целое, то можно получить PN-переход в месте контакта между ними. В то время, когда на батарею попадают прямые солнечные лучи, на обеих сторонах этого перехода начинают накапливаться положительные и отрицательные плавающие нагрузки. В результате генерируется напряжение и возникает магнитное поле. Если подсоединить к такому элементу провод, по нему потечет электричество.

Выясняем: когда стоит устанавливать солнечные батареи и как быстро они окупаются?

Как подключить солнечную батарею

Как только вы изготовите солнечную панель, можно начинать заниматься ее подключением. Можно не подключать ее напрямую к сети, чтобы избежать потерь электроэнергии. То есть, желательно установить автономную систему с аккумуляторами. Они будут заряжаться от солнечных батарей каждый день и быстро разряжаться. При этом, глубина разрядки может быть довольно существенной. Поэтому, аккумуляторы могут быстро выйти из строя. Для того, чтобы этого не произошло, лучше оставить подключение к сети через гибридный батарейный инвертор. Это устройство будет отдавать фотоэлементам приоритет при распределении нагрузки. Инвертор не будет отдавать излишки электроэнергии в сеть, а будет передавать ее на аккумуляторы. Такой вариант является одним из наиболее оптимальных. Эта система состоит из гибридного инвертора, контроллера заряда солнечных панелей и аккумуляторов. Такой механизм сможет работать не только как основная, но и как резервная система электропитания.

Как выбрать солнечную батарею для дома

Сегодня мы поговорим про то, как выбрать солнечную батарею для дома и получать бесплатную солнечную электроэнергию.

Источники энергии

Источники энергии, берущиеся из окружающей среды, становятся все более актуальными.

Вода, ветер и солнце являются практически бесконечными источниками, способными обеспечить практически неиссякаемой энергией. Остается только преобразовать ее в электроэнергию.

Причем эти источники доступны не только в промышленных масштабах, ими может воспользоваться и простой обыватель.

Самым оптимальным для владельца дома или дачи является использование солнечной энергии.

Ведь реки есть не везде, существуют и районы, где ветра не так уж и много, а вот дневной свет способен обеспечить электроэнергией практически в любом месте земного шара.

Конечно, полностью обеспечить электроэнергией все приборы в доме за счет энергии солнца удастся не всегда, но часть их – вполне возможно.

Количество вырабатываемой электроэнергии зависит от многих факторов: площади солнечных панелей, материала их изготовления, особенностей дополнительного оборудования, погодных условий.

Конструкция солнечной панели

Вначале разберемся с самими солнечными панелями. Эти панели представляют собой модуль, который и производит преобразование солнечной энергии в электрическую.

Они выполнены в виде прямоугольников с небольшой толщиной. Это позволяет монтировать их на любую прямую поверхность – стены дома, крыша.

Конструкция классических модулей, которые сейчас являются самыми распространенными, такова: имеется остов модуля, сделанный из анодированного алюминиевого профиля.

Внутри этого остова располагаются ячейки с полупроводниковыми пластинами, состоящими из кристаллического кремния. Все ячейки соединены между собой проводкой.

С фронтальной стороны для предотвращения повреждения ячеек их прикрывает закаленное стекло.

Сверху этого стекла, а также с тыльной стороны нанесена ламинирующая пленка, которая делает модуль герметичным, и предотвращает проникновение влаги внутрь.

Выработанная каждой ячейкой электроэнергия по проводам передается на распределительную диодную коробку, от которой она уже идет дальше.

Стандартным считается модуль с 36 ячейками, каждая из которых вырабатывает 0,5 В. Выпускаются также модули на 72 ячейки, которые обеспечивают на выходе из диодной коробки 24 В.

Виды солнечных панелей

Что касается ячеек, то они бывают двух типов – монокристаллические и поликристаллические. Отличаются они по материалу изготовления, форме, эффективности преобразования энергии.

В монокристаллических ячейках при создании используются однородные по структуре кристаллы кремния.

У второго же типа ячеек применяются кристаллы кремния с разной структурой.

Структура кристаллов влияет на общую эффективность преобразования энергии.

У монокристаллических она выше, поэтому модуль с такими ячейками способен обеспечить выработку энергии по количеству одинаковую с поликристаллическим модулем, но при значительно меньших размерах самой панели. Но и стоимость монокристаллических панелей выше.

По внешнему виду эти модули различить легко. У монокристаллических панелей углы ячеек закруглены.

Ячейки поликристаллического модуля имеет прямоугольную форму.

Недавно появились модули, ячейки которых выполнены из аморфного или микроморфного кремния.

Такие модули не имеют каркаса, и сделаны они в виде пленки, которая наклеивается на поверхность. Следует отметить, что такие модули являются самыми дешевыми из-за меньшего расхода кремния.

Остальные элементы системы

Но одних панелей недостаточно. Выработанная ими энергия должна быть правильно перераспределена. За это отвечает контроллер. Вся выработанная панелями энергия поступает на него.

Также следует отметить, что панели вырабатывают постоянный ток невысокого напряжения, как уже отмечено одна панель может обеспечить 18 или 24 В. А большинство домашних электроприборов работают от сети 220 В и с переменным током.

Поэтому, чтобы была возможность использовать выработанную панелями электроэнергию, потребуется инвертор, который и будет преобразовывать ее.

Если солнечные панели рассчитаны на использование в качестве автономной системы для обеспечения электроэнергии, то потребуются накопители энергии, ведь в темное время суток панели энергию вырабатывать не будут.

Такими накопителями являются аккумуляторы.

Выбор панелей

Далее рассмотрим, на что следует обращать внимание при выборе солнечных панелей и остального оборудования, которое нужно, чтобы вся система функционировала.

Вначале следует определиться с тем, какая суммарная мощность электроэнергии должно быть выработано панелями. Для этого высчитывается среднесуточное потребление энергии.

Затем определяется, какую мощность обеспечивает одна панель за световой день.

Далее просто определяется, сколько панелей потребуется для выработки энергии, которая потребляется за сутки. Это в случае полного перехода на автономное энергообеспечение.

Исходя из этого уже и выбираются модули. Если площади для их установки не так уж и много, то лучше будет приобрести монокристаллические модули.

Они хоть и дороже, но площадь каждой панели меньше, чем поликристаллической, и срок службы ее больше.

Панели лучше приобретать известных производителей, на которые они дают длительный срок гарантии.

Контроллеры

Перейдем к контроллерам заряда. Через них проходит выработанная энергия и подается на аккумуляторы.

Сейчас производятся два типа контроллеров – широтно-импульсной модуляции (ШИМ-контроллер) и слежения за точкой максимальной мощности (МРРТ-контроллер).

ШИМ-контроллеры более простые и доступные.

Однако при их использовании теряется до 30 % выработанной панелями энергии.

МРРТ-контроллер же способен произвести 100% выработку энергии, но и стоимость его значительно выше.

К примеру, выходная мощность панелей составляет 2 кВт. При использовании ШИМ-контроллера из-за потерь выработки конечная мощность составит 1400-1600 Вт. А вот МРРТ-контроллер способен обработать все 2 кВт мощности.

Поэтому рекомендуется при установке панелей с выходной мощностью свыше 1 кВт использовать МРРТ-контроллер.

Что касается мощностных показателей, то подбирается контроллер по мощности, которую он способен обработать.

АКБ

Что касается аккумуляторов, то самыми доступными сейчас являются кислотные. Основным параметром при подборе является емкость, чем она больше у АКБ, тем лучше.

Есть определенные формулы расчета емкости АКБ, по которым определяется, какой она должна быть, чтобы запитать все необходимые электроприборы.

Если данная система не будет использоваться автономно, без накопления энергии и направлена только на экономию, то установка контроллера и аккумуляторов не нужна.

В такой системе выработанная энергия поступает сразу на инвертор, и далее уже расходуется потребителями.

Инвертор

Инверторы выпускаются трех типов – автономные, сетевые и комбинированные.

Автономные инверторы используются при полном переходе на использование солнечной энергии, где производится накопление энергии в АКБ и одновременный ее расход.

Сетевой инвертор используется в системах, в которых не производится накопление энергии. Поступающую на него электроэнергию от панелей он сразу преобразовывает и запитывает потребители. Подключается он к общей сети дома.

Комбинированные инверторы могут работать и как автономный, и как сетевой, причем с выбором приоритета источника энергии.

Основным параметром инвертора при выборе является его мощность.

Для правильного определения его мощности подсчитывается мощность всех электроприборов, которые могут быть включены одновременно и добавляется к суммарной мощности еще 20%. Это позволит предотвратить работу инвертора на предельных нагрузках.

При использовании сетевого инвертора мощность его подбирается по выходной мощности солнечных панелей, поскольку он с ними будет взаимодействовать напрямую.

Придерживаясь данных рекомендаций, вы сможете правильно подобрать солнечную батарею для своего дома. А установку солнечных панелей все же доверить специалистам.

Что такое полуэлементная солнечная панель и как она работает?

Панельные тренды быстро становятся мейнстримом. IHS Markit предсказал, что технология пассивных эмиттерных тыловых ячеек (PERC) превратится из резкого скачка на рынке в 2014 году в массовое производство к 2020 году — предсказание подтверждается всеми, кто смотрит на модели панелей, выпущенные в этом году. PERC здесь, чтобы остаться.

Различные размеры ячеек. Источник: ITRPV

Следующая технология на этом распространенном пути — конструкции с половинными ячейками.В девятом издании Международной дорожной карты технологий для фотоэлектрических систем (ITRPV) прогнозируется, что рыночная доля полуэлементов вырастет с 5% в 2018 году до почти 40% в 2028 году.

Половинные модули имеют солнечные элементы, которые разрезаны пополам, что улучшает характеристики и долговечность модуля. Традиционные панели с 60 и 72 ячейками будут иметь 120 и 144 ячейки половинной формы соответственно. Когда солнечные элементы уменьшаются вдвое, их ток также уменьшается вдвое, поэтому резистивные потери снижаются, и элементы могут производить немного больше энергии.Ячейки меньшего размера испытывают меньшие механические напряжения, поэтому вероятность растрескивания меньше. Модули с половинными ячейками имеют более высокие выходные характеристики и более надежны, чем традиционные панели.

«При рассмотрении солнечной установки на первый план выходит идея« большего »- производить больше энергии, экономить (или зарабатывать) больше денег и делать больше пользы для окружающей среды», — сказал Джемил Себер, вице-президент по глобальному маркетингу и управлению продуктами для производителя модуля REC. «В случае крыш, где имеется ограниченное пространство, может помочь использование солнечных панелей с технологией половинных элементов.”

REC является пионером в области полуэлементов, впервые представив конструкцию в 2014 году. Серия модулей TwinPeak с половинными ячейками эффективно превращает каждую панель в две сдвоенные панели. Поскольку ячейки меньше, расстояние между ячейками не должно быть таким широким, и их можно размещать ближе друг к другу. Это позволяет REC разделить панель на две части. Независимые верхняя и нижняя половины модуля позволяют улучшить отклик на затенение. Если нижняя половина модуля затенена, верхняя половина все равно будет работать.

Поликристаллический модуль полуячейки TwinPeak компании REC (слева) и его монокристаллический модуль полуячейки N-Peak (справа)

REC раздвинул границы с конструкциями полуэлементов в поликристаллических модулях.Поликристаллические модули PERC с половинными ячейками REC достигли мощности 300 Вт, и они могут конкурировать с модулями с полной ячейкой в ​​более эффективном монокристаллическом классе. Компания была настолько впечатлена преимуществами полуэлементов, что переводит все свои производственные линии на новую технологию.

«С 2014 года REC постоянно переводит свои производственные линии на технологию половинных ячеек», — сказал Себер. «Сегодня все наши производственные линии модулей в Сингапуре, кроме одной, оснащены технологией половинных ячеек.”

Во время торговой выставки 2018 года REC выпустила новую серию модулей N-Peak, первый опыт компании в области монокристаллических полуэлементов для еще более высокой эффективности и выходной мощности — до 330 Вт при традиционной 60-элементной занимаемой площади.

Другие производители также начали разработку полуэлементов в монокристаллическом классе. LONGi Solar недавно продемонстрировал мощность более 360 Вт при тестировании своего 120-элементного монокристаллического модуля PERC с половинным разрезом. Hanwha Q CELLS получила награду Intersolar Award 2018 в категории Photovoltaics за свой Q.Солнечный модуль PEAK DUO-G5 — монокристаллический модуль из 120 полуэлементов и шести шин. Модуль Hanwha использует круглые провода вместо плоских лент для шин, чтобы уменьшить затенение ячеек. Hanwha также предлагает поликристаллические конструкции для рынка с 72 ячейками. Его Q. PLUS DUO L-G5.2 представляет собой поликристаллический модуль полуячейки с максимальной мощностью 370 Вт.

Половинчатые ячейки (Фото со стенда Hanwha Q CELLS SPI 2017)

Поскольку конструкции с половинными ячейками сейчас являются самой популярной тенденцией, производителю просто нужно обновить несколько вещей в своих моделях, чтобы не отставать.Две проблемы при переходе от производства с целыми ячейками к конструкциям с половинными ячейками — это разрезание ячеек и процесс связывания. Поскольку полуэлементы обычно изначально являются клетками PERC, сама клетка довольно хрупкая. Лазерная резка ячейки посередине без растрескивания — деликатный процесс. В полуячейках часто используются четыре или более сборных шин. Для того, чтобы натянуть эти очень узкие соединительные планки на меньшую площадь, требуется точное оборудование. Распределительные коробки также отличаются на модулях с половинными ячейками.Большинство брендов используют несколько распределительных коробок меньшего размера, поэтому каждая половина модуля может работать как отдельная. В остальном сборка модуля с половинными ячейками аналогична производству целых элементов.

Поскольку модули с половинными ячейками производят больше энергии, они более эффективны и надежны, чем их аналоги с полной ячейкой, их использование может привести к экономии времени и денег для установщика.

«Обеспечивая большую мощность на квадратный метр, для выработки такой же мощности требуется меньше панелей», — сказал Себер. «Это означает более быструю установку и необходимость в меньшем количестве компонентов, таких как зажимы и стойки, — все это снижает общие затраты.”

Пользовательские солнечные панели для промышленных приложений и приложений Интернета вещей

Voltaic разрабатывает и производит индивидуальные высококачественные солнечные панели и монтажные решения для широкого спектра промышленных применений, включая транспорт, сельское хозяйство, парковку и мониторинг окружающей среды. Мы работаем с вами, чтобы понять ваши требования к размерам и мощности, преобразовать их в технические чертежи, протестировать производительность в рамках вашего дизайна и управлять цепочкой поставок и процессом импорта.

Процесс проектирования и варианты индивидуальных солнечных панелей

Процесс разработки

Наша команда обычно следует четырехступенчатому процессу разработки:

1. Предварительное обсуждение — Комбинация разговоров по телефону и / или электронной почте для понимания требований вашего проекта, количества и сроков.

2. Технические характеристики и конструкция панели — Мы производим один или несколько чертежей панели, которые включают размеры, материал, напряжение, мощность, материалы, проводку и монтажный механизм.вернуться наверх Варианты питания и напряжения

Общая мощность определяется площадью поверхности и эффективностью солнечных элементов. Чаще всего мы используем как стандартные монокристаллические ячейки, так и ячейки с обратным контактом SunPower. 2 (12 частей 52 мм x 19 мм), используя 19.Ячейки с КПД 1% и рассчитаны на 2,3 Вт. Панель SunPower справа имеет площадь ячеек 129 см (18 частей размером 50 мм x 14,4 мм) с использованием ячеек с КПД 23,1% и рассчитана на 3,0 Вт.

Ячейки

SunPower в значительной степени повышают свою эффективность за счет перемещения своих трассирующих линий и точек подключения к задней части ячеек. Ячейки SunPower более дорогие в расчете на ватт (по сравнению с традиционными монокристаллическими ячейками) имеют:

  • Более высокий КПД — примерно 15% дополнительной мощности на единицу площади
  • Прочные медные соединения обеспечивают питание даже при треснувшем элементе
  • Меньше ограничений на размер и расположение ячеек при использовании производственного процесса SMT
  • Даже внешний вид может исчезнуть на матовом черном фоне
  • Немного больше физической гибкости

Обратной стороной ячеек SunPower является то, что они стоят больше в расчете на ватт, чем традиционные монокристаллические элементы.На более крупных панелях также существует больше ограничений на то, как можно разрезать ячейки. SunPower доступны с ETFE или стеклом.

Мы создаем определенное напряжение, последовательно соединяя отдельные элементы ячеек. Каждый элемент ячейки составляет ~ 0,55 В (0,58 — 0,59 для SunPower), поэтому для панели 2,2 Вт, показанной ниже, мы использовали 12 частей для создания панели на 6 В.

По возможности, мы рекомендуем производить панель с минимальным напряжением, подходящую для вашей схемы. Вот некоторые из преимуществ панели с низким напряжением:

  • Более высокий ток — в той же области панель 18 В будет производить меньше тока, чем панель 16 В.Ваша схема может растрачивать это избыточное напряжение, в результате чего вы получаете на 12,5% меньше энергии.
  • Более высокая мощность — Каждая ячейка требует промежутка между следующей ячейкой. Чем больше ячеек на панели, тем больше места тратится на промежутки между ячейками.
  • Более частичное затенение и риск загрязнения — если объект прилипает к панели или частично затеняет ее, потери мощности будут больше на панели с более высоким напряжением. Цепочка ячеек генерирует столько же тока, сколько худший элемент в цепочке. Когда куски ячеек меньше, влияние затенения увеличивается.вернуться наверх Варианты покрытия Мы рекомендуем покрытие для панели в зависимости от долговечности, стоимости и конструктивных ограничений. Четыре варианта:

    Уретан: Высокая устойчивость к ультрафиолетовому излучению и долговечность. Наши уретановые солнечные панели служат до 10 лет на солнце с минимальным падением мощности. Уретановое покрытие заливается или «заливается» на солнечные элементы и приводит к очень водонепроницаемой панели. Каждая отдельная ячейка полностью покрыта уретаном.

    ETFE: Экономичный, водостойкий и устойчивый к ультрафиолетовому излучению, но более короткий срок службы, чем уретан.Солнечные элементы прикрепляются к подложке, а затем ламинируются под действием тепла и давления с помощью EVA и ETFE. Благодаря использованию высококачественных материалов (есть разница в качестве производства ETFE и EVA), наши солнечные панели из ETFE имеют ожидаемый срок службы 5-7 лет на улице.

    Эпоксидная смола или ПЭТ: Панели, изготовленные с такими покрытиями, будут недорогими, но мы не рекомендуем это покрытие для большинства промышленных применений, поскольку оно имеет относительно короткий срок службы. Из всех вариантов они наименее устойчивы к ультрафиолетовому излучению.

    Стекло: Высокая стойкость к ультрафиолетовому излучению и в сочетании с рамой стеклянная панель может иметь самый долгий срок службы. Стеклянные панели являются самыми тяжелыми в расчете на ватт.

    Слева: Уретан, ЭТФЭ, ПЭТ, стекло

    Покрытие Ожидаемый срок службы вне помещений (лет) * Типичная толщина (мм) Приблизительный вес 5-ваттной панели (кг) Доступен поверхностный монтаж
    Уретан 10+ 5 0.25 Нет
    ЭТФЭ 5-7 2,5–3,5 0,21 Есть
    Стекло 10+ 5 0,37 Есть
    Стекло с рамкой 20+ 20 0,49 Есть
    ПЭТ 2–3 2.вернуться наверх Варианты подложки

    Солнечные элементы устанавливаются на подложку или основу. Опять же, есть несколько вариантов.

    Алюминий-пластик-алюминий: Материал с очень высоким соотношением прочности и веса, используемый в коммерческих зданиях. Позволяет врезать винт или гайку в основание. Доступно только с нашими уретановыми панелями.

    PCB Пластик: Доступны различные толщины, от 0,6 мм до 3 мм в зависимости от требований. Более высокая плотность, чем у подложки из алюминия, пластика и алюминия.вернуться наверх Связка ячеек против SMT

    Есть два способа последовательного соединения элементов ячеек.

    Более традиционный способ — припаять положительный полюс одного элемента ячейки к отрицательному элементу следующего элемента с помощью ленты. Это можно сделать вручную или с помощью так называемой струнной машины. Затем на подложку кладут одну или несколько ниток и при необходимости соединяют.

    Метод SMT начинается с печатной платы, которая соответствует задним контактам элементов ячеек SunPower. Элементы ячеек помещаются на печатную плату с помощью модифицированной машины для поверхностного монтажа, обычно используемой для захвата и размещения компонентов.вернуться наверх Характеристики провода

    Наш стандартный провод имеет разгрузку от натяжения длиной около 12 дюймов и оканчивается вилкой 3,5×1,1 мм. Его можно изменить на любую длину и клемму, которые вы предпочитаете. Проволока может быть встроена в подложку, чтобы она оставалась водонепроницаемой, или припаяна снаружи панели. Можно даже разделить провода питания и заземления. Другой вариант — разместить контактные площадки на обратной стороне панели. Их можно разместить в любом месте панели.

    На обратной стороне наших панелей из ETFE мы обычно закрываем соединение с проводом силиконовым герметиком и соединительной коробкой.вернуться наверх Цепочка поставок и тарифы

    Панели солнечных батарей, ввезенные в США, подлежат широкому спектру компенсационных и антидемпинговых пошлин. Если не управлять должным образом, пошлины на панели могут превышать 200%. Мы управляем этим риском для наших клиентов из США, импортируя и очищая панели перед доставкой.

    Мы думаем о процессе импорта панелей с самого начала процесса проектирования, выбирая солнечные элементы и места производства, чтобы минимизировать эти тарифы и снизить затраты.вернуться наверх Советы по дизайну солнечных панелей

    • Оцените реалистичное производство солнечной энергии в наихудшем сценарии. Вот как оценить яркость солнечного излучения по месяцам в зависимости от вашего ожидаемого местоположения.
    • Уменьшите требования к мощности вашей схемы, прежде чем обсуждать требования к питанию панели. Например, если вы можете снизить требования к вашей цепи в мА на 50%, это уменьшит размер солнечной панели на 50%, сэкономив ваши деньги, размер и вес.
    • Протестируйте свой проект с небольшими солнечными панелями, прежде чем переходить к индивидуальному дизайну.вернуться наверх

      Запросить индивидуальное предложение

      солнечных батарей | Определение, принцип работы и разработка

      Солнечный элемент , также называемый фотоэлектрическим элементом , любое устройство, которое напрямую преобразует энергию света в электрическую посредством фотоэлектрического эффекта. Подавляющее большинство солнечных элементов изготавливается из кремния — с повышением эффективности и снижением стоимости, поскольку материалы варьируются от аморфных (некристаллических) до поликристаллических и кристаллических (монокристаллических) форм кремния.В отличие от батарей или топливных элементов, солнечные элементы не используют химические реакции и не требуют топлива для производства электроэнергии, и, в отличие от электрических генераторов, они не имеют движущихся частей.

      Схема структуры солнечного элемента

      Обычно используемая структура солнечного элемента. Во многих таких ячейках абсорбирующий слой и задний переходный слой изготовлены из одного и того же материала.

      Encyclopædia Britannica, Inc.

      Солнечные элементы можно объединять в большие группы, называемые массивами.Эти массивы, состоящие из многих тысяч отдельных ячеек, могут функционировать как центральные электростанции, преобразовывая солнечный свет в электрическую энергию для распределения между промышленными, коммерческими и бытовыми пользователями. Солнечные элементы в гораздо меньшей конфигурации, обычно называемые панелями солнечных батарей или просто солнечными панелями, были установлены домовладельцами на своих крышах, чтобы заменить или увеличить их обычное электроснабжение. Панели солнечных батарей также используются для обеспечения электроэнергией во многих удаленных земных точках, где обычные источники электроэнергии либо недоступны, либо чрезмерно дороги в установке.Поскольку у них нет движущихся частей, которые могли бы нуждаться в обслуживании, или топлива, которое потребовало бы пополнения, солнечные элементы обеспечивают питание для большинства космических установок, от спутников связи и метеорологических спутников до космических станций. (Однако солнечной энергии недостаточно для космических зондов, отправляемых к внешним планетам Солнечной системы или в межзвездное пространство, из-за распространения лучистой энергии по мере удаления от Солнца.) Солнечные элементы также используются в потребительских товарах, таких как электронные игрушки, карманные калькуляторы и портативные радиоприемники.Солнечные элементы, используемые в устройствах такого типа, могут использовать искусственный свет (например, от ламп накаливания и люминесцентных ламп), а также солнечный свет.

      Международная космическая станция

      Международная космическая станция (МКС) была построена секциями, начиная с 1998 года. К декабрю 2000 года основные элементы частично завершенной станции включали построенный американцами соединительный узел Unity и два российских объекта — «Заря». энергомодуль, а «Звезда» — первоначальное жилое помещение. Российский космический корабль, на борту которого находился первый экипаж из трех человек, пришвартован в конце «Звезды».Фотография сделана с космического корабля «Индевор».

      Национальное управление по аэронавтике и исследованию космического пространства Изучите способы сделать солнечные элементы более эффективными, эффективными и доступными.

      Узнайте об усилиях по повышению эффективности солнечных элементов.

      Contunico © ZDF Enterprises GmbH, Майнц См. Все видеоролики к этой статье

      Хотя общее производство фотоэлектрической энергии незначительно, оно, вероятно, увеличится по мере сокращения ресурсов ископаемого топлива. Фактически, расчеты, основанные на прогнозируемом мировом потреблении энергии к 2030 году, показывают, что глобальные потребности в энергии будут удовлетворяться за счет солнечных панелей, работающих с 20-процентной эффективностью и покрывающих лишь около 496 805 квадратных километров (191 817 квадратных миль) поверхности Земли.Потребности в материалах будут огромными, но выполнимыми, поскольку кремний является вторым по распространенности элементом в земной коре. Эти факторы побудили сторонников солнечной энергии предвидеть будущую «солнечную экономику», в которой практически все потребности человечества в энергии будут удовлетворяться за счет дешевого, чистого, возобновляемого солнечного света.

      Структура и работа солнечных элементов

      Солнечные элементы, независимо от того, используются ли они в центральной электростанции, спутнике или калькуляторе, имеют одинаковую базовую структуру. Свет проникает в устройство через оптическое покрытие или антиотражающий слой, который сводит к минимуму потери света на отражение; он эффективно улавливает свет, падающий на солнечный элемент, способствуя его передаче нижним слоям преобразования энергии.Антиотражающий слой обычно представляет собой оксид кремния, тантала или титана, который формируется на поверхности ячейки методом центрифугирования или вакуумного осаждения.

      солнечная энергия; солнечный элемент

      Солнечная энергетическая установка производит мегаватты электроэнергии. Напряжение генерируется солнечными элементами, изготовленными из специально обработанных полупроводниковых материалов, таких как кремний.

      Предоставлено Национальной лабораторией возобновляемых источников энергии Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской.Подпишитесь сегодня

      Три слоя преобразования энергии ниже антиотражающего слоя — это верхний переходной слой, абсорбирующий слой, составляющий сердцевину устройства, и задний переходный слой. Два дополнительных электрических контактных слоя необходимы для отвода электрического тока к внешней нагрузке и обратно в элемент, замыкая электрическую цепь. Электрический контактный слой на лицевой стороне ячейки, куда проникает свет, обычно присутствует в виде некоторой сетки и состоит из хорошего проводника, такого как металл.Поскольку металл блокирует свет, линии сетки должны быть настолько тонкими и широко разнесенными, насколько это возможно, без ухудшения сбора тока, производимого элементом. Задний электрический контактный слой не имеет таких диаметрально противоположных ограничений. Он должен просто функционировать как электрический контакт и, таким образом, покрывать всю заднюю поверхность ячеистой структуры. Поскольку задний слой также должен быть очень хорошим проводником электричества, он всегда выполняется из металла.

      Поскольку большая часть энергии солнечного света и искусственного света находится в видимом диапазоне электромагнитного излучения, поглотитель солнечных элементов должен эффективно поглощать излучение на этих длинах волн.Материалы, которые сильно поглощают видимое излучение, относятся к классу веществ, известных как полупроводники. Полупроводники толщиной около одной сотой сантиметра или меньше могут поглощать весь падающий видимый свет; Так как переходные и контактные слои намного тоньше, толщина солнечного элемента по существу равна толщине поглотителя. Примеры полупроводниковых материалов, используемых в солнечных элементах, включают кремний, арсенид галлия, фосфид индия и селенид индия меди.

      Когда свет падает на солнечный элемент, электроны в слое поглотителя возбуждаются из «основного состояния» с более низкой энергией, в котором они связаны с конкретными атомами в твердом теле, в более высокое «возбужденное состояние», в котором они может двигаться сквозь твердое тело.В отсутствие слоев, образующих переход, эти «свободные» электроны находятся в беспорядочном движении, и поэтому не может быть ориентированного постоянного тока. Однако добавление слоев, образующих переход, индуцирует встроенное электрическое поле, которое создает фотоэлектрический эффект. Фактически, электрическое поле обеспечивает коллективное движение электронам, которые проходят через слои электрического контакта во внешнюю цепь, где они могут выполнять полезную работу.

      Материалы, используемые для двух слоев, образующих переход, должны отличаться от поглотителя, чтобы создавать встроенное электрическое поле и пропускать электрический ток.Следовательно, это могут быть разные полупроводники (или один и тот же полупроводник с разными типами проводимости), или они могут быть металлом и полупроводником. Материалы, используемые для создания различных слоев солнечных элементов, по существу те же, что и материалы, используемые для производства диодов и транзисторов твердотельной электроники и микроэлектроники ( см. Также Электроника: Оптоэлектроника). Солнечные элементы и микроэлектронные устройства используют одну и ту же базовую технологию. Однако при изготовлении солнечных элементов стремятся создать устройство большой площади, потому что вырабатываемая мощность пропорциональна освещенной площади.В микроэлектронике цель, конечно, состоит в том, чтобы создавать электронные компоненты все меньших размеров, чтобы увеличить их плотность и скорость работы в полупроводниковых кристаллах или интегральных схемах.

      Фотогальванический процесс имеет определенное сходство с фотосинтезом, процессом, с помощью которого энергия света преобразуется в химическую энергию в растениях. Поскольку солнечные элементы, очевидно, не могут производить электроэнергию в темноте, часть энергии, которую они вырабатывают при свете, сохраняется во многих приложениях для использования, когда свет недоступен.Одним из распространенных способов хранения этой электроэнергии является зарядка электрохимических аккумуляторных батарей. Эта последовательность преобразования энергии света в энергию возбужденных электронов, а затем в запасенную химическую энергию поразительно похожа на процесс фотосинтеза.

      Размер солнечных панелей

      Вы здесь, потому что слышали о преимуществах солнечных панелей для жилых помещений. А именно, снижение счетов за электроэнергию и уменьшение углеродного следа. Вы знаете основы работы систем солнечной энергии — они преобразуют солнечный свет в электричество для вашего дома.Вам интересно, сколько солнечных панелей будет достаточно для питания вашего дома? А если у вас достаточно места, чтобы оно того стоило? Читайте дальше, и мы обсудим все, что вам нужно знать о размере солнечных панелей, сколько вам понадобится и какой тип производства энергии вы можете ожидать.

      Какой размер солнечной энергетической системы мне нужен?

      Во-первых, вам нужно оценить, сколько энергии вы обычно потребляете в определенный месяц. Зная это, вы сможете рассчитать, какой объем солнечной энергосистемы вам потребуется установить.Имейте в виду, что потребление энергии будет колебаться в зависимости от времени года и места вашего проживания. Вы собираетесь израсходовать намного больше энергии в жаркие летние месяцы и в разгар зимы, когда ваш кондиционер и обогреватель, вероятно, работают без перерыва, по сравнению с осенью и весной, когда наружные температуры более умеренные. и не требуйте столько электроэнергии для работы ваших нагревательных и охлаждающих устройств.

      Среднее домашнее хозяйство в США потребляет около 11 000 кВтч электроэнергии в год.А средний размер солнечных энергетических систем, установленных в большинстве домов, составляет 5 кВт. Чтобы разбить его немного дальше, один киловатт-час (кВтч) равен 1000 ватт энергии, используемой за один час. Вам нужно будет собрать данные из ваших счетов за коммунальные услуги за последний год, и большинство коммунальных компаний рассчитают ваш средний показатель автоматически, если вы спросите, чтобы определить ваш средний месячный / годовой уровень потребления энергии. Это даст информацию о том, сколько солнечных панелей вам нужно будет установить в доме, чтобы удовлетворить ваши потребности в энергии.

      Сколько солнечных панелей мне понадобится?

      В целом, если мы возьмем в среднем по стране 11 000 кВт / ч электроэнергии, потребляемой ежегодно, и будем использовать солнечные панели мощностью 250 Вт, мы можем оценить, что среднему дому потребуется от 28 до 34 панелей для выработки достаточного количества солнечной энергии для питания. дом.

      Насколько велики эти солнечные панели? С физической точки зрения, размеры панелей для жилых помещений составляют примерно 65 на 39 дюймов, и они весят около 40 фунтов на панель. Солнечные панели, используемые для коммерческих объектов, немного больше, но это потому, что коммерческие здания обычно больше и могут содержать размер панелей.Жилые панели меньше по размеру и весу, потому что они в основном предназначены для домашней крыши, которая должна выдерживать вес и размер самих панелей.

      Каждая панель обычно содержит около 60 солнечных элементов. Эти солнечные элементы преобразуют солнечный свет в электричество постоянного тока. Фотоны от солнца реагируют с электронами, высвобождаемыми в солнечных элементах, для выработки электричества. Что-то, называемое инвертором, которое является частью вашей солнечной системы, затем преобразует это электричество постоянного тока и преобразует его в электричество переменного тока, тип электричества, необходимый для питания ваших бытовых приборов.

      Большинство стандартных солнечных панелей имеют мощность от 230 до 275 Вт. Как указано выше, исходя из среднего количества потребляемой энергии в год и стандартной мощности солнечных панелей, это соответствует от 28 до 34 физических солнечных панелей, которые необходимо будет установить в вашем доме. Тот факт, что именно столько панелей вам потребуется, чтобы покрыть 100% вашего энергопотребления, не означает, сколько панелей вы сможете установить физически. Чтобы рассчитать это, вам нужно знать размер вашей крыши.Если солнечные панели самого стандартного размера составляют 17,5 квадратных футов, и у вас есть около 385 квадратных футов крыши для установки солнечных панелей, которые максимально увеличивают потребление солнечного света, вы можете разместить около 22 панелей на своей крыше.

      Но подождите. Это не покрывает 100% энергии, потребляемой вашим домом. Это нормально. Почти все владельцы систем солнечной энергии в жилых домах по-прежнему подключены к сети. И это для этого. Если у вас недостаточно энергии, преобразованной из ваших солнечных панелей для питания вашего дома, вы можете использовать энергию из сети для питания своего дома.Таким образом, вы будете платить коммунальной компании только за небольшое количество энергии, которое вы использовали из сети, вместо того, чтобы потреблять 100% электроэнергии из сети. Еще одна замечательная особенность солнечных систем заключается в том, что если вы производите больше солнечной энергии, чем можете потреблять за определенный день, этот избыток возвращается в сеть, и коммунальная компания предоставит вам кредит (читайте: деньги из вашего счета за коммунальные услуги) на подача солнечной энергии в сеть. По сути, вы все равно можете выставить счет за электроэнергию в размере 0 долларов, если то, что вы возвращаете в сеть, превышает сумму, которую вы получаете от нее.

      Сколько энергии будут производить мои солнечные панели?

      Ключ к ответу на этот вопрос зависит от ряда факторов, а именно от места вашего проживания и времени года. Если вы живете в штате с высоким уровнем солнечного света (например, Калифорния, Аризона), вы сможете генерировать намного больше энергии из своих солнечных батарей по сравнению с теми, кто живет в Сиэтле.

      В дополнение к этому, время года будет иметь большое влияние на количество производимой энергии. Это связано с тем, что, когда дни короче зимой, количество солнечного света, к которому вы имеете доступ, будет меньше, чем летом, когда дни длиннее.
      Другие факторы, которые могут повлиять на количество энергии, производимой вашими солнечными панелями, связаны с расположением вашего дома. Если вы живете на действительно затененном участке, то ваши панели не смогут производить столько энергии, как тот, кто живет посреди широкого открытого поля и не видит деревьев. Ключевым моментом является выяснение того, как лучше всего разместить ваши солнечные панели с учетом вашего ландшафта, наклона крыши и положения вашего дома.

      Например, если вы установите 22 панели солнечных батарей по 265 Вт на крыше, вы получите около 5 солнечных панелей.83 кВт электроэнергии, что позволяет производить 6366 кВтч в год. Что это значит в долларовом выражении? Исходя из средних тарифов на коммунальные услуги, ожидайте, что в этом году ваша экономия составит более 700 долларов! Умножьте это на срок службы системы, и вы поймете, почему так много людей переходят на солнечную энергию! В среднем за пять коротких лет вы получите 100% окупаемость инвестиций и как минимум 20+ лет чистой экономии.

      Какой размер солнечной панели? Сравнение размеров и веса солнечных панелей в 2018 году

      Если вы думаете об установке системы солнечных панелей в своем доме, первое, что вы должны подумать, — это то, сколько физического пространства будет занимать ваша система.Размер солнечной панели, среди других факторов, влияет на количество вырабатываемой электроэнергии, а объем доступного пространства влияет на количество панелей, которые вы можете установить.

      Поэтому важно учитывать эти факторы при выборе солнечных батарей.

      Еще одна физическая характеристика, которую следует учитывать при поиске, — это вес каждой солнечной панели. Некоторые солнечные панели занимают большую площадь поверхности, но могут весить меньше в зависимости от конкретного оборудования.Вес ваших солнечных панелей и тип крыши будут влиять на систему крепления, которая вам нужна.

      Чтобы держать вас в курсе, мы создали этот список, который состоит из 5 наших самых популярных солнечных панелей на Solar.com, а также их размера и веса. Что касается размеров, мы можем просто смотреть на длину и ширину, потому что высота обычно составляет всего дюйм или два и не сильно влияет на модуль.

      Q CELLS Солнечные панели

      Модули солнечных панелей

      Q CELLS бывают двух размеров: 60-ячеечная и 72-ячеечная.Солнечный элемент — это отдельный блок, который составляет солнечную панель и непосредственно участвует в процессе преобразования солнечного света в электрическую энергию. Таким образом, панель на 72 ячейки обычно будет физически больше и будет производить больше электроэнергии, чем панель на 60 ячеек.

      Все солнечные панели из 60 ячеек имеют размер около 65,8 дюйма, дюйма, длина дюйма, длина мм, ширина элемента , размер 39,4 дюйма, размер дюйма, ширина дюйма, ширина мм. Это означает, что он занимает общую площадь около 18 квадратных футов. Кроме того, все 60 модулей ячеек имеют вес 41.45 фунтов . Панели из 72 ячеек имеют размер 78,5 дюймов, при длине , на 39,4 дюйма, при ширине , и занимают около 21,5 квадратных футов. Эти модули также весят 52,9 фунта .

      Солнечные панели Hyundai

      Монокристаллические солнечные элементы Hyundai PERL выпускаются с панелями различных размеров. Хотя Hyundai немного менее эффективен, чем большинство конкурентов, он по-прежнему остается популярным выбором для солнечных систем из-за своей более низкой стоимости. Имея на выбор более 10 модулей, вес варьируется от 41.От 2 до 51,1 фунтов . Все солнечные панели Hyundai представлены в двух размерах:

      .

      1) 17,62 квадратных футов

      • Длина = 64,57 дюйма
      • Ширина = 39,29 дюйма

      2) 23,95 квадратных футов

      • Длина = 77,17 дюйма
      • Ширина = 39,29 дюйма

      Панели солнечных батарей LG

      LG предлагает огромный выбор модулей солнечных батарей, которые известны своей высокой эффективностью и меньшим весом. У них также есть две категории модулей в зависимости от количества ячеек в каждой панели.Их панели из 60 ячеек имеют относительно одинаковый размер — около 18 квадратных футов ( 65 дюймов в длину, на 40 дюймов в высоту ) и весят около 37,5 фунтов . Их 72-ячеечные панели также имеют примерно одинаковые размеры — 22,2 квадратных фута ( 80 дюймов в длину, на 40 дюймов в высоту ), все они весят около 46 фунтов .

      Солнечные панели SunPower

      Солнечные панели

      SunPower — близкие конкуренты LG по эффективности и качеству. У них есть 3 разные категории солнечных панелей, которые в основном основаны на их эффективности.Это серия X, серия E и серия P. Модули серии X выпускаются с размерами панелей на 72 и 96 ячеек. 72-я ячейка занимает 13,38 квадратных футов при длине 61,34 дюйма и ширине 31,42 дюйма . 96 ячеек покрывают 17,5 квадратных футов при длине 61,34 дюйма и высоте 41,18 дюйма . Серии E и P имеют примерно одинаковые размеры и лишь немного менее эффективны. Все они весят около 41 фунта.

      Панели солнечных батарей Panasonic

      Panasonic имеет несколько высокоэффективных модулей солнечных панелей, которые по цене и качеству аналогичны LG и SunPower.Их модули солнечных панелей HIT® представлены в 5 вариантах, но все они практически одинакового размера и веса. Они занимают площадь 18 квадратных футов и весят около 41 фунта.

      Панели солнечных батарей не слишком различаются по размеру и весу

      Хотя все модели солнечных панелей немного отличаются по эффективности, максимальной мощности, температурному коэффициенту и т. Д., Размеры и вес обычно находятся в одном диапазоне. Большинство солнечных панелей имеют размер от 17 квадратных футов до 23 квадратных футов и весят от 40 до 50 или около того фунтов.Надеюсь, этот список даст вам больше указаний на то, какие солнечные панели вы хотите установить.

      Доступные солнечные панели | Полностью установленная система мощностью 5 кВт $ 4999

      Полностью установлена. Полностью застрахован. Полная гарантия.
      Это ваша возможность получить лучшую сделку с солнечными батареями в Мельбурне.

      Горячая линия: (03) 8672 1455

      Домашние солнечные панели теперь предлагает лучший пакет солнечных панелей, который может предложить Мельбурн.Мы предлагаем непревзойденное качество и цену. Помните, когда лучшие солнечные панели стоили 30 000 долларов? Что ж, технологии развиваются, и теперь вы можете покупать более качественные товары почти на 80% дешевле. С высококачественным инвертором ABB мощностью 5 кВт и системой солнечных панелей (полностью установленной), которая теперь стоит $ 4999, нет причин откладывать это больше. Позвоните нам сейчас, чтобы получить бесплатный осмотр и расценки.

      • Система 5 кВт и инвертор 5 кВт ABB полностью установлены всего за $ 4 999
      • ЦЕНА ВСЕ ВКЛЮЧЕНО — ПОЛНОСТЬЮ УСТАНОВЛЕНА
      • Качественные солнечные панели и инверторы
      • Доставка и установка в течение 3 недель
      • 9013 Панели поставляются с 12-летней 5-звездочной местной гарантией.

        Качество установки, производимое компанией, производящей солнечную батарею, зависит только от гарантии, которая ее поддерживает.Если поставщик солнечных панелей уверен в их установке, он должен иметь по крайней мере такую ​​же гарантию, как мы.

        На наши бытовые солнечные панели распространяется обширная 12-летняя гарантия, а на солнечные инверторы распространяется 5-10-летняя гарантия. Не соглашайтесь на солнечные энергетические системы, у которых «гарантия качества изготовления» менее 12 лет.

        Горячая линия: (03) 8672 1455

        5-звездочные продукты высокого качества

        При таком большом количестве различных марок солнечных панелей в Австралии качество — это первая характеристика, которая ставится под угрозу при покупке только по цене.

        Мы устанавливаем более высокие стандарты, поставляя только высококачественное, надежное и проверенное оборудование от лучших австралийских дистрибьюторов. Покупая на месте, мы можем гарантировать, что ваша гарантия будет предоставлена ​​австралийскими компаниями, обслуживающими австралийские компании.

        Наше желание предоставлять наши услуги от местного поставщика позволило нам договориться о высочайшем качестве оборудования по невероятно доступной цене.

        100% возобновляемая энергия

        Даже лучшая бытовая солнечная энергия в Мельбурне заставит вас полагаться на какую-то электрическую компанию в темное время суток.Зная это, мы постоянно изучаем рынок, чтобы найти наилучшие предложения по энергоснабжению для наших клиентов. Используя нашу покупательную способность, мы смогли постоянно находить лучшие цены на электроэнергию на рынке — и все это на 100% из возобновляемых источников энергии единиц энергии.

        Панели солнечных батарей Мельбурн

        Мы являемся установщиками и поставщиками панелей солнечных батарей премиум-класса в Мельбурне. Специализируется на разработке и установке систем солнечных панелей в Мельбурне для бытовых и коммерческих клиентов в Мельбурне и его окрестностях.Домашние солнечные панели в Мельбурне позволяют домовладельцам и предприятиям легко и доступно переходить на солнечную энергию при проектировании системы, установке солнечных батарей и помощи с любыми доступными государственными грантами или скидками на солнечную энергию. Наша команда установщиков солнечных панелей в Мельбурне готова предоставить вам бесплатное предложение сегодня.

        Наши услуги

        Мы обладаем знаниями, опытом и продуктами, чтобы удовлетворить все ваши потребности в солнечной энергии. Мы не торопимся, чтобы объяснить вам процесс и лучшую систему; наши специалисты по солнечной энергии устанавливают все для вас безопасно и эффективно, а мы берем на себя все документы и необходимые соглашения, чтобы вы немедленно подключились к сети.Мы предлагаем полный спектр услуг по установке солнечных батарей в Мельбурне и его окрестностях.

        Солнечная энергия Мельбурн

        Домашние солнечные панели Мельбурн найдите время, чтобы объяснить, что такое солнечная энергия и как она может вам помочь, мы рассмотрим, как солнечная энергия может не только помочь окружающей среде, но и снизить ваши счета за электричество на 80 %. Благодаря нашей актуальной информации о солнечной энергии, фактам и часто задаваемым вопросам вы узнаете, почему переход на солнечную энергию — лучший выбор!

        Сделки с солнечными панелями

        Домашние солнечные панели в Мельбурне предлагают одни из лучших солнечных предложений и специальные цены на солнечные батареи в Мельбурне, Виктория, такие как нулевой депозит и нулевой процент.Наши последние предложения по солнечной энергии могут сэкономить вам много денег, сэкономив до 80% ваших счетов за электроэнергию.

        Нет больше роста затрат на электроэнергию!

        Когда вы обеспечиваете большую часть своей энергии с помощью высокоэффективных солнечных панелей, вы больше не зависите от энергетической компании в отношении цены на вашу энергию.

        Используя бесплатную и обильную энергию солнца, вы можете почти полностью исключить затраты на электричество.

        Это означает, что ВЫ можете контролировать расходы на электроэнергию и тратить деньги на что-то более стоящее.

        Горячая линия: (03) 8672 1455

        Наша репутация и стабильность обеспечивают отличные финансовые сделки!

        Большинство компаний, занимающихся солнечными панелями, не могут получить доступ к лучшим вариантам финансирования для своих клиентов. За прошедшие годы просто появилось слишком много начинающих компаний по производству солнечной энергии, которые приходили и уходили, поэтому большинство финансистов очень осторожно относились к участию в этой отрасли.

        Однако наша репутация и долголетие создали большое доверие финансовых компаний, которые работают с нами.Таким образом, мы можем передать вам преимущества этих отношений в виде набора вариантов оплаты, один из которых, несомненно, подойдет вашей семье.

        Гарантированная замена

        Каждый день, когда у вас есть солнечная электростанция, вам не нужно полагаться на местные энергетические компании. По мере того, как ваша зависимость будет уменьшаться, вы захотите убедиться, что у вас самая лучшая и надежная система.

        В конце концов, ваша солнечная система будет нуждаться в техническом обслуживании, независимо от того, начнет ли инвертор испытывать проблемы или нужно будет проверить эффективность панелей, этот день придет.Важно знать, что компания, установившая его, по-прежнему готова вам помочь. И если да, то какой ремонт или обслуживание они предлагают, чтобы ваши солнечные панели снова заработали.

        Мы знаем, что каждая минута простоя — это минута, которую вы тратите, полагаясь на электросеть, или страдаете из-за снижения пропускной способности дома.

        Добавить комментарий

        Ваш адрес email не будет опубликован.