Схема однофазного электродвигателя переменного тока: Однофазный асинхронный двигатель: 6 схем работы

Содержание

Подключение электродвигателя. Как подключить электродвигатель. Схема подключения электродвигателя.

  • Вентиляция
    • Назад
    • Смотреть все
    • Бытовые вентиляторы
      • Назад
      • Смотреть все
      • Вентиляторы в ванную комнату
      • Центробежные вентиляторы бытовые
      • Оконные вентиляторы для вытяжки
      • Потолочные вентиляторы
    • Промышленные вентиляторы
      • Назад
      • Смотреть все
      • Осевые вентиляторы
      • Центробежные вентиляторы
      • Каминные вентиляторы
      • Крышные вентиляторы
      • Кухонные вентиляторы
      • Взрывозащищенные вентиляторы
      • Вентиляторы для агрессивных сред
      • Вентиляторы охлаждения
      • Вихревые воздуходувки промышленные
    • Канальные вентиляторы
      • Назад
      • Смотреть все
      • Круглые канальные вентиляторы
      • Прямоугольные канальные вентиляторы
      • Осевые канальные вентиляторы
      • Центробежные канальные вентиляторы
      • Бесшумные канальные вентиляторы
      • Взрывозащищенные канальные вентиляторы
    • Промышленные вентиляторы (Украина)
      • Назад
      • Смотреть все
      • Осевые вентиляторы ВО
        • Назад
        • Смотреть все
        • Осевые вентиляторы ВО 06-300
        • Осевые вентиляторы реверсивные ВО 06-300
        • Осевые вентиляторы среднего давления
      • Пылевые вентиляторы ВЦП
        • Назад
        • Смотреть все
        • Вентиляторы пылевые ВЦП 5-45 (ВРП)
        • Вентиляторы пылевые ВЦП 6-45
        • Вентиляторы пылевые ВЦП 6-46
        • Вентиляторы пылевые ВЦП 7-40
      • Крышные вентиляторы ВКР
      • Дымососы
        • Назад
        • Смотреть все
        • Дымососы Д
        • Дымососы ДН
        • Дымососы ВДН
        • Дымососы ВД
      • Центробежные вентиляторы низкого давления ВЦ 4-75
      • Центробежные вентиляторы среднего давления ВЦ 14-46
      • Центробежные вентиляторы высокого давления
        • Назад
        • Смотреть все
        • Центробежные вентиляторы ВВД
        • Центробежные вентиляторы ВЦ 6-28
        • Центробежные вентиляторы ВЦ 10-28
    • Вентиляционные установки
      • Назад
      • Смотреть все
      • Приточно-вытяжные установки с рекуперацией тепла
      • Приточные и вытяжные установки
      • Бытовые рекуператоры
      • Проветриватели
    • Воздухонагреватели
      • Назад
      • Смотреть все
      • Промышленные тепловентиляторы

Схема подключения однофазного двигателя с конденсатором

Главная » Разное » Схема подключения однофазного двигателя с конденсатором

Как подключить однофазный асинхронный двигатель через конденсатор?

На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Конструкция асинхронного однофазного электродвигателя

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

Схемы подключения

 Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Схема подключения пускового конденсатора

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Соединения, центробежный выключатель на валу ротора

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Некоторые элементы

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

Варианты схемы подключения конденсаторов

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно

Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

Пример размещения конденсатора на внешней стороне корпуса электродвигателя

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.
Конденсаторы для подключения однофазного двигателя

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Схема подключения двигателя через конденсатор

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя; Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

6- 4,00 Загрузка…

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

Схема однофазного двигателя с конденсатором

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим ). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки. например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

Схемы подключения однофазных электродвигателей

Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

  • Обмотки электромотора
  • Особенности формирования вращающего момента
  • Конденсаторы
  • Косвенное включение
  • Особенности применения магнитного пускателя
  • Заключение

Обмотки электромотора

Укладка обмоток в статоре однофазного электродвигателя

Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно. Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой. К сети подключатся две из них, остальные служат для коммутации.

Для изменения мощности рабочая катушка может формироваться из двух частей, которые включаются последовательно.

Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

Особенности формирования вращающего момента

Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.

Варианты создания сдвига фаз

Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

Для упрощения запуска двигателя с рабочим конденсатором, перед подачей на него тока от сети параллельно ему подключают вспомогательную емкость.

Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

Наши читатели рекомендуют!

Для экономии на платежах за электроэнергию наши читатели советуют “Экономитель энергии Electricity Saving Box”. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Конденсаторы

Схема подключения однофазных конденсаторных двигателей: а – с рабочей емкостью Ср, б – с рабочей емкостью Ср и пусковой емкостью Сп.

Электродвигатель может комплектоваться двумя разновидностями конденсаторов. Наличие емкости, включаемой последовательно спусковой обмоткой и пропускающей через себя ток для сдвига фазы, является обязательным. Ее значение заимствуется из паспортных данных электродвигателя и дублируется на его шильдике.

При отсутствии конденсатора нужной емкости допустимо применять любой другой с близким номиналом. При слишком сильном отклонении в меньшую сторону двигатель может не начать вращаться без ручной прокрутки его вала, а затем не будет развивать нужную мощность. При значительном превышении емкости начнется сильный нагрев.

Емкость дополнительного пускового компонента выбирается в два-три раза выше по сравнению с основным. Такая величина обеспечивает максимальный стартовый момент.

Для включения пускового элемента может использоваться как обычная кнопка, так и более сложные схемы.

Косвенное включение

Подключение однофазного двигателя

Основным компонентом схемы косвенного включения является магнитный пускатель, который включается в разрыв между выходом силовой сети и электродвигателем.

Силовые контакты этого блока выполнены как нормально разомкнутые. Магнитный пускатель по величине максимального протекающего через него тока относится к одной из семи нормированных групп. Из-за небольшой мощности однофазных электродвигателей обычно достаточно устройства первой группы, максимальное значение коммутируемого тока которого составляет 10 А.

Управляющая часть катушки предназначена для подключения к сетям с различным напряжением. Наиболее удобным является магнитный пускатель с управлением от 220в переменного тока.

Особенности применения магнитного пускателя

В управляющей части устройства предусмотрено несколько пар контактов, на которых собирается схема релейной автоматики. Один из них всегда является нормально замкнутым, а второй – нормально разомкнутым.

У кнопки «Пуск» рабочим считается нормально разомкнутый контакт, а у кнопки «Стоп» задействован нормально замкнутый элемент.

При выполнении подключения рассматриваемого устройства осуществляются соединения нескольких типов.

Схема подключения однофазного двигателя

Фаза, наряду с входной клеммой, подключается также к входу контакта кнопки «Стоп», а ноль соединяется с входной клеммой катушки, что обеспечивает протекание через нее управляющего тока.

Активный контакт кнопки «Пуск» при работающем двигателе шунтируется аналогичным элементом катушки. Для формирования этой цепи выполняются два дополнительных соединения, схема которых показана на рисунке выше:

  • выход рабочего контакта кнопки «Стоп» параллельно соединяется с контактами выхода кнопки «Пуск» и входа управляющей катушки;
  • выход нормально разомкнутого контакта управляющей катушки параллельно соединяется с ее выходной клеммой и с входом рабочего контакта кнопки «Пуск».

Заключение

Процесс подключения однофазного электромотора к сети 220в не отличается большой сложностью и фактически требует только желания, минимального набора простейших инструментов, наличия схемы соединений и аккуратности в работе. Из расходных материалов нужны только провода. Из-за опасности короткого замыкания и больших величин токов, протекающих через обмотки двигателя, необходимо обязательно выполнять требования техники безопасности и не забывать про старое, но очень действенное правило: «Семь раз отмерь, один раз отрежь».

Однофазный асинхронный двигатель, схема подключения и запуска

Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

Отличие от трехфазных двигателей

Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

  1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
  2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

Схема подключения коллекторного электродвигателя в 220В

Схема подключения однофазного асинхронного двигателя (схема звезда)

Как это работает

Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

Основные схемы подключения

В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

однофазный асинхронный двигатель и конденсатор

Различают три основные способа запуска однофазного асинхронного двигателя через:

  • рабочий;
  • пусковой;
  • рабочий и пусковой конденсатор.

В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

Другие способы

При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

С экранированными полюсами и расщепленной фазой

В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

С асимметричным магнитопроводом статора

Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

Подбор конденсатора

Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

Керамический и электролитический конденсатор

Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

Поделиться с друзьями:

Источники: http://stroychik.ru/elektrika/podklyuchenie-odnofaznogo-dvigatelya, http://electricvdele.ru/elektrooborudovanie/elektrodvigateli/shema-podklyucheniya-odnofaznogo-elektrodvigatelya.html, http://tokidet.ru/elektrooborudovanie/elektrodvigateli/odnofaznyj-asinhronnyj-dvigatel.html

Как подключить однофазный электродвигатель – схема с конденсатором

Функционирование однофазного электродвигателя основано на использовании переменного электрического тока посредством подсоединения к сетям с одной фазой. Напряжение в такой сети должно соответствовать стандартному значению 220 Вольт, частота – 50 Герц. Преимущественное применение моторы данного типа находят в бытовых устройствах, помпах, небольших вентиляторах и т.п.

Мощности однофазных моторов достаточно и для электрификации частных домов, гаражей или дачных участков. В этих условиях используется однофазная электрическая сеть с напряжением 220 В, что предъявляет некоторое требования к процессу подключения мотора. Здесь применяется специальная схема, предполагающая использование устройства с пусковой обмоткой.

Схема подключения однофазного двигателя через конденсатор

Однофазные электродвигатели 220в подключают к сети с применением конденсатора. Это обусловлено некоторыми конструктивными особенностями агрегата. Так, на статоре мотора обмотка с переменным током создает магнитное поле, импульсы которого компенсируются лишь при условии смены полярности с частотой 50 Гц. Несмотря на характерные звуки, которые издает однофазный двигатель, вращение ротора при этом не происходит. Крутящий момент создается за счет применения дополнительных пусковых обмоток.

Чтобы понять, как подключить однофазный электродвигатель через конденсатор, достаточно рассмотреть 3 рабочие схемы с применением конденсатора:

  • пускового;
  • работающего;
  • работающего и пускового (комбинированная).

Каждая из перечисленных схем подключения подходит для использования при эксплуатации асинхронных однофазных электродвигателей 220в. Однако каждый вариант имеет свои сильные и слабые стороны, поэтому они заслуживают более детального ознакомления.

Идея применения пускового конденсатора состоит в его включении в цепь лишь в момент запуска мотора. Для этого схемой предусматривается наличие специальной кнопки, предназначенной для размыкания контактов после выхода ротора на заданный уровень скорости. Его дальнейшее вращение происходит под воздействием инерционной силы.

Читайте также:  Что такое кварцевый резонатор и как он работает?

Поддержание вращательных движений на протяжении длительного промежутка времени обеспечивается магнитным полем основной обмотки однофазного двигателя с конденсатором. Функции переключателя при этом может выполнять специально предусмотренное реле.

Схема подключения однофазного электродвигателя через конденсатор предполагает наличие нажимной пружинной кнопки, разрывающей контакты в момент размыкания. Такой подход обеспечивает возможность снизить количество используемых проводов (допускается применение более тонкой пусковой обмотки). Во избежание возникновения коротких замыканий между витками рекомендуется применять термореле.

При достижении критически высоких температур этот элемент деактивирует дополнительную обмотку. Аналогичную функцию может выполнять центробежный выключатель, устанавливаемый для размыкания контактов в случаях превышения допустимых значений скорости вращения.

Для автоматического контроля скорости вращения и защиты мотора от перегрузов разрабатываются соответствующие схемы, а в конструкции агрегатов вносятся различные корректировочные компоненты. Установку центробежного выключателя можно произвести непосредственно на роторном валу либо на сопряженных с ним (прямым или редукторным соединением) элементах.

Воздействующая на груз центробежная сила способствует натяжению пружины, соединенной с контактной пластиной. Если скорость вращения достигает заданного значения, происходит замыкание контактов, подача тока на двигатель прекращается. Возможна передача сигнала другому управляющему механизму.

Существуют варианты схем, при которых в одном элементе конструкции предусматривается наличие центробежного выключателя и теплового реле. Подобное решение позволяет деактивировать двигатель посредством теплового компонента (в случае достижения критических температур) либо под воздействием раздвигающегося элемента центробежного выключателя.

В случае подключения двигателя через конденсатор часто происходит искажение линий магнитного поля в дополнительной обмотке. Это влечет за собой увеличение мощностных потерь, общее снижение производительности агрегата. Однако сохраняются хорошие показатели пуска.

Применение рабочего конденсатора в схеме подключение однофазного двигателя с пуcковой обмоткой предполагает ряд отличительных особенностей. Так, после пуска отключения конденсатора не происходит, вращение ротора осуществляется за счет импульсного воздействия со стороны вторичной обмотки. Это существенно увеличивает мощность двигателя, а грамотный побор емкости конденсатора позволяет оптимизировать форму электромагнитного поля. Однако пуск мотора становится более продолжительным.

Читайте также:  Что такое импульсный блок питания и где применяется

Подбор конденсатора подходящей мощности производится с учетом токовых нагрузок, что позволяет оптимизировать электромагнитное поле. В случае изменения номинальных значений будет происходить колебание по всем остальным параметрам. Стабилизировать форму линий магнитных полей позволяет использование нескольких конденсаторов с разными емкостными характеристиками. Такой подход позволяет оптимизировать рабочие характеристики системы, однако предусматривает возникновение некоторых сложностей в процессах монтажа и эксплуатации.

Комбинированная схема подключения однофазного двигателя с пусковой обмоткой рассчитана на использование двух конденсаторов – рабочего и пускового. Это оптимальное решение для достижения средних рабочих характеристик.

Расчет емкости конденсатора мотора

Существует сложная формула, с помощью которой высчитывают необходимую точную емкость конденсатора. Однако многолетний опыт профессионалов показывает, что достаточно придерживаться следующих рекомендаций:

  • на 1 кВт мощности мотора необходимо 0,8 мкФ рабочего конденсатора;
  • пусковая обмотка требует, чтобы это значение было в 2 или 3 раза выше.

Рабочее напряжение для них должно быть в 1,5 раза выше, чем в электросети (в нашем случае 220 В). Для упрощения процесса запуска в пусковую цепь лучше устанавливать конденсатор с маркировкой «Starting» или «Start». Хотя допускается использование стандартных конденсаторов.

Реверс направления движения двигателя

Не исключено, что после подключения однофазные электродвигатели будут вращаться в направлении, обратном необходимому. Исправить это несложно. Во время сборки схемы один провод был выведен, как общий, ещё один проводник был подан на кнопку. Для того чтобы изменить вращающееся магнитное направление электромотора, эти 2 провода необходимо поменять местами.



Однофазный электродвигатель: схема правильного подключения

Электродвигатели однофазные 220В широко используются в разнообразном промышленном и бытовом оборудовании: насосах, стиральных машинах, холодильниках, дрелях и обрабатывающих станках.

Разновидности

Существуют две наиболее востребованных разновидности этих устройств:

  • Коллекторные.
  • Асинхронные.

Последние по своей конструкции более просты, однако обладают рядом недостатков, среди которых можно отметить трудности с изменением частоты и направления вращения ротора.

Устройство асинхронного двигателя

Мощность данного двигателя зависит от конструктивных особенностей и может варьироваться от 5 до 10 кВт. Его ротор представляет короткозамкнутую обмотку – алюминиевые или медные стержни, которые замкнуты с торцов.

Как правило, электродвигатель асинхронный однофазный оборудован двумя смещенными на 90° относительно друг друга обмотками. При этом главная (рабочая) занимает существенную часть пазов, а вспомогательная (пусковая) – оставшуюся. Свое название электродвигатель асинхронный однофазный получил лишь потому, что он имеет только одну рабочую обмотку.

Принцип работы

Протекающий по главной обмотке переменный ток создает магнитное периодически меняющееся поле. Оно состоит из двух кругов одинаковой амплитуды, вращение которых происходит навстречу друг другу.

В соответствии с законом электромагнитной индукции, меняющийся в замкнутых витках ротора магнитный поток образует индукционный ток, который взаимодействует с полем, порождающим его. Если ротор находится в неподвижном положении, моменты сил, действующих на него, одинаковы, в результате он остается неподвижным.

При вращении ротора, нарушится равенство моментов сил, так как скольжение его витков по отношению к вращающимся магнитным полям станет разным. Таким образом, действующая на роторные витки от прямого магнитного поля сила Ампера будет существенно больше, чем со стороны обратного поля.

В витках ротора индукционный ток может возникать только в результате пересечения ими силовых линий магнитного поля. Их вращение должно осуществляться со скоростью, чуть меньше частоты вращения поля. Собственно отсюда и пошло название асинхронный однофазный электродвигатель.

Вследствие увеличения механической нагрузки уменьшается скорость вращения, возрастает индукционный ток в роторных витках. А также повышается механическая мощность двигателя и переменного тока, который он потребляет.

Схема подключения и запуска

Естественно, что вручную раскручивать при каждом запуске электродвигателя ротор неудобно. Поэтому для обеспечения первоначального пускового момента применяется пусковая обмотка. Так как она составляет прямой угол с рабочей обмоткой, для образования вращающегося магнитного поля на ней должен быть сдвинут по фазе ток относительно тока в рабочей обмотке на 90°.

Этого добиться можно посредством включения в цепь фазосмещающего элемента. Дроссель или резистор не могут обеспечить сдвиг фазы на 90°, поэтому целесообразней в качестве фазосмещающего элемента использовать конденсатор. Такая схема однофазного электродвигателя обладает отличными пусковыми свойствами.

Если в качестве фазовращающего элемента выступает конденсатор, электродвигатель конструктивно может быть представлен:

  • С рабочим конденсатором.
  • С пусковым конденсатором.
  • С рабочим и пусковым конденсатором.

Наиболее распространенным является второй вариант. В таком случае предусмотрено недолгое подключение пусковой обмотки с конденсатором. Это происходит только на время пуска, затем они отключаются. Реализовать такой вариант можно при помощи реле времени или посредством замыкания цепи при нажатии пусковой кнопки.

Подобная схема подключения однофазного электродвигателя характеризуется довольно невысоким пусковым током. Однако в номинальном режиме параметры низкие по причине того, что поле статора – эллиптическое (оно сильнее в направлении полюсов).

Схема с постоянно включенным рабочим конденсатором в номинальном режиме работает лучше, при этом пусковые характеристики имеет посредственные. Вариант с рабочим и пусковым конденсатором, по сравнению с двумя предыдущими, является промежуточным.

Коллекторный двигатель

Рассмотрим однофазный электродвигатель коллекторного типа. Это универсальное оборудование может питаться от источников постоянного или переменного тока. Его часто используют в электрических инструментах, стиральных и швейных машинах, мясорубках – там, где требуется реверс, его вращение с частотой свыше 3000 оборотов в минуту или регулировка частоты.

Обмотки ротора и статора электродвигателя соединяются последовательно. Ток подводится посредством щеток, соприкасающихся с пластинами коллектора, к которым подходят концы обмоток ротора.

Осуществление реверса происходит за счет изменения полярности подключения ротора или статора в электрическую сеть, а скорость вращения регулируется посредством изменения в обмотках величины тока.

Недостатки

Коллекторный однофазный электродвигатель имеет следующие недостатки:

  • Создание радиопомех, трудное управление, значительный уровень шума.
  • Сложность оборудования, практически невозможно произвести его ремонт самостоятельно.
  • Высокая стоимость.

Подключение

Чтобы электродвигатель в однофазной сети был подключен должным образом, необходимо соблюдать определенные требования. Как уже было сказано, существует целый ряд двигателей, способных функционировать от однофазной сети.

Перед подключением важно убедиться в том, что частота и напряжение сети, указанные на корпусе, соответствуют главным параметрам электрической сети. Все работы по подключению необходимо производить только при обесточенной схеме. Также следует избегать заряженных конденсаторов.

Как подключить однофазный электродвигатель

Для подключения двигателя необходимо соединить последовательно статор и якорь (ротор). Клеммы 2 и 3 соединяются, а две другие нужно подключить в цепь 220B.

По причине того, что электродвигатели однофазные 220В функционируют в цепи переменного тока, в магнитных системах возникает магнитный переменный поток, что провоцирует образование вихревых токов. Именно поэтому магнитную систему статора и ротора выполняют из электротехнических стальных листов.

Подключение без регулирующего блока с электроникой может привести к тому, что в момент запуска образуется значительный пусковой ток, и в коллекторе произойдет искрение. Изменение направления вращения якоря выполняется посредством нарушения последовательности подключения, когда меняются местами выводы якоря или ротора. Главным недостатком этих двигателей считается присутствие щеток, которые следует заменять после каждой длительной эксплуатации оборудования.

Таких проблем в асинхронных электродвигателях не существует, так как в них отсутствует коллектор. Магнитное поле ротора образуется без электрических связей за счет внешнего магнитного поля статора.

Подключение через магнитный пускатель

Рассмотрим, как можно подключить однофазный электродвигатель через магнитный пускатель.

1. Итак, в первую очередь необходимо выбрать магнитный пускатель по току таким образом, чтобы его контактная система выдерживала нагрузку электрического двигателя.

2. Пускатели, к примеру, делятся на величину от 1 до 7, и чем больше данный показатель, тем больший ток выдерживает контактная система этих устройств.

  • 10A – 1.
  • 25A – 2.
  • 40A – 3.
  • 63A – 4.
  • 80A – 5.
  • 125A – 6.
  • 200A – 7.

3. После того как была определена величина пускателя, необходимо обратить внимание на катушку управления. Она может быть на 36B, 380B и 220B. Желательно остановиться на последнем варианте.

4. Далее, собирается схема магнитного пускателя, и подключается силовая часть. На разомкнутые контакты выполняется ввод 220B, на выход силовых контактов пускателя подключается электродвигатель.

5. Подключаются кнопки «Стоп – Пуск». Их питание осуществляется от ввода силовых контактов пускателя. К примеру, фаза соединяется с кнопкой «Стоп» замкнутого контакта, затем с нее переходит на пусковую кнопку разомкнутого контакта, а с контакта кнопки «Пуск» – на один из контактов катушки магнитного пускателя.

6. На второй вывод пускателя подключается «ноль». Чтобы зафиксировать включенное положение магнитного пускателя, необходимо шунтировать пусковую кнопку замкнутого контакта к блоку контактов пускателя, подающего питание с кнопки «Стоп» на катушку.

Типы однофазных асинхронных двигателей

Однофазный асинхронный двигатель запускается несколькими способами. Механические методы не очень практичны, поэтому двигатель временно запускается путем преобразования его в двухфазный двигатель.

Однофазные асинхронные двигатели классифицируются по вспомогательным средствам, используемым для запуска двигателя. Они классифицируются следующим образом:

  1. Двухфазный двигатель
  2. Двигатель конденсаторно-пусковой
  3. Конденсаторный двигатель, конденсаторный двигатель
  4. Двигатель с постоянным разделенным конденсатором (PSC)
  5. Электродвигатель с расщепленными полюсами

1.Двухфазный асинхронный двигатель:

Асинхронный двигатель с расщепленной фазой также известен как двигатель с сопротивлением пуска . Он состоит из одноклеточного ротора, а его статор имеет две обмотки? основная обмотка и пусковая (также называемая вспомогательной) обмотка. Обе обмотки смещены в пространстве на 90 °, как обмотки в двухфазном асинхронном двигателе. Основная обмотка асинхронного двигателя имеет очень низкое сопротивление и высокое индуктивное сопротивление.

Рисунок: Асинхронный двигатель с разделением фаз (a) Принципиальная схема (b) Диаграмма

Характеристики двигателя:

Пусковой момент асинхронного двигателя с резистивным пуском составляет около 1.5-кратный крутящий момент при полной нагрузке. Максимальный крутящий момент или крутящий момент отрыва примерно в 2,5 раза превышает крутящий момент при полной нагрузке примерно при 75% синхронной скорости. Двигатель с расщепленной фазой имеет высокий пусковой ток, который обычно в 7-8 раз превышает значение полной нагрузки.

Приложения:

Электродвигатели

с разделенной фазой наиболее подходят для легко запускаемых нагрузок, где частота запуска ограничена, и они очень дешевы.

  1. Эти моторы используются в стиральных машинах.
  2. Они используются в вентиляторах кондиционирования воздуха.
  3. Используется в пищевых миксерах, шлифовальных машинах, полировальных машинах, воздуходувках, центробежных насосах,
  4. Применяются в небольших дрелях, токарных станках, оргтехнике и т. Д.
  5. Иногда они также используются для приводов, требующих более 1 кВт.

Конденсаторные двигатели:

Конденсаторные двигатели — это двигатели, у которых есть конденсатор в цепи вспомогательной обмотки для создания большей разности фаз между током в основной и вспомогательной обмотках. Есть три типа конденсаторных двигателей.


2. Конденсаторно-пусковой двигатель:

Двигатель с конденсаторным пуском развивает гораздо более высокий пусковой момент, т. Е. От 3,0 до 4,5 раз больше крутящего момента при полной нагрузке. Для получения высокого пускового момента значение пускового конденсатора должно быть большим, а сопротивление пусковой обмотки должно быть низким. . Из-за высокого номинального значения VAr требуемого конденсатора используются электролитические конденсаторы порядка 250 F. Конденсатор Cs рассчитан на кратковременный ток.

Эти двигатели более дорогие, чем двигатели с расщепленной фазой, из-за дополнительной стоимости конденсатора.

Рисунок: Конденсаторный пусковой двигатель (а), принципиальная схема (б) Диаграмма

Приложения:

  1. Эти двигатели используются для тяжелых нагрузок, когда требуется частый запуск.
  2. Эти двигатели используются для насосов и компрессоров, поэтому они используются в качестве компрессора в холодильнике и кондиционере.
  3. Они также используются для конвейеров и некоторых станков.

3. Двухзначный конденсаторный двигатель

Этот двигатель имеет ротор с сепаратором, а его статор имеет две обмотки, а именно основную обмотку и вспомогательную обмотку.Две обмотки смещены в пространстве на 90 °. В двигателе используются два конденсатора Cs и CR. На начальном этапе два конденсатора подключаются параллельно.

Рисунок: Конденсаторный двигатель с двумя значениями

Приложения:

  1. Конденсаторные двигатели с двумя номиналами используются для нагрузок с большей инерцией, требующих частого запуска.
  2. Применяются в насосном оборудовании.
  3. Применяются в холодильных установках, воздушных компрессорах и т. Д.

4.Двигатель с постоянным разделением конденсаторов (PSC):

Эти двигатели имеют ротор с сепаратором, и его ротор состоит из двух обмоток, а именно основной обмотки и вспомогательной обмотки. Однофазный асинхронный двигатель имеет только один конденсатор С, который включен последовательно с пусковой обмоткой. Конденсатор С постоянно включен последовательно с пусковой обмоткой. Конденсатор C постоянно включен в цепь в условиях запуска и работы.

Преимущества

Однозначный конденсаторный двигатель имеет следующие преимущества:

  1. В двигателях этого типа центробежный выключатель не требуется.
  2. Этот двигатель имеет более высокий КПД.
  3. Он имеет более высокий коэффициент мощности из-за постоянно подключенного конденсатора.
  4. Обладает более высоким крутящим моментом отрыва.

Ограничения конденсаторного двигателя с постоянным разделением:

  1. Электролитические конденсаторы нельзя использовать для непрерывной работы. Следовательно, следует использовать конденсаторы с масляным наполнением, разнесенные по бумаге. Бумажные конденсаторы того же номинала больше по размеру и дороже.
  2. Однозначный конденсатор имеет низкий пусковой крутящий момент, обычно меньший, чем крутящий момент при полной нагрузке.

Приложения:

  1. Эти двигатели используются для вентиляторов и нагнетателей в обогревателях.
  2. Применяется в кондиционерах.
  3. Применяется для привода компрессоров холодильников.
  4. Также используется для работы с оргтехникой.

5. Двигатель с экранированными полюсами:

Двигатель с расщепленными полюсами — это простой тип однофазного асинхронного двигателя с самозапуском. Он состоит из статора и ротора клеточного типа. Статор состоит из выступающих полюсов.У каждого полюса есть прорези сбоку, а на меньшей части установлено медное кольцо. Эта часть называется заштрихованным полюсом. Кольцо обычно представляет собой одновитковую катушку, известную как затеняющая катушка.

Рис.: Двигатель с расщепленными полюсами и двумя полюсами статора.

Приложения:

  1. Двигатели с расщепленными полюсами используются для привода устройств, требующих низкого пускового момента.
  2. Эти двигатели очень подходят для небольших устройств, таких как реле, вентиляторы всех типов и т. Д., Из-за их низкой начальной стоимости и легкости запуска.
  3. Чаще всего эти двигатели применяются в настольных вентиляторах, вытяжных вентиляторах, фенах, вентиляторах для холодильного оборудования и оборудования для кондиционирования воздуха, электронном оборудовании, охлаждающих вентиляторах и т. Д.

Однофазный асинхронный двигатель — принцип работы и конструкция

Однофазные двигатели — наиболее известные из полностью электрических двигателей, поскольку они широко используются в бытовой технике, магазинах, офисах и т. Д.

Это правда, что однофазные двигатели являются менее эффективной заменой трехфазных двигателей, но трехфазное питание обычно недоступно, за исключением крупных коммерческих и промышленных предприятий.

Работа однофазного асинхронного двигателя

В отличие от трехфазных асинхронных двигателей, однофазные асинхронные двигатели не запускаются автоматически. Причина этого очень интересна.

Почему однофазный асинхронный двигатель не запускается автоматически?

Однофазный асинхронный двигатель имеет распределенную обмотку статора и короткозамкнутый ротор .

При питании от однофазной сети обмотка статора создает магнитный поток (или поле), которое является только переменным i.е. тот, который чередуется только по одной пространственной оси.

Это не синхронно вращающийся (или вращающийся) поток, как в случае двух- или трехфазной обмотки статора, питаемой от двух- или трехфазного источника питания.

Теперь переменный или пульсирующий поток, действующий на неподвижный ротор с короткозамкнутым ротором, не может производить вращение (только вращающийся поток может производить вращение). Вот почему однофазный двигатель не запускается автоматически.

Однако, если ротору такой машины дать начальный запуск вручную (или небольшой двигатель) или иным образом в любом направлении, то немедленно возникает крутящий момент, и двигатель ускоряется до своей конечной скорости ( если приложенный крутящий момент не слишком высок).

Это своеобразное поведение двигателя было объяснено с помощью двух теорий, приведенных ниже.

  1. Двухпольная или двухпольная теория вращения
  2. Теория перекрестных полей .

Кратко будет рассмотрена только теория вращения двойного поля.

Теория вращения двойного поля

Эта теория использует идею о том, что переменная одноосная величина может быть представлена ​​двумя противоположно вращающимися векторами половинной величины.

Итак, переменный синусоидальный поток может быть представлен двумя вращающимися потоками, каждый из которых равен половине значения переменного потока, и каждый вращается синхронно в противоположных направлениях.

Теория вращения двойного поля

Как показано на рис. (А), пусть переменный поток имеет максимальное значение φ м . Потоки компонентов A и B каждый будут равны φ м /2 , вращаясь против часовой стрелки и по часовой стрелке соответственно.

Через некоторое время, когда A и B повернутся на углы + θ и –θ, как на рис. (B), результирующий поток будет

Результирующий поток = 2 × (φ м /2) sin ( 2θ / 2) = φ м sin θ

После четверти цикла вращения потоки A и B будут иметь противоположное направление, как показано на рис. (C), так что результирующий поток будет равен нулю.

После половины цикла потоки A и B будут иметь результат –2 × (φ м /2) = –φ м .

После трех четвертей цикла результат снова равен нулю, как показано на Рис. (E), и так далее.

Если построить график значений результирующего потока в зависимости от θ в пределах от θ = 0 ° до θ = 360 °, то получится кривая, аналогичная показанной на рисунке.

Переменный поток

Вот почему переменный поток можно рассматривать как составленный из двух вращающихся потоков, каждый из которых половинной величины и вращается синхронно в противоположных направлениях.

Можно отметить, что если скольжение ротора составляет с по отношению к потоку прямого вращения (т. Е. Тот, который вращается в том же направлении, что и ротор), то его скольжение по отношению к потоку обратного вращения составляет (2- с).

Крутящий момент против скольжения

Каждый из двухкомпонентных потоков при вращении вокруг статора разрезает ротор, индуцирует ЭДС и, таким образом, создает свой собственный крутящий момент.

Очевидно, два момента (называемые прямым и обратным моментами) имеют противоположные направления, так что результирующий или результирующий крутящий момент равен их разности.

Следовательно, T f и T b численно равны, но, будучи противоположно направленными, не создают результирующего крутящего момента. Это объясняет, почему в однофазном двигателе отсутствует пусковой момент.

Однако, если ротор каким-то образом запускается, скажем, по часовой стрелке, крутящий момент по часовой стрелке начинает увеличиваться, и в то же время крутящий момент против часовой стрелки начинает уменьшаться.

Следовательно, существует определенный чистый крутящий момент по часовой стрелке, который разгоняет двигатель до полной скорости.

Как сделать самозапуск однофазного асинхронного двигателя?

Как обсуждалось выше, однофазные асинхронные двигатели не запускаются автоматически, потому что однофазное питание не может создавать вращающееся магнитное поле. Нам требуется двухфазный или трехфазный источник питания для создания вращающегося магнитного поля.

Но мы можем создать вращающееся магнитное поле с помощью двухфазной конструкции.

Можно просто сказать, что для самозапуска однофазного асинхронного двигателя мы должны временно преобразовать его в двухфазный двигатель во время его пуска.

Для этой цели статор однофазного асинхронного двигателя снабжен дополнительной обмоткой, известной как пусковой или вспомогательной обмоткой в дополнение к основной или рабочей обмотке .

Две обмотки электрически смещены на 90 градусов и соединены параллельно через однофазное питание.

Он устроен так, что разность фаз между токами в двух обмотках статора (основная и рабочая обмотки) очень велика (идеальное значение — 90 градусов).Следовательно, двигатель ведет себя как двухфазный двигатель .

Эти два тока создают вращающийся поток и, следовательно, вызывают самозапуск двигателя.

Разность фаз между токами в основной и рабочей обмотках может быть получена разными способами. Фазового сдвига можно добиться, подключив последовательно к пусковой обмотке сопротивление, индуктивность или емкость.

Как создается фазовый сдвиг?

Разница между током в пусковой и рабочей обмотках в разных однофазных двигателях создается разными способами.

В этом разделе мы рассмотрим, как создается фазовый сдвиг в каждом однофазном двигателе.

Асинхронный двигатель с расщепленной фазой

В асинхронном двигателе с расщепленной фазой разность фаз создается за счет использования обмоток с разным сопротивлением и реактивным сопротивлением в основной и вспомогательной обмотках.

Основная обмотка (рабочая обмотка): низкое сопротивление, но высокая реактивность

Вспомогательная обмотка (пусковая обмотка): высокое сопротивление и низкое реактивное сопротивление

Асинхронные двигатели с конденсаторным запуском создают разность фаз между основной обмоткой и вспомогательной обмоткой.

Обычно для этой функции используется конденсатор электролитического типа.

(PDF) Управление однофазным асинхронным двигателем с использованием однофазного в двухфазный твердотельный преобразователь

Индукционный генератор, управляемый прерывателем переменного тока, подключенный к сети

17

6. Выводы

Производительность подключенного к сети Индукционный генератор был исследован с использованием твердотельного прерывателя переменного тока в качестве

интерфейса между сетью и выводами статора генератора.Рабочие характеристики

были получены путем моделирования индукционного генератора и статического преобразователя с помощью новой эквивалентной схемы в

псевдостационарной системе отсчета abc-dq.

При сравнении производительности генератора с использованием стратегии управления прерывателем переменного тока с производительностью, когда

с использованием контроллера переменного напряжения, использующего стратегии управления естественной и принудительной коммутацией, опубликованные в предыдущих статьях

[2, 3], можно сделать следующие выводы:

1.Прерыватель переменного тока дает наименьший коэффициент искажения тока генератора, в то время как контроллер напряжения

с принудительной коммутацией дает наибольший коэффициент искажения.

2. Прерыватель переменного тока дает наименьший коэффициент искажения тока шины, в то время как контроллер принудительной коммутации переменного напряжения

, использующий стратегию управления затуханием, дает самый высокий коэффициент искажения тока шины.

3. Стратегия управления прерывателем переменного тока также обеспечивает почти постоянный угол смещения по сравнению с другими стратегиями управления

.

4. Эффективность при использовании стратегии прерывания переменного тока почти постоянна для постоянной скорости из-за постоянной пропорциональности

активной мощности и входной мощности с учетом того, что результирующее содержание гармоник тока

слишком мало.

5. Стратегия управления прерывателем переменного тока дает очень мало пульсирующих компонентов крутящего момента. Эти компоненты имеют

очень высоких частот, и более вероятно, что они находятся далеко от механических собственных частот

системы.Таким образом, проблемы крутильных колебаний не возникают.

6. Контроллер прерывателя переменного тока — когда он используется для управления активной и реактивной мощностями индукционного генератора

— дает в целом наилучшие рабочие характеристики генератора. Контроллер переменного напряжения

, использующий метод управления углом зажигания, имеет одно преимущество по сравнению с другими. Он

улучшает угол смещения в заметном диапазоне регулирования по сравнению с постоянным значением

, полученным от прерывателя переменного тока, и увеличивающимся значением, полученным от других контроллеров.

7. Ссылки

[1] Сингх Б. «Индукционные генераторы: перспективы». Журнал «Электрические машины и энергетические системы», 23 (1993), 163-177.

[2] Абдель-Халим, М.А. «Твердотельное управление индукционным генератором, подключенным к сети». Электроэнергетические компоненты и системы

Журнал, 29 (2001), 163-178.

[3] Almarshoud, A.F .; Абдель-Халим М.А. и Алолах А. «Характеристики подключенного к сети индукционного генератора при естественно коммутируемом контроллере напряжения переменного тока

.Журнал «Электроэнергетические компоненты и системы», 32 (2004), 691-700.

[4] Babu, S.S .; Мариаппан, Г.Дж. и Palanichamy, S. «Новый сетевой интерфейс для ветроэнергетических индукционных генераторов».

Труды Международной конференции IEEE / IAS по промышленной автоматизации и управлению, 1995, 373-376.

[5] Адкинс Б. и Харли Р.Г. Общая теория машин переменного тока: приложение к практическим задачам. 1

st ed.,

London: Chapman and Hall, 1975.

[6] Раластон А.

Первый курс численного анализа. Нью-Йорк, США: McGraw-Hill, 1995.

[7] Рашид, М. Х. Силовая электроника: схемы, устройства и приложения. 4-е изд., США: Prentice Hall, 2002.

[8] Мостафа, Х.Г. «Моделирование и анализ подключенного к сети индукционного генератора с использованием контроллера переменного тока». M.Sc. Диссертация,

Инженерный факультет, Каирский университет, Египет, 2006.

[9] Рекомендуемые практики и требования IEEE для контроля гармоник в электроэнергетических системах, IEEE Std.519-1992, IEEE,

New York, 1993.

[10] Abdulrahman, S.M .; Городок, J.G.K. и Смит, И. «Быстрый расчет гармонических пульсаций крутящего момента в приводе VSI / асинхронного двигателя

». IEEE Trans. on Industrial Electronics, 40, No. 6 (декабрь 1993), 561-569.

Однофазные двигатели

Alstom

Однофазные двигатели Alstom


Электрические машины — Вопросы и ответы
Информация любезно предоставлена ​​ALSTOM.

ОДНОФАЗНЫЕ ДВИГАТЕЛИ

1. Когда используются однофазные двигатели?

Когда единственный доступный источник переменного тока — однофазный. Как правило, при наличии трехфазного источника питания предпочтительны трехфазные двигатели, хотя часто делаются исключения в случае дробные киловаттные приводы.

2. Какие типы однофазных двигателей используются?

  1. Двигатели асинхронные (двухфазные, конденсаторные и экранированные).
  2. Отталкивающие и отталкивающие асинхронные двигатели.
  3. Универсальные моторы.
  4. Невозбужденные синхронные двигатели.

3. Каков принцип однофазного асинхронного двигателя?

Однофазная обмотка создает переменное магнитное поле. Поскольку это поле не вращается, однофазная обмотка сама по себе не может создавать крутящий момент для запуска двигателя в состоянии покоя. Однако, как только двигатель был запущен, он продолжит работу при условии, что нагрузка отключена. не слишком высоко.

Для электрического запуска двигателя необходимо использовать вспомогательную обмотку в параллельную и заставляют ток в этой обмотке отличаться по фазе от тока в основной обмотке. Таким образом, моделируя двухфазное питание, совокупный эффект полей, создаваемых двумя обмотками, представляет собой более или менее эффективное связующее поле, обеспечивая, таким образом, пусковой момент.

После запуска связь поля осуществляется токами, возникающими во вторичной обмотке, а вспомогательная первичная обмотка обычно отключается от цепи.

4. Как работает однофазный асинхронный двигатель?

Вспомогательная обмотка обычно имеет примерно такое же количество витков, что и основная обмотка, но из проволоки гораздо меньшего размера. Из-за гораздо более высокого сопротивления вспомогательной обмотки ток в ней больше синфазен с напряжением питания, чем ток в основной обмотке. На практике достигается разность фаз около 30 градусов, что несколько ниже идеального значения 90 градусов, но достаточно для получения достаточного пускового момента при небольшой нагрузке.

Вспомогательная обмотка обычно рассчитана на непродолжительное время работы — она ​​перегреется, если оставить в цепи более нескольких секунд — так что он отключается от цепи сразу после запуска.

5. Каковы области применения асинхронного двигателя с расщепленной фазой?

Приводы на дробные киловатты для устройств, которые можно быстро увеличить. Типичный пусковой крутящий момент составляет от 175 до 200 процентов крутящего момента при полной нагрузке.

6.Что такое конденсаторный двигатель?

Однофазный асинхронный двигатель, в котором реализована разность фаз между основной и вспомогательной обмотками. подключив конденсатор последовательно со вспомогательной обмоткой. Из-за конденсатора ток вспомогательной фазы приближается к току основной фазы на 90 градусов выше, чем ток основной фазы, что дает гораздо более высокий пусковой момент, чем это возможно для двигателя с расщепленной фазой.

Рис. 48 — Типовые соединения для пуска однофазного двигателя.
Конденсаторные двигатели для пуска и пуска обеспечивают превосходные рабочие характеристики и высокую мощность. фактор.

Есть три основных типа конденсаторных двигателей:

  1. Конденсатор-пуск, индукционный прогон ( нахождение обмотки конденсатора в цепи только в начальный период).
  2. Двигатель с постоянным разделенным конденсатором, дюйм в которой находится обмотка конденсатора цепь как для запуска, так и для работы.
  3. Конденсаторный пусковой двигатель, использующий два конденсатора пусковых, один из их вырезают для бега.

7. Когда используется двигатель с конденсаторным пуском?

Когда необходим действительно высокий пусковой крутящий момент, например, двигатели, приводящие в движение компрессоры холодильников. Может быть получен пусковой крутящий момент 300% или более.

8. Какой тип конденсатора используется для двигателей с конденсаторным пуском?

Обычно это электролитический конденсатор сухого типа, потому что он имеет большое значение емкости при небольшом объеме и является самым дешевым.Этот тип конденсатора рассчитан на кратковременный режим работы переменного тока и поэтому подходит только для пусковых устройств, где режим работы является прерывистым.

Рис. 49 — Обмотки двухфазного двигателя.

Поскольку напряжение на пусковых конденсаторах может быть выше, чем напряжение сети, их номинальное напряжение должно быть подходящим, например Номинальное значение 275 вольт для двигателей на 200-250 вольт, когда конденсатор включен обычным образом последовательно со вспомогательной обмоткой.Фигура 50 показывает способ подключения конденсатора, чтобы его рабочее напряжение было ниже, чем напряжение сети.

9. Каковы области применения двигателя с постоянным разделенным конденсатором?

Для небольших двигателей с небольшими пусковыми нагрузками, таких как приводы вентиляторов и змеевиковые горелки. Только Требуется небольшой конденсатор, и он остается в цепи, чтобы избежать усложнения дополнительного переключателя. Тот факт, что вспомогательная обмотка включена в цепь во время работы, значительно улучшает производительность машины в отношении коэффициента мощности и бесшумности.Необходимо использовать конденсатор с бумажным диэлектриком, потому что электролитический конденсатор не подходит для непрерывная работа.

10. Для чего нужны два конденсатора?

Конденсаторный двигатель с конденсаторным запуском может использоваться, когда режим пуска является тяжелым и желательно достичь высокого коэффициента мощности во время работы. Для работы требуется меньшая емкость, чем для запуска, поэтому два конденсатора используются параллельно для пусковой и один конденсатор отключен для работы.При параллельной работе конденсаторов необходимо соблюдать особую осторожность при проектировании, так как возникает высокое импульсное напряжение. может иметь место при выключении.

11. Как однофазный асинхронный двигатель переключается из пуска в режим работы?

Переключение обычно выполняется автоматически центробежным переключателем, установленным на валу двигателя, но это также может быть выполнено ручное переключение ответственными операторами. Альтернативой центробежному переключателю является релейный переключатель специальной конструкции, который управляет пусковой обмоткой.Катушка реле включена последовательно с работающей обмоткой, так что сильный ток, проходящий через катушку при включении с неподвижным ротором, заставляет контакты реле замыкать цепь пусковой обмотки. По мере увеличения скорости двигателя ток в рабочей обмотке и, следовательно, в катушке реле падает, и при заданном значении тока контакты реле размыкаются, отсоединяя пусковую обмотку.

Рис. 50 — Тройник конденсатор-двигатель.
На схеме также показаны подключения реверсивного переключателя.

12. Как инвертировать асинхронный двигатель с расщепленной фазой или конденсатор?

Переставляя концы пусковой обмотки на двигателе.

13. Что такое электродвигатель с расщепленными полюсами?

Тип однофазного асинхронного двигателя для очень малых мощностей, в котором пусковой крутящий момент обеспечивается постоянно закороченными катушками, смещенными в положение от основного катушки статора.Ротор короткозамкнутый. Самая обычная форма двигателя этого типа имеет выступающие полюса на статор чем-то похож на полюса универсального двигателя. Каждый полюс неравномерно разделен прорезью в пластинах, позволяющей окружать одну сторону полюса тяжелой медной полосой, известной как затеняющая катушка или петля.

Другие формы материала с экранированными полюсами имеют нормальный статор асинхронного двигателя, его обмотки состоят из однофазной обмотки и экранирующей обмотки, причем последняя имеет волновую обмотку и короткозамкнута внутри двигателя или на его выводах.

Рис. 51 — Двигатель с расщепленными полюсами.

14. Как работает электродвигатель с расщепленными полюсами?

Затеняющая петля действует как короткозамкнутая катушка с низким сопротивлением, в которой под действием трансформатора индуцируется сильный ток, запаздывающий в временная фаза с основным потоком в полюсе. Ток в этом контуре создает поток, который отстает от время основного потока в незатененной части полюса. Результирующий эффект — движение магнитного потока через поверхность полюса и воздушный зазор, тем самым создавая магнитное поле, которое разрезает проводники ротора.

15. Для чего нужен электродвигатель с расщепленными полюсами?

Для этого типа двигателя не требуется автоматический центробежный выключатель или пусковой выключатель другого типа, поскольку нет пусковой обмотки, которую можно было бы отключить. Его простая конструкция делает эту машину особенно надежной, подходящей для долгие часы дежурства. Однако он не так эффективен с точки зрения электричества, как другие однофазные асинхронные двигатели, в основном из-за довольно больших потерь в меди в контурах экранирования полюсов.Обычные размеры таких счетчики имеют мощность примерно до 25 Вт и используются там, где эффективность не имеет большого значения, например, для управления небольшими вентиляторами, моторизованные клапаны, записывающие инструменты, проигрыватели и т. д.

16. Можно ли реверсировать электродвигатель с расщепленными полюсами?

Двигатель обычно не реверсивный, так как это потребует механического демонтажа и повторной сборки. Специальные машины состоят из двух роторов на общем валу, каждый из которых имеет свой собственный вал. статор в сборе для противоположных направлений вращения.

Рис. 52 — Реверс универсального двигателя.
Подключения к обмоткам якоря переключаются, чтобы реверсировать двигатель.

17. Что такое универсальный мотор?

Двигатель в дробном диапазоне киловатт от 10 до 400 Вт, построенный по аналогии с последовательным типом постоянного тока. Двигатель адаптирован к переменному току за счет полностью ламинированного сердечника возбуждения. Их нельзя удовлетворительно заставить работать со скоростью менее 2000 об / мин.

Если от двигателя, работающего со скоростью менее 3000 об / мин, требуется аналогичная производительность на переменном и постоянном токе, желательна обмотка возбуждения с ответвлениями.

18. Как запускаются универсальные двигатели?

Переключившись прямо на линию. Пусковой крутящий момент примерно в пять раз превышает крутящий момент при полной нагрузке с пусковые токи примерно в три-четыре раза превышающие ток полной нагрузки, в зависимости от размера и скорости мотор, обычные.

19.Каковы области применения универсальных двигателей?

Универсальные двигатели имеют последовательную характеристику, так что они работают на номинальной скорости только на номинальной скорости. нагрузка. Если нагрузка уменьшена, скорость увеличится. Такие двигатели подходят для привода вентиляторов, пылесосов, бытовых швейных машин, переносных инструментов и т. Д., Где нагрузка постоянна или когда стабильно поддерживаемая скорость не важна.

Поскольку в универсальных двигателях износ щеток происходит быстрее, они обычно не подходят для продолжительной работы.Регулировка скорости и реверсирование могут быть организованы как для двигателей постоянного тока. Может быть организовано трехпозиционное реверсирование, что значительно упрощает механизм управления, при этом предусмотрены два отдельных поля, по одному для каждого направления вращения.

20. Что такое отталкивающие двигатели?

Однофазные машины мощностью до 4 кВт, имеющие обмотку статора с однофазной обмоткой и ротор очень аналогичен якорю постоянного тока с коммутатором. Щетки постоянно замкнуты накоротко. Токи, индуцируемые в роторе магнитным полем от статор придает ротору магнитную полярность, которая при подходящем положении щетки на коммутаторе вызывает отталкивание имеют место между одинаковыми полюсами статора и номинала.

Вращение не происходит, если ось щетки соответствует оси обмотки статора, называемой нейтральным положением, при этом магнитная полярность ротора такая же, как у ротора. статор. В этой форме машина представляет собой простой отталкивающий двигатель с последовательными характеристиками, с которыми скорость увеличивается по мере уменьшения нагрузки на машину.

Рис. 53 — Соединения отталкивающего двигателя.
Статор намотан однофазной обмоткой.Ротор очень похож на якорь двигателя постоянного тока. с коммутатором.

Машину часто преобразуют в асинхронный двигатель во время работы за счет того, что все Сегменты коммутатора замыкаются накоротко устройством с центробежным приводом, когда двигатель набирает обороты. Щетки также поднимаются в тех же ящиках для уменьшения износа.

Чтобы избежать усложнения устройства короткого замыкания, ротор может иметь короткозамкнутую обмотку на дне пазов.Этот берет верх на скорости и дает характеристики асинхронного двигателя.

Рис. 54 — Два метода изменения направления вращения отталкивающего двигателя путем переключения.

21. Как реверсировать отталкивающие двигатели?

Чтобы получить обратное вращение, кисти перемещаются в соответствующую точку с другой стороны от нейтрального положения. Когда желательно избежать перемещения кистей, можно использовать два набора кистей. использовать по одному комплекту на каждый оборот и при необходимости замкнуть их накоротко.Другой способ избежать движения кисти — коснуться обмотка статора и изменение направления вращения путем смещения оси полюса статора. Обычно это делается с помощью одной реверсивной обмотки в дополнение к основной обмотке и переключателю, как показано на схеме.

Какое применение отталкивающие двигатели?

Отталкивающий двигатель подходит для приводов, требующих очень высоких пусковых моментов, хотя он был в значительной степени заменен конденсаторным двигателем.Там, где требуется переменная скорость, простое отталкивание может использоваться двигатель (без механизма короткого замыкания и подъема щеток), причем регулирование скорости достигается путем поворота щеток, которые могут быть соединены с маховиком или рычагом на концевом кронштейне двигателя.

Рис. 55 — Подключение параллельных, последовательных и комбинированных двигателей.
C.P., переключающие полюса или межполюсники не устанавливаются на самые маленькие двигатели.

Модель цепи однофазного асинхронного двигателя

Модель цепи однофазного асинхронного двигателя:

Принципиальная схема однофазного асинхронного двигателя

— Дисбаланс обмоток и тот факт, что основная и вспомогательная обмотки питаются от одного источника питания, приводят к несбалансированности основного и вспомогательного полей.Вектор вдоль осей намотки может быть разделен на симметричные составляющие F̅ f и F̅ b , как указано уравнениями (10.17a) и (10.17b). Набор прямых компонентов F̅ f и jF̅ f создает поле прямого вращения; аналогично, набор компонентов F̅ b и -jF̅ b приводит к полю, вращающемуся в обратном направлении.

Проскальзывание ротора относительно двух вращающихся полей составляет s и (2 — s) соответственно, как указано уравнениями (10.5a) и (10.5b), и в результате цепи намагничивания и ротора, видимые двумя вращающимися полями по отношению к основной обмотке, отличаются и показаны на рисунках 10.22 (a) и 10.22 (b).

Следует отметить, что потерями холостого хода пренебрегли, и поэтому проводимость потерь в сердечнике не показана в обеих схемах. Импеданс E mf , ЭДС, индуцированная прямым полем основной обмотки, составляет

и импеданс E мбн, ЭДС, индуцированная обратным полем в основной обмотке

Уравнения (10.16a) и (10.16b) теперь будут преобразованы в текущую форму.

Пусть

Тогда из уравнений (10.16a) и (10.16b)

Из уравнений (10.32a) и (10.32b)

Ток во вспомогательной обмотке — гайковерт, поскольку витки вспомогательной и основной обмотки разные, ток вспомогательной обмотки, если смотреть со стороны основной обмотки, равен

.

Из уравнений (10.33a) и (10.33b) симметричные составляющие токов почты и вспомогательной обмотки относительно минимальной обмотки могут быть выражены как

Прямое поле достигает вспомогательной обмотки 90 ° эл.перед основной обмоткой и наоборот для поля, вращающегося в обратном направлении. Таким образом, ЭДС вспомогательной обмотки, индуцированная двумя полями, составляет:

Также пусть напряжение на зажимах основной и вспомогательной обмоток составляет V̅ м и V̅ a соответственно. Напряжение вспомогательной обмотки равно (В a / a) , если смотреть со стороны основной обмотки. Этот набор напряжений также можно разделить на симметричные компоненты как

или альтернативно

Теперь рассмотрим напряжение на зажимах главной обмотки м. Он состоит из трех компонентов: ЭДС, индуцированная прямым вращающимся полем, ЭДС, индуцированная обратным вращающимся полем, и падение напряжения на импедансе обмотки Z̅ 1m из-за протекающего через нее тока I m . Таким образом,

Замена E̅ mf и E̅ mb из уравнений (10.29a) и (10.29b)

, который представлен схемой на рис. 10.23 (а).

Аналогично, напряжение на клеммах вспомогательной обмотки V̅ a состоит из трех компонентов:

и.е.

, где Z̅ 1a — полное сопротивление обмотки вспомогательной обмотки, которая обычно имеет встроенный конденсатор (пусковой / рабочий конденсатор). Используя уравнения (10.36a) и (10.36b),

, схематическое представление которого приведено на рис. (10.23b). Подставляя I м из уравнения. (10.33a) в уравнении. (10.39b),

Аналогичным образом заменяя I на из уравнения. (10.33b) в уравнении. (10.40c),

С V̅ м и V̅ a , как выражено в уравнениях (10.41a) и (10.41b), из уравнений (10.38a) и (10.38b) получаем

Уравнения (10.42a) и (10.42b) можно записать как

Уравнения (10.44a), (10.44b) и (10.37a) представлены схемной моделью на рис. 10.24.

Далее следует отметить, что

Из них схемную модель рис. 10.24 можно составить в виде рис. 10.25. На рис. 10.25 отключение вспомогательной обмотки в рабочем состоянии эквивалентно размыканию переключателя S.

После отключения вспомогательной обмотки.

Путем удвоения тока и уменьшения импеданса вдвое получается модель схемы, показанная на рис. 10.26. Можно видеть, что это та же модель схемы, что уже представлена ​​на рис. 10.5 (c) на эвристической основе.

Из ур. (10.42a) и (10.42b),

Токи обмоток даны по

.

Развиваемый крутящий момент и механическая мощность даны по

Импеданс конденсатора для сбалансированной работы при определенной скорости

Для сбалансированного однофазного режима

или из уравнения.(10.48b)

Из уравнения. (10.38b)

Для однофазного режима

Подставляя уравнение. (10.54) в уравнении. (10,53)

С Z̅ 12 , определенным в формуле. (10.43b)

Асинхронные двигатели с расщепленной фазой: типы, работа и характеристики

Асинхронные двигатели с расщепленной фазой — один из распространенных однофазных двигателей переменного тока. Это имеет экономические преимущества, и эта система питания востребована в большинстве областей применения: дома, магазины, промышленность, офисы и т. Д.Одним из преимуществ этого типа однофазного двигателя является его способность автоматически регенерировать мощность на спусках. В этой статье мы находим лучший ответ на вопрос о том, что такое асинхронные двигатели с расщепленной фазой, и обсуждаем обзор конструкции, работы, характеристик, типов, преимуществ, недостатков, недостатков и областей применения асинхронных двигателей с расщепленной фазой. Подпишитесь на этот новый блог в Linquip, чтобы узнать больше об этом двигателе.

Конструкция

Чтобы ответить на вопрос, что такое асинхронные двигатели с расщепленной фазой, сначала давайте посмотрим, каковы различные части этого двигателя.Асинхронный двигатель с расщепленной фазой в основном состоит из статора, ротора, центробежного переключателя, расположенного внутри двигателя, и двух торцевых щитов, в которых размещены подшипники, поддерживающие вал ротора. В дополнение к основной обмотке или рабочей обмотке статор асинхронного двигателя с расщепленной фазой имеет другую обмотку, называемую вспомогательной обмоткой или пусковой обмоткой. Центробежный выключатель включен последовательно со вспомогательной обмоткой. Назначение этого переключателя — отключить вспомогательную обмотку от главной цепи.

Двигатель с расщепленной фазой не имеет емкости во вспомогательной цепи. Сдвиг фазы к основному току достигается за счет использования узких проводников для достижения высокого отношения сопротивления к реактивному сопротивлению. Увеличение сопротивления означает, что вспомогательную обмотку можно использовать только во время пуска, иначе она перегреется. Двигатель с расщепленной фазой имеет значительно меньший крутящий момент при запуске из-за меньшего фазового угла между токами основной и вспомогательной обмоток.

Принцип работы

В электродвигателе с расщепленной фазой предусмотрены две обмотки, называемые основной обмоткой и пусковой обмоткой.Во время пуска и основная, и пусковая обмотки должны быть подключены к источнику питания для создания вращающегося магнитного поля, а когда питание подается на статор, создается вращающееся магнитное поле. Ротор представляет собой беличью клетку, и вращающееся магнитное поле перемещает часть неподвижного ротора, вызывая ЭДС в роторе.

Поскольку стержни ротора закорочены, через них протекает ток, создающий магнитное поле. Это магнитное поле противостоит вращающемуся магнитному полю и в сочетании с основным полем образует вращающееся поле.Как только ротор начинает вращаться и достигает скорости от 75 до 80 процентов от синхронной скорости, пусковая обмотка может быть отключена от источника питания с помощью центробежного переключателя.

Рабочие характеристики и характеристики

  • Пусковой крутящий момент примерно в два раза превышает крутящий момент при полной нагрузке.
  • Скорость падает с увеличением нагрузки примерно на 5–7%, в противном случае это двигатель с постоянной скоростью.
  • Ток на старте примерно в 6-8 раз.
  • Фактическая скорость меньше синхронной скорости Ns.
  • При том же весе его номинал составляет около 60 процентов от номинального значения многофазного двигателя. Асинхронный двигатель с расщепленной фазой имеет более низкую коэффициент мощности. и меньшая эффективность. Его P.f. составляет около 0,6, а КПД также составляет около 60%.
  • Подходит для легких пусковых нагрузок, когда частота пусков ограничена. Этот тип двигателя не используется для приводов, которым требуется более 1 кВт из-за низкого пускового момента.

Типы

Ниже перечислены различные типы асинхронных двигателей с расщепленной фазой.

  1. Электродвигатели с экранированными полюсами
  2. Асинхронные электродвигатели с резистивным пуском
  3. Асинхронные электродвигатели с конденсаторным пуском
  4. Конденсаторные электродвигатели с конденсаторным запуском
  5. Однофазные асинхронные электродвигатели с постоянным конденсатором

Преимущества

Преимущества Асинхронный двигатель с расщепленной фазой включает следующее.

  • Мотор экономичный, устанавливается во многих бытовых приборах.
  • Его можно заменить, если он изнашивается, прежде чем пытаться отменить его.
  • Доступны в различных размерах рамы, поэтому их можно легко разместить в большинстве машин.

Недостатки

К недостаткам асинхронного двигателя с расщепленной фазой можно отнести следующее.

  • Эти двигатели имеют меньший пусковой крутящий момент, поэтому не подходят для мощности более 1 кВт.
  • Недостатком этого двигателя является выходная мощность и КПД. По сравнению с трехфазным двигателем, они не работают при переключении энергии с электрической на рабочую.
  • Эти двигатели просто зависят от разного сопротивления и индуктивности пусковой обмотки.
  • Эти двигатели используются там, где требуется высокий пусковой крутящий момент, например, в воздушном компрессоре.

Приложение

Этот двигатель используется для различных нагрузок общего назначения. Благодаря превосходному пусковому крутящему моменту и легким характеристикам изменения направления, он находит применение в токарных станках, сверлильных, стиральных машинах, деревообрабатывающем инструменте, ленточных вентиляторах, сверлильных станках, масляных горелках, центробежных насосах, компрессорах, вентиляторах кондиционирования воздуха, полировщиках полов, воздуходувках. сушилки, миксеры-измельчители, нагревательные нагнетатели с ременным приводом и конвейеры с крошечным ременным приводом, а также различные другие приложения с низким пусковым моментом.

Этот двигатель используется там, где распределение трех фаз не требуется.

Этот двигатель не дает большого пускового момента, поэтому нагрузка должна быть довольно небольшой, и можно использовать механическое усиление для помощи двигателю при запуске.

Итак, вот вам все факты по вопросу о том, что такое асинхронные двигатели с расщепленной фазой. Если вам понравилась эта статья в Linquip, дайте нам знать, оставив ответ в разделе комментариев. Есть ли вопросы, в которых мы можем вам помочь? Не стесняйтесь зарегистрироваться на нашем сайте, чтобы получить самую профессиональную консультацию от наших экспертов!

Список однофазных двигателей переменного тока

Однофазные двигатели более широко используются, чем трехфазные, по двум основным причинам:

Во-первых, из соображений экономии большинство домов, офисов, а также в сельской местности снабжается однофазным переменным током, а вторым фактором является экономичность двигателя и его параллельной цепи.Постоянные нагрузки, требующие не более 0,5 кВт, обычно наиболее экономично обслуживаются однофазным питанием и однофазным двигателем. Однофазные двигатели просты по конструкции, надежны, просты в ремонте и сравнительно дешевле по стоимости, поэтому находят широкое применение в вентиляторах, холодильниках, пылесосах, стиральных машинах, другом кухонном оборудовании, инструментах, воздуходувках, центробежных насосах, небольших фермерских хозяйствах. техника и др.

Однофазные двигатели переменного тока можно разделить на три основных класса, а именно:

(i) Асинхронные двигатели

(ii) Коллекторные двигатели и

(iii) Синхронные двигатели.

Асинхронные двигатели далее классифицируются как двигатели с расщепленной фазой, двигатели с расщепленными полюсами и асинхронные двигатели отталкивания в соответствии с методом создания пускового момента. Коллекторные двигатели — это серийные двигатели, универсальные двигатели (переменного / постоянного тока), отталкивающие асинхронные двигатели с различными модификациями и применяемыми комбинациями этих типов.

Однофазные асинхронные двигатели очень малых размеров (от 1/400 до 1/25 кВт) используются в игрушках, фенах, торговых автоматах и ​​т. Д. Универсальный двигатель широко используется в портативных инструментах, пылесосах и кухонном оборудовании.Основными недостатками однофазных двигателей являются низкая перегрузочная способность, низкий КПД, низкий коэффициент мощности и низкая выходная мощность по сравнению с трехфазным двигателем данного типоразмера.

1. Однофазные асинхронные двигатели:

Однофазный асинхронный двигатель внешне похож на трехфазный асинхронный двигатель с короткозамкнутым ротором. Ротор однофазного асинхронного двигателя с короткозамкнутым ротором практически такой же, как и ротор трехфазных асинхронных двигателей. Между статором и ротором имеется равномерный воздушный зазор, но отсутствует электрическое соединение между ними (статор и ротор).За исключением типов с расщепленными полюсами, сердечник статора также очень похож. Однофазный двигатель может быть намотан на любое четное число полюсов, чаще всего — два, четыре и шесть. Как и в трехфазных машинах, соседние полюса имеют противоположную магнитную полярность, и уравнение синхронной скорости также применяется (N s = 120f / P).

Когда обмотка статора однофазного асинхронного двигателя подключена к однофазному источнику переменного тока, создается магнитное поле, ось которого всегда проходит вдоль оси катушек статора.При переменном токе в неподвижной катушке статора МДС-волна неподвижна в пространстве, но пульсирует по величине и изменяется во времени синусоидально. Токи индуцируются в проводниках ротора под действием трансформатора, причем эти токи имеют такое направление, чтобы противостоять статору mmf.

Таким образом, ось mmf-волны ротора совпадает с осью поля статора, поэтому угол крутящего момента равен нулю, и крутящий момент не создается при запуске. Однако, если ротор такого двигателя толкнуть рукой или другим способом в любом направлении, он наберет скорость и продолжит вращаться в том же направлении, развивая рабочий крутящий момент.Таким образом, однофазный асинхронный двигатель не запускается автоматически и требует специальных средств запуска.

Коммерческие однофазные асинхронные двигатели используют принцип «разделения фаз» и поэтому известны как двигатели с расщепленной фазой.

2. Двигатель серии переменного тока:

Шунтирующий или последовательный двигатель постоянного тока вращается в одном и том же направлении независимо от полярности питания, то есть, если клеммы линии поменяны местами, двигатель продолжает вращаться в том направлении, в котором он вращался до того, как клеммы линии были перевернуты.Исходя из этого, кажется, что любой двигатель постоянного тока будет удовлетворительно работать при подключении к однофазной сети переменного тока.

Однако это неправда. Некоторые модификации необходимы в двигателе серии постоянного тока, который должен удовлетворительно работать от однофазного источника переменного тока. Таким образом, конструкция двигателя переменного тока очень похожа на двигатель постоянного тока, за исключением некоторых модификаций (например, многослойная магнитная цепь, последовательное поле с минимально возможным количеством витков, большое количество проводников якоря, использование угольных щеток с высоким сопротивлением. , многочисленные полюса с меньшим магнитным потоком на полюс, очень короткий воздушный зазор и т. д.) включены. Машина снабжена компенсирующей обмоткой и промежуточными полюсами для улучшения коммутации. Принципиальная схема однофазного последовательного двигателя с межполюсной и компенсационной обмотками приведена на рис. 1.42.

Среднее значение крутящего момента на валу двигателя равно

.

Где I — эффективное значение тока, φ max — пиковое значение магнитного потока на полюс, а θ — фазовый угол между векторами φ и I.

Для данного значения крутящего момента T и приложенного напряжения ток якоря такой же, но падение напряжения в случае последовательного двигателя переменного тока намного больше, чем в случае последовательного двигателя постоянного тока, и поэтому скорость последовательного двигателя переменного тока для данного развиваемый крутящий момент меньше, чем у двигателя постоянного тока, как показано на рис. 1.43.

Однофазный двигатель переменного тока имеет практически те же рабочие характеристики, что и двигатель постоянного тока. Крутящий момент или тяговое усилие изменяется почти как квадрат тока, а скорость изменяется обратно пропорционально току.Это показано на рис. 1.44.

Однако в случае последовательного двигателя переменного тока (i) коэффициент мощности очень низкий при пуске и при перегрузках из-за высокой индуктивности цепей последовательного возбуждения и якоря (ii) КПД не так хорош, как в соответствующей машине постоянного тока. из-за потерь на вихревые токи и влияния коэффициента мощности и (Hi) пусковой крутящий момент низкий из-за низкого коэффициента мощности при запуске.

Для данного номинального значения мощности двигателя переменного тока мощность и размер двигателя переменного тока в 1,5-2 раза больше, чем у соответствующего двигателя постоянного тока.Стоимость конструкции двигателя переменного тока намного больше, чем у двигателя постоянного тока.

Скорость двигателя переменного тока можно эффективно регулировать с помощью ответвлений на трансформаторе, что невозможно в случае двигателя постоянного тока.

Характеристика крутящего момента однофазного последовательного двигателя аналогична характеристике последовательного двигателя постоянного тока, т. Е. Высокий пусковой крутящий момент и снижение скорости с увеличением нагрузки, что делает его способным к саморазгрузке при большой чрезмерной нагрузке, поэтому такая машина особенно пригодится для тяговых служб.

3. Универсальный двигатель:

Универсальный двигатель — это специально разработанный двигатель с последовательной обмоткой, который работает примерно с одинаковой скоростью и мощностью на постоянном или переменном токе примерно одинакового напряжения. Из-за сложности достижения одинаковых характеристик на постоянном и переменном токе на низких скоростях большинство универсальных двигателей рассчитаны на работу на скоростях, превышающих 3500 об / мин. Двигатели, работающие со скоростью от 8000 до 10 000 об / мин, являются обычным явлением. Универсальный двигатель сконструирован с несколькими последовательными полевыми витками, многослойными цепями якоря и возбуждения, магнитным трактом с низким сопротивлением, увеличенными проводниками якоря и сегментами коммутатора и с использованием низкой плотности потока, чтобы минимизировать неблагоприятные эффекты, вызванные высокими реактивными сопротивлениями поля, вихревыми токами и гистерезисом. убытки.

Универсальные двигатели могут быть либо компенсированного (распределенное поле), либо некомпенсированного (сосредоточенное поле) типа, последний тип используется только для более высоких скоростей и меньшей выходной мощности (обычно не более 200 Вт).

Характеристика крутящего момента универсального двигателя очень похожа на характеристику двигателя постоянного тока с последовательным заводом, то есть высокий пусковой крутящий момент и высокая скорость холостого хода. Универсальные двигатели представляют собой высокоскоростные двигатели, они меньше по размеру и легче по сравнению с другими двигателями той же мощности.Коэффициент мощности при полной нагрузке высокий (примерно 0,9), но плохой при запуске и при перегрузках. Направление вращения любого последовательного двигателя можно изменить, изменив направление потока тока либо в цепи возбуждения, либо в цепи якоря (но не через оба). Скорость универсального двигателя для любой данной нагрузки может быть изменена путем изменения либо магнитного потока, либо приложенного напряжения, либо того и другого.

Универсальные двигатели с очень малой выходной мощностью, которые обычно не превышают 5 или 10 Вт, используются в таком оборудовании, как швейные машины, вентиляторы, переносные ручные инструменты, фены, кинопроекторы и электробритвы.Универсальные двигатели более высокой мощности (5-500 Вт) используются в пылесосах, электрических пишущих машинках, миксерах и блендерах, кинопроекторах, фотоаппаратах, а также в счетных машинах.

Двигатели малых серий часто поставляются в виде частей двигателя, то есть состоящих из голых статоров и роторов (с валом), но без подшипников или опор. Затем их можно компактно «встроить» в устройства, использующие питание.

4. Отталкивающие двигатели:

Характеристики отталкивающих двигателей аналогичны характеристикам серийных двигателей, т.е.е., высокий пусковой момент и высокая скорость малой нагрузки. Его конструкция также аналогична конструкции последовательного двигателя, за исключением того, что якорь замыкается накоротко на себя, а не последовательно со статором. Упрощенная принципиальная схема представлена ​​на рис. 1.46. Отталкивающий двигатель развивает крутящий момент в направлении, в котором щетки смещены от оси поля.

Крутящий момент, развиваемый отталкивающим двигателем, теоретически должен быть максимальным, когда пространственный угол между осью полюса и осью щетки составляет 45 °, но на практике угол наклона составляет около 15-25 электрических градусов.

Отталкивающий двигатель имеет лучшую коммутацию, чем последовательный двигатель, на скоростях ниже синхронной и плохую коммутацию на очень высоких скоростях. Направление вращения отталкивающего двигателя можно изменить, перемещая щетки вокруг коммутатора с другой стороны от оси поля. На регулирование скорости можно влиять, изменяя напряжение, подаваемое на двигатель, или устанавливая щетки на коромысле, который можно вращать с помощью рычажной ручки, установленной на торцевом щите двигателя.

Отталкивающий двигатель имеет высокий пусковой момент (примерно в 3-5 раз превышающий крутящий момент при полной нагрузке) и умеренный пусковой ток (примерно в 3-4 раза превышающий ток при полной нагрузке), но плохое регулирование скорости.Переключение щеток во время работы дает широкий диапазон регулирования скорости, вплоть до соотношения 6: 1, и при этом обеспечивает непрерывное изменение. Максимальная скорость не ограничена частотой. Двигатель реверсивный, направление вращения можно менять во время вращения.

К недостаткам отталкивающих двигателей относятся:

(i) изменения скорости с изменениями нагрузки — опасно высокие без нагрузки

(ii) низкий коэффициент мощности, за исключением высоких скоростей,

(iii) склонность к искрообразованию на щетках — искрение на щетках незначительно при номинальной скорости, что обычно имеет место вблизи синхронной скорости

(iv) более высокая стоимость и

(v) требуется больше внимания и обслуживания.

Отталкивающий двигатель никогда не пользовался популярностью. Двигатель используется там, где требуется прочный двигатель с большим пусковым моментом и регулируемой скоростью. Чаще всего этот тип двигателя используется в намотчиках рулонов, в которых оператор регулирует скорость, перемещая щетки; мотор оснащен специальным рычажным механизмом, который перемещает щетки при нажатии педали.

Номинальные характеристики отталкивающих двигателей ограничены из-за проблем с коммутацией.Обычная мощность отталкивающего двигателя не превышает 5 кВт.

5. Синхронные двигатели:

Существует множество приложений для измерения времени, в которых малые двигатели с точными характеристиками постоянной скорости будут очень полезны. Были разработаны очень маленькие двигатели с постоянными скоростными характеристиками. Они работают от однофазной сети. Из-за их точных характеристик постоянной скорости они называются однофазными синхронными двигателями. Им не требуется источник питания постоянного тока для возбуждения.Основное применение таких однофазных синхронных двигателей — это привод электрических часов, фонографов, проигрывателей виниловых пластинок, магнитной ленты и других устройств хронометража.

Наиболее часто используемые типы однофазных синхронных двигателей — это реактивные двигатели и двигатели с гистерезисом. У этих двигателей низкий КПД и способность развивать крутящий момент. Мощность большинства доступных коммерческих двигателей составляет всего несколько ватт. Практично проектировать двигатели с гистерезисом примерно до 125 Вт.

и. Электродвигатель сопротивления:

Это асинхронный двигатель с расщепленной фазой и правильно спроектированными выступающими полюсами. Он состоит из статора с основной и вспомогательной обмотками для создания синхронно вращающегося магнитного поля. Перфорация ротора для 4-полюсного синхронного электродвигателя реактивного типа показана на рис. 1.50. Такие двигатели обладают низким коэффициентом мощности, низким КПД и низким крутящим моментом.

Они не могут разгонять высокоинерционные грузы до синхронной скорости.Моменты втягивания и вытяжки у таких двигателей небольшие. Изменение направления вращения может быть выполнено, как и в любом однофазном асинхронном двигателе. Такие двигатели широко используются для приложений с абсолютной постоянной скоростью, например, в устройствах синхронизации, сигнальных устройствах, записывающих приборах, проигрывателях фонографов, устройствах управления и т. Д.

ii. Гистерезис двигателя:

Это синхронный двигатель с равномерным воздушным зазором, но без возбуждения постоянного тока. Его работа зависит от эффекта гистерезиса.2-полюсный гистерезисный двигатель с расщепленными полюсами, используемый для управления обычными часами, показан на рис. 1.51. Благодаря бесшумной работе и способности управлять высокоинерционными нагрузками, гистерезисные двигатели особенно хорошо подходят для привода синхронизирующих устройств, электрических часов, магнитофонов, вертушек и другого высокоточного аудиооборудования. Коммерческие двигатели, будучи двухполюсными двигателями, работают со скоростью 3000 об / мин, поэтому для приведения в действие электрических часов и других показывающих устройств зубчатая передача соединена с валом двигателя для снижения скорости.Изменяя количество полюсов статора через переключатели полюсов, можно получить набор синхронных скоростей для двигателя.

iii. Синхронный двигатель с постоянным магнитом:

Он состоит из постоянных магнитов, встроенных в ротор, как показано на рис. 1.52. Сам ротор имеет конструкцию с короткозамкнутым ротором для обеспечения пускового момента. Когда двигатель подключен к однофазному источнику переменного тока, он запускается как асинхронный двигатель, достигает почти синхронной скорости и синхронизируется с полем вращающегося статора, близким к синхронной скорости.Такой двигатель работает тише, имеет высокий коэффициент мощности и КПД, приближающийся к многофазному двигателю. Таким образом, он находит более широкое применение даже при низких значениях интегральной мощности (0,5–1,5 кВт).

6. Шаговый двигатель:

Шаговый двигатель представляет собой разновидность синхронного двигателя, который предназначен для вращения на определенное количество градусов для каждого электрического импульса, полученного его блоком управления. Типичные шаги составляют 2, 2,5, 5, 7,5 и 15 ° на импульс. Шаговый двигатель используется в цифровых системах управления, где двигатель получает команды разомкнутого контура в виде последовательности импульсов для поворота вала или перемещения пластины на определенное расстояние.

Типичное применение двигателя — позиционирование рабочего стола в двух измерениях для автоматического сверления в соответствии с инструкциями по размещению отверстий на ленте. При использовании шагового двигателя датчик положения и система обратной связи обычно не требуются, чтобы выходной элемент выполнял инструкции ввода. Шаговые двигатели созданы для отслеживания сигналов со скоростью до 1200 импульсов в секунду и с эквивалентной номинальной мощностью до нескольких киловатт.

Шаговые двигатели

обычно имеют многополюсную многофазную обмотку статора, которая мало чем отличается от обмоток обычных машин.Обычно в них используются 3- и 4-фазные обмотки, причем количество полюсов определяется желаемым угловым изменением на входной импульс. Роторы бывают с переменным магнитным сопротивлением или с постоянными магнитами. Шаговые двигатели работают с внешней логической схемой привода; когда последовательность импульсов подается на вход схемы возбуждения, схема подает соответствующие токи на обмотки статора двигателя, заставляя ось поля воздушного зазора перемещаться по оси в соответствии с входными импульсами. В зависимости от частоты импульсов и крутящего момента нагрузки, включая эффекты инерции, ротор следует оси магнитного поля воздушного зазора благодаря крутящему моменту реактивного сопротивления и / или крутящему моменту постоянного магнита.

Элементарная работа 4-полюсного шагового двигателя с 2-полюсным ротором проиллюстрирована в последовательности рис. 1.53. Ротор принимает углы θ = 0, 45 °, 90 °… поскольку обмотки возбуждаются в последовательности N a , N a + N b , N b ,…. Шаговый двигатель, показанный на рис. 1.53, также можно использовать для шагов по 90 °, возбуждая катушки по отдельности. В последнем случае можно использовать только ротор с постоянными магнитами.

Характеристики шагового двигателя часто представлены как зависимость крутящего момента от частоты тактирования импульсов, подаваемых на привод, как показано на рис.1.54. По мере увеличения скорости шага двигатель может обеспечивать меньший крутящий момент, потому что у ротора меньше времени для перевода нагрузки из одного положения в другое, поскольку схема тока статора-обмотки смещается.

Шаговый двигатель, по сути, является устройством управления положением и имеет следующие преимущества по сравнению с обычной машиной:

1. Угловое смещение можно точно контролировать без какой-либо обратной связи.

2. Его можно легко подключить к микропроцессору / контроллеру на базе компьютера.

Шаговые двигатели

имеют широкий спектр применения — двигатели подачи бумаги в пишущих машинках и телетайпах, позиционирование печатающих головок, перья в графических плоттерах X-Y, записывающие головки в компьютерных дисковых накопителях, а также для позиционирования рабочих столов и инструментов в обрабатывающем оборудовании с числовым программным управлением.

Шаговый двигатель также используется для выполнения многих других функций, таких как дозирование, смешивание, резка, смешивание, перемешивание и т. Д. Во многих коммерческих, военных и медицинских приложениях, обычно вместе с микропроцессором и управляемыми переключателями.

Добавить комментарий

Ваш адрес email не будет опубликован.