Схема блок питания 12 вольт: Самодельный блок питания на 12 вольт

Содержание

Блок питания 12 Вольт 180 Ватт.

В работе я часто использую различные блоки питания, в основном для питания систем видеонаблюдения. В основном пользуюсь продукцией одной именитой фирмы, но цена на них сейчас весьма немаленькая, потому захотелось попробовать (а заодно потестировать) альтернативный вариант мощного 12 Вольт блока питания.
Описание, фотографии и выводы читайте под катом.

Вообще стоит сказать, что подобные блоки питания ко мне уже попадали (в том числе и на ремонт), но меньшей мощности, вот захотелось посмотреть, что внутри у более мощного варианта данного типа блоков питания.

Поставляется блок питания в беленькой коробочке, впрочем все блоки питания такого типа идут в одинаковых белых коробочках :).

Корпус так же стандартный, с перфорированным кожухом.
Размеры 198х99х42мм
На фото видно погнутый угол корпуса, похоже ему досталось в дороге, хотя на упаковке следов удара я не видел. Будем считать, что БП прошел дополнительный стресс тест.

На боковой стороне расположена наклейка с указанием характеристик данного блока питания.

Под наклейкой находятся три винта, два крепят промежуточную алюминиевую прокладку, один прижимает к ней диодную сборку.

На торце установлен клеммник для подключения кабелей.
У клеммника присутствует очень удобная крышка, так же рядом с клеммником находится подстроечный резистор для регулировки выходного напряжения и светодиод индикации работы блока.
В принципе это все типично для всех блоков питания такого типа, но просто выкладывать фотографии не хочется, потому будут небольшие комментарии. 🙂

Собственно общий вид внутренностей блока питания.
На фото просматривается маркировка силового трансформатора, как ни странно, но маркировка у него 12 Вольт 16.5 Ампер, а не 15, как указано на наклейке блока питания.
Корректор коэффициента мощности в данном блоке питания отсутствует.

Блок питания собран по классической полумостовой схеме, такое решение применяется в большинстве компьютерных блоков питания, сначала АТ, а потом и АТХ.

На фото видно два силовых транзистора J13009, ШИМ контроллер TL494, развязывающий трансформатор с токовой обмоткой, а так же обвязка всех этих элементов.

Здесь видно силовую выпрямительную сборку MBR30100, дроссель и выходные сглаживающие конденсаторы 1000мкФ х 25 Вольт.

Блок питания собран с использованием самого популярного ШИМ контроллера TL494CN, как вариант, второго по популярности после UC384x.
Схемотехника самая классическая, в интернете куча информации по ремонту блоков питания такого типа. С одной стороны это плюс, проще ремонтировать, с другой минус, так как хотелось бы что-то поновее. Для меня скорее плюс наверное.
Я не буду делать заключений по поводу оригинальности контроллера, установленного в этом БП, главное, что работает.

В блоке питания присутствует полноценный входной фильтр питания, никаких специально обученных перемычек, так же виден переключатель диапазона входного напряжения 110-220 Вольт (хотя я больше привык к 115-230, на самом деле разницы нет).

Лучше данный переключатель не трогать, если включить блок питания с установленным режимом 110 Вольт в розетку с 220 Вольт, то БП гарантированно выйдет из строя.

Общий вид платы, не распаянных элементов немного (видимо просто унифицированная печатная плата), есть место под разъем для подключения вентилятора, даже допускаю, что эта плата может применяться в более мощном БП, но с активным охлаждением. В пользу этого говорит и то, что установлен трансформатор, промаркированный как 200 Ватт.

Монтаж односторонний, пайка довольно качественная, флюс смыт, никаких претензий.

Хотя нет, одна претензия все таки имеется, небольшая капля припоя, прилипшая под ШИМ контроллером.

Конденсаторы входного фильтра питания установлены Nippon chemi-con (по крайней мере так на них написано), емкость удивила.
На конденсаторах указана емкость 220 мкФ, конденсаторы включены последовательно, соответственно получается 110мкФ, для блока питания такой мощности это маловато, обычно емкость желательно ставить не меньше 1мкФ на 1 Ватт выходной мощности.

Но когда я решил измерить, то был сильно удивлен, емкость каждого конденсатора была около 340мкФ, два последовательно дали соответственно 170мкФ. Первый раз я вижу конденсаторы, с таким отклонением, да еще и в плюс.
Кстати, конденсаторы применены на 250 Вольт, а не 200, как обычно ставят в похожих БП.

С выходными все немного банальнее, вся батарея конденсаторов (их установлено 5 штук параллельно) дает 5500мкФ, разброс в +10% у новых конденсаторов вполне нормален.
Я обычно предпочитаю ставить выходные конденсаторы из расчета 1000мкФ на 1 Ампер выходного тока, но это с запасом. Практика показала, что выходная емкость для этого Бп вполне достаточна. Конденсаторы рассчитаны на 25 Вольт, я бы ставил на 35, но с учетом того, что в компьютерных БП по шине 12 Вольт вообще ставят 16 Вольт конденсаторы, то 25 это еще вполне нормально.

Теперь можно перейти к тестированию

Первое включение, ничего не взорвалось и не вышло из строя, все работает, правда напряжение немного завышено.

Решил проверить диапазон регулировки выходного напряжения.
Минимально 10.32 Вольта

Максимально 13.90 Вольта.
При резком понижении напряжения происходит небольшой срыв работы ШИМ контроллера, так как он практически перестает генерить, но потом сразу восстанавливает работу, в общем довольно предсказуемо.

Ладно, хватит играться, установил 12 Вольт. Правда из-за довольно грубой настройки упорно выходило 12.01, что совсем не критично, я так думаю 😉

В качестве нагрузки я использовал сначала резисторы по 10 Ом, три штуки включенные параллельно, это дает мощность нагрузки около 43.2 Ватта, или примерно 25%
Выходное напряжение в норме, резисторы разогрелись как печки.
В конце я сведу результаты замеров, температур компонентов блока питания, в одну табличку.

Для тестирования пришлось дополнительно собрать конструкцию, состоящую из 9 резисторов по 15 Ом включенных параллельно, плюс еще вентилятор, охлаждающий радиатор, на который установлены резисторы.
Суммарная мощность нагрузки около 88 Ватт, или примерно 50%

Здесь подключены обе нагрузки, мощность соответственно 43,2+88 =131 Ватт, или около 75%.
Напряжение в норме. От резисторов идет довольно приличный жар, к слову температура резисторов без вентилятора перевалила за 125 градусов.

В дополнение к резисторам пришлось добавить автомобильную лампу 45 Ватт, мощность нагрузки около 175 Ватт, почти 100%.
Напряжение немного упало.
До ровно 180 Ватт дотягивать особого смысла я не увидел, скажу лишь, что кратковременно (около пары минут) пробовал нагружать до 200 Ватт, все работало.

Осциллограмма пульсаций выходного напряжения при полной нагрузке.
0.02 В/дел и 20мксек/дел

Получается частота около 25КГц.
Вообще смущают низкие пульсации, есть подозрение, что какая то проблема с осциллографом, уже заказал новый, как получу, протестирую еще раз, любопытно.

Результаты измерений температур.
Температуры измерялись бесконтактным термометром из предыдущего обзора.
Измерялась температура входного диодного моста, силовых транзисторов, трансформатора, выходного дросселя, выходной диодной сборки и конденсаторов.
Измерения проводились при 25, 50, 75 и 100% загрузки блока питания.
Первый раз температура замерялась через 15 минут после включения, последующие замеры делались через 10 минут после увеличения нагрузки.
В месте, где лежал БП, температура воздуха была около 26-27 градусов.

Последняя строчка это измерение после еще примерно 40 минут прогрева.
Если принюхаться, то был заметен небольшой запах нагретого лака обмоток трансформатора и дросселя.
Глядя на измерения температур, я бы скорее рекомендовал использовать данный БП на мощностях до 140-150 Ватт, в этом режиме он будет работать гораздо лучше и дольше.

Небольшой допилинг, куда же без него 🙂

В процессе разборки блока питания, я заметил плохое прилегание алюминиевой прокладки силовой диодной сборки, так же были заусеници около отверстий для крепежа.

После всех тестов я решил немного доработать, что бы улучшить тепловой режим, правда особо это не повлияло, скорее сделал для морального удовлетворения.
Убрал заусеницы и промазал пастой КПТ-8.

Так же на всякий случай промазал пастой места прилегания силовых транзисторов, там правда установлены мягкие прокладки, но подумал, что хуже точно не будет.


А это сравнение двух блоков питания, обозреваемого 180 Ватт и 12 Вольт 150 Ватт от Менвела.
Размеры у них одинаковые, но так как схемотехника кардинально отличается, то сравнивать их в работе не совсем корректно.
Скажу лишь, что данный Менвелл стоит в два с половиной раза дороже.

Резюме.
Плюсы.
Довольно хорошее общее качество сборки и элементной базы.
Вполне приемлемые нагрузочные характеристики.
Хорошее соотношение качества-цены.

Минусы.
Плохо обработанная прокладка для установки силовой диодной сборки.
Все таки лучше не нагружать длительно на 100%
Старая элементная база, но данное решение проверено временем, потому не сказал бы, что это совсем уж минус.

Мое мнение.
Блок питания вполне имеет право на жизнь, конечно как всегда рекомендуется, ставить блоки питания с запасом по мощности. За эти деньги 180 Ватт БП это на мой взгляд неплохо.
Я бы заменил конденсаторы выходного фильтра на 1000х35 Вольт, думаю, что это положительно сказалось бы на увеличении надежности. Но в целом блок питания оставил довольно приятное впечатление.

Данный блок питания, для обзора и тестирования, был бесплатно предоставлен магазином gearbest.

P.S. В данном случае на БИКе дороже 🙂

Источник питания 15 вольт схема. Простой блок питания. Окончательная сборка импульсного преобразователя напряжения

В этом обзоре канала “Обзоры посылок и самоделки от jakson” о простой схеме двухполярного блока питания с выходным напряжением на выходе 15 вольт. Cхема, которую будем собирать, не требует много деталей. Главное – найти то 2 регулятора 7815 и 7915. Их можно заказать в Китае.

Радиодетали, платы можно купить с бесплатной доставкой в этом китайском магазине .

В итоге на выходе должно получиться плюс 15 и минус 15 вольт двухполярного питания. Для этого нам понадобится специальный трансформатор, на выходе из которого сможем получить двухполярное питание со средней точкой.

Этого может добиться двумя методами. Например, если трансформатор построен так, что между двумя его контактами (в нашем случае +15 и -15) есть средняя точка, которая является контактом середины вторичной обмотки. Напряжение между средним и первым контактом будет 15 вольт, а между средним и последним тоже по 15. Между первым и последним – 30 вольт.

Если в конструкции трансформатора не предусмотрена нужная нам точка, можно взять две вторичные обмотки с одинаковым напряжением. Серединная точка между ними будет средней точкой нашего 2-полярного питания. Так и сделаем. Будут не 2 обмотки, а 4, поскольку много вторичных обмоток в этом трансформаторе, соединим несколько, чтобы получить необходимое напряжение.

Будет использован старый советский военный трансформатор, которому уже более 30 лет. Несмотря на это, он отлично работает и по сути тут нечему ломаться, так как полностью залитый, он герметичный. Возможно его качество будет даже лучше, чем у современных китайских трансформаторов. Но его мощность всего лишь 60 ватт.

Сборка блока будет реализована на макетной печатной плате хорошего качества. В диодном мосту диоды IN 5408. Их хватит с запасом. Также нам понадобится четыре электролитических конденсатора. Два из них на 2200 микрофарад, 25 вольт и другие на 100 микрофарад, 35 вольт. Два конденсатора на 0,1 мкф. Также регуляторы, о которых речь шла выше. При пайке регуляторов будьте внимательны, так как распиновка у них разная.

В схеме два светодида – индикаторы, в которых нет особой нужды, их можно не ставить.

Обсуждение

  1. Зачем эти стабилизаторы и вся эта лишняя дичь. Трансформатор ведь с средней точкой два плеча по 18 вольт, то что нужно. Просто выпрямить две фазы пропустить через ёмкости и на усилок. Зачем эти стабилизаторы на 1 ампер, чтобы задушить микросхему и в придачу греться? С таким успехом можно просто автомагнитолу поставить от 12 вольт больше выдаст. По характеристике tda 7294 +/-27 вольт на 4 Ом динамик.
  2. Мощность маловата для питания усилителя. Стабилизаторы выдают около 1,5 Ампер тока, при этом адски нагреваясь! Радиаторов, что на видео, ну никак не хватит для охлаждения. Такую схему можно использовать только для питания небольших нагрузок.
  3. Вопрос от незнайки.)) Зачем нужно двухполярное питание? а чем хуже соединить в параллель две по 15 вольт (усилить силу тока) и собрать два независимых друг от друга одинаковых усилителей и запитать одним плюсом и одним минусом? Вот у меня есть две микросхемы тда 7296, хочу два усилителя из них сделать, на левый и правый канал и на саб из али моно усилок на 60 ватт класс д. И всё это запитать одним выходом из трансформатора

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Схема регулируемого блока питания, приведённого в этой статье, обладает отличными характеристиками и выдерживает максимальный ток нагрузки до 10 Ампер. Для поддержания стабильности на высоком уровне, хорошей фильтрации помех и максимального упрощения схемы, в блоке применён интегрированный стабилизатор напряжения на 15 Вольт и добавлены два транзистора, для усиления тока после регулировочного резистора. Отсутствие защиты от короткого замыкания на выходе, компенсируется применением выходного транзистора с двойным запасом мощности и установкой предохранителя на 10 Ампер.
Для компенсации падения напряжения на выходных транзисторах, в пределах 1 Вольта, средняя ножка стабилизатора подключена к минусовому проводу через диоды, которые поднимают напряжение на выходе микросхемы, обеспечивая этим максимальное выходное напряжение блока питания до 15 Вольт, при установке переменного резистора в верхнее по схеме положение, без применения VD1 и VD2, граничное напряжение регулировки равно примерно 14 вольтам. Для стабилизации выходного напряжения при сильном нагреве транзисторов, рекомендуем установить эти диоды на одном радиаторе охлаждения вместе с VT2.
В этой схеме блока питания, применяются очень распространённые радиодетали, но они легко заменяются на элементы с похожими параметрами. Трансформатор можно устанавливать любой, но достаточной мощности, с напряжением на вторичной обмотке от 15 до 20 Вольт и током не менее 10 Ампер. Конденсаторы подойдут с минимальным граничным напряжением не менее 50 Вольт, резисторы любые, мощностью 0,25 Ватт, переменный резистор R1 в схеме, желательно применять с линейной характеристикой регулировки, для того, чтобы на корпусе блока питания можно было нанести равномерную шкалу напряжений. Диодный мост можно заменить четырьмя диодами, на ток не менее 10 Ампер, микросхема стабилизатора имеет много аналогов, главным параметром при её выборе будет выходное напряжение 15 Вольт. Мощные транзисторы можно заменить импортными аналогами, с достаточным коэффициентом передачи h31э, для обеспечения максимального тока на выходе схемы.

Налаживания блок питания не требует, хорошо работает сразу после сборки схемы, при включении, напряжение на выходе должно плавно регулироваться переменным резистором R1 от 0 до 15 Вольт. Для обеспечения надёжной работы на большую нагрузку, установите выходной транзистор VT2 и диодный мост VDS-1 на радиатор охлаждения достаточной площади, остальные радиоэлементы практически не нагреваются, и могут эксплуатироваться без охлаждения.

Каждый радиолюбитель и конструктор найдёт применение для данного устройства, блок питания построенный по такой схеме очень пригодиться при наладке различных радио схем, испытании низковольтной аппаратуры, которая меняет свои параметры при регулировке напряжения питания, и так далее… Если подключить к выходу устройства амперметр, то его с успехом можно использовать для зарядки автомобильных аккумуляторов, контролируя при этом ток зарядки.

Пролог.

У меня есть два мультиметра, и оба имеют один и тот же недостаток – питание от батареи напряжением 9-ть Вольт типа «Крона».

Всегда старался иметь в запасе свежую 9-тивольтовую батарею, но, почему-то, когда требовалось что-то измерить с точностью выше, чем у стрелочного прибора, «Крона» оказывалась либо неработоспособной, либо её хватало всего на несколько часов работы.

Порядок намотки импульсного трансформатора.

Намотать прокладку на кольцевой сердечник столь малых размеров очень сложно, а мотать провод на голый сердечник неудобно и опасно. Изоляция провода может повредиться об острые грани кольца. Чтобы предотвратить повреждение изоляции, притупите острые кромки магнитопровода, как описано .

Чтобы во время укладки провода, витки не «разбегались», полезно, покрыть сердечник тонким слоем клея «88Н» и просушить до намотки.


Вначале мотаются вторичные обмотки III и IV (см. схему преобразователя). Их нужно намотать сразу в два провода. Витки можно закрепить клеем, например, «БФ-2» или «БФ-4».

У меня не нашлось подходящего провода, и я вместо провода расчётного диаметра 0,16мм использовал провод диаметром 0,18мм, что привело к образованию второго слоя в несколько витков.

Затем, так же в два провода, мотаются первичные обмотки I и II. Витки первичных обмоток также можно закрепить клеем.

Преобразователь я собрал методом навесного монтажа, предварительно связав х/б нитью транзисторы, конденсаторы и трансформатор.

Вход, выход и общую шину преобразователя вывел гибким многожильным проводом.


Настройка преобразователя.

Настройка может потребоваться для установки необходимого уровня выходного напряжения.

Я так подобрал количество витков, чтобы при напряжении на аккумуляторе 1,0 Вольт, на выходе преобразователя было около 7 Вольт. При этом напряжении, в мультиметре зажигается индикатор разряда батареи. Таким образом, можно предотвратить слишком глубокий разряд аккумулятора.

Если вместо предложенных транзисторов КТ209К будут использованы другие, тогда придётся подобрать количество витков вторичной обмотки трансформатора. Это связано с разной величиной падения напряжения на p-n переходах у различных типов транзисторов.

Я испытывал эту схему на транзисторах КТ502 при неизменных параметрах трансформатора. Выходное напряжение при этом снизилось на вольт или около того.

Также нужно иметь в виду, что база-эмиттерные переходы транзисторов одновременно являются выпрямителями выходного напряжения. Поэтому, при выборе транзисторов, нужно обратить внимание на этот параметр. То есть, максимально-допустимое напряжение база-эмиттер должно превышать необходимое выходное напряжение преобразователя.


Если генерация не возникает, проверьте фазировку всех катушек. Точками на схеме преобразователя (см. выше) отмечено начало каждой обмотки.

Чтобы не возникало путаницы при фазировке катушек кольцевого магнитопровода, примите за начало всех обмоток, например , все выводы выходящие снизу, а за конец всех обмоток, все выводы выходящие сверху.


Окончательная сборка импульсного преобразователя напряжения.

Перед окончательной сборкой, все элементы схемы были соединены многожильным проводом, и была проверена способность схемы принимать и отдавать энергию.

Для предотвращения замыкания, импульсный преобразователь напряжения был со стороны контактов заизолирован силиконовым герметиком.


Затем все элементы конструкции были размещены в корпусе от «Кроны». Для того, чтобы передняя крышка с разъёмом не утапливалась внутрь, между передней и задней стенками была вставлена пластинка из целлулоида. После чего, задняя крышка была закреплена клеем «88Н».


Для зарядки модернизированной «Кроны» пришлось изготовить дополнительный кабель со штекером типа Джек 3,5мм на одном из концов. На другом конце кабеля, для снижения вероятности короткого замыкания, были установлены стандартные приборные гнёзда, вместо аналогичных штекеров.

Доработка мультиметра.

Мультиметр DT-830B сразу же заработал от модернизированной «Кроны». А вот тестер M890C+ пришлось немного доработать.

Дело в том, что в большинстве современных мультиметров задействована функция автоматического отключения питания. На картинке показана часть панели управления мультиметра, где обозначена данная функция.


Схема автоотключения (Auto Power Off) работает следующим образом. При подключении батареи, заряжется конденсатор С10. При включении питания, пока конденсатор C10 разряжается через резистор R36, на выходе компаратора IC1 удерживается высокий потенциал, что приводит к отпиранию транзисторов VT2 и VT3. Через открытый транзистор VT3 напряжение питания и попадает в схему мультиметра.

Как видите, для нормальной работы схемы, нужно подать питание на С10 ещё до того, как включится основная нагрузка, что невозможно, так как наша модернизированная «Крона», напротив, включится только тогда, когда появится нагрузка.

В общем, вся доработка заключалась в установке дополнительной перемычки. Для неё я выбрал место, где это было сделать удобнее всего.

К сожалению, обозначения элементов на электрической схеме не совпали с обозначениями на печатной плате моего мультиметра, поэтому точки для установки перемычки нашёл так. Прозвонкой выявил нужный вывод выключателя, а шину питания +9V определил по 8-ой ножке операционного усилителя IC1 (L358).


Мелкие подробности.

Сложно было приобрести всего один аккумулятор. Их в основном продают, либо парами, либо по четыре штуки. Однако некоторые комплекты, например, «Varta», поставляются по пять аккумуляторов в блистере. Если Вам повезёт так же, как и мне, то Вы сможете разделить с кем-нибудь такой комплект. Аккумулятор я купил всего за 3,3$, тогда как одна «Крона» стоит от 1$ до 3,75$. Есть, правда, ещё «Кроны» и по 0,5$, но те и вовсе мёртворождённые.

Устройство и схема простого блока питания — Интернет-журнал «Электрон» Выпуск №5

Для питания различных электронных устройств нам в большинстве случаев необходимо постоянное напряжение определенной величины. Для этого кроме батареек и аккумулятором мы можем использовать вторичные источники напряжения, так называемые блоки питания, функция которых заключается в том, что бы преобразовать сетевое переменное напряжение в постоянное напряжение необходимой величины.

Если рассмотреть схему простейшего блока питания, то увидим, что она состоит из трансформатора Т1, диодного моста D1 и сглаживающего конденсатора С1.

Трансформатор Т1 необходим для преобразования переменного (в данном случае сетевого) напряжения в более низкое переменное напряжение. Кроме того трансформатор осуществляет гальваническую развязку между напряжением сети и выходным напряжением блока питания.

Одним из параметров трансформатора является коэффициент трансформации, который показывает во сколько раз трансформатор увеличит или уменьшит выходное напряжение, то есть напряжение на вторичной обмотке.

В простейшем случае коэффициент трансформации — это отношение напряжения на первичной обмотке к напряжению на вторичной обмотке в режиме холостого хода, то есть без нагрузки.

Например, если мы подключаем первичную обмотку в сеть 220 вольт, а на вторичной имеем 12 вольт, то коэффициент трансформации равен 220/12

Далее неотъемлемой частью простого блока питания является диодный мост, который выпрямляет переменное напряжение, поступающее на его вход, то есть преобразует его в постоянное. Параметры диодного моста зависят от тока нагрузки, который вы хотите получить на выходе блока питания. Поэтому для моста подбирают диоды, чтобы такой параметр как обратное напряжение диода Uобр было больше напряжения, поступающего на мост, а прямой ток диода Iпр был больше тока нагрузки самого блока питания.

И третьим элементом нашего блока питания является сглаживающий конденсатор, который предназначен для уменьшения пульсаций постоянного напряжения на выходе блока питания. Его емкость влияет на величину пульсаций выходного постоянного напряжения.

Рассмотрим работу простейшего блока питания.

На вход трансформатора, то есть на первичную обмотку, поступает сетевое напряжение 220 вольт. Трансформатор преобразует сетевое напряжение в необходимое нам переменное напряжение. Для простоты объяснения возьмет напряжение на вторичной обмотки равное 12 вольт.

Далее переменное напряжение со вторичной обмотки поступает на выпрямительный диодный мост, собранный из четырех диодов по схеме двухполупериодного выпрямителя.

Диодный мост преобразует (выпрямляет) переменное синусоидальное напряжение в постоянное напряжение. Диоды работают попарно для положительной и отрицательной полуволны переменного напряжения.

По сути, напряжение с диодного моста имеет большие пульсации с частотой 100 герц (для сети частотой 50 герц) и будет отрицательно влиять на работу питаемого этим блоком устройства.

Поэтому для уменьшения пульсаций параллельно положительному и отрицательному выводам блока питания устанавливают сглаживающий конденсатор. Конденсатор накапливает заряд во время нарастания напряжения на выходе диодного моста и отдает этот заряд в нагрузку во время спада полуволны напряжения, тем самым поддерживая выходное напряжение близко к номинальному значению.

Здесь стоит сказать, что для того, что бы конденсатор не вышел из строя его рабочее напряжение должно в как минимум в два раза превышать напряжения в цепи, то есть на выходе блока питания.

Ниже вы можете посмотреть результаы моделирования простейшего блока питания на основе мостового выпрямительного моста в програме Multisim.

Целью данной статьи является познакомить вас с принципом работы простейшего блока питания. Как рассчитать и собрать свой блок питания мы рассмотрим в следующих выпусках журнала ЭЛЕКТРОН.

Более подробно о устройстве и работе простейшего блока питание вы можете узнать посмотрев следующее видео:

Простой блок питания способный выдавать 12 вольт

 В настоящее время на рынке представлено огромное количество различных блоков питания. От не дорогих образцов, с весьма скромными характеристиками, до импульсных источников с поистине фантастическими показателями. Как правило, в дешёвых экземплярах напрочь отсутствует стабилизатор напряжения. Зато дорогие модели снабжены всевозможными системами защит.

Для питания некоторых электронных устройств требуется напряжение 12 вольт. Вот здесь на помощь придёт схема самоделки, сочетающая в себе простоту и надёжность дешёвых моделей и в тоже время высокие показатели дорогих девайсов. Конечно, можно купить готовый источник питания, но куда лучше собрать самодельный.

Сама самоделка представлена на рисунке ниже. Она построена на трёх транзисторах. Транзистор VT1 является регулирующим. VT2 работает в качестве усилителя постоянного тока. Устройство сравнения реализовано на VT3.

Опорное напряжение снимается со стабилитрона VD3 через резистор R6. Для предотвращения самовозбуждение стабилизатора предусмотрена цепочка R7 C1 и конденсатор C2.

Во избежание выхода из строя транзистора VT2, служит резистор R3. Он будет ограничивать ток коллектора при перегрузках.

Возможно, вы заметили, что опорное напряжение берётся после регулирующего транзистора VT1. Тогда возникает вопрос, как же запустится устройство. Ведь в момент включения на выходе отсутствует напряжение. Поэтому для нормального запуска стабилизатора служит специальная цепочка. Она реализованна на резисторе R1 и стабилитроне VD2. Когда самоделку подключают к сети, ток начинает протекать по цепи от R1 через диод VD1 на транзистор VT3. Вследствие этого происходит открывание VT1 и VT2. Как только режим работы устройства станет нормальным, диод VD1 закроется, тем самым отключит систему запуска.

Схема 12 вольт

Детали устройства:

  • Транзисторы; КТ817Б, КТ626А, КТ315Б
  • Стабилитроны; КС156А, КС168А
  • Диоды; Д220, четыре выпрямительных диода на ток не меньше 1,5 ампера
  • Конденсаторы; электролитические:2200/50в, 100/16в, не полярный 200 пф
  • Резисторы; млт-0,5: 1,5к, 200, 360, 620, 430, 330, 3к, 820-2 шт.

Настройка

Правильно собранная самоделка в соответствии со схемой, приведённой выше, как правило, начинает работать сразу и в настройках не нуждается. Если же схема откажется работать, следует обратиться к ниже изложенным рекомендациям:

  1. При значительных токах нагрузки регулирующий транзистор VT1 (а при максимальных и VT2) необходимо снабдить радиаторам.
  2. Ток коллектора VT3 должен быть в пределах 1-1,5 ма, устанавливается резистором R5.
  3. При возбуждение стабилизатора в диапазоне высоких частот следует подобрать R7 C1.
  4. Если схема запускается не стабильно, при подключённой нагрузке и минимально возможном напряжении с выпрямителя, следует уменьшить номинал резистора R1.
  5. Ограничение тока следует задать резистором R3 в пределах 2-2,5 ампера.

Опасное напряжение
Внимание! Входные цепи устройства находятся под высоким напряжением, опасным для жизни. Во время настройки нужно быть предельно внимательным.

Защита от перегрузки

Представленный вариант источника питания обладает очень малым уровнем пульсаций при нагрузке до 1 ампера, имеет небольшое выходное сопротивление. Также ярко выражена устойчивость к токовым перегрузкам, представленная в виде уменьшения тока при аварийных режимах в 2-2,5 раза больше номинального. При этом предохранитель FU1 выйдет из строя гораздо раньше. Тем самым предупредит разогрев перехода транзистора VT1 и дальнейшее его разрушение.

Таким образом, у вас получился весьма неплохой блок питания с такими характеристиками, которыми может гордиться данный 12-вольтовый источник, к тому же его не пришлось покупать.

 

Хороший блок питания 12V/5A, 5V/3A

Стоимость: $8,09

Внешние блоки питания на 5 и 12 вольт используются много где. У меня как минимум 4 устройства с такими блоками, которыми я пользуюсь постоянно. Это NAS (Network Acsess Server), внешний бокс под 3,5″ дюймовый жесткий диск для бэкапов, бокс под внешний DVD-RW и домашний медиасервер.

Блоки питания у них разные, и по размеру, и по параметрам, и по схемотехнике. С одними устройствами шли неплохие, с другими похуже. И, хоть разъемы питания у них одинаковые, блоки питания у этих устройств не взаимозаменяемые. Те, что похуже, не вытягивают устройства с более высоким энергопотреблением или дают помеху при работе медиасервера. 

Поэтому, когда один из таких не очень качественных блоков питания сгорел, посмотрев на его схемотехнику и оценив качество изготовления, я решил не ремонтировать его, а просто заказать новый, более высокого качества.

Я уже несколько раз заказывал подобные блоки питания и знаю что по внешнему виду оценить качество сложно. Параметры, которые пишет продавец, очень часто сильно завышены. И более высокая цена, абсолютно не гарантирует высокого качества.

 

Для того чтобы оценить, я заказал несколько видов подобных блоков питания. Сегодня я хочу рассказать про тот, который купил последним.

Почему я его купил? Он был не дешевым и без корпуса, что давало возможность примерно увидеть как он сделан и оценить качество.

А  еще он позиционировался как блок питания для ЖКИ-мониторов, что уже само по себе подразумевает более высокое качество и низкий уровень пульсаций на выходе.

В комплекте провода для подключения к плате монитора.

Тот блок питания, который я получил, немного отличается от того что на фото у продавца. Не принципиально, и я не сказал бы, что хуже. Просто чуть другая разводка платы, если внимательно присмотреться.

Кстати, пайка ручная, есть незалуженные контактные площадки. Это позволяет надеяться на то, что пайка будет более качественной.

В принципе, к пайке у меня претензий нет.  Флюс смыт. На плату наклеены самоклеящиеся резинки на которых закреплена защитная пластиковая пластина.

Посмотрим, на какой элементной базе и как сделан этот блок питания.

Сразу видно, провод заземления не припаян и висит в воздухе. Может это и не нужно, припаяется при установке в устройство по месту.

Есть предохранитель и нормальный фильтр, запаяны все детали. Есть NTC терморезистор, для уменьшения броска тока при включении.

Конденсатор во входной цепи на 68 мкФ 400 В. Высоковольтная и низковольтная части разделены. 

Управление ШИМ осуществляется специализированным контроллером SP6853, который имеет функцию экономии электроэнергии (Green Mode). Стабилизация напряжения на базе источника опорного напряжения TL431 и оптрона.

Вот типовая схема включения контроллера, очень похоже что схема блока питания практически совпадает.

В качестве силового элемента — Power MOSFET DTP4N60 (600V 10A).

В выходных цепях диоды Шоттки. По 12 вольтам — MBR1090 (100V 10A). По 5 вольтам — SR(70V 5A).

И по 12 и по 5 вольтам стоят одинаковые конденсаторы Chong x 1000мкФх25V 105 градусов. По 5 вольтам есть дроссель, по 12 – перемычка (запаяю туда дроссель на соответствующий ток ). 

Вот вроде и все. Нагружать блок питания по максиму, чтобы проверить выдаст он заявленные 5 и 3 ампера я не буду. Да и нечем, даже если бы захотел.

Для меня главным тестом является подключение к моему капризному медиасерверу. Он достаточно много потребляет и с плохим блоком питания в нем не стартует внутренний HDD. Или если у блока питания большие пульсации выходных напряжений, изображение на телевизоре нестабильно. Если блок питания создает помехи это тоже явно заметно.

Данный блок питания прошел это испытание «на отлично».

 

 

 

Возможно, вам будет интересно:

Цепь источника питания 4,5 В, 6 В, 9 В, 12 В

ЭТО небольшой источник питания подает диапазон регулируемых выходных напряжений, выбираемых переключателем, от 4,5 до 12 В, выбираемых переключателем.

Источник питания обеспечивает до 400 мА, а выход выдерживает короткое замыкание без разрушения. Следовательно, он хорошо подходит для экспериментатора или для использования с приборами с высоким стоком.

Как это работает

Линейное напряжение 120 В понижается до 15 В с помощью трансформатора T1, и это вторичное напряжение теперь может быть полноволновым выпрямителем с помощью выпрямительного моста D1 D4.

Выход мостового выпрямителя фильтруется C1, чтобы обеспечить около 20 вольт постоянного тока. Последовательная комбинация стабилитронов ZD1, питаемых резистором R1, выдает стабилизированное напряжение около 13 вольт, которое можно использовать на делителях напряжения R2, ​​R3, R4 и R5.

Следовательно, для регулятора создается серия опорных напряжений 4,5 В, 6 В, 9 В, 12 В, в которых положительная шина устанавливается, а отрицательная шина — это та, которая регулируется.

Транзистор Q3 — это эмиттерный повторитель, у которого выходной сигнал (эмиттер) составляет около 0.На 6 В выше (более положительный) по сравнению с базой. Базовое напряжение определяется переключателем SW2 на одном из выводов опорного делителя напряжения.

Поскольку Q3 не может управлять заданным выходным током, он делает Q2 силовым транзистором, который мог бы справиться с необходимой нагрузкой.

Как только нагрузка превышает 400 мА (около), падение напряжения около R6 смещает Q1 в прямом направлении, что обычно активирует и отводит ток от базы Q2.

Таким образом, кажется, что регулятор теряет управление, и выходное напряжение падает, ограничивая ток до 400 мА.Поскольку мощность, рассеиваемая в Q2 в случае короткого замыкания, составляет около 10 Вт, Q2 необходимо установить на радиатор.

Кроме того, резистор R7 ограничивает ток, обеспечиваемый Q3, до безопасного значения (для Q3) в условиях короткого замыкания. Если требуется полностью регулируемое питание, вместо делителя напряжения необходимо использовать потенциометр 10 кОм. Затем стеклоочиститель потенциометра подается прямо на основание Q3.

Регулируемые источники питания постоянного тока от 1 до 25 В — принципиальная электрическая схема и планы

Введение

Электронный рабочий стол без регулируемого источника питания постоянного тока не укомплектован.И в большинстве случаев источник питания становится бесполезным, если его возможности ограничены. Обычно, когда мы говорим о блоках питания, они либо с фиксированным напряжением, либо, в лучшем случае, с непрерывно регулируемым типом. Они оказываются совершенно неадекватными, когда дело доходит до тестирования сложных электронных схем. В идеале универсальный источник питания постоянного тока может быть очень удобен, но только если он обеспечивает следующие характеристики:

Схема универсального источника питания, описанная здесь, в комплекте с принципиальная схема и список деталей соответствуют всем вышеперечисленным критериям и, что более важно, строительство практически ничего не стоит.

Перечень деталей

Детали, необходимые для конструкции универсального источника питания:

  • R1- 0,33 Ом, 5 Вт намотанная проволока,
  • R2, R4- 680 Ом, ¼ Вт,
  • R5- 470 Ом, ½ ватт,
  • R6- 150 Ом, ½ Вт.
  • R3, R7- 2k7, ¼ Вт,
  • T1- TIP 33,
  • T2, T3- BC547B,
  • VR1, VR2- 4k7 линейный горшок.
  • C1- 1000 мкФ / 25 В, электр. Шапка.
  • D1- 1n4007,
  • Плата общего назначения — 2 «x 4»
  • Металлический корпус по размеру,
  • Трансформатор — 0-25 В, 3 А.
  • Сетевой шнур, винтовые гайки, наконечники и т. Д.

Описание схемы

Настоящая схема универсального источника питания постоянного тока работает следующим образом:

  • При подаче питания на вход схемы включается резистор R силовой транзистор T1,
  • Он включается, и мощность достигает выхода через резистор измерения тока R1,
  • Компоненты обратной связи, содержащие D1, VR2 и T3, ограничивают выход до напряжения, установленного VR2,
  • Конденсатор в выход универсального источника питания отфильтровывает любые остаточные наводки, чтобы в конечном итоге получить чистое стабилизированное выходное напряжение,
  • Во время короткого замыкания или перегрузки на выходе потенциал, возникающий на R1, переключается на T3, который нейтрализует базу T1, чтобы выходное напряжение упало и короткое замыкание было проверено.Регулируя VR1, можно установить максимальный предел тока.

Советы по конструкции и принципиальная схема

Конструкция этого универсального блока питания постоянного тока довольно проста и завершается с помощью данной принципиальной схемы. Следует обратить внимание на следующие моменты:

  • При перегрузках транзистор Т1 может сильно нагреваться. Для его правильной работы в таких условиях может потребоваться достаточное охлаждение и поэтому может быть установлен радиатор типа TO-220.
  • Токоизмерительный резистор R1 должен быть проволочного типа, чтобы он не сгорел при коротком замыкании.
  • Дополнительно могут быть включены вольтметр и амперметр для отслеживания изменений условий нагрузки.
  • Готовая печатная плата универсального источника питания должна быть плотно прикреплена к основанию металлического корпуса.
  • Заземление или отрицательный провод должен быть подключен к металлической коробке с помощью наконечника, винта и гайки. Это поможет уменьшить гул.
  • Убедитесь, что радиатор T1 не касается металлического корпуса, что может привести к короткому замыканию.

Источники питания — серия для тяжелых условий эксплуатации

Диапазон входных сигналов

105-125 / 210-250 В переменного тока (по выбору), 50-60 Гц
Снижение выходной мощности до 50% ниже 110 и 220 В переменного тока

Рабочая температура

Стандартные устройства
0-50 ° C, линейное снижение номинальных значений от 100% при 40 ° C до 50% при 50 ° C Тепловое отключение при 85 ° C Температура корпуса
C.D. Агрегаты
0-65 ° C, линейное снижение номинальных характеристик от 100% при 50 ° C до 50% при 65 ° C Тепловое отключение при 85 ° C Температура корпуса

Рабочий цикл

Прерывистый: максимум 20 минут, режим 20%
Непрерывный: 24 часа / день 100% режим

Опции

  • Модифицировать для использования в качестве зарядного устройства
  • Регулировка выходного напряжения (диапазон см. В разделе «Выходное напряжение»)
  • Реле переключения для резервного аккумулятора в случае сбоя питания (опция ERC)

Характеристики

Модель Номинал Максимальный входной ток Выходной ток Размер корпуса Вес
Вход VAC @ 115 @ 230 Прерывистый Непрерывный фунтов. кг.
Выход 12 В
115-12-8 115/230 2,5 1,5 8 5 С-2 10 4,5
115-12-20A 115/230 5,5 2,5 20 8 С-3 20 9,1
115-12-35CD 115/230 7.5 3,5 35 35 Р-5 32 14,6
Выход 24 В
115-24-10 115/230 5,5 2,5 10 4 С-3 20 9,1
115-24-18CD 115/230 7,5 3,5 18 18 Р-5 32 14.6
115-24-35CD 115/230 12,5 7,5 35 35 П-6 60 27,3
Размер Арт. дюймов Сантиметра
H Вт D H Вт D
С-2 6,0 4,6 8,5 15.2 11,7 21,6
С-3 5,7 4,8 16,3 14,5 12,2 41,4
С-5 6,5 9,5 14,0 16,5 24,1 35,6
Р-6 6,5 13,0 18,75 16,5 33,0 47,6

Выходное напряжение

12 В Модели:
13.6 В постоянного тока (внутренняя регулировка 12,6-14,5 В постоянного тока)
Пульсация: 40 мВ PP (при входном напряжении 110-125 / 220-250 В переменного тока)
24 В Модели:
24,5 В постоянного тока (внутренняя регулировка 21-27,5 В постоянного тока)
Пульсация: 70 мВ PP (При входном напряжении 110–125 / 220–250 В переменного тока)
Регулирование Все модели: 1% Линия и нагрузка (при входном напряжении 110–125 / 220–250 В переменного тока)

Монтажный комплект Extreme Vibration Mounting Kit предназначен для защиты источников питания NEWMAR Heavy Duty от экстремальных ударов и вибрации при установке на автомобили с высокой вибрацией.

Комплект (изображенный здесь) заменяет стандартный комплект для вибрации, поставляемый с устройством, и вставляется в монтажный фланец устройства, чтобы действовать как «супер-амортизатор» для электроники в приложениях с высокой вибрацией. Он доступен для всех устройств NEWMAR от 2 до 70 фунтов. Укажите KIT – L для устройств весом 2–15 фунтов. и Kit – H для устройств весом 16-70 фунтов.

Бесшумная цепь источника питания 12 В с двойной полярностью

Блок питания играет важную роль в электронной схеме. Источник питания удовлетворяет требования к напряжению и току для работы электронных схем, но проблема в том, что большая часть электроэнергии вырабатывается как мощность переменного тока.Но для работы большей части схемы электроники нам нужен источник постоянного тока. Иногда выходной сигнал источника питания состоит из нежелательных составляющих пульсаций, то есть составляющей частоты источника питания и ее гармоник. Мы должны позаботиться об этом нежелательном шуме или гармонических составляющих, потому что это может вызвать проблемы (особенно в аудиосистеме и радиочастотной цепи). Иногда этот шум может привести к отказу цепи. Итак, чтобы решить эту проблему, мы придумали бесшумную схему источника питания 12 В с двойной полярностью.

Для чего нужен источник питания с двойной полярностью?

При работе с операционным усилителем иногда требуется источник питания отрицательной полярности для генерации волны двойной полярности (синусоидальной волны, прямоугольной волны и т. Д.).)

Ознакомьтесь с другими схемами питания, размещенными на сайте bestengineeringprojects.com

  1. Двойная полярность 5 В от батареи 9 В
  2. Цепь сильноточного регулятора
  3. Импульсный источник питания с переменным током

Описание схемы бесшумного источника питания 12 В с двойной полярностью

Схема

«Бесшумная схема источника питания 12 В с двойной полярностью», состоящая из понижающего трансформатора с центральным отводом, выпрямительного диода, ИС линейного регулятора и нескольких других электронных компонентов, показана на рисунке 5.

Рисунок: Авторский прототип

Блок трансформатора и выпрямителя:

Первичный вход трансформатора подключен к сети переменного тока, а вторичный выход подключен к входу выпрямителя. К входу переменного тока выпрямителя подключены две сети 9 В переменного тока, где клемма 0 В предназначена для заземления (нулевой потенциал). Схема выпрямителя построена на четырех выпрямительных диодах. Положительное питание получается от катодного перехода диодов D1 и D2, а отрицательное питание получается от анодного перехода диодов D3 и D4.

Четыре керамических конденсатора емкостью 0,1 мкФ подключены к каждому выпрямительному диоду (от D1 до D4) для устранения шума и гармоник, имеющихся в частоте питания. Выход выпрямителя — постоянный ток, но по своей природе пульсирует. Он содержит компоненты постоянного тока и нежелательную рябь. Эта пульсирующая пульсация устраняется конденсатором фильтра. Два электролитических конденсатора по 1000 мкФ подключены к выходу выпрямителя и заземлению, как показано на принципиальной схеме.

Блок схемы фильтра.

Схема фильтра

: Фильтрующая способность схемы прямо пропорциональна большой емкости конденсатора, т.е. чем больше емкость конденсатора, тем лучше фильтрующая способность. Но большая емкость конденсатора увеличивает стоимость и размер, поэтому мы должны найти компромисс между этими тремя параметрами, то есть мощностью фильтрации, стоимостью и размером. Если вам нужно спроектировать источник питания для аудиосхемы, тогда вам нужно выбрать лучшую фильтрующую мощность там, где для нормальной стоимости и размера схемы предпочтительнее. Обычно используется 1000 мкФ.

При подключении конденсатора С6 необходимо учитывать полярность.Потому что здесь мы собираемся разработать источник питания с отрицательной полярностью. Таким образом, положительный вывод конденсатора должен быть подключен к земле, а отрицательная полярность — к отрицательному.

Цепь регулятора

После фильтрационного контура регулятор необходим по следующим причинам:

  1. Когда мощность сети переменного тока изменяется (увеличивается и уменьшается), выходная мощность также изменяется. Рассмотрим пример:

Уравнение трансформатора:

Где N P = Количество витков первичной обмотки

N S = Количество витков вторичной обмотки

В P = Напряжение на первичной стороне

В S = Напряжение на вторичной стороне

Если напряжение на первичной стороне изменилось (т.е.е. изменяется напряжение питания от сети) напряжение на вторичной стороне также изменяется, потому что передаточное число обмотки постоянное. Таким образом, без регулятора невозможно получить постоянное напряжение на выходе.

  1. Когда величина тока нагрузки увеличивается, выходное напряжение уменьшается, и наоборот.

Для решения этой проблемы мы используем линейный стабилизатор напряжения.

Положительный источник питания: Положительный выход постоянного тока с фильтром подключен к контакту Vin (контакт 1) линейного регулятора положительного напряжения (LM7812), где контакт GND (контакт 2) подключен к заземлению.+ 12В при 1 ампер. Выходной сигнал получается с вывода 3.

Отрицательный источник питания : Отрицательный выход постоянного тока с фильтром подключен к контакту Vin (контакт 2) линейного регулятора отрицательного напряжения (LM7912), где контакт GND (контакт 1) подключен к заземлению. -12 В при 1 А. Выходной сигнал получается с вывода 3.

Два электролитических конденсатора по 100 мкФ каждый и два керамических конденсатора 0,1 мкФ подключены к выходу для обеспечения стабильной работы. Диод D5 и D6 здесь используется как защитный диод и защищает его от обратного напряжения.

Список деталей бесшумной цепи источника питания 12 В с двойной полярностью

Резистор
R 1 = 5,6 тыс.
Конденсаторы
C 1 — C 4 , C 9 , C 10 = 0,1 мкФ (керамический диск)

C 5 , C 6 = 1000 мкФ, 35 В (электролитический конденсатор)

C 7 , C 8 = 100 мкФ, 35 В (электролитический конденсатор)

Полупроводник
D 1 — D 6 = 1N4007 (выпрямительный диод общего назначения)

U1 = LM7812 (ИС линейного регулятора положительного напряжения 12 В)

U2 = LM7912 (ИС линейного регулятора отрицательного напряжения 12 В)

Разное
X 1 = 230 В переменного тока, первичная обмотка на 9 В-0-9 В, 2 ампер.Вторичный трансформатор с центральным ответвлением

LED1 = 5мм светодиод любого цвета

Два радиатора для регулятора напряжения

DN1023 — Импульсный источник питания 12 В постоянного тока

Электрические характеристики
Номинальное напряжение переменного тока [В] 100 … 240
Номинальная частота переменного тока [Гц] 50 … 60
Диапазон входного напряжения переменного тока [В] 85…264
Выходное напряжение постоянного тока [В] 12 … 15
Класс защиты I
Выходное напряжение [В] регулируемый
Допуск выходного напряжения [%] 2
Макс. выходной ток при мин.выходное напряжение [A] 4,5
Макс. выходной ток при макс. выходное напряжение [A] 3,6
Количество выходных цепей 1
Макс. остаточная пульсация [мВ] 50
КПД (номинальное напряжение 230 В переменного тока / 50 Гц) [%] 87.2
Снижение мощности [Вт / К] 1,4 (60 … 70 ° С)
Время буферизации сети (номинальное напряжение 230 В переменного тока / 50 Гц) [мс] 113
Выходы
Защита от короткого замыкания да
Защита от перегрузки да
Условия эксплуатации
Температура окружающей среды [° C] -10..,70
Защита IP 20
Испытания / одобрения
ЭМС
EN 61000-6-1 помехозащищенность
EN 61000-6-2
EN 61000-6-3 излучение помех
EN 61000-6-4
Ударопрочность
IEC 60068-2-27
Механические характеристики
Вес [г] 320
Тип крепления рельс; (Th45 (EN 60715))
Материал ПК
Дисплеи / элементы управления
Дисплей
Функция светодиод, зеленый
Примечания
Кол-во в упаковке 1 шт.
Электрическое подключение
Соединение винтовые зажимы: … 6 мм²
Диаграммы и графики
Блок-схема
Кривая мощности
Характеристическая кривая для степени КПД / потери мощности
Кривая снижения мощности
Характеристическая кривая времени буферизации сети

Компромисс между питанием 12 В и 5 В постоянного тока

Введение

При выборе архитектуры питания для приложений CPE обычно возникает вопрос, использовать ли входное напряжение 5 В или 12 В постоянного тока для приложений с низким энергопотреблением (≤15 Вт).В этой статье мы рассмотрим плюсы, минусы и движущие силы каждого подхода.

Приложение в зависимости от выходного напряжения

В шлюзах, маршрутизаторах и телевизионных приставках

CPE обычно используются блоки питания 12 В. Однако компактные IP-приставки с низким энергопотреблением, такие как ключи типа OTT, используют напряжение 5 В, поэтому они могут питаться через стандартный кабель USB.

Преимущества архитектуры 12 В

С выходом 12 В постоянного тока рассеиваемая мощность, связанная с блоком питания, ниже, как и затраты, связанные с управлением тепловым решением.

Более высокий КПД достигается за счет меньшего падения напряжения в прямом направлении, которое возникает на выходном выпрямителе, например. в случае диода Шоттки или через сопротивление истока стока, когда используется синхронный выпрямитель. Потери мощности в кабеле постоянного тока и разъеме также ниже из-за более низких выходных токов для данного уровня мощности.

С точки зрения стоимости и температуры, размер корпуса, характеристики компонентов, теплоотвод, срок службы E-cap и падение напряжения в кабеле постоянного тока выиграют от более низких выходных токов из-за более высокого выходного напряжения при заданном уровне мощности — Применяется закон Ома!

Несмотря на то, что эффективность и стоимость источника питания могут показаться оптимизированными с архитектурой 12 В, нам также необходимо учитывать общую стоимость электроэнергии для данного приложения.Для этого мы также должны учитывать эффективность и стоимость дополнительного регулирования мощности в главном устройстве CPE.

Преимущества и проблемы архитектуры 5 В

Принятие архитектуры 5 В постоянного тока может быть очень выгодным в компактных IP-приставках и OTT-адаптерах, поскольку нет частей, для которых требуется напряжение выше 5 В. Это упрощает схему DC-DC.

Рабочий цикл внутренних преобразователей постоянного тока в постоянный также может быть оптимизирован, что приводит к очень высокой эффективности и малому количеству компонентов.Это сохраняет компактность конструкции и сводит к минимуму рассеивание тепла.

Выход 5 В чаще всего используется, когда конечному приложению требуется питание через разъем USB, например, разъем mini / micro B или Type-C. Или, если место ограничено, кабель постоянного тока и USB-штекер можно полностью удалить и заменить на гнездовую розетку на корпусе, как в зарядных устройствах для телефонов.

Обычно для блоков питания 5 В с разъемами USB выход блока питания должен быть 5 В 1,0 А (5 Вт) или 5 В 3,0 А (15 Вт) в соответствии со стандартами USB.Компания NetBit ранее разработала оба типа блоков питания с несколькими различными вариантами USB-штекеров и разъемов.

Одна из проблем при использовании 5 В постоянного тока с видеоустройствами заключается в том, что порт HDMI должен иметь выход 5 В в соответствии со стандартом HDMI. Как правило, между входом постоянного тока и выходом HDMI есть падение напряжения, что требует повышающего регулятора, чтобы обеспечить 5В на выходном порте HDMI.

Добавить комментарий

Ваш адрес email не будет опубликован.