Тиристор принцип работы: Тиристор принцип работы | Практическая электроника

Содержание

Тиристор принцип работы | Практическая электроника

Структура тиристора

Тиристор это четырёхслойный полупроводниковый прибор, слои расположены последовательно их типы проводимости чередуются: p‑n‑p‑n. p‑n‑переходы между слоями на рисунке обозначены как «П1», «П2» и «П3». Контакт присоединенный к внешнему p‑слою называется анодом, к внешнему n‑слою — катодом. В принципе тиристор может иметь до двух управляющих электродов, присоединённых к внутренним слоям. Но обычно изготавливаются тиристоры с одним управляющим электродом, либо вообще без управляющих электродов (такой прибор называется динистором).

Для включения тиристора достаточно кратковременно подать сигнал на управляющий электрод — тиристор откроется и будет оставаться в этом состоянии пока ток через тиристор не станет меньше тока удержания.

Итак, главный принцип работы тиристора и схем на его основе — открываем тиристор подачей сигнала на усправляющий электрод, закрываем снижая ток анод-катод.

Как и в биполярном транзистор главную роль в принципе действия играют неосновные носители заряда (ННЗ) и обратно-смещенный p-n- переход.

Пока неосновных носителей мало переход закрыт, но стоит подкинуть ННЗ к переходу и он откроется.
В тиристоре есть два основных способа добавить ННЗ:
1) закачать ток в управляющий электрод;
2) поднять напряжение настолько чтобы возник лавинный пробой.

Динисторное включение тиристора

Для начала рассмотрим второй случай, то есть когда управляющий электрод тиристора отключен.

При подаче напряжения прямой полярности, крайние переходы смещаются в прямом направлении, а средний – в обратном. При значительном увеличении напряжения на силовых электродах, через крайние (П1 и П3), примыкающие к среднему, переходы начинают перемещаться неосновные носители, уменьшая его сопротивление. Процесс происходит медленно, а сопротивление остается большим, но лишь до определенного момента. При некотором значении напряжения (как правило, несколько сотен вольт) процесс становится лавинным(точка 1 на ВАХ), неосновные носители заряда заменяются основными, отпирая средний переход (П2) и уменьшая сопротивление анод-катод.

Тиристор отпирается, а падение напряжения между силовыми электродами падает до единиц Вольт (точка 2 на ВАХ).

Дальнейший рост тока ведет только к небольшому росту падения напряжения на тиристоре участок ВАХ от точки 2 до точки 3, это рабочий режим открытого тиристора.

Чтобы закрыть тиристор нужно снизить протекающий ток ниже тока удержания. Причем падение напряжения соответствующее этому току многократно ниже отпирающего напряжения.

Но зачем тиристору управляющий электрод? Какие преимущества есть у тиристора перед динистором? Дело в том, что подавая напряжение через резистор на управляющий электрод можно увеличивать концентрацию неосновных носителей заряда, что в свою очередь будет снижать величину напряжения включения тиристора.

А при какой-то величине тока управляющего электрода больше не будет горба на ВАХ, т.е. ВАХ тиристора станет похожа на ВАХ диода, кстати этот ток называют током спрямления.

Режим обратного запирания тиристора

При обратном включении тиристора крайние переходы (П1 и П3) смещаются в обратном направлении, а средний в прямом (П2). Тиристор остается закрытым пока не наступит тепловой пробой.

Физические процессы

Если пары по физическим основам электроники на которых рассматривался транзистор я ещё как-то выдерживал, то энергетические зонные диаграммы объясняющие принцип работы тиристора уже были слишком сложны. Очень много ньюансов в концетрациях носителей заряда, толщинах слоев и уровне легирования.
Конечно, чтобы изготовить тиристор с хорошими характеристиками физические процессы протекающие в кристалле полупроводника нужно знать и понимать. Но для разработки электронных схем достаточно знать вольт-амперную характеристику тиристора и его транзисторную модель.

Одну четрехслойную полупроводниковую структуру можно представить как две трехслойные, если посмотреть на рисунок, то в трехслойных структурах можно увидеть два биполярных транзистора n-p-n и p-n-p структуры.

Пока оба транзистора закрыты, ток через них не протекает. Но стоит открытся хоть одному из них, то он тут же откроет второй. Ток коллектора первого транзистора поступит в базу второго и откроет его, а ток коллектора второго, будет являтся базовым для первого и будет поддерживать открытым первый транзистор. Получаетя что оба транзистора поддерживают друг друга в открытом состоянии. И чтобы они закрылись, нужно снизить ток через ниж ниже определенной величины, так называемого тока удержания.

Тиристор назначение и принцип работы. Управление тиристором, принцип действия

Тиристор представляет собой электронный силовой частично управляемый ключ. Этот прибор, с помощью сигнала управления может находиться только в проводящем состоянии, то есть быть включенным. Для того, чтобы его выключить, нужно проводить специальные мероприятия, которые обеспечивают падение прямого тока до нулевого значения. Принцип работы тиристора заключается в односторонней проводимости, в закрытом состоянии может выдержать не только прямое, но и обратное напряжение.

Свойства тиристоров

По своим качествам, тиристоры относятся к полупроводниковым приборам. В их полупроводниковой пластине присутствуют смежные слои, обладающие различными типами проводимости. Таким образом, каждый тиристор представляет собой прибор, имеющий четырехслойную структуру р-п-р-п.

К крайней области р-структуры производится подключение положительного полюса источника напряжения. Поэтому, данная область получила название анода. Противоположная область п-типа, куда подключается отрицательный полюс, называется катодом. Вывод из внутренней области осуществляется с помощью р-управляющего электрода.

Классическая модель тиристора состоит из двух , имеющих разную степень проводимости. В соответствии с данной схемой, производится соединение базы и коллектора обоих транзисторов. В результате такого соединения, питание базы каждого транзистора осуществляется с помощью коллекторного тока другого транзистора. Таким образом, получается цепь с положительной обратной связью.

Если ток отсутствует в управляющем электроде, то транзисторы находятся в закрытом положении. Течение тока через нагрузку не происходит, и тиристор остается закрытым. При подаче тока выше определенного уровня, в действие вступает положительная обратная связь. Процесс становится лавинообразным, после чего происходит открытие обоих транзисторов. В конечном итоге, после открытия тиристора, наступает его стабильное состояние, даже в случае прекращения подачи тока.

Работа тиристора при постоянном токе

Рассматривая электронный тиристор принцип работы которого основан на одностороннем движении тока, следует отметить его работу при постоянном токе.

Обычный тиристор включается путем подачи импульса тока в цепь управления. Эта подача осуществляется со стороны положительной полярности, противоположной, относительно катода.

Во время включения, продолжительность переходного процесса обусловлена характером нагрузки, амплитудой и скоростью, с которой нарастает импульс тока управления. Кроме того, этот процесс зависит от температуры внутренней структуры тиристора, тока нагрузки и приложенного напряжения. В цепи, где установлен тиристор, не должно быть недопустимой скорости роста напряжения, которое может привести к его самопроизвольному включению.

♦ Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А — анод, К — катод) , это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод) , это тринистор, или в обиходе его называют просто тиристор.

♦ С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено».
Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр , то есть величину напряжения пробоя тиристора;
Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U , если подать импульс напряжения положительной полярности между управляющим электродом и катодом.

♦ В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.
Тиристор можно закрыть:

  • — если уменьшить напряжение между анодом и катодом до U = 0 ;
  • — если снизить анодный ток тиристора до величины, меньше тока удержания Iуд .
  • — подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).

Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.
Тиристоры и динисторы работают как в цепях постоянного, так и в цепях переменного тока.

Работа динистора и тиристора в цепях постоянного тока.

Рассмотрим несколько практических примеров.
Первый пример применения динистора, это релаксационный генератор звуковых сигналов .

В качестве динистора используем КН102А-Б.

♦ Работает генератор следующим образом.
При нажатии кнопки

Кн , через резисторы R1 и R2 постепенно заряжается конденсатор С (+ батареи – замкнутые контакты кнопки Кн – резисторы – конденсатор С – минус батареи).
Параллельно конденсатору подключена цепочка из телефонного капсюля и динистора. Через телефонный капсюль и динистор ток не протекает, так как динистор еще «заперт».
♦ При достижении на конденсаторе напряжения, при котором пробивается динистор, через катушку телефонного капсюля проходит импульс тока разряда конденсатора (С – катушка телефона – динистор — С). Слышен щелчок из телефона, конденсатор разрядился. Далее снова идет заряд конденсатора С и процесс повторяется.
Частота повторения щелчков зависит от емкости конденсатора и величины сопротивления резисторов R1 и R2 .
♦ При указанных на схеме номиналах напряжения, резисторов и конденсатора, частоту звукового сигнала с помощью резистора R2 можно менять в пределах
500 – 5000
герц. Телефонный капсюль необходимо использовать с низкоомной катушкой 50 – 100 Ом , не более, например телефонный капсюль ТК-67-Н .
Телефонный капсюль необходимо включать с соблюдением полярности, иначе не будет работать. На капсюле есть обозначение +(плюс) и – (минус).

♦ У этой схемы (рис 1) есть один недостаток. Из-за большого разброса параметров динистора КН102 (разное напряжение пробоя), в некоторых случаях, нужно будет увеличить напряжение источника питания до 35 – 45 вольт , что не всегда возможно и удобно.

Устройство управления, собранное на тиристоре, для включения – выключения нагрузки с помощью одной кнопки показано на рис 2.


Устройство работает следующим образом.
♦ В исходном состоянии тиристор закрыт и лампочка не горит.
Нажмем на кнопку Кн в течении 1 – 2 секунды . Контакты кнопки размыкаются, цепь катода тиристора разрывается.

В этот момент конденсатор С заряжается от источника питания через резистор R1 . Напряжение на конденсаторе достигает величины U источника питания.
Отпускаем кнопку Кн .
В этот момент конденсатор разряжается по цепи: резистор R2 – управляющий электрод тиристора – катод — замкнутые контакты кнопки Кн – конденсатор.
В цепи управляющего электрода потечет ток, тиристор «откроется» .
Загорается лампочк а по цепи: плюс батареи – нагрузка в виде лампочки – тиристор — замкнутые контакты кнопки – минус батареи.
В таком состоянии схема будет находиться сколько угодно долго .
В этом состоянии конденсатор разряжен: резистор R2, переход управляющий электрод – катод тиристора, контакты кнопки Кн.
♦ Для выключения лампочки необходимо кратковременно нажать на кнопку Кн . При этом основная цепь питания лампочки обрывается. Тиристор «закрывается» . Когда контакты кнопки замкнутся, тиристор останется в закрытом состоянии, так как на управляющем электроде тиристора Uynp = 0 (конденсатор разряжен).

Мною опробованы и надежно работали в этой схеме различные тиристоры: КУ101, Т122, КУ201, КУ202, КУ208 .

♦ Как уже упоминалось, динистор и тиристор имеют свой транзисторный аналог .

Схема аналога тиристора состоит из двух транзисторов и изображена на рис 3 .
Транзистор Тр 1 имеет p-n-p проводимость, транзистор Тр 2 имеет n-p-n проводимость. Транзисторы могут быть как германиевые, так и кремниевые.

Аналог тиристора имеет два управляющих входа.
Первый вход: А – Уэ1 (эмиттер — база транзистора Тр1).
Второй вход: К – Уэ2 (эмиттер – база транзистора Тр2).

Аналог имеет: А – анод, К — катод, Уэ1 – первый управляющий электрод, Уэ2 – второй управляющий электрод.

Если управляющие электроды не использовать, то это будет динистор, с электродами А — анод и К — катод .

♦ Пару транзисторов, для аналога тиристора, надо подбирать одинаковой мощности с током и напряжением выше, чем необходимо для работы устройства. Параметры аналога тиристора (напряжение пробоя Unp, ток удержания Iyд) , будут зависеть от свойств применяемых транзисторов.

♦ Для более устойчивой работы аналога в схему добавляют резисторы R1 и R2 . А с помощью резистора R3 можно регулировать напряжение пробоя Uпр и ток удержания Iyд аналога динистора – тиристора. Схема такого аналога изображена на рис 4 .

Если в схеме генератора звуковых частот (рис 1) , вместо динистора КН102 включить аналог динистора, получится устройство с другими свойствами (рис 5) .

Напряжение питания такой схемы составит от 5 до 15 вольт . Изменяя величины резисторов R3 и R5 можно изменять тональность звука и рабочее напряжение генератора.

Переменным резистором R3 подбирается напряжение пробоя аналога под используемое напряжение питания.

Потом можно заменить его на постоянный резистор.

Транзисторы Тр1 и Тр2: КТ502 и КТ503; КТ814 и КТ815 или любые другие.

♦ Интересна схема стабилизатора напряжения с защитой от короткого замыкания в нагрузке (рис 6) .

Если ток в нагрузке превысит 1 ампер , сработает защита.

Стабилизатор состоит из:

  • — управляющего элемента– стабилитрона КС510 , который определяет напряжение выхода;
  • — исполнительного элемента–транзисторов КТ817А, КТ808А , исполняющих роль регулятора напряжения;
  • — в качестве датчика перегрузки используется резистор R4 ;
  • — исполнительным механизмом защиты используется аналог динистора, на транзисторах КТ502 и КТ503 .

♦ На входе стабилизатора в качестве фильтра стоит конденсатор С1 . Резистором R1 задается ток стабилизации стабилитрона КС510 , величиной 5 – 10 мА. Напряжение на стабилитроне должно быть 10 вольт .
Резистор R5 задает начальный режим стабилизации выходного напряжения.

Резистор R4 = 1,0 Ом , включен последовательно в цепь нагрузки.Чем больше ток нагрузки, тем больше на нем выделяется напряжение, пропорциональное току.

В исходном состоянии, когда нагрузка на выходе стабилизатора мала или отключена, аналог тиристора закрыт. Приложенного к нему напряжения 10 вольт (от стабилитрона) не хватает для пробоя. В этот момент падение напряжения на резисторе R4 почти равно нулю.
Если постепенно увеличивать ток нагрузки, будет увеличиваться падение напряжения на резисторе R4 . При определенном напряжении на R4, аналог тиристора пробивается и установится напряжение, между точкой Тчк1 и общим проводом, равное 1,5 — 2,0 вольта .
Это есть напряжение перехода анод — катод открытого аналога тиристора.

Одновременно загорается светодиод Д1 , сигнализируя об аварийной ситуации. Напряжение на выходе стабилизатора, в этот момент, будет равно 1,5 — 2,0 вольта .
Чтобы восстановить нормальную работу стабилизатора, необходимо выключить нагрузку и нажать на кнопку Кн , сбросив блокировку защиты.
На выходе стабилизатора вновь будет напряжение 9 вольт , а светодиод погаснет.
Настройкой резистора R3 , можно подобрать ток срабатывания защиты от 1 ампера и более . Транзисторы Т1 и Т2 можно ставить на один радиатор без изоляции. Сам же радиатор изолировать от корпуса.

Тиристор — электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехник у, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод положительный вывод;
  • катод отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Основное применение этого типа элементов это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность . При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

8 января 2013 в 19:23
  • Электроника для начинающих

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием — не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод — это контакт с внешним p-слоем, катод — с внешним n-слоем.
Освежить память о p-n переходе можно .

Классификация

В зависимости от количества выводов можно вывести классификацию тиристоров. По сути все очень просто: тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод). Тиристор с тремя и четырьмя выводами, называются триодными или тетродными. Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Принцип работы



Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.


К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров

1. Напряжение включения — это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение — это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение — это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток — это максимальный ток в открытом состоянии.
5. Обратный ток — ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Заключение

Таким образом, в тиристоре существует положительная обратная связь по току — увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор — не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

Тиристор. Устройство, назначение.

Тиристором называется управляемый трехэлектродный полупроводниковый прибор с тремя p–n -переходами, обладающий двумя устойчивыми состояниями электрического равновесия: закрытым и открытым.

Тиристор совмещает в себе функции выпрямителя, выключателя и усилителя. Часто он используется как регулятор, главным образом, когда схема питается переменным напряжением. Нижеследующие пункты раскрывают три основных свойства тиристора:

1 тиристор, как и диод, проводит ток в одном направлении, проявляя себя как выпрямитель;

2 тиристор переводится из выключенного состояния во включенное при подаче сигнала на управляющий электрод и, следовательно, как выключатель имеет два устойчивых состояния.

3 управляющий ток, необходимый для перевода тиристора из «закрытого» состояния в «открытое», значительно меньше (несколько миллиампер) при рабочем токе в несколько ампер и даже в несколько десятков ампер. Следовательно, тиристор обладает свойствами усилителя тока;

Устройство и основные виды тиристоров

Рис. 1. Схемы тиристора: a) Основная четырёхслойная p-n-p-n -структура b) Диодный тиристор с) Триодный тиристор.

Основная схема тиристорной структуры показана на рис. 1. Она представляет собой четырёхслойный полупроводник структуры p-n-p-n , содержащий три последовательно соединённых p-n -перехода J1, J2, J3. Контакт к внешнему p -слою называется анодом, к внешнему n -слою — катодом. В общем случае p-n-p-n -прибор может иметь до двух управляющих электродов (баз), присоединённых к внутренним слоям. Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния). Прибор без управляющих электродов называется диодным тиристором или динистором . Такие приборы управляются напряжением, приложенным между основными электродами. Прибор с одним управляющим электродом называют триодным тиристором или тринистором (иногда просто тиристором, хотя это не совсем правильно). В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.

Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях. В последнем случае соответствующие приборы называются симметричными (так как ихВАХ симметрична) и обычно имеют пятислойную структуру полупроводника. Симметричный тринистор называется такжесимистором или триаком (от англ. triac). Следует заметить, что вместо симметричных динисторов , часто применяются их интегральные аналоги, обладающие лучшими параметрами.

Тиристоры, имеющие управляющий электрод, делятся на запираемые и незапираемые. Незапираемые тиристоры, как следует из названия, не могут быть переведены в закрытое состояние с помощью сигнала, подаваемого на управляющий электрод. Такие тиристоры закрываются, когда протекающий через них ток становится меньше тока удержания. На практике это обычно происходит в конце полуволны сетевого напряжения.

Вольтамперная характеристика тиристора

Рис. 2. Вольтамперная характеристика тиристора

Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис 2. Она имеет несколько участков:

· Между точками 0 и (Vвo,IL) находится участок, соответствующий высокому сопротивлению прибора — прямое запирание (нижняя ветвь).

· В точке Vво происходит включение тиристора (точка переключения динистора во включённое состояние).

· Между точками (Vво, IL) и (Vн,Iн) находится участок с отрицательным дифференциальным сопротивлением-неустойчивая область переключения во включённое состояние. При подаче разности потенциалов между анодом и катодом тиристора прямой полярности больше Vно происходит отпирание тиристора (динисторный эффект).

· Участок от точки с координатами (Vн,Iн) и выше соответствует открытому состоянию (прямой проводимости)

· На графике показаны ВАХ с разными токами управления (токами на управляющем электроде тиристора) IG (IG=0; IG>0; IG>>0), причём чем больше ток IG, тем при меньшем напряжении Vbo происходит переключение тиристора в проводящее состояние

· Пунктиром обозначен т. н. «ток включения спрямления» (IG>>0), при котором тиристор переходит в проводящее состояние при минимальном напряжении анод-катод. Для того, чтобы перевести тиристор обратно в непроводящее состояние необходимо снизить ток в цепи анод-катод ниже тока включения спрямления.

· Участок между 0 и Vbr описывает режим обратного запирания прибора.

Вольтамперная характеристика симметричных тиристоров отличается от приведённой на рис. 2 тем, что кривая в третьей четверти графика повторяет участки 0-3 симметрично относительно начала координат.

По типу нелинейности ВАХ тиристор относят к S-приборам.

Тиристор принцип работы. Как работает тиристор. Режим обратного запирания

Режим обратного запирания

Рис. 3. Режим обратного запирания тиристора

Два основных фактора ограничивают режим обратного пробоя и прямого пробоя:

  1. Прокол обеднённой области .

В режиме обратного запирания к аноду прибора приложено напряжение , отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом (см. рис. 3). В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины W n1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше W n1) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2).

Режим прямого запирания

При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2. Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ. В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения V BF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи.

Двухтранзисторная модель

Для объяснения характеристик прибора в режиме прямого запирания используется двухтранзисторная модель. Тиристор можно рассматривать как соединение p-n-p транзистора с n-p-n транзистором, причём коллектор каждого из них соединён с базой другого, как показано на рис. 4 для триодного тиристора. Центральный переход действует как коллектор дырок , инжектируемых переходом J1, и электронов , инжектируемых переходом J3. Взаимосвязь между токами эмиттера I E , коллектора I C и базы I B и статическим коэффициентом усиления по току α 1 p-n-p транзистора также приведена на рис. 4, где I Со — обратный ток насыщения перехода коллектор-база.

Рис. 4. Двухтранзисторная модель триодного тиристора, соединение транзисторов и соотношение токов в p-n-p транзисторе.

Аналогичные соотношения можно получить для n-p-n транзистора при изменении направления токов на противоположное. Из рис. 4 следует, что коллекторный ток n-p-n транзистора является одновременно базовым током p-n-p транзистора. Аналогично коллекторный ток p-n-p транзистора и управляющий ток I g втекают в базу n-p-n транзистора. В результате, когда общий коэффициент усиления в замкнутой петле превысит 1, оказывается возможным регенеративный процесс.

Ток базы p-n-p транзистора равен I B1 = (1 — α 1)I A I Co1 . Этот ток также протекает через коллектор n-p-n транзистора. Ток коллектора n-p-n транзистора с коэффициентом усиления α 2 равен I C2 = α 2 I K + I Co2 .

Приравняв I B1 и I C2 , получим (1 — α 1)I A I Co1 = α 2 I K + I Co2 . Так как I K = I A + I g , то

Рис. 5. Энергетическая зонная диаграмма в режиме прямого смещения: состояние равновесия, режим прямого запирания и режим прямой проводимости.

Это уравнение описывает статическую характеристику прибора в диапазоне напряжений вплоть до пробоя. После пробоя прибор работает как p-i-n-диод. Отметим, что все слагаемые в числителе правой части уравнения малы, следовательно, пока член α 1 + α 2 I A мал. (Коэффициенты α1 и α2 сами зависят от I A и обычно растут с увеличением тока) Если α1 + α2 = 1, то знаменатель дроби обращается в нуль и происходит прямой пробой (или включение тиристора). Следует отметить, что если полярность напряжения между анодом и катодом сменить на обратную, то переходы J1 и J3 будут смещены в обратном направлении, а J2 — в прямом. При таких условиях пробой не происходит, так как в качестве эмиттера работает только центральный переход и регенеративный процесс становится невозможным.

Ширина обеднённых слоёв и энергетические зонные диаграммы в равновесии, в режимах прямого запирания и прямой проводимости показаны на рис. 5. В равновесии обеднённая область каждого перехода и контактный потенциал определяются профилем распределения примесей. Когда к аноду приложено положительное напряжение, переход J2 стремится сместиться в обратном направлении, а переходы J1 и J3 — в прямом. Падение напряжения между анодом и катодом равно алгебраической сумме падений напряжения на переходах: V AK = V 1 + V 2 + V 3 . По мере повышения напряжения возрастает ток через прибор и, следовательно, увеличиваются α1 и α2. Благодаря регенеративному характеру этих процессов прибор в конце концов перейдёт в открытое состояние. После включения тиристора протекающий через него ток должен быть ограничен внешним сопротивлением нагрузки, в противном случае при достаточно высоком напряжении тиристор выйдет из строя. Во включенном состоянии переход J2 смещён в прямом направлении (рис. 5, в), и падение напряжения V AK = (V 1 — |V 2 | + V 3) приблизительно равно сумме напряжения на одном прямосмещенном переходе и напряжения на насыщенном, транзисторе.

Режим прямой проводимости

Когда тиристор находится во включенном состоянии, все три перехода смещены в прямом направлении. Дырки инжектируются из области p1, а электроны — из области n2, и структура n1-p2-n2 ведёт себя аналогично насыщенному транзистору с удалённым диодным контактом к области n1. Следовательно, прибор в целом аналогичен p-i-n (p + -i-n +)-диоду…

Классификация тиристоров

  • тиристор диодный (доп. название «динистор») — тиристор, имеющий два вывода
    • тиристор диодный, не проводящий в обратном направлении
    • тиристор диодный, проводящий в обратном направлении
    • тиристор диодный симметричный (доп. название «диак»)
  • тиристор триодный (доп. название «тринистор») — тиристор, имеющий три вывода
    • тиристор триодный, не проводящий в обратном направлении (доп. название «тиристор»)
    • тиристор триодный, проводящий в обратном направлении (доп. название «тиристор-диод»)
    • тиристор триодный симметричный (доп. название «триак», неоф. название «симистор»)
    • тиристор триодный асимметричный
    • запираемый тиристор (доп. название «тиристор триодный выключаемый»)

Отличие динистора от тринистора

Принципиальных различий между динистором и тринистором нет, однако если открытие динистора происходит при достижении между выводами анода и катода определённого напряжения, зависящего от типа данного динистора, то в тринисторе напряжение открытия может быть специально снижено, путём подачи импульса тока определённой длительности и величины на его управляющий электрод при положительной разности потенциалов между анодом и катодом, и конструктивно тринистор отличается только наличием управляющего электрода. Тринисторы являются наиболее распространёнными приборами из «тиристорного» семейства.

Отличие тиристора триодного от запираемого тиристора

Переключение в закрытое состояние обычных тиристоров производят либо снижением тока через тиристор до значения I h , либо изменением полярности напряжения между катодом и анодом.

Запираемые тиристоры, в отличие от обычных тиристоров, под воздействием тока управляющего электрода могут переходить из закрытого состояния в открытое состояние, и наоборот. Чтобы закрыть запираемый тиристор, необходимо через управляющий электрод пропустить ток противоположной полярности, чем полярность, которая вызывала его открытие.

Симистор

Симистор (симметричный тиристор) представляет собой полупроводниковый прибор, по своей структуре является аналогом встречно-параллельного включения двух тиристоров. Способен пропускать электрический ток в обоих направлениях.

Характеристики тиристоров

Современные тиристоры изготовляют на токи от 1 мА до 10 кА; на напряжения от нескольких В до нескольких кВ; скорость нарастания в них прямого тока достигает 10 9 А/с, напряжения — 10 9 В/с, время включения составляет величины от нескольких десятых долей до нескольких десятков мкс, время выключения — от нескольких единиц до нескольких сотен мкс; КПД достигает 99 %.

Применение

  • Управляемые выпрямители
  • Преобразователи (инверторы)
  • Регуляторы мощности (диммеры)

См. также

  • CDI (Capacitor Discharge Ignition)

Примечания

Литература

  • ГОСТ 15133-77.
  • Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).

Ссылки

  • Тиристоры: принцип действия, конструкции, типы и способы включения
  • Управление тиристорами и симисторами через микроконтроллер или цифровую схему
  • Преобразовательные устройства в системах электроснабжения
  • Рогачёв К.Д. Современные силовые запираемые тиристоры .
  • Отечественные Аналоги Импортных Тиристоров
  • Справочники по тиристорам и аналогам,Замена тиристоров,замена диодов.Стабилитроны
Пассивные твердотельные Резистор · Переменный резистор · Подстроечный резистор · Варистор · Конденсатор · Переменный конденсатор · Подстроечный конденсатор · Катушка индуктивности · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор
Активные твердотельные Диод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Диодный мост · Лавинно-пролётный диод · Туннельный диод · Диод Ганна
Транзистор · Биполярный транзистор · Полевой транзистор ·

Тиристор это четырёхслойный полупроводниковый прибор, слои расположены последовательно их типы проводимости чередуются: p‑n‑p‑n. p‑n‑переходы между слоями на рисунке обозначены как «П1», «П2» и «П3». Контакт присоединенный к внешнему p‑слою называется анодом, к внешнему n‑слою — катодом. В принципе тиристор может иметь до двух управляющих электродов, присоединённых к внутренним слоям. Но обычно изготавливаются тиристоры с одним управляющим электродом, либо вообще без управляющих электродов (такой прибор называется динистором).

Для включения тиристора достаточно кратковременно подать сигнал на управляющий электрод — тиристор откроется и будет оставаться в этом состоянии пока ток через тиристор не станет меньше тока удержания.

Итак, главный принцип работы тиристора и схем на его основе — открываем тиристор подачей сигнала на усправляющий электрод, закрываем снижая ток анод-катод.

Как и в биполярном транзистор главную роль в принципе действия играют неосновные носители заряда (ННЗ) и обратно-смещенный p-n- переход. Пока неосновных носителей мало переход закрыт, но стоит подкинуть ННЗ к переходу и он откроется.
В тиристоре есть два основных способа добавить ННЗ:
1) закачать ток в управляющий электрод;
2) поднять напряжение настолько чтобы возник лавинный пробой.

Динисторное включение тиристора

Для начала рассмотрим второй случай, то есть когда управляющий электрод тиристора отключен.

При подаче напряжения прямой полярности, крайние переходы смещаются в прямом направлении, а средний – в обратном. При значительном увеличении напряжения на силовых электродах, через крайние (П1 и П3), примыкающие к среднему, переходы начинают перемещаться неосновные носители, уменьшая его сопротивление. Процесс происходит медленно, а сопротивление остается большим, но лишь до определенного момента. При некотором значении напряжения (как правило, несколько сотен вольт) процесс становится лавинным(точка 1 на ВАХ), неосновные носители заряда заменяются основными, отпирая средний переход (П2) и уменьшая сопротивление анод-катод. Тиристор отпирается, а падение напряжения между силовыми электродами падает до единиц Вольт (точка 2 на ВАХ).

Дальнейший рост тока ведет только к небольшому росту падения напряжения на тиристоре участок ВАХ от точки 2 до точки 3, это рабочий режим открытого тиристора.


Чтобы закрыть тиристор нужно снизить протекающий ток ниже тока удержания. Причем падение напряжения соответствующее этому току многократно ниже отпирающего напряжения.

Но зачем тиристору управляющий электрод? Какие преимущества есть у тиристора перед динистором? Дело в том, что подавая напряжение через резистор на управляющий электрод можно увеличивать концентрацию неосновных носителей заряда, что в свою очередь будет снижать величину напряжения включения тиристора.

А при какой-то величине тока управляющего электрода больше не будет горба на ВАХ, т.е. ВАХ тиристора станет похожа на ВАХ диода, кстати этот ток называют током спрямления.


Режим обратного запирания тиристора

При обратном включении тиристора крайние переходы (П1 и П3) смещаются в обратном направлении, а средний в прямом (П2). Тиристор остается закрытым пока не наступит тепловой пробой.

Физические процессы

Если пары по физическим основам электроники на которых рассматривался транзистор я ещё как-то выдерживал, то энергетические зонные диаграммы объясняющие принцип работы тиристора уже были слишком сложны. Очень много ньюансов в концетрациях носителей заряда, толщинах слоев и уровне легирования.
Конечно, чтобы изготовить тиристор с хорошими характеристиками физические процессы протекающие в кристалле полупроводника нужно знать и понимать. Но для разработки электронных схем достаточно знать вольт-амперную характеристику тиристора и его транзисторную модель.


Одну четрехслойную полупроводниковую структуру можно представить как две трехслойные, если посмотреть на рисунок, то в трехслойных структурах можно увидеть два биполярных транзистора n-p-n и p-n-p структуры.


Пока оба транзистора закрыты, ток через них не протекает. Но стоит открытся хоть одному из них, то он тут же откроет второй. Ток коллектора первого транзистора поступит в базу второго и откроет его, а ток коллектора второго, будет являтся базовым для первого и будет поддерживать открытым первый транзистор. Получаетя что оба транзистора поддерживают друг друга в открытом состоянии. И чтобы они закрылись, нужно снизить ток через ниж ниже определенной величины, так называемого тока удержания.

♦ Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А — анод, К — катод) , это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод) , это тринистор, или в обиходе его называют просто тиристор.

♦ С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено».
Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр , то есть величину напряжения пробоя тиристора;
Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U , если подать импульс напряжения положительной полярности между управляющим электродом и катодом.

♦ В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.
Тиристор можно закрыть:

  • — если уменьшить напряжение между анодом и катодом до U = 0 ;
  • — если снизить анодный ток тиристора до величины, меньше тока удержания Iуд .
  • — подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).

Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.
Тиристоры и динисторы работают как в цепях постоянного, так и в цепях переменного тока.

Работа динистора и тиристора в цепях постоянного тока.

Рассмотрим несколько практических примеров.
Первый пример применения динистора, это релаксационный генератор звуковых сигналов .

В качестве динистора используем КН102А-Б.

♦ Работает генератор следующим образом.
При нажатии кнопки Кн , через резисторы R1 и R2 постепенно заряжается конденсатор С (+ батареи – замкнутые контакты кнопки Кн – резисторы – конденсатор С – минус батареи).
Параллельно конденсатору подключена цепочка из телефонного капсюля и динистора. Через телефонный капсюль и динистор ток не протекает, так как динистор еще «заперт».
♦ При достижении на конденсаторе напряжения, при котором пробивается динистор, через катушку телефонного капсюля проходит импульс тока разряда конденсатора (С – катушка телефона – динистор — С). Слышен щелчок из телефона, конденсатор разрядился. Далее снова идет заряд конденсатора С и процесс повторяется.
Частота повторения щелчков зависит от емкости конденсатора и величины сопротивления резисторов R1 и R2 .
♦ При указанных на схеме номиналах напряжения, резисторов и конденсатора, частоту звукового сигнала с помощью резистора R2 можно менять в пределах 500 – 5000 герц. Телефонный капсюль необходимо использовать с низкоомной катушкой 50 – 100 Ом , не более, например телефонный капсюль ТК-67-Н .
Телефонный капсюль необходимо включать с соблюдением полярности, иначе не будет работать. На капсюле есть обозначение +(плюс) и – (минус).

♦ У этой схемы (рис 1) есть один недостаток. Из-за большого разброса параметров динистора КН102 (разное напряжение пробоя), в некоторых случаях, нужно будет увеличить напряжение источника питания до 35 – 45 вольт , что не всегда возможно и удобно.

Устройство управления, собранное на тиристоре, для включения – выключения нагрузки с помощью одной кнопки показано на рис 2.


Устройство работает следующим образом.
♦ В исходном состоянии тиристор закрыт и лампочка не горит.
Нажмем на кнопку Кн в течении 1 – 2 секунды . Контакты кнопки размыкаются, цепь катода тиристора разрывается.

В этот момент конденсатор С заряжается от источника питания через резистор R1 . Напряжение на конденсаторе достигает величины U источника питания.
Отпускаем кнопку Кн .
В этот момент конденсатор разряжается по цепи: резистор R2 – управляющий электрод тиристора – катод — замкнутые контакты кнопки Кн – конденсатор.
В цепи управляющего электрода потечет ток, тиристор «откроется» .
Загорается лампочк а по цепи: плюс батареи – нагрузка в виде лампочки – тиристор — замкнутые контакты кнопки – минус батареи.
В таком состоянии схема будет находиться сколько угодно долго .
В этом состоянии конденсатор разряжен: резистор R2, переход управляющий электрод – катод тиристора, контакты кнопки Кн.
♦ Для выключения лампочки необходимо кратковременно нажать на кнопку Кн . При этом основная цепь питания лампочки обрывается. Тиристор «закрывается» . Когда контакты кнопки замкнутся, тиристор останется в закрытом состоянии, так как на управляющем электроде тиристора Uynp = 0 (конденсатор разряжен).

Мною опробованы и надежно работали в этой схеме различные тиристоры: КУ101, Т122, КУ201, КУ202, КУ208 .

♦ Как уже упоминалось, динистор и тиристор имеют свой транзисторный аналог .

Схема аналога тиристора состоит из двух транзисторов и изображена на рис 3 .
Транзистор Тр 1 имеет p-n-p проводимость, транзистор Тр 2 имеет n-p-n проводимость. Транзисторы могут быть как германиевые, так и кремниевые.

Аналог тиристора имеет два управляющих входа.
Первый вход: А – Уэ1 (эмиттер — база транзистора Тр1).
Второй вход: К – Уэ2 (эмиттер – база транзистора Тр2).

Аналог имеет: А – анод, К — катод, Уэ1 – первый управляющий электрод, Уэ2 – второй управляющий электрод.

Если управляющие электроды не использовать, то это будет динистор, с электродами А — анод и К — катод .

♦ Пару транзисторов, для аналога тиристора, надо подбирать одинаковой мощности с током и напряжением выше, чем необходимо для работы устройства. Параметры аналога тиристора (напряжение пробоя Unp, ток удержания Iyд) , будут зависеть от свойств применяемых транзисторов.

♦ Для более устойчивой работы аналога в схему добавляют резисторы R1 и R2 . А с помощью резистора R3 можно регулировать напряжение пробоя Uпр и ток удержания Iyд аналога динистора – тиристора. Схема такого аналога изображена на рис 4 .

Если в схеме генератора звуковых частот (рис 1) , вместо динистора КН102 включить аналог динистора, получится устройство с другими свойствами (рис 5) .

Напряжение питания такой схемы составит от 5 до 15 вольт . Изменяя величины резисторов R3 и R5 можно изменять тональность звука и рабочее напряжение генератора.

Переменным резистором R3 подбирается напряжение пробоя аналога под используемое напряжение питания.

Потом можно заменить его на постоянный резистор.

Транзисторы Тр1 и Тр2: КТ502 и КТ503; КТ814 и КТ815 или любые другие.

♦ Интересна схема стабилизатора напряжения с защитой от короткого замыкания в нагрузке (рис 6) .

Если ток в нагрузке превысит 1 ампер , сработает защита.

Стабилизатор состоит из:

  • — управляющего элемента– стабилитрона КС510 , который определяет напряжение выхода;
  • — исполнительного элемента–транзисторов КТ817А, КТ808А , исполняющих роль регулятора напряжения;
  • — в качестве датчика перегрузки используется резистор R4 ;
  • — исполнительным механизмом защиты используется аналог динистора, на транзисторах КТ502 и КТ503 .

♦ На входе стабилизатора в качестве фильтра стоит конденсатор С1 . Резистором R1 задается ток стабилизации стабилитрона КС510 , величиной 5 – 10 мА. Напряжение на стабилитроне должно быть 10 вольт .
Резистор R5 задает начальный режим стабилизации выходного напряжения.

Резистор R4 = 1,0 Ом , включен последовательно в цепь нагрузки.Чем больше ток нагрузки, тем больше на нем выделяется напряжение, пропорциональное току.

В исходном состоянии, когда нагрузка на выходе стабилизатора мала или отключена, аналог тиристора закрыт. Приложенного к нему напряжения 10 вольт (от стабилитрона) не хватает для пробоя. В этот момент падение напряжения на резисторе R4 почти равно нулю.
Если постепенно увеличивать ток нагрузки, будет увеличиваться падение напряжения на резисторе R4 . При определенном напряжении на R4, аналог тиристора пробивается и установится напряжение, между точкой Тчк1 и общим проводом, равное 1,5 — 2,0 вольта .
Это есть напряжение перехода анод — катод открытого аналога тиристора.

Одновременно загорается светодиод Д1 , сигнализируя об аварийной ситуации. Напряжение на выходе стабилизатора, в этот момент, будет равно 1,5 — 2,0 вольта .
Чтобы восстановить нормальную работу стабилизатора, необходимо выключить нагрузку и нажать на кнопку Кн , сбросив блокировку защиты.
На выходе стабилизатора вновь будет напряжение 9 вольт , а светодиод погаснет.
Настройкой резистора R3 , можно подобрать ток срабатывания защиты от 1 ампера и более . Транзисторы Т1 и Т2 можно ставить на один радиатор без изоляции. Сам же радиатор изолировать от корпуса.

Абсолютно любой тиристор может быть в двух устойчивых состояниях — закрыт или открыт

В закрытом состоянии он находится в состоянии низкой проводимости и ток почти не идет, в открытом, наоборот полупроводник будет находится в состоянии высокой проводимости, ток проходит через него фактически без сопротивления

Можно сказать, что тиристор это электрический силовой управляемый ключ. Но по сути управляющий сигнал может только открыть полупроводник. Чтобы запереть его обратно, требуется выполнить условия, направленные на снижение прямого тока почти до нуля.

Структурно тиристор представляет последовательность четырех, слоев p и n типа, образующих структуру р-n-р-n и соединенных последовательно.

Одна из крайних областей, на которую подключают положительный полюс питания называют анод , р – типа
Другая, к которой подсоединяют отрицательное полюс напряжения, называют катод , – n типа
Управляющий электрод подключен к внутренним слоям.

Для того чтоб разобраться с работой тиристора рассмотрим несколько случаев, первый: напряжение на управляющий электрод не подается , тиристор подсоединен по схеме динистора – положительное напряжение поступает на анод, а отрицательное на катод, смотри рисунок.

В этом случае коллекторный p-n-переход тиристора находится в закрытом состоянии, а эмиттерный – открыт. Открытые переходы имеют очень низкое сопротивление, поэтому почти все напряжение, следующее от источника питания, приложено к коллекторному переходу, из-за высокого сопротивления которого протекающий через полупроводниковый прибор ток имеет очень низкое значение.

На графике ВАХ это состояние актуально для участка отмеченного цифрой 1 .

При увеличении уровня напряжения, до определенного момента ток тиристора почти не растет. Но достигая условного критического уровня — напряжение включения U вкл , в динисторе появляются факторы, при которых в коллекторном переходе начинается резкий рост свободных носителей заряда, которое почти сразу же носит лавинный характер . В результате происходит обратимый электрический пробой (на представленном рисунке – точка 2). В p -области коллекторного перехода появляется избыточная зона накопленных положительных зарядов, в n -области, наоборот происходит накопление электронов. Рост концентрации свободных носителей заряда приводит к падению потенциального барьера на всех трех переходах , через эмиттерные переходы начинается инжекция носителей заряда. Лавинообразный характер еще сильнее увеличивается, и приводит к переключению коллекторного перехода в открытое состоянии. Одновременно увеличивается ток по всем областям полупроводника, в результате происходит падением напряжения между катодом и анодом, показанный на графике выше отрезком отмеченным цифрой три. В этот момент времени динистор обладает отрицательным дифференциальным сопротивлением. На сопротивлении R n растет напряжение и полупроводник переключается.

После открытия коллекторного перехода ВАХ динистора становится такой же, как на прямой ветви — отрезок №4. После переключения полупроводникового прибора, напряжение снижается до уровня одного вольта. В дальнейшем увеличение уровня напряжения или снижение сопротивления приведет к увеличению выходного тока, один в один, как и работе диода при его прямом включении. Если же уровень напряжение питания снизить, то высокое сопротивление коллекторного перехода, практически мгновенно восстанавливается, динистор закрывается, ток резко падает .

Напряжение включения U вкл , можно настраивать, внося в любой из промежуточных слоев, рядом с к коллекторным переходом, неосновные, для него носители заряда.

С этой целью используется специальный управляющий электрод , запитываемый от дополнительного источника, с которого следует управляющее напряжение – U упр . Как хорошо видно из графика – при росте U упр напряжение включения снижается.

Основные характеристики тиристоров

U вкл напряжение включения – при нем осуществляется переход тиристора в открытое состояние
U o6p.max – импульсное повторяющееся обратное напряжение при нем происходит электрический пробой p-n перехода. Для многих тиристоров будет верно выражение U o6p.max . = U вкл
I max — максимально допустимое значение тока
I ср — среднее значение тока за период U np — прямое падение напряжения при открытом тиристоре
I o6p.max — обратный максимальный ток начинающий течь при приложении U o6p.max , за счет перемещения неосновных носителей заряда
I удерж ток удержания – значение анодного тока, при котором осуществляется запирание тиристора
P max — максимальная рассеиваемая мощность
t откл — время отключения необходимое для запирания тиристора

Запираемые тиристоры — имеет классическую четырехслойную p-n-p-n структуру, но при этом обладает рядом конструктивных особенностей, дающих такую функциональную возможность, как полная управляемость. Благодаря такому воздействию от управляющего электрода, запираемые тиристоры могут переходить не только в открытое состояние из закрытого, но и из открытого в закрытое. Для этого на управляющий электрод поступает напряжение, противоположное тому, которое ранее открывает тиристор. Для запирания тиристора на управляющей электрод следует мощный, но короткий по длительности импульс отрицательного тока. При применении запираемых тиристоров следует помнить, что их предельные значения на 30% ниже, чем у обычных. В схемотехнике, запираемые тиристоры активно применяются в роли электронных ключей в преобразовательной и импульсной технике.

В отличие от своих четырехслойных родственников — тиристоров, они имеют пятислойную структуру.


Благодаря такой структуре полупроводника они имеют возможность пропускать ток в обоих направлениях – как от катода к аноду, так и от анода к катоду, а на управляющий электрод поступает напряжение обоих полярностей. Благодаря этому свойству вольт-амперная характеристика симистора имеет симметричный вид в обоих осях координат. Узнать о работе симистора вы можете из видеоурока, по ссылке ниже.


Принцип работы симистора

Если у стандартного тиристора имеются анод и катод то электроды симистора так описать нельзя т.к каждый уго электрод является и анодом и катодом одновременно. Поэтому симистор способен пропускать ток в обоих направлениях. Именно поэтому он отлично работает в цепях переменного тока.

Очень простой схемой, поясняющей принцип симистора является регулятор симисторный регулятор мощности.


После подачи напряжения на один из выводов симистора поступает переменное напряжение. На электрод, являющийся управляющим с диодного моста поступает отрицательное управляющее напряжение. При превышении порога включения симистор отпирается и ток поступает в подключенную нагрузку. В момент времени, когда на входе симистора меняется полярность напряжения он запирается. Затем алгоритм повторяется.

Чем выше уровень управляющего напряжения тем быстрее срабатывает симистор и длительность импульса на нагрузке увеличивается. При снижении уровня управляющего напряжения длительность импульсов на нагрузке также снижается. На выходе симисторного регулятора напряжение будет пилообразной формы с регулируемой длительностью импульса. Таким образом, регулируя управляющее напряжение мы можем изменять яркость лампочки накаливания или температуру жала паяльника подключенных в качестве нагрузки.

Итак симистор управляется как отрицательным так и положительным напряжением. Давайте выделим его минусы и плюсы.

Плюсы: низкая стоимость, большой срок службы, отсутствие контактов и, как следствие, отсутствие искрения и дребезга.
Минусы: достаточно чувствителен к перегреву и его обычно монтируют на радиаторе. Не работает на высоких частотах, так как не успевает переходить из открытого состояния в закрытое. Реагирует на внешниепомехи, вызывающие ложное срабатывание.

Следует также упомянуть о особенностях монтажа симисторов в современной электронной техники.

При малых нагрузках или если в ней протекают короткие импульсные токи, монтаж симисторов можно осуществлять без теплоотводящего радиатора. Во всех остальных случаях – его наличие строго обязательно.
К теплоотводу тиристор может фиксироваться крепежным зажимом или винтом
Для снижения вероятности ложного срабатывания из-за шумов, длина проводов должна быть минимальна. Для подсоединения рекомендуется использовать экранированный кабель или витую пару.

Или оптотиристоры специализированные полупроводники, конструктивной особенностью которого является наличие фотоэлемента, который является управляющим электродом.

Современной и перспективной разновидностью симистора являетсяо оптосимистор. Вместо управляющего электрода в корпусе имеется светодиод и управление происходит с помощью изменения напряжения питания на светодиоде. При попадании светового потока задонной мощности фотоэлемент переключает тиристор в открытое положение. Самой основной функцией в оптосимисторе является то, что между цепью управления и силовой имеется полная гальваническая развязка. Это создает просто отличный уровень и надежности конструкции.

Силовые ключи . Одним из главных моментов, влияющих на востребованность таких схем, служит низкая мощность, которую способен рассеять тиристор в схемах переключения. В запертом состоянии мощность практически не расходуется, т.к ток близок к нулевым значениям. А в открытом состоянии рассеиваемая мощность невелика благодаря низким значениям напряжения

Пороговые устройства – в них реализуется главное свойство тиристоров – открываться при достижении напряжением нужного уровня. Это используется в фазовых регуляторах мощности и релаксационных генераторах

Для прерывания и включения-выключения используются запирающие тиристоры. Правда, в данном случае схемам необходима определенная доработка.

Экспериментальные устройства – в них применяется свойство тиристора обладать отрицательным сопротивление, находясь в переходном режиме

Принцип работы и свойства динистора, схемы на динисторах

Динистор это разновидность полупроводниковых диодов относящихся к классу тиристоров. Динистор состоит из четырех областей различной проводимости и имеет три p-n перехода. В электроники он нашел довольно ограниченное применение, ходя его можно найти в конструкциях энергосберегающих ламп под цоколь E14 и E27, где он применяется в схемах запуска. Кроме того он попадается в пускорегулирующих аппаратах ламп дневного света.

8 января 2013 в 19:23
  • Электроника для начинающих

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием — не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод — это контакт с внешним p-слоем, катод — с внешним n-слоем.
Освежить память о p-n переходе можно .

Классификация

В зависимости от количества выводов можно вывести классификацию тиристоров. По сути все очень просто: тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод). Тиристор с тремя и четырьмя выводами, называются триодными или тетродными. Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Принцип работы



Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.


К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров

1. Напряжение включения — это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение — это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение — это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток — это максимальный ток в открытом состоянии.
5. Обратный ток — ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Заключение

Таким образом, в тиристоре существует положительная обратная связь по току — увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор — не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

Тиристор – принцип работы, устройство и схема управления. Тиристоры

Тиристоры — это силовые электронные ключи, управляемые не полностью. Нередко в технических книгах можно увидеть еще одно название этого прибора — однооперационный тиристор. Другими словами, под воздействием управляющего сигнала он переводится в одно состояние — проводящее. Если конкретизировать, то он включает цепь. Чтобы она выключалась, необходимо создать специальные условия, которые обеспечивают падение прямого тока в цепи до нулевого значения.

Особенности тиристоров

Тиристорные ключи проводят электрический ток только в прямом направлении, причем в закрытом состоянии он выдерживает не только прямое, но и обратное напряжение. Структура тиристора четырехслойная, имеется три вывода:

  1. Анод (обозначается буквой А).
  2. Катод (буквой С или К).
  3. Управляющий электрод (У или G).

У тиристоров есть целое семейство вольт-амперных характеристик, по ним можно судить о состоянии элемента. Тиристоры — это очень мощные электронные ключи, они способны проводить коммутацию цепей, в которых напряжение может достигать 5000 вольт, а сила тока — 5000 ампер (при этом частота не превышает 1000 Гц).

Работа тиристора в цепях постоянного тока

Обычный тиристор включается путем подачи токового импульса на управляющий вывод. Причем он должен быть положительным (по отношению к катоду). Длительность переходного процесса зависит от характера нагрузки (индуктивная, активная), амплитуды и скорости нарастания в цепи управления импульса тока, температуры кристалла полупроводника, а также приложенного тока и напряжения на имеющиеся в схеме тиристоры. Характеристики схемы напрямую зависят от вида используемого полупроводникового элемента.

В той цепи, в которой находится тиристор, недопустимо возникновение большой скорости нарастания напряжения. А именно такого значения, при котором происходит самопроизвольное включение элемента (даже если нет сигнала в цепи управления). Но одновременно с этим у сигнала управления должна быть очень высокая крутизна характеристики.

Способы выключения

Можно выделить два типа коммутации тиристоров:

  1. Естественная.
  2. Принудительная.

А теперь более подробно о каждом виде. Естественная возникает тогда, когда тиристор работает в цепи переменного тока. Причем происходит эта коммутация тогда, когда ток падает до нулевого значения. А вот осуществить принудительную коммутацию можно большим количеством различных способов. Какое управление тиристором выбрать, решать разработчику схемы, но стоит поговорить о каждом типе отдельно.

Самым характерным способом принудительной коммутации является подключение конденсатора, который был заранее заряжен при помощи кнопки (ключа). LC-цепь включается в схему управления тиристором. Эта цепочка и содержит заряженный полностью конденсатор. При переходном процессе в нагрузочной цепи происходят колебания тока.

Способы принудительной коммутации

Существует еще несколько типов принудительной коммутации. Нередко применяют схему, в которой используется коммутирующий конденсатор, имеющий обратную полярность. Например, этот конденсатор может включаться в цепь при помощи какого-либо вспомогательного тиристора. При этом произойдет разряд на основной (рабочий) тиристор. Это приведет к тому, что у конденсатора ток, направленный навстречу прямому току основного тиристора, будет способствовать снижению тока в цепи вплоть до нуля. Следовательно, произойдет выключение тиристора. Это случается по той причине, что устройство тиристора имеет свои особенности, характерные только для него.

Существуют также схемы, в которых подключаются LC-цепочки. Они разряжаются (причем с колебаниями). В самом начале ток разряда течет навстречу рабочему, а после уравнивания их значений происходит выключение тиристора. После из колебательной цепочки ток перетекает через тиристор в полупроводниковый диод. При этом, покуда течет ток, к тиристору прикладывается некоторое напряжение. Оно по модулю равно падению напряжения на диоде.

Работа тиристора в цепях переменного тока

Если тиристор включить в цепь переменного тока, можно осуществить такие операции:

  1. Включить или отключить электрическую цепь с активно-резистивной или активной нагрузкой.
  2. Изменить среднее и действующее значение тока, который проходит через нагрузку, благодаря возможности регулировать момент подачи сигнала управления.

У тиристорных ключей имеется одна особенность — они проводят ток только в одном направлении. Следовательно, если необходимо использовать их в цепях приходится применять встречно-параллельное включение. Действующие и средние значения тока могут изменяться из-за того, что момент подачи сигнала на тиристоры различный. При этом мощность тиристора должна соответствовать минимальным требованиям.

Фазовый метод управления

При фазовом методе управления с коммутацией принудительного типа происходит регулировка нагрузки благодаря изменению углов между фазами. Искусственную коммутацию можно осуществить при помощи специальных цепей, либо же необходимо использовать полностью управляемые (запираемые) тиристоры. На их основе, как правило, изготавливают которое позволяет регулировать в зависимости от уровня зарядки аккумуляторной батареи.

Широтно-импульсное управление

Называют еще его ШИМ-модуляцией. Во время открытия тиристоров подается сигнал управления. Переходы открыты, а на нагрузке имеется некоторое напряжение. Во время закрытия (в течение всего переходного процесса) не подается сигнал управления, следовательно, тиристоры не проводят ток. При осуществлении фазового управления токовая кривая не синусоидальна, происходит изменение формы сигнала напряжения питания. Следовательно, происходит также нарушение работы потребителей, которые чувствительны к высокочастотным помехам (появляется несовместимость). Несложную конструкцию имеет регулятор на тиристоре, который без проблем позволит изменить необходимую величину. И не нужно применять массивные ЛАТРы.

Тиристоры запираемые

Тиристоры — это очень мощные электронные ключи, используются для коммутации высоких напряжений и токов. Но есть у них один огромный недостаток — управление неполное. А если конкретнее, то это проявляется тем, что для отключения тиристора нужно создавать условия, при котором прямой ток будет снижаться до нуля.

Именно эта особенность накладывает некоторые ограничения на использование тиристоров, а также усложняет схемы на их основе. Чтобы избавиться от такого рода недостатков, были разработаны специальные конструкции тиристоров, которые запираются сигналом по одному электроду управления. Их называют двухоперационными, или запираемыми, тиристорами.

Конструкция запираемого тиристора

Четырехслойная структура р-п-р-п у тиристоров имеет свои особенности. Они придают им отличия от обычных тиристоров. Речь сейчас идет о полной управляемости элемента. Вольт-амперная характеристика (статическая) при прямом направлении такая же, как и у простых тиристоров. Вот только прямой ток тиристор может пропускать куда больший по значению. Но функции блокировки больших обратных напряжений у запираемых тиристоров не предусмотрено. Поэтому необходимо соединять его встречно-параллельно с

Характерная особенность запираемого тиристора — это значительное падение прямых напряжений. Чтобы произвести отключение, следует осуществить подачу на управляющий вывод мощного импульса тока (отрицательного, в соотношении 1:5 к прямому значению тока). Но только длительность импульса должна быть как можно меньшей — 10… 100 мкс. Запираемые тиристоры обладают более низким значением предельного напряжения и тока, нежели обычные. Разница составляет примерно 25-30 %.

Виды тиристоров

Выше были рассмотрены запираемые, но существует еще немало типов полупроводниковых тиристоров, о которых также стоит упомянуть. В самых различных конструкциях (зарядные устройства, переключатели, регуляторы мощности) используются определенные типы тиристоров. Где-то требуется, чтобы управление проводилось путем подачи потока света, значит, используется оптотиристор. Его особенность заключается в том, что в цепи управления используется кристалл полупроводника, чувствительный к свету. Параметры тиристоров различны, у всех свои особенности, характерные только для них. Поэтому нужно хотя бы в общих чертах представлять, какие виды этих полупроводников существуют и где они могут применяться. Итак, вот весь список и основные особенности каждого типа:

  1. Диод-тиристор. Эквивалент этого элемента — тиристор, к которому подключен встречно-параллельно полупроводниковый диод.
  2. Динистор (диодный тиристор). Он может переходить в состояние полной проводимости, если превышается определенный уровень напряжения.
  3. Симистор (симметричный тиристор). Его эквивалент — два тиристора, включенных встречно-параллельно.
  4. Тиристор инверторный быстродействующий отличается высокой скоростью коммутации (5… 50 мкс).
  5. Тиристоры с управлением Часто можно встретить конструкции на основе МОП-транзисторов.
  6. Оптические тиристоры, которые управляются потоками света.

Осуществление защиты элемента

Тиристоры — это приборы, которые критичны к скоростям нарастания прямого тока и прямого напряжения. Для них, как и для полупроводниковых диодов, характерно такое явление, как протекание обратных токов восстановления, которое очень быстро и резко падает до нулевого значения, усугубляя этим вероятность возникновения перенапряжения. Это перенапряжение является следствием того, что резко прекращается ток во всех элементах схемы, которые имеют индуктивность (даже сверхмалые индуктивности, характерные для монтажа — провода, дорожки платы). Для осуществления защиты необходимо использовать разнообразные схемы, позволяющие в динамических режимах работы защититься от высоких напряжений и токов.

Как правило, источника напряжения, который входит в цепь работающего тиристора, имеет такое значение, что его более чем достаточно для того, чтобы в дальнейшем не включать в схему некоторую дополнительную индуктивность. По этой причине в практике чаще используется цепочка формирования траектории переключения, которая значительно снижает скорость и уровень перенапряжения в схеме при отключении тиристора. Емкостно-резистивные цепочки наиболее часто используются для этих целей. Они включаются с тиристором параллельно. Имеется довольно много видов схемотехнических модификаций таких цепей, а также методик их расчетов, параметров для работы тиристоров в различных режимах и условиях. А вот цепь формирования траектории переключения запираемого тиристора будет такая же, как и у транзисторов.

Тиристор — электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехник у, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод положительный вывод;
  • катод отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Основное применение этого типа элементов это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность . При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

Тиристоры

I. Назначение

Тиристорами называются полупроводниковые приборы с тремя (и более) р-п -переходами, предназначенными для использования в качестве электронных ключей в схемах переключения электрических токов. Они переключают электрические цепи, регулируют напряжение, преобразуют постоянный ток в переменный. По устройству и принципу работы он очень похож на полупроводниковый диод, но в отличие от него тиристор управляемый.

«Ключевой» характер действия тринистора позволяет использовать его для переключения электрических цепей там, где для этой цели до этого служили только электромагнитные реле. Полупроводниковые переключатели легче, компактнее и во много раз надежнее в работе, чем электромагнитные реле с механически замыкаемыми контактами. В отличие от таких реле они производят переключение с очень большой скоростью — сотни и тысячи раз в секунду, а если нужно — еще быстрее. Тринисторы используют в современной аппаратуре электрической связи, в быстродействующих системах дистанционного управления, в вычислительных машинах и в энергетических устройствах.

II. Классификация

В зависимости от конструктивных особенностей и свойств тиристоры делят на диодные и триодные. В диодных тиристорах различают:

    тиристоры, запираемые в обратном направлении;

    проводящие в обратном направлении;

    симметричные.

Триодные тиристоры подразделяют:

    на запираемые в обратном направлении с управлением по аноду или катоду;

    проводящие в обратном направлении с управлением по аноду или катоду;

Наиболее распространены динисторы — тиристоры с двумя выводами и тринисторы — приборы с тремя выводами. Кроме того, различают группу включаемых тиристоров.

Простейшие диодные тиристоры, запираемые в обратном направлении, обычно изготовляются из кремния и содержат четыре чередующихся р- и п- области (рис.2.2). Область р 1 , в которую попадает ток из внешней цепи, называют анодом , область п 2 – катодом ; области п 1 , р 2 – базами .

Рис.2.2. Структура тиристора .

III. Принцип действия

Если к аноду р 1 подключить плюс источника напряжения, а к катоду п 2 – минус, то переходы П 1 и П 3 окажутся открытыми, а переход П 2 – закрытым. Его называют коллекторным переходом.

Так как коллекторный р-п -переход смещен в обратном направлении, то до определенного значения напряжения почти все приложенное падает на нем. Такая структура легко может быть представлена в виде двух транзисторов разной электропроводности, соединенных между собой так, как показано на рис. 2.3, а,б.

а) б)

Рис. 2.3. Структура (а) и схема двухтранзисторного эквивалента тиристора (б).

Ток цепи определяется током коллекторного перехода П 2 . Он однозначно зависит от потока дырок
из эмиттера транзисторар-п р — типа и потока электронов
из эмиттера транзистора п р п — типа, а также от обратного тока р-п -перехода.

Так как переходы П 1 и П 3 смещены в прямом направлении, из них в области баз инжектируются носители заряда: дырки из области р 1 , электроны – из области п 2 . Эти носители заряда, диффундируя в областях баз п 1 , р 2 , приближаются к коллекторному переходу и его полем перебрасываются через р-п -переход. Дырки, инжектированные из р 1 -области, и электроны из п 2 движутся через переход П 2 в противоположных направлениях, создавая общий ток I .

При малых значениях внешнего напряжения все оно практически падает на коллекторном переходе П 2 . Поэтому к переходам П 1 3 , имеющим малое сопротивление, приложена малая разность потенциалов и инжекция носителей заряда невелика. В этом случае ток I мал и равен обратному току через переход П . При увеличении внешнего напряжения ток в цепи сначала меняется незначительно. При дальнейшем возрастании напряжения, по мере увеличения ширины перехода П 2 , все большую роль начинают играть носители заряда, образовавшиеся вследствие ударной ионизации. При определенном напряжении носители заряда ускоряются настолько, что при столкновении с атомами в области р-п -перехода ионизируют их, вызывая лавинное размножение носителей заряда.

Образовавшиеся при этом дырки под влиянием электрического поля переходят в область р 2 , а электроны – в область п 1 . Ток через переход П 2 увеличивается, а его сопротивление и падение напряжения на нем уменьшаются. Это приводит к повышению напряжения, приложенного к переходам П 1 , П 3 , и увеличению инжекции через них, что вызывает дальнейший рост коллекторного тока и увеличение токов инжекции. Процесс протекает лавинообразно и сопротивление перехода П 2 становится малым.

Носители заряда, появившиеся в областях вследствие инжекции и лавинного размножения, приводят к уменьшению сопротивления всех областей тиристора, и падение напряжения на приборе становится незначительным. На ВАХ этому процессу соответствует участок 2 с отрицательным дифференциальным сопротивлением (рис.2.4). После переключения ВАХ аналогична ветви характеристики диода, смещенного в прямом направлении (участок 3). Участок 1 соответствует закрытому состоянию тиристора.

Выключение тиристора осуществляется за счет уменьшения напряжения внешнего источника до значения, при котором ток
меньше(участок 3).

Рис. 2.4. Вольтамперная характеристика динистора

Если параллельно с тиристором включить диод, который открывается при обратном напряжении, то получится тиристор, проводящий в обратном направлении.

Триодные тиристоры (рис. 2.5,а ) отличаются от диодных тем, что одна из баз имеет внешний вывод, который называют управляющим электродом .

Рис. 2.5. Триодный тиристор:

Изменяя ток можно менять напряжение, при котором происходит переключение тиристора, и тем самым управлять моментом его включения.

Для того, чтобы запереть тиристор, нужно либо уменьшить рабочий ток до значения
путем понижения питающего напряжения до значения, либо задать в цепи управляющего электрода импульс тока противоположной полярности.

Процесс включения и выключения тиристора поясняет рис.2.5,в . Если к нему через резистор R приложено напряжение U 1 и ток в цепи управляющего электрода равен нулю, то тиристор заперт. Рабочая точка находится в положении а . Пи увеличении тока управляющего электрода рабочая точка перемещается по линии нагрузки 1. Когда ток управляющего электрода достигнет значения I y 1 , тиристор включится, и рабочая точка его переместится в точку b . Для выключения (I y = 0) необходимо уменьшить напряжение питания до значения
. При этом рабочая точка изb 1 перейдет в а 2 и при восстановлении напряжения – в точку а .

Выключить тиристор можно также путем подачи на управляющий электрод напряжения противоположной полярности и создания в его цепи противоположно направленного тока.

Недостатком такого включения является большое значение обратного тока управляющего электрода, которое приближается к значению коммутируемого тока тиристора. Отношение амплитуды тока тиристора к амплитуде импульса выключающего тока управляющего электрода называется коэффициентом запирания :
. Он характеризует эффективность включения тиристора с помощью управляющего электрода. В ряде разработок

Тиристоры с повышенным коэффициентом запирания часто называют выключаемыми или запираемыми .

IV. Основные параметры тиристоров


Обозначения тиристоров в соответствии с ГОСТ 10862 – 72 состоят из шести элементов. Первый элемент – буква К, указывающая исходный материал полупроводника; второй – буква Н для диодных тиристоров и У для триодных; третий – цифра, определяющая назначение прибора; четвертый и пятый – порядковый номер разработки; шестой – буква, определяющая технологию изготовления, например КУ201А, КН102И и т.д.

Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

Принцип действия

Рассмотрим работу тиристора по следующей простой схеме.

К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

Особенности устройства

Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

Основные параметры тиристоров
  • Максимально допустимый прямой ток . Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.
  • Максимально допустимый обратный ток .
  • Прямое напряжение . Это падение напряжения при максимальном токе.
  • Обратное напряжение . Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
  • Напряжение включения . Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
  • Минимальный ток управляющего электрода . Он необходим для включения тиристора.
  • Максимально допустимый ток управления .
  • Максимально допустимая рассеиваемая мощность .
Динамический параметр

Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

Виды тиристоров

Различают несколько разновидностей тиристоров. Рассмотрим их классификацию.

По способу управления разделяют на:

  • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
  • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.

Триодные тиристоры в свою очередь разделяются:

  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.

Запирание тиристора производится:

  • Уменьшением анодного тока – катод меньше тока удержания.
  • Подачей напряжения запирания на электрод управления.

По обратной проводимости тиристоры делятся:

  • Обратно-проводящие – имеют малое обратное напряжение.
  • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
  • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
  • Симистор – пропускает токи в двух направлениях.

Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность. Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

Разделение тиристоров по мощности

При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

Простая сигнализация на основе тиристора

На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

Регулятор мощности на тиристоре

Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

  • Полупроводниковый диод VD.
  • Переменный резистор R1.
  • Постоянный резистор R2.
  • Конденсатор С.
  • Тиристор VS.

Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.

Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.

Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.

К положительному выводу конденсатора включен управляющий вывод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода. Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.

На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.

Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричные тиристоры или симисторы. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.

Появление четырехслойных p-n-p-n полупроводниковых элементов совершило настоящий прорыв в силовой электронике. Такие устройства получили название «тиристоров». Кремниевые управляемые вентили являются наиболее распространенным семейством тиристоров.

Данный вид полупроводниковых приборов имеет следующую структуру:

Как видим из структурной схемы тиристор имеет три вывода – катод, управляющий электрод и анод. Подключению к силовым цепям подлежат анод и катод, а управляющий электрод подключается к системе управления (слаботочные сети) для управляемого открытия тиристора.

На принципиальных схемах тиристор имеет такое обозначение:

Вольт-амперная характеристика показана ниже:

Давайте подробнее рассмотрим эту характеристику.

Обратная ветвь характеристики

В третьем квадранте характеристики диодов и тиристоров равны. Если к аноду приложить отрицательный потенциал относительно катода, то к J 1 и J 3 прикладывается обратное напряжение, а к J 2 — прямое, что вызовет протекание тока обратного (он очень мал, как правило несколько миллиампер). Когда же это напряжение увеличится до так называемого напряжения пробоя, произойдет лавинное нарастание тока между J 1 и J 3 . При этом, если данный ток не будет ограничен, то произойдет пробой перехода с последующим выходом из строя тиристора. При обратных же напряжениях, которые не превышают напряжения пробоя, тиристор будет вести себя как резистор с большим сопротивлением.

Зона низкой проводимости

В данной зоне все наоборот. Потенциал катода будет отрицательный по отношению к потенциалу анода. Поэтому к J 1 и J 3 будет приложено прямое, а к J 2 – обратное напряжение. Результатом чего станет весьма малый анодный ток.

Зона высокой проводимости

Если напряжение на участке анод – катод достигнет значения, так называемого напряжением переключения, то произойдет лавинный пробой перехода J 2 и тиристор будет переведен в состояние высокой проводимости. При этом U a снизится от нескольких сотен до 1 — 2 вольт. Оно будет зависеть от типа тиристора. В зоне высокой проводимости ток, протекающий через анод, будет зависеть от нагрузки внешней элемента, что дает возможность рассматривать его в этой зоне как замкнутый ключ.

Если пропустить ток через управляющий электрод, то напряжение включения тиристора уменьшится. Оно напрямую зависит от тока управляющего электрода и при достаточно большом его значении практически равно нулю. При выборе тиристора для работы в схеме, то его подбирают таким образом, чтоб напряжения обратное и прямое не превышали паспортных значений напряжений пробоя и переключения. Если эти условия выполнить трудно, или имеется большой разброс в параметрах элементов (например необходим тиристор на 6300 В, а его ближайшие значения 1200 В), то иногда применяют или включение элементов.

В нужный момент времени с помощью подачи импульса на управляющий электрод можно перевести тиристор с закрытого состояния в зону высокой проводимости. Ток УЭ, как правило, должен быть выше минимального тока открытия и он составляет порядка 20-200 мА.

Когда анодный ток достигнет определенного значения, при котором запирания тиристора невозможно (ток переключения), управляющий импульс может быть снят. Теперь тиристор сможет перейти обратно в закрытое состояние только при уменьшении тока ниже, чем ток удержания, или прикладыванием к нему напряжения обратной полярности.

Видео работы и графики переходных процессов

Симистор — устройство и принцип работы прибора

Все радиолюбители, профессиональные электрики и техники, которые ежедневно имеют дело с электрическими цепями и схемами, так или иначе сталкиваются и активно используют при своей работе полупроводниковые элементы. Все они функционируют благодаря так называемым n-p и p-n-переходам, в которых электроны вступают во взаимодействие с дырками.

В самом элементарном диоде насчитывается два слоя и p-n-переход, у биполярного транзистора их уже три, а перехода оба вида. Так вот, если к биполярному добавить еще один слой, то получится уже другой полупроводниковый прибор, именуемый тиристором.

Что такое симистор

А дальше, если один тиристор подключить с другим параллельно, то выйдет уже некая симметричная фигура двух тиристоров. Вот это и есть симметричный тиристор или другими словами, симистор. В зарубежной литературе и практике больше известен под названием TRIAC.

ТРИАК имеет один управляющий и два дополнительных силовых вывода, они же электроды. На схемах главный именуется «затвором» и обозначен буквой G. Электроды силовые отмечены указателями Т1, Т2. Реже А и А1, А 1 и А2.

Стоит отметить, что тиристор такого типа в зарубежных трудах и технике – довольно редкий гость, в схемах используется нечасто. Скорее всего, из-за того, что он был придуман и получил патент на советских просторах, от чего в Европе и Америке не нашел широкого применения и распространения.

Принцип работы: как работает симистор

Уникальность такого устройства заключается в том, что анода и катода в привычном понимании относительно использования в электросхемах, тут нет. Хотя в схеме они присутствуют. Просто становятся крайне похожими друг на друга, ведь катод и анод одновременно могут иметь свойства каждого из них. То есть любой электрод данного прибора не имеет конкретного заряда. Так и выходит, что в симисторе электрический ток проходит не в одном, а сразу в двух направлениях! Что делает его незаменимым в схемах, где участвует переменный ток.

Например, в автоматическом регуляторе мощности, которые используются в любом источнике света, кондиционере или электроинструменте, симистор работает в такой схеме. Начав получать напряжение из электросети, в приборе только один силовой электрод срабатывает и получает переменное напряжение. А управляющий вывод с диодного моста получает отрицательное напряжение управления. Если включение станет чрезмерным, то симметрический тиристор сработает на открытие и отправит ток в нагрузку. Как только на входе прибора изменится полярность напряжения, он перестанет работать на открытие. Этот процесс зацикливается и повторяется снова и снова.

Из этого получается, что скорость включения симистора напрямую зависит от величины управляющего напряжения. И если оно уменьшается, то стихают и импульсы на нагрузке. А в целом, напряжение, после прохождения данного ТРИАКа, становятся регулируемыми в части импульсов и исходят в диапазоне, схожим на присущей пиле. На практике такая способность регулировки напряжения управления в симисторе дает возможность влиять и настраивать диапазон температур на острие электропаяльника или же яркость светодиодной ленты. Поэтому, например, целесообразно симметрический тиристор использовать в устройстве по регулировке яркости светодиодных лампочек, лент, модулей и прожекторов, который называется диммером.

Схемы управления симисторами

Большим преимуществом данного устройства является его возможность одновременно управлять как положительным зарядом тока, так и отрицательным. Это дает возможность говорить сразу о четырех его основных режимах работы, то есть управляющее напряжение, относительно каждой своей полярности, может разбиваться на четыре сектора работы.

Так, например, существует отдельная схема на случай, чтобы симистор не открылся случайно, а не, как положено, в момент избыточного включения. В ней между двумя силовыми электродами вводится так называемая RC-цепочка. Номинальное значение сопротивления в ее резисторе под названием R1 варьируется в пределах от пятидесяти и до 470 Ом, а конденсатора с маркировкой С1 – в величинах 0,01- 0,1 мкф. Случается, что данные показатели доводится подбирать экспериментальным путем.

Маркировка симисторов

Различают довольно много маркировок данных симметричных тиристоров, которые зависят от ряда его основных параметров. Например, в широком ассортименте в интернет-магазинах электроники и в целом на рынке подобных комплектующих можно встретить модели типа:

  • BT131-600
  • BT134-600
  • BT137-600E
  • BT138-600
  • BTA16-600B
  • MAC08MTI
  • BTB12-800CWRG
  • BTA140-600
  • BTA41-600BRG
  • BTA41-600 и прочие.

Например, модель BTA24-600B – стандартный, не оснащенный снаббером. Этот элемент необходимо устанавливать внешне и отдельно.
Отдельно стоит остановиться на таком понятии как корпус симистора. В современных моделях различают такие основные пластиковые корпусы как:

  • D-PAK
  • DO-35
  • M1
  • SOT-223
  • TO-126
  • TO-220
  • TO-247AC
  • TO-92
  • TOP-3

К числу основных параметров, которые следует использовать для обозначения характеристик устройства относятся показатели максимального обратного напряжения, максимальные значения тока в открытом положении и в импульсном режиме, самого малого значения тока в постоянном режиме, которого достаточно для открытия симистора, как и наименьшего импульсного тока.

Важно учитывать, какие показатели напряжения в открытом режиме могут определяться при разных значениях тока, например, 160 ампер и 300 ампер. В таком случае, они оба должны быть пропорциональны друг другу, то есть ток при 160 амперах, быть равным 5 вольтам, а при 300 амперах – 2,5 вольтам, т.е. идти на понижение.

У симисторов огромная разница во времени, когда происходит включение и выключение. Так, в среднем оно может у одной и той же модели быть, допустим, 10 микросекунд на включение и 150 микросекунд на выключение. Одним словом, здесь срабатывает принцип, когда напряжение и сила тока экспотенциальны – чем выше второе, тем меньше первое. Принцип работает и в обратном положении данных величин.

В целом TRIAC при вхождении в цепь, может выполнять функции как электровыключателя, так и реле. В таком случае, его достоинства являются существенными:

  • Низкая цена;
  • Длительный срок эксплуатации в отличие от электромеханических приборов;
  • Бесконтактный метод работы, а значит отсутствие дребезжания и искрения.

Однако эти полупроводниковые схемы имеют и свои негативные стороны, которых следует активно избегать:

  • Небольшой диапазон рабочих температур, из-за чего возможен перегрев (поэтому они устанавливаются на радиаторах вплотную)
  • Невозможность использования при высокочастотном режиме, поскольку по длительному разрыву между временем открытия и закрытия они не успевают правильно отреагировать на высокую частотность
  • Чувствителен к электромагнитному излучению, реагирует ложным открыванием, что ограничивает сферу его использования
Как проверить работоспособность симистора

Чтобы правильно осуществить проверку на работоспособность данное устройство, необходимо оснаститься специальным тестером или мультиметром. Последний за счет работы сразу в нескольких режимах сможет определить вольтаж, величину сопротивления и количество ватт, при том как в переменной области исследований, так и в постоянной.

Первый способ проверки эксплуатационных характеристик симметричного тиристора основан на показаниях мультиметра, который переведен в режим омметра. Необходимо попарно подключить выходы мультиметра к контактам ТРИАКа и измерить их в обычном положении. При этом сопротивление должно выдавать свои максимальные показатели, то есть стремиться к бесконечности. В цифровых мультиметрах это визуализируется как увеличение цифрового значения на экране прибора рывкообразно, а на аналоговом – стрелка плавно, но устойчиво будет отклоняться на радиально-линейной шкале вправо до упора. Если это случилось, то необходимо к электроду управления такого тиристора присоединить анод. Анод сработает на открытие радиодетали, а сопротивление устремиться к нулю. В такой случае, скорее всего, симмистор полностью рабочий.

Другой способ подойдет для тех, у кого под рукой не оказалось мультиметра. Тогда понадобится тестер, типа для определения фазы и нуля в цепи, и аккумуляторная пальчиковая батарейка или любой другой элемент, осуществляющий питание электронных устройств. Сначала соединяем контакты тестера и ТРИАКа. Если все хорошо, то световой сигнал лампы контроля на тестере не сработает. Затем с батарейки подаем напряжение между управляющим и силовыми выводами. Полярность тестера и рабочего электрода должны совпасть, а лампа контроля загореться. Если ток удержания в переходе нашего двойного тиристора достаточен, то лампочка не потухнет и после отключения батарейки, только если выключить сам тестер.

Область применения симисторов

Они используются в сфере эксплуатационных элементов на железных дорогах, а именно в релейных шкафах, схемах электрической централизации стрелок и устройств, в области сигнализации и связи, регулируют железнодорожные переезды и световые головки светофоров, используются в радиотехнике, например, в электропаяльниках, вентиляторах, обогревателях.

Даже после выхода из строя, можно, заменив часть устройства, продолжать его использовать еще долгие годы, пока маркировки и совсем не станет видно. В виду надежности применимы в промышленности и транспорта для сигнализации, централизации и блокировки сигналов от устройств.

Опубликовано: 2020-06-11 Обновлено: 2021-08-30

Автор: Магазин Electronoff

ПОДХОДЯЩИЕ ТОВАРЫ

Поделиться в соцсетях

Тиристор принцип работы. Что такое тиристор и как он работает

♦ Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А — анод, К — катод) , это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод) , это тринистор, или в обиходе его называют просто тиристор.

♦ С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено».
Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр , то есть величину напряжения пробоя тиристора;
Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U , если подать импульс напряжения положительной полярности между управляющим электродом и катодом.

♦ В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.
Тиристор можно закрыть:

  • — если уменьшить напряжение между анодом и катодом до U = 0 ;
  • — если снизить анодный ток тиристора до величины, меньше тока удержания Iуд .
  • — подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).

Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.
Тиристоры и динисторы работают как в цепях постоянного, так и в цепях переменного тока.

Работа динистора и тиристора в цепях постоянного тока.

Рассмотрим несколько практических примеров.
Первый пример применения динистора, это релаксационный генератор звуковых сигналов .

В качестве динистора используем КН102А-Б.

♦ Работает генератор следующим образом.
При нажатии кнопки Кн , через резисторы R1 и R2 постепенно заряжается конденсатор С (+ батареи – замкнутые контакты кнопки Кн – резисторы – конденсатор С – минус батареи).
Параллельно конденсатору подключена цепочка из телефонного капсюля и динистора. Через телефонный капсюль и динистор ток не протекает, так как динистор еще «заперт».
♦ При достижении на конденсаторе напряжения, при котором пробивается динистор, через катушку телефонного капсюля проходит импульс тока разряда конденсатора (С – катушка телефона – динистор — С). Слышен щелчок из телефона, конденсатор разрядился. Далее снова идет заряд конденсатора С и процесс повторяется.
Частота повторения щелчков зависит от емкости конденсатора и величины сопротивления резисторов R1 и R2 .
♦ При указанных на схеме номиналах напряжения, резисторов и конденсатора, частоту звукового сигнала с помощью резистора R2 можно менять в пределах 500 – 5000 герц. Телефонный капсюль необходимо использовать с низкоомной катушкой 50 – 100 Ом , не более, например телефонный капсюль ТК-67-Н .
Телефонный капсюль необходимо включать с соблюдением полярности, иначе не будет работать. На капсюле есть обозначение +(плюс) и – (минус).

♦ У этой схемы (рис 1) есть один недостаток. Из-за большого разброса параметров динистора КН102 (разное напряжение пробоя), в некоторых случаях, нужно будет увеличить напряжение источника питания до 35 – 45 вольт , что не всегда возможно и удобно.

Устройство управления, собранное на тиристоре, для включения – выключения нагрузки с помощью одной кнопки показано на рис 2.


Устройство работает следующим образом.
♦ В исходном состоянии тиристор закрыт и лампочка не горит.
Нажмем на кнопку Кн в течении 1 – 2 секунды . Контакты кнопки размыкаются, цепь катода тиристора разрывается.

В этот момент конденсатор С заряжается от источника питания через резистор R1 . Напряжение на конденсаторе достигает величины U источника питания.
Отпускаем кнопку Кн .
В этот момент конденсатор разряжается по цепи: резистор R2 – управляющий электрод тиристора – катод — замкнутые контакты кнопки Кн – конденсатор.
В цепи управляющего электрода потечет ток, тиристор «откроется» .
Загорается лампочк а по цепи: плюс батареи – нагрузка в виде лампочки – тиристор — замкнутые контакты кнопки – минус батареи.
В таком состоянии схема будет находиться сколько угодно долго .
В этом состоянии конденсатор разряжен: резистор R2, переход управляющий электрод – катод тиристора, контакты кнопки Кн.
♦ Для выключения лампочки необходимо кратковременно нажать на кнопку Кн . При этом основная цепь питания лампочки обрывается. Тиристор «закрывается» . Когда контакты кнопки замкнутся, тиристор останется в закрытом состоянии, так как на управляющем электроде тиристора Uynp = 0 (конденсатор разряжен).

Мною опробованы и надежно работали в этой схеме различные тиристоры: КУ101, Т122, КУ201, КУ202, КУ208 .

♦ Как уже упоминалось, динистор и тиристор имеют свой транзисторный аналог .

Схема аналога тиристора состоит из двух транзисторов и изображена на рис 3 .
Транзистор Тр 1 имеет p-n-p проводимость, транзистор Тр 2 имеет n-p-n проводимость. Транзисторы могут быть как германиевые, так и кремниевые.

Аналог тиристора имеет два управляющих входа.
Первый вход: А – Уэ1 (эмиттер — база транзистора Тр1).
Второй вход: К – Уэ2 (эмиттер – база транзистора Тр2).

Аналог имеет: А – анод, К — катод, Уэ1 – первый управляющий электрод, Уэ2 – второй управляющий электрод.

Если управляющие электроды не использовать, то это будет динистор, с электродами А — анод и К — катод .

♦ Пару транзисторов, для аналога тиристора, надо подбирать одинаковой мощности с током и напряжением выше, чем необходимо для работы устройства. Параметры аналога тиристора (напряжение пробоя Unp, ток удержания Iyд) , будут зависеть от свойств применяемых транзисторов.

♦ Для более устойчивой работы аналога в схему добавляют резисторы R1 и R2 . А с помощью резистора R3 можно регулировать напряжение пробоя Uпр и ток удержания Iyд аналога динистора – тиристора. Схема такого аналога изображена на рис 4 .

Если в схеме генератора звуковых частот (рис 1) , вместо динистора КН102 включить аналог динистора, получится устройство с другими свойствами (рис 5) .

Напряжение питания такой схемы составит от 5 до 15 вольт . Изменяя величины резисторов R3 и R5 можно изменять тональность звука и рабочее напряжение генератора.

Переменным резистором R3 подбирается напряжение пробоя аналога под используемое напряжение питания.

Потом можно заменить его на постоянный резистор.

Транзисторы Тр1 и Тр2: КТ502 и КТ503; КТ814 и КТ815 или любые другие.

♦ Интересна схема стабилизатора напряжения с защитой от короткого замыкания в нагрузке (рис 6) .

Если ток в нагрузке превысит 1 ампер , сработает защита.

Стабилизатор состоит из:

  • — управляющего элемента– стабилитрона КС510 , который определяет напряжение выхода;
  • — исполнительного элемента–транзисторов КТ817А, КТ808А , исполняющих роль регулятора напряжения;
  • — в качестве датчика перегрузки используется резистор R4 ;
  • — исполнительным механизмом защиты используется аналог динистора, на транзисторах КТ502 и КТ503 .

♦ На входе стабилизатора в качестве фильтра стоит конденсатор С1 . Резистором R1 задается ток стабилизации стабилитрона КС510 , величиной 5 – 10 мА. Напряжение на стабилитроне должно быть 10 вольт .
Резистор R5 задает начальный режим стабилизации выходного напряжения.

Резистор R4 = 1,0 Ом , включен последовательно в цепь нагрузки.Чем больше ток нагрузки, тем больше на нем выделяется напряжение, пропорциональное току.

В исходном состоянии, когда нагрузка на выходе стабилизатора мала или отключена, аналог тиристора закрыт. Приложенного к нему напряжения 10 вольт (от стабилитрона) не хватает для пробоя. В этот момент падение напряжения на резисторе R4 почти равно нулю.
Если постепенно увеличивать ток нагрузки, будет увеличиваться падение напряжения на резисторе R4 . При определенном напряжении на R4, аналог тиристора пробивается и установится напряжение, между точкой Тчк1 и общим проводом, равное 1,5 — 2,0 вольта .
Это есть напряжение перехода анод — катод открытого аналога тиристора.

Одновременно загорается светодиод Д1 , сигнализируя об аварийной ситуации. Напряжение на выходе стабилизатора, в этот момент, будет равно 1,5 — 2,0 вольта .
Чтобы восстановить нормальную работу стабилизатора, необходимо выключить нагрузку и нажать на кнопку Кн , сбросив блокировку защиты.
На выходе стабилизатора вновь будет напряжение 9 вольт , а светодиод погаснет.
Настройкой резистора R3 , можно подобрать ток срабатывания защиты от 1 ампера и более . Транзисторы Т1 и Т2 можно ставить на один радиатор без изоляции. Сам же радиатор изолировать от корпуса.

Появление четырехслойных p-n-p-n полупроводниковых элементов совершило настоящий прорыв в силовой электронике. Такие устройства получили название «тиристоров». Кремниевые управляемые вентили являются наиболее распространенным семейством тиристоров.

Данный вид полупроводниковых приборов имеет следующую структуру:

Как видим из структурной схемы тиристор имеет три вывода – катод, управляющий электрод и анод. Подключению к силовым цепям подлежат анод и катод, а управляющий электрод подключается к системе управления (слаботочные сети) для управляемого открытия тиристора.

На принципиальных схемах тиристор имеет такое обозначение:

Вольт-амперная характеристика показана ниже:

Давайте подробнее рассмотрим эту характеристику.

Обратная ветвь характеристики

В третьем квадранте характеристики диодов и тиристоров равны. Если к аноду приложить отрицательный потенциал относительно катода, то к J 1 и J 3 прикладывается обратное напряжение, а к J 2 — прямое, что вызовет протекание тока обратного (он очень мал, как правило несколько миллиампер). Когда же это напряжение увеличится до так называемого напряжения пробоя, произойдет лавинное нарастание тока между J 1 и J 3 . При этом, если данный ток не будет ограничен, то произойдет пробой перехода с последующим выходом из строя тиристора. При обратных же напряжениях, которые не превышают напряжения пробоя, тиристор будет вести себя как резистор с большим сопротивлением.

Зона низкой проводимости

В данной зоне все наоборот. Потенциал катода будет отрицательный по отношению к потенциалу анода. Поэтому к J 1 и J 3 будет приложено прямое, а к J 2 – обратное напряжение. Результатом чего станет весьма малый анодный ток.

Зона высокой проводимости

Если напряжение на участке анод – катод достигнет значения, так называемого напряжением переключения, то произойдет лавинный пробой перехода J 2 и тиристор будет переведен в состояние высокой проводимости. При этом U a снизится от нескольких сотен до 1 — 2 вольт. Оно будет зависеть от типа тиристора. В зоне высокой проводимости ток, протекающий через анод, будет зависеть от нагрузки внешней элемента, что дает возможность рассматривать его в этой зоне как замкнутый ключ.

Если пропустить ток через управляющий электрод, то напряжение включения тиристора уменьшится. Оно напрямую зависит от тока управляющего электрода и при достаточно большом его значении практически равно нулю. При выборе тиристора для работы в схеме, то его подбирают таким образом, чтоб напряжения обратное и прямое не превышали паспортных значений напряжений пробоя и переключения. Если эти условия выполнить трудно, или имеется большой разброс в параметрах элементов (например необходим тиристор на 6300 В, а его ближайшие значения 1200 В), то иногда применяют или включение элементов.

В нужный момент времени с помощью подачи импульса на управляющий электрод можно перевести тиристор с закрытого состояния в зону высокой проводимости. Ток УЭ, как правило, должен быть выше минимального тока открытия и он составляет порядка 20-200 мА.

Когда анодный ток достигнет определенного значения, при котором запирания тиристора невозможно (ток переключения), управляющий импульс может быть снят. Теперь тиристор сможет перейти обратно в закрытое состояние только при уменьшении тока ниже, чем ток удержания, или прикладыванием к нему напряжения обратной полярности.

Видео работы и графики переходных процессов

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием — не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод — это контакт с внешним p-слоем, катод — с внешним n-слоем.
Освежить память о p-n переходе можно .

Классификация

В зависимости от количества выводов можно вывести классификацию тиристоров. По сути все очень просто: тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод). Тиристор с тремя и четырьмя выводами, называются триодными или тетродными. Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Принцип работы



Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.


К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров

1. Напряжение включения — это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение — это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение — это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток — это максимальный ток в открытом состоянии.
5. Обратный ток — ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Заключение

Таким образом, в тиристоре существует положительная обратная связь по току — увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор — не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

Перед тем как разбираться с темой «тиристор – принцип работы», необходимо понять, что собой представляет этот небольшой прибор. По сути, это силовой ключ, только он всегда находится в открытом состоянии. Поэтому его часто называют не полностью управляемый ключ.

Необходимо отметить, что по своему устройству тиристор напоминает обыкновенный транзистор или диод. Правда, есть и существенные отличия. К примеру, диод – это полупроводниковый двухслойный элемент на кремневой основе (PN), транзистор – трехслойный (PNP или NPN), тиристор – четырехслойный (PNPN). То есть, у него три перехода p-n. Именно поэтому диодные выпрямители перед тиристорными являются менее эффективными. Это хорошо видно на схеме управления тиристорами.

Где применяются тиристоры

Область применения тиристоров обширна. К примеру, из них можно собрать инвертор для сварки или зарядное автомобильное устройство. Некоторые умельцы своими руками собирают даже генераторы. Самое важное, что тиристоры могут через себя пропускать токи и высокочастотные, и низкочастотные. Поэтому, собрав мост из этих приборов, можно изготовить трансформатор и для сварочного аппарата.


Конструкция и принцип действия

Состоит тиристорный ключ из трех частей:

  • Анод.
  • Катод.
  • Вход.

Последний состоит из трех переходов p-n. При этом переключение переходов производится с очень большой скоростью. Вообще, принцип работы тиристора можно объяснить лучше, если рассмотреть схему связки двух транзисторов, связанных параллельно, как выключатели комплементарно регенеративного действия.


Итак, самая простейшая схема двух транзисторов, совмещенных так, чтобы при пуске ток коллектора поступал на NPN второго прибора через каналы NPN первого. А в это же время ток проходит обратный путь через первый транзистор на второй. По сути, получается достаточно простая связка, где база-эмиттер одного из транзисторов, в нашем случае второго, получает ток от коллектора-эмиттера другого прибора, то есть, первого.

Цепь постоянного тока

В цепи постоянного тока тиристор работает по принципу подачи импульса положительной полярности, конечно, относительно катода. На длительность перехода из одного состояния в другое оказывает большое воздействие ряд характеристик. А именно:

  • Вид нагрузки (индуктивный, активный и прочее).
  • Скорость нарастания импульса и его амплитуда, имеется в виду ток нагрузки.
  • Величина самой токовой нагрузки.
  • Напряжение в цепи.
  • Температура самого прибора.

Здесь самое важное, чтобы в сети, где установлен данный прибор, не произошло резкое возрастание напряжения. В этом случае может произойти самопроизвольное включение тиристора, а сигнал управления будет в это время отсутствовать.

Цепь переменного тока

В этой сети тиристорный ключ работает немного по-другому. Этот прибор дает возможность проводить несколько видов операций. К примеру:

  • Включение и отключение цепи, в которое действует активная или активно-реактивная нагрузки.
  • Можно изменять значение действующей нагрузки и ее средней величины за счет возможности изменять (регулировать) подачу самого сигнала управления.

Но имейте в виду, что тиристорный ключ может пропускать сигнал только в одном направлении. Поэтому сами тиристоры устанавливаются в цепь, так сказать, во встречно-параллельном включении.

Управление тиристорами

В силовых электронных аппаратах чаще всего используется или фазное, или широтно-импульсное управление тиристором.

В первом случае регулировать токовую нагрузку можно за счет изменения углов или α, или θ. Это относится к принудительной нагрузке. Искусственную нагрузку можно регулировать только с помощью управляемого тиристора, который также называется запираемый.

При ШИМ (широтно-импульсной модуляции) во время Тоткр сигнал подается, а, значит, сам прибор находится в открытом состоянии, то есть, ток подается с напряжением Uн. В период времени Тзакр сигнал отсутствует, а сам прибор находится непроводящем состоянии.

Тиристорные светодиоды

Обычно тиристор и светодиод в одном светильнике не устанавливаются. Его место заменяет диод, который работает и на включение, и на отключение, как обычный ключ. Это связано с разными причинами, где основная – это конструкция и принцип действия самого прибора, который всегда находится в открытом состоянии. В настоящее время ученые изобрели так называемый тиристорный светодиод.


Во-первых, тиристорный светодиод в своем составе кроме кремния имеет: галлий, алюминий, индий, мышьяк и сурьму. Во-вторых, спектр излучения при n-переходах между материалами создает волну длиною 1,95 мкм. А это достаточно большая оптическая мощность, если ее сравнивать с диодным элементом, который производит световые волны в том же диапазоне.

Тиристор. Устройство, назначение.

Тиристором называется управляемый трехэлектродный полупроводниковый прибор с тремя p–n -переходами, обладающий двумя устойчивыми состояниями электрического равновесия: закрытым и открытым.

Тиристор совмещает в себе функции выпрямителя, выключателя и усилителя. Часто он используется как регулятор, главным образом, когда схема питается переменным напряжением. Нижеследующие пункты раскрывают три основных свойства тиристора:

1 тиристор, как и диод, проводит ток в одном направлении, проявляя себя как выпрямитель;

2 тиристор переводится из выключенного состояния во включенное при подаче сигнала на управляющий электрод и, следовательно, как выключатель имеет два устойчивых состояния.

3 управляющий ток, необходимый для перевода тиристора из «закрытого» состояния в «открытое», значительно меньше (несколько миллиампер) при рабочем токе в несколько ампер и даже в несколько десятков ампер. Следовательно, тиристор обладает свойствами усилителя тока;

Устройство и основные виды тиристоров

Рис. 1. Схемы тиристора: a) Основная четырёхслойная p-n-p-n -структура b) Диодный тиристор с) Триодный тиристор.

Основная схема тиристорной структуры показана на рис. 1. Она представляет собой четырёхслойный полупроводник структуры p-n-p-n , содержащий три последовательно соединённых p-n -перехода J1, J2, J3. Контакт к внешнему p -слою называется анодом, к внешнему n -слою — катодом. В общем случае p-n-p-n -прибор может иметь до двух управляющих электродов (баз), присоединённых к внутренним слоям. Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния). Прибор без управляющих электродов называется диодным тиристором или динистором . Такие приборы управляются напряжением, приложенным между основными электродами. Прибор с одним управляющим электродом называют триодным тиристором или тринистором (иногда просто тиристором, хотя это не совсем правильно). В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.

Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях. В последнем случае соответствующие приборы называются симметричными (так как ихВАХ симметрична) и обычно имеют пятислойную структуру полупроводника. Симметричный тринистор называется такжесимистором или триаком (от англ. triac). Следует заметить, что вместо симметричных динисторов , часто применяются их интегральные аналоги, обладающие лучшими параметрами.

Тиристоры, имеющие управляющий электрод, делятся на запираемые и незапираемые. Незапираемые тиристоры, как следует из названия, не могут быть переведены в закрытое состояние с помощью сигнала, подаваемого на управляющий электрод. Такие тиристоры закрываются, когда протекающий через них ток становится меньше тока удержания. На практике это обычно происходит в конце полуволны сетевого напряжения.

Вольтамперная характеристика тиристора

Рис. 2. Вольтамперная характеристика тиристора

Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис 2. Она имеет несколько участков:

· Между точками 0 и (Vвo,IL) находится участок, соответствующий высокому сопротивлению прибора — прямое запирание (нижняя ветвь).

· В точке Vво происходит включение тиристора (точка переключения динистора во включённое состояние).

· Между точками (Vво, IL) и (Vн,Iн) находится участок с отрицательным дифференциальным сопротивлением-неустойчивая область переключения во включённое состояние. При подаче разности потенциалов между анодом и катодом тиристора прямой полярности больше Vно происходит отпирание тиристора (динисторный эффект).

· Участок от точки с координатами (Vн,Iн) и выше соответствует открытому состоянию (прямой проводимости)

· На графике показаны ВАХ с разными токами управления (токами на управляющем электроде тиристора) IG (IG=0; IG>0; IG>>0), причём чем больше ток IG, тем при меньшем напряжении Vbo происходит переключение тиристора в проводящее состояние

· Пунктиром обозначен т. н. «ток включения спрямления» (IG>>0), при котором тиристор переходит в проводящее состояние при минимальном напряжении анод-катод. Для того, чтобы перевести тиристор обратно в непроводящее состояние необходимо снизить ток в цепи анод-катод ниже тока включения спрямления.

· Участок между 0 и Vbr описывает режим обратного запирания прибора.

Вольтамперная характеристика симметричных тиристоров отличается от приведённой на рис. 2 тем, что кривая в третьей четверти графика повторяет участки 0-3 симметрично относительно начала координат.

По типу нелинейности ВАХ тиристор относят к S-приборам.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Тиристоры принцип работы и характеристики Тиристор

Тиристоры: принцип работы и характеристики

Тиристор – это полупроводниковый прибор с двумя устойчивыми состояниями, который может переключаться из закрытого состояния в открытое и наоборот.

В схемах тиристор применяется как ключ, в цепях электропитания устройств связи и энергетики, различных автономных управляющих устройствах, в качестве регуляторов освещения.

Тиристоры, имеющие только анод и катод, не имеющие электрода для переключения между состояниями, называются неуправляемыми (диодными) тиристорами или динисторами.

Тринистор – это тиристор, имеющий четырехслойную структуру, одна из базовых областей которого имеет управляющий электрод для подачи управляющего напряжения.

В динисторах включение производится путем увеличения анодного напряжения UA до значения напряжения включения UAвкл (UA≥ UAвкл), при котором ток через прибор резко увеличивается.

В зависимости от того, какая база условного тринистора сделана управляющей, различают тиристоры с анодным и катодным управлением.

Параметры тиристоров В аппаратуре связи тиристоры применяются как переключающие устройства, работающие в импульсном режиме. Поэтому параметры тиристоров в основном касаются процессов включения и выключения, импульсной работы и предельных режимов.

ØВремя включения tвкл= tз + tнар. Где t 3 – время задержки, tнар – время нарастания: Øtвкл – определяется как промежуток времени между моментом подачи управляющего импульса и моментом достижения током тиристора значения I= 0, 9 Iи;

Øt 3 – промежуток времени между моментом подачи управляющего импульса и моментом достижения током тиристора значения I = 0, 1 Iт; Øtвыкл – это промежуток времени от момента, когда ток тиристора достиг нулевого уровня, до момента восстановления запирающей способности тиристора.

Основные параметры Øнапряжение включения; Øудерживающий ток; Øминимальное значение постоянного тока управляющего электрода, которое обеспечивает переключение тиристора из закрытого состояния в открытое, при определенном режиме в основной цепи.

Øмаксимально допустимое среднее значение тока за период. Øмаксимально допустимая мощность, рассеиваемая на тиристоре. Øмаксимально допустимое обратное напряжение. Последние три параметра относятся к предельным.

Домашнее задание Ø [1], глава 5

Принцип работы и работа тиристоров

Тиристор, также известный как SCR (кремниевый выпрямитель), представляет собой диод особого типа, который пропускает ток только тогда, когда на его вывод затвора подается управляющее напряжение. Хотя это, похоже, не более чем переключатель, управляемый напряжением, следует отметить следующее: При наличии прямого тока (т.е. после тиристор включается подходящим напряжением затвора) он не выключится даже после снятия напряжения затвора.Тиристор выключится только тогда, когда прямой ток упадет до нуля. В цепи постоянного тока это делает устройство практически бесполезным, за исключением некоторых конкретных приложений безопасности (защиты от лома).


Чаще всего тиристоры используются в цепях переменного тока. В цепи переменного тока прямой ток падает до нуля в течение каждого цикла, поэтому всегда будет функция отключения. Однако это означает, что гейт необходимо запускать каждый цикл, чтобы снова включить его.Именно в относительном времени выполнения этих двух функций тиристору отводится самая важная роль — регулирование мощности. Обратите внимание на показанную форму волны ниже это соответствует типичному источнику переменного напряжения. Если тиристор включается в начале разряда положительного напряжения, то время его прямой проводимости увеличивается до максимума. Это означает максимальную мощность, передаваемую нагрузке. Соответственно, если он включен ближе к концу положительного экскурсии достигается минимальное время проводимости и минимальная мощность.
Посредством подходящего временного управления напряжением затвора можно разработать грубый регулятор мощности, например, для управления уровнем нагрева простого резистивного нагревателя.

Как видно из схемы напротив, только половина цикла переменного тока доступна для управления, поскольку вся отрицательная половина находится в неправильном направлении для тиристора (действие диода). Это довольно расточительно, и гораздо лучший вариант — использовать два тиристора (спина к спине) для управления проводимостью в обоих направлениях.Устройство, специально разработанное для этого, называется TRIAC и показано ниже.

Принцип работы и применение тиристорных диммеров

Существует много типов диммеров. По типу источника питания их можно разделить на затемнение по переменному току и диммирование по постоянному току. По принципу действия схемы управления их можно разделить на амплитудное и фазовое. По типам коммутационных устройств их можно разделить на пассивные диммеры. Свет и активное затемнение можно разделить на сегментное затемнение и бесступенчатое затемнение в зависимости от уровня изменения освещенности.По типу нагрузки его можно разделить на прямое затемнение источников электрического света и косвенное затемнение контроллеров освещения. Исчерпывающее введение в классификацию диммеров.

1.1 Регулировка яркости AM

1.1.1 Регулировка яркости с помощью переменного резистора

Регулировка яркости с помощью переменного резистора — это самый ранний метод регулирования яркости. Посредством последовательного подключения мощного переменного резистора в цепи освещения лампы накаливания регулировка переменного резистора может изменить значение тока, протекающего через лампу накаливания, тем самым изменяя яркость света.Этот метод регулирования яркости может использоваться как в цепях питания переменного, так и постоянного тока и не вызывает радиопомех. Однако из-за высокого энергопотребления и большого тепловыделения переменного резистора эффективность системы очень низкая, и она обычно используется только в качестве демонстрации принципа.

1.1.2 Регулировка яркости автоматического регулятора напряжения

Автоматический регулятор напряжения подключается последовательно в цепь переменного тока, и амплитуда напряжения, подаваемого на лампу накаливания, изменяется путем регулировки положения щетки, тем самым изменяя яркость свет.Хотя автоматический регулятор напряжения громоздок и имеет шум промышленной частоты, из-за высокого КПД системы увеличение или уменьшение нагрузки не влияет на уровень диммирования и на первых порах использовался в больших количествах для диммирования ступеней.

1.1.3 Схема диодного регулирования яркости

Эта схема управляется трехступенчатым переключателем, который используется для подачи полного напряжения, полуволнового питания и управления выключением соответственно. Диод здесь можно рассматривать как односторонний кремниевый управляемый выпрямитель (SCR), который работает в проводящем состоянии.Этот метод диммирования представляет собой переходный тип от диммирования по амплитуде к диммированию по фазе. Поскольку полуволновое напряжение питания лампы накаливания является фиксированным значением напряжения и не может быть отрегулировано произвольно, а лампа накаливания будет слегка мигать под полуволновым напряжением, практичность этой схемы не очень хорошая.

1.2 Фазовое затемнение

Диммирование с фазовой модуляцией — это изменение формы синусоидальной волны путем регулировки угла проводимости каждой полуволны переменного тока, тем самым изменяя эффективное значение переменного тока, чтобы достичь цели затемнения, также известное как затемнение «срезающей волной».Регулировка яркости с фазовой модуляцией включает два типа: управление фазой по переднему фронту и управление фазой по заднему фронту (также называемое передним и задним обрезанием). Принцип работы полностью отличается от принципа действия диммирования с амплитудной модуляцией.

1.2.1 Новейший диммер с регулировкой фазы

Новейшие диммеры обладают такими преимуществами, как высокая точность регулировки, высокая эффективность, малый размер, легкий вес и простота эксплуатации на больших расстояниях. Они доминируют на рынке. Большинство производителей имеют диммеры именно этого типа.В передовых диммерах с регулировкой фазы обычно используются тиристоры в качестве переключающих устройств, поэтому их также называют тиристорными диммерами.

Хотя тиристорный диммер имеет простую схему и низкую стоимость, он будет создавать сильные радиопомехи при переключении тиристора. Если не принять эффективных мер фильтрации, это затруднит использование многих электроприборов. Кроме того, тиристорный диммер имеет очень крутой фронт при включении, и форма волны напряжения внезапно скачет от нуля.Это мало влияет на резистивную нагрузку, подобную лампе накаливания, но не подходит для затемнения газоразрядного источника света. . Поскольку большинству газоразрядных источников света требуется цепь управления для совместной работы, а схема управления представляет собой емкостную нагрузку, скачок напряжения, создаваемый тиристорным диммером, будет генерировать большой импульсный ток на емкостной нагрузке, что делает работу схемы нестабильной, и даже приводит к сгоранию схемы привода.

1.2.2 Диммер с регулировкой фазы по заднему фронту

В дополнение к преимуществам диммера SCR диммер с регулировкой фазы по заднему фронту имеет важную особенность, которая может адаптироваться к потребностям регулирования яркости газоразрядной лампы. С ускоренным отказом от ламп накаливания во всем мире потребности пользователей в затемнении источников света, таких как электронные энергосберегающие лампы с емкостным сопротивлением, постепенно увеличивались, и диммеры с задней кромкой только что адаптировались к этим рыночным изменениям. Диммер с управлением фазой по заднему фронту обычно использует MOSFET в качестве переключающего устройства, поэтому его также называют диммером MOSFET.

1,3 ШИМ-диммер

ШИМ-диммер впервые был использован в источниках питания постоянного тока для регулирования линейных нагрузок, таких как лампы накаливания с вольфрамовой нитью. Он использует сигнал ШИМ для управления включением и выключением переключающего устройства и регулирует ток, протекающий через лампочку, путем изменения рабочего цикла. Регулировка яркости.

1.4 Синусоидальный диммер

Принцип синусоидального диммера в чем-то похож на метод ШИМ-диммирования. Выключатель питания, установленный в линии переменного тока, приводится в действие высокочастотным сигналом.Выключатель питания включается несколько раз в каждой полуволне синусоидальной волны, а время проводимости является переменным. Напряжение промышленной частоты на обоих концах нагрузки ограничивается высокочастотным сигналом, и ток, протекающий через нагрузку, можно регулировать, изменяя частоту высокочастотного сигнала, тем самым реализуя управление затемнением. Синусоидальные диммеры обычно используют IGBT (биполярные транзисторы с изолированным затвором) в качестве переключающих устройств, поэтому их также называют диммерами IGBT.

Синусоидальный диммер не изменяет характеристики синусоидальной волны и оказывает небольшое влияние на рабочее состояние нагрузки, а генерируемые гармонические помехи невелики, что делает его пригодным для использования с нелинейными нагрузками.И это может уменьшить потери в линии и повысить эффективность, уменьшить тепловыделение коммутационных устройств и значительно улучшить применимость и надежность схемы.

Синусоидальный диммер позволяет избежать дефекта «рубки» тиристорного диммера. Он не имеет ограничения по минимальной мощности нагрузки и может адаптироваться к различным типам нагрузок, таким как лампы накаливания, энергосберегающие лампы, балласты люминесцентных ламп и двигатели вентиляторов. Это идеальный диммер. Однако, поскольку для IGBT требуются специальные приводы и технологии защиты, схема является сложной, а стоимость высока.В настоящее время он используется только в особых случаях, таких как затемнение сцены, но по-прежнему является основным направлением будущего развития.

Среди обычно используемых диммеров для ламп накаливания наиболее широко используются симисторы. Этот диммер включается и выключается один раз в течение каждой полуволны переменного тока. Когда требуется уменьшить яркость лампы накаливания, тиристор отключит часть переменного тока, чтобы уменьшить ток и достичь цели затемнения.

2.1 Состав схемы

Как только тиристор запускается на проводимость, он будет продолжать проводить, пока напряжение переменного тока не пересечет нулевое значение. Тиристор отвечает за рабочий ток, протекающий через лампу накаливания. Поскольку значение сопротивления лампы накаливания очень низкое, когда она находится в холодном состоянии, и учитывая пиковое значение переменного напряжения, во избежание сильного воздействия тока при запуске, тиристор следует зарезервировать при выборе. большая текущая маржа.

Импульс запуска схемы запуска должен иметь достаточную амплитуду и ширину, чтобы тиристор полностью включился. Чтобы тиристор мог надежно срабатывать при различных условиях, напряжение и ток срабатывания триггера, посылаемые схемой триггера, должны быть больше, чем у тиристора. Минимальное значение триггерного напряжения UGT и триггерного тока IGT, а также минимальная ширина триггерного импульса должны продолжаться до тех пор, пока анодный ток не превысит поддерживающий ток (т. Е. Удерживающий ток IL), в противном случае SCR будет снова выключен. потому что он не полностью включен.Ширина триггерного импульса обычно составляет 20 ~ 50 мкс. Для больших индуктивных нагрузок следует увеличить ширину импульса запуска, поскольку ток нарастает медленно. Обычно это 300 мкс ~ 1 мс, что эквивалентно фазовому углу 18 ° синусоидальной волны 50 Гц. Емкость C2 обычно составляет 22 нФ ~ 220 нФ.

В диммере это двунаправленный триггерный диод, который реализует функцию триггера, и обычно используются DB3 и другие типы. Есть также некоторые диммеры, в которых вместо триггерных диодов используются резисторы или неоновые лампы, но фактический эффект от использования не идеален.

Защитный резистор R2 — это защитный резистор, используемый для предотвращения повреждения полупроводниковых устройств, вызванного чрезмерным током, когда POT1 настроен на нулевое сопротивление. Если R2 слишком велик, диапазон регулировки яркости станет меньше, поэтому его следует выбирать соответствующим образом.

Резистор регулировки мощности R1 определяет минимальную мощность, на которую можно настроить лампу накаливания. Если R1 не подключен, лампа накаливания будет полностью погашена при установке POT1 на максимальное значение, что вызовет определенные неудобства в бытовых применениях.После подключения R1, когда POT1 настроен на максимальное значение, из-за эффекта параллельного шунтирования R1 все еще существует определенный ток для зарядки C2, так что минимальная мощность лампы накаливания может быть отрегулирована. Если R1 заменить на переменный резистор, можно добиться более точной регулировки, чтобы обеспечить постоянство массового производства. В то же время R1 также имеет функцию улучшения линейности потенциометра, делая изменение света более подходящим для светочувствительных характеристик человеческого глаза.

Потенциометры Маломощные диммеры обычно выбирают потенциометры с переключателями, которые могут быть связаны для отключения питания при уменьшении яркости до минимума. Такие потенциометры обычно делятся на нажимные (PUSH) и поворотные (ROTARY). Для диммеров с большей мощностью, поскольку ток через контакты переключателя слишком велик, потенциометр и переключатель обычно устанавливаются отдельно для экономии материальных затрат. Принимая во внимание требования к характеристической кривой диммирования, обычно выбирают линейные потенциометры.Полоса сопротивления этого потенциометра распределена равномерно, значение сопротивления на единицу длины равно, а значение сопротивления изменяется в линейной зависимости от расстояния скольжения или угла поворота.

Сеть фильтрации Поскольку прерывание напряжения SCR больше не представляет собой синусоидальную форму волны, генерируется большое количество гармонических помех, которые серьезно загрязняют энергосистему, поэтому необходимо принимать эффективные меры фильтрации для уменьшения гармонического загрязнения.Сеть фильтров, образованная L1 и C1 на рисунке, используется для устранения помех, создаваемых тиристором во время работы, так что продукт отвечает соответствующим требованиям электромагнитной совместимости и избегает воздействия на телевизоры, радиоприемники и другое оборудование.

Тепловой предохранитель У мощных диммеров или диммеров, используемых для групповой установки, превышение внутренней температуры выше обычного. Установите в цепь плавкий предохранитель, чтобы отключать цепь при аномальном повышении температуры во избежание аварий.происходить.

2.2 Буферная защита SCR

Когда тиристор работает в цепи, его состояние переключения не завершается мгновенно. Эквивалентное сопротивление тиристора все еще очень велико, когда он только что включен. В это время, если ток растет быстро, это вызовет большие потери при включении; точно так же будет большой ток, когда тиристор близок к полному отключению. В это время, если напряжение на тиристоре быстро возрастает, также будут возникать большие потери при выключении.Потеря переключения приведет к увеличению тепловыделения SCR, а в тяжелых случаях он сгорит в течение этого периода. Принятие соответствующих буферных мер для подавления скорости нарастания тока и напряжения может эффективно улучшить коммутационные рабочие условия тиристора.

Есть два типа демпфирующих цепей. Один состоит в том, чтобы подавить скорость нарастания тока, используя характеристику, согласно которой ток, протекающий через катушку индуктивности, не может внезапно измениться, а другой — подавить скорость роста напряжения, используя характеристику, согласно которой напряжение на конденсаторе не может внезапно измениться.

Когда тиристор используется в цепи мощного диммирования, из-за увеличенной индуктивности большого тока, протекающего через тиристор и лампу, для обеспечения надежности цепи, демпферная цепь RC должна быть подключена параллельно тиристору. для ограничения управляемости Скорость нарастания напряжения (dv / dt) на обоих концах кремния, когда он выключен. Конденсатор используется для ограничения значения dv / dt на симисторе, а резистор используется для ограничения тока разряда конденсатора, когда тиристор включен, и ослабления затухающих колебаний между конденсатором и индуктивностью фильтра.

В вышеупомянутой сети фильтров катушка индуктивности L1 используется для подавления скорости нарастания тока dI / dt при включении тиристора, а конденсатор C и диод D образуют схему поглощения отключения, чтобы подавить рост тока напряжение на клеммах при выключенном ГТО. Скорость dV / dt, где резистор R обеспечивает путь разряда для конденсатора C. Существует много форм демпфирующих схем, подходящих для различных устройств и различных схем.

2.3 Гистерезис диммера SCR

Обычная тиристорная цепь диммирования имеет явление непостоянного включения и выключения питания.То есть при установке потенциометра на максимальное значение 500К лампа накаливания почти гаснет. Снова уменьшите потенциометр, лампа накаливания будет излучать свет только при настройке ниже 400 К. Мощность, когда потенциометр установлен на минимальный угол, больше, чем мощность в том же положении при включении питания, что характерно для обычных диммеров. Эффект гистерезиса. Причина эффекта гистерезиса заключается в том, что зарядный конденсатор частично разряжается каждый раз при срабатывании тиристора.Небольшой резистор, включенный последовательно на триггерный диод, может смягчить это явление. Более эффективный метод — использовать схему, показанную на рисунке выше, и использовать C2 для запуска тиристора. Из-за эффекта изоляции R3 падение напряжения на C2 очень мало, в то время как C3 напряжение на нем остается неизменным, избегая эффекта гистерезиса.

2.4 Предел минимальной нагрузки тиристорного диммера

При использовании тиристорного диммера, когда нагрузка меньше определенной мощности, лампа мигает, что вызвано недостаточным минимальным током обслуживания тиристора.Поскольку минимальный ток удержания различных типов тиристоров не является согласованным, производитель указывает применимый предел минимальной мощности нагрузки в описании продукта. На эту проблему нужно обращать внимание при ее использовании.

2,5 Мерцание лампы накаливания

Мы знаем, что размер зрачка человеческого глаза будет регулироваться с изменением внешней яркости, чтобы контролировать интенсивность света, попадающего в глаз, но есть разница во времени примерно 50 ~ 200 мс между скоростью регулировки и сменой сцены, цель состоит в том, чтобы предотвратить быстрое увеличение внешней яркости.Усталость глазных мышц, вызванная изменениями, эта характеристика человеческого глаза называется «постоянством зрения».

В лампе накаливания используется переменное напряжение 50 Гц. Поскольку положительная и отрицательная полуволны переменного тока заставят лампу накаливания светиться, лампа накаливания будет мигать 100 раз в течение 1 с, то есть период мерцания составляет 10 мс, что меньше минимального уровня зрения человеческого глаза. Временное время , и поскольку тепловая инерция вольфрамовой лампы относительно велика, человеческому глазу трудно почувствовать мерцание лампы накаливания.

2.6 Шум диммера

При использовании симисторного диммера для управления лампой накаливания мы часто слышим легкое жужжание. Это неотъемлемая характеристика симисторного диммера. Причины этого включают следующие два аспекта:

2.6.1 Колебание фильтра

Высококачественный тиристорный диммер должен иметь LC-фильтр на входе. Его функция заключается в поглощении шума переключения тиристора, сглаживании колебаний напряжения, вызванных периодическим переключением, и предотвращении повреждения диммером внешнего мира.Гармоническая помеха.

Индуктор в LC-фильтре изготовлен из листовой кремнистой стали или материала сердечника из порошкового железа. Когда через него протекает большой ток с частотой 100 Гц (например, источник питания с частотой 50 Гц), магнитный сердечник будет колебаться, и он будет издавать жужжащий звук. Особенно, когда лампочка настроена на максимальную яркость, ток 100 Гц находится на максимальном значении, а жужжащий звук от диммера более очевиден, что является неизбежной характеристикой схемы.

В нормальных условиях шум, излучаемый магнитопроводом, находится в допустимых пределах.Если шум слишком велик, проблему можно решить, изменив материал магнитопровода или увеличив размер магнитопровода на этапе проектирования.

Другими словами, замена диммера большей мощности обычно может устранить этот шум.

2.6.2 Колебания накала

Когда лампа накаливания самая яркая, тиристор почти включен в течение всего цикла напряжения, а выходной ток в основном непрерывный. В это время лампочка гудеть не будет.Когда лампа не горит, тиристор переключается 100 раз в секунду (например, источник питания 50 Гц). Воздействие этого прерывистого тока на нить накала вызывает жужжащий звук. Особенно, когда яркость лампы составляет 50% ~ 60%, напряжение на SCR мгновенно перескакивает от нуля до пикового значения синусоидального напряжения. В это время нить накала наиболее сильно вибрирует, а звук жужжания самый громкий. Замена лампы на лампу с толстой нитью или лампу с короткой нитью может уменьшить вибрацию нити и гудение.

Кремниевый управляемый выпрямитель

(SCR) — определение, конструкция, режимы работы и VI-характеристики

ср знаю, что диод позволяет электрический Текущий в одном направлении и блокирует электрический ток в другом направление. Другими словами, диод преобразует переменный ток. ток в постоянный ток Текущий.Это уникальное поведение диодов позволяет строить различные типы выпрямители типа половинные волна, полная волна и мост выпрямители. Эти выпрямители преобразует переменный ток в постоянный.

полуволновые, двухполупериодные и мостовые выпрямители используют нормальные p-n переходные диоды (двухслойные диоды).Итак, если напряжение примененная к этим диодам достаточно высокая, то диоды может быть уничтожен. Итак, выпрямители не может работать при высоком напряжении.

Чтобы преодолеть этот недостаток, ученые разработали специальный тип выпрямителя, известный как Выпрямитель с кремниевым управлением. Эти выпрямители выдерживают высокое напряжение.

Выпрямитель с кремниевым управлением

Определение

Выпрямитель с кремниевым управлением — это 3 терминал и 4-х слойное полупроводниковое устройство управления током.Он в основном используется в устройствах для управления большой мощностью. Выпрямитель с кремниевым управлением также иногда называют Диод SCR, 4-слойный диод, 4-слойное устройство или тиристор. это изготовлен из кремниевого материала, который контролирует высокую мощность и преобразует сильный переменный ток в постоянный (выпрямление). Следовательно, он называется выпрямителем с кремниевым управлением.

Что контролируется кремнием? Выпрямитель?

Кремниевый выпрямитель устройство контроля однонаправленного тока.Как нормальный p-n-переходный диод, он пропускает электрический ток только в одном направление и блокирует электрический ток в другом направлении. А диод с нормальным p-n переходом состоит из двух полупроводниковых слоев. а именно P-типа и N-типа. Однако диод SCR состоит из 4 полупроводниковых слоев чередование материалов типа P и N.

Принцип p-n-p-n переключения был разработан Tanenbaum, Goldey, Moll и Холоняк из Bell Laboratories в 1956 году.Кремний управляемый выпрямитель разработан командой энергетиков во главе с Гордоном Холлом и коммерциализированной Фрэнком В. Фрэнком В. «Билл» Гуцвиллер в 1957 году. На заре создания этого устройства разработка, его часто называют такими именами, как SCR и управляемый выпрямитель. Однако в наши дни это устройство часто упомянутый Thyristor.

Выпрямители с кремниевым управлением используется в приложениях управления мощностью, таких как мощность, подаваемая на электродвигатели, реле управления или индукционные нагревательные элементы где мощность должна контролироваться.

Кремний Обозначение управляемого выпрямителя

Схематическое обозначение кремния. управляемый выпрямитель показан на рисунке ниже. SCR диод состоит из трех клемм, а именно анода (A), катода (K), затвора (ГРАММ). Стрелка диода показывает направление обычного Текущий.

Строительство выпрямителя с кремниевым управлением

Выпрямитель с кремниевым управлением состоит из 4-х полупроводниковых слоев чередующегося типа P и N материалы, из которых формируются конструкции НПНП или ПНПН.Имеет три P-N соединения, а именно J 1 , J 2, J 3 с тремя выводами, прикрепленными к полупроводниковым материалам а именно анод (A), катод (K) и затвор (G). Анод — это положительно заряженный электрод, через который обычный ток поступает в электрическое устройство, катод — это отрицательно заряженный электрод, через который обычный ток покидает электрическое устройство, ворота — это клемма, которая контролирует ток между анодом и катодом.Ворота Терминал также иногда называют контрольным терминалом.

Вывод анода SCR диода соединен с первым материалом p-типа структуры PNPN, катодный вывод соединен с последним материалом n-типа, и клемма затвора соединена со вторым материалом p-типа Ближайшая к катоду структура ПНПН.

В кремниевом выпрямителе, Кремний используется как собственный полупроводник.При добавлении пятивалентных примесей к этому внутреннему полупроводник, образуется полупроводник N-типа. Когда трехвалентный примеси добавляются к собственному полупроводнику, p-тип полупроводник.

Когда 4 полупроводниковых слоя чередующиеся материалы типа P и N кладут друг на друга, В структуре ПНПН образуются три перехода. В PNPN структура, стык J 1 сформирован между первым слоем P-N стык J 2 образуется между слоем N-P и переходом J 3 образуется между последним слоем P-N.Допинг ПНПН структура зависит от применения диода SCR

режимов работы в SCR

Есть три режима работы для выпрямителя с кремниевым управлением (SCR), в зависимости от предвзятое отношение к нему.

1) Режим блокировки в прямом направлении (выключенное состояние)

2) Режим прямого включения (включено)

3) Обратный режим блокировки (выключенное состояние)

1) Режим блокировки в прямом направлении (выключенное состояние)

В этом режиме работы положительное напряжение (+) подается на анод A (+), отрицательное напряжение (-) подается на катод K (-), а затвор G разомкнут, как показано на рисунке ниже.В данном случае переход J 1 и переход J 3 смещены вперед, тогда как переход J2 становится обратный смещенный. Из-за напряжения обратного смещения ширина области истощения увеличивается на переходе J 2 . Эта обедненная область на стыке J 2 действует как стена или препятствие между перекрестком J 1 и переход J 3 .Он блокирует текущий ток между разветвлением J 1 и разветвлением J 3 . Следовательно, большая часть тока не течет. между разветвлением J 1 и разветвлением J 3 . Однако протекает небольшое количество тока утечки. между разветвлением J 1 и разветвлением J 3 .

При подаче напряжения на тиристор достигает значения пробоя, неосновные носители высоких энергий вызывает лавинный срыв.При этом напряжении пробоя ток начинает течь через SCR. Но ниже этой поломки напряжение, SCR предлагает очень высокое сопротивление току и так что он будет в выключенном состоянии.

В этом режиме работы SCR смещен вперед, но ток все еще течет через него. Следовательно, он называется режимом прямой блокировки.

2) Режим прямого включения (включено)

Кремниевый выпрямитель может заставить вести себя двумя способами:

  1. За счет увеличения напряжения прямого смещения, приложенного между анодом и катод за напряжением пробоя
  2. Путем подачи положительного напряжения на вывод затвора.

В первом случае прямое смещение напряжение, приложенное между анодом и катодом, увеличивается сверх напряжение пробоя, неосновные носители (свободные электроны в анод и дырки в катоде) получает большое количество энергии и разогнался до больших скоростей. Это высокоскоростное меньшинство носители сталкиваются с другими атомами и генерируют больше заряда перевозчики. Точно так же много столкновений происходит с другими атомами.Благодаря этому генерируются миллионы носителей заряда. Как в результате происходит пробой обедненной области на стыке J 2 и ток начинает течь через тиристор. Таким образом, SCR будет в состоянии Вкл. Ток в SCR быстро увеличивается после происходит пробой соединения.

Во втором случае небольшой положительный напряжение V G приложено к выводу затвора.Как мы знайте, что в режиме прямой блокировки ток не течет через цепь из-за наличия широкой области истощения на развязке J 2 . Эта область истощения образовалась из-за обратного смещения клеммы затвора. Так что эта проблема может легко решить, приложив небольшое положительное напряжение к Терминал ворот. Когда небольшое положительное напряжение подается на терминал ворот, он станет смещенным вперед.Итак, истощение ширина области на стыке J 2 становится очень узкой. В этом случае приложение небольшого напряжения прямого смещения между анодом и катодом достаточно, чтобы электрический ток проникают через эту узкую область истощения. Следовательно, электрический ток начинает течь через цепь SCR.

Во втором случае нам не нужно обращаться большое напряжение между анодом и катодом.Небольшое напряжение между анод и катод, а положительное напряжение на выводе затвора Достаточно перевести SCR из режима блокировки в режим проводки.

В этом режиме работы SCR смещен вперед, и через него течет ток. Следовательно, он назван как прямой проводящий режим.

3) Обратный режим блокировки (включено)

В этом режиме работы отрицательное напряжение (-) подается на анод (+), положительное напряжение (+) подается на катод (-), и затвор разомкнут, как показано на рисунок ниже.В данном случае переход J 1 и переход J 3 имеют обратное смещение, тогда как переход J2 становится предвзятым.

В качестве переходов J 1 и переход J 3 имеют обратное смещение, нет ток протекает через цепь SCR. Но небольшая утечка ток течет из-за дрейфа носителей заряда в прямом смещенный переход J 2 .Этот небольшой ток утечки не достаточно включить SCR. Таким образом, SCR будет в выключенном состоянии.

V-I Характеристики SCR

V-I характеристики SCR показано на рисунке ниже. Горизонтальная линия внизу цифра представляет величину напряжения, приложенного к SCR, тогда как вертикальная линия представляет количество ток течет в SCR.

В A = напряжение анода, I A = Анодный ток, + V A = прямое анодное напряжение, + I A = Прямой анодный ток, -V A = обратный анод напряжение, + I A = обратный анодный ток

V-I характеристики SCR разделен на три региона:

  • Область прямой блокировки
  • Область прямой проводимости
  • Область обратной блокировки

В этой области положительное напряжение (+) подается на анод (+), отрицательное напряжение (-) подается на катод (-), и затвор разомкнут.Благодаря этому соединение J 1 и J 3 становится смещенным вперед в то время как J 2 становится обратным смещением. Поэтому небольшой ток утечки течет от анода к катодным выводам SCR. Этот небольшой ток утечки известен как прямая утечка. Текущий.

Область ОА V-I характеристик известен как область прямой блокировки, в которой SCR не проводить электрический ток.

  • Область прямой проводимости

Если приложено напряжение прямого смещения между анодом и катодом увеличивается за пределами пробоя напряжения, неосновные носители (свободные электроны на аноде и дырки в катоде) набирает большое количество энергии и ускоряется к большим скоростям. Это высокоскоростные неосновные авианосцы сталкивается с другими атомами и генерирует больше носителей заряда.Точно так же много столкновений происходит с атомами. В связи с этим, генерируются миллионы носителей заряда. В результате истощение пробой области происходит на переходе J 2 и ток начинает течь через SCR. Таким образом, SCR будет во включенном состоянии. Ток в SCR быстро увеличивается после перехода происходит поломка.

Напряжение, при котором находится спай J 2 ломается, когда ворота открыты, называется прорывом вперед напряжение (В BF ).

Район до нашей эры V-I характеристика называется областью проводимости. В этом регионе ток, протекающий от анода к катоду, быстро увеличивается. В область AB указывает, что как только устройство включается, напряжение на тиристоре падает до нескольких вольт.

В этой области отрицательное напряжение (-) подается на анод (+), положительное напряжение (+) подается на катод (-), и затвор разомкнут.В этом случае переход J 1 и переход J 3 являются обратное смещение, тогда как переход J2 становится предвзятым.

как переходы J 1 и переход J 3 являются с обратным смещением, ток через цепь SCR не протекает. Но небольшой ток утечки протекает из-за дрейфа заряда. носители в прямом смещенном переходе J 2 .Этот небольшой ток утечки называется током обратной утечки. Эта небольшая утечка тока недостаточно для включения SCR.

Если приложено напряжение обратного смещения между анодом и катодом увеличивается сверх обратного напряжение пробоя ( В, ВР ), лавинный пробой происходит. В результате ток быстро увеличивается. Область EF называют зоной обратного схода лавины.Этот быстрый рост ток может повредить устройство SCR.

Двухтранзисторный аналог SCR — pnpntransistor

Двухтранзисторная аналогия SCR : если вы находите двухтранзисторную модель SCR и хотите узнать подробности, полностью прочтите эту статью для получения дополнительной информации. SCR также называют тиристором, поэтому, если вы находите двухтранзисторную модель тиристора, то вы тоже попали в нужное место.

Что такое SCR?

SCR (кремниевый управляемый выпрямитель) представляет собой трехконтактное полупроводниковое переключающее устройство. Scr также называет тиристор. Конструкция тиристора похожа на pnpn-транзистор. Он действует как настоящий переключатель в электронике. Он также может преобразовывать переменный ток в постоянный, а также управлять мощностью нагрузки. Таким образом, тиристор совмещает в себе функции выпрямителя и транзистора.

Что такое двухтранзисторная аналогия SCR?

Двухтранзисторная аналогия SCR — это способ представления SCR в виде двухтранзисторной модели.Это означает, что SCR представляет собой комбинацию транзисторов PNP и NPN.

SCR или тиристор — это трехконтактный полупроводниковый прибор, имеющий структуру P-N-P-N. Основной принцип работы SCR можно понять по двухтранзисторному методу SCR.

На рисунке показана схема замещения двух транзисторов SCR . Из рисунка видно, что база транзистора T1 работает как коллектор транзистора T2, а коллектор транзистора T1 работает как база транзистора T2.

Теперь мы находим выражение для анодного тока SCR.

Согласно уравнению тока утечки транзистора,

Ток коллектора выражается как,

Где α — коэффициент усиления транзистора по току, а Icbo — ток утечки транзистора с общей базой.

Для транзистора T1 ток эмиттера = анодный ток Ia и ток коллектора Ic = Ic1

Где α1 — коэффициент усиления транзистора T1 по току.

Аналогично для транзистора Т2

Где α2 — коэффициент усиления транзистора T2 по току. А эмиттерный ток транзистора T2 = катодный ток Ik.

На этом рисунке вы можете видеть, что анодный ток Ia является суммой двух токов коллектора: Ic1 и Ic2.

Положив Ik = Ia + Ig, анодный ток Ia будет,

SCR, работающий на двух транзисторах модели

Срабатывание SCR может быть легко объяснено двухтранзисторной моделью SCR .Как видно на рисунке, напряжение питания V и сопротивление нагрузки R приложены к SCR. Здесь сначала предположим, что напряжение питания V меньше напряжения отключения, как это обычно бывает. Когда затвор открыт (т. Е. Переключатель S открыт), ток базы Ib = 0. К основанию Т2 подключен коллектор Т1. Следовательно, ток не течет в коллекторе T2 и, следовательно, в T1. Таким образом, для этого состояния SCR находится в состоянии ВЫКЛ.

Когда переключатель S замкнут, через базу T2 будет протекать небольшой ток затвора, что означает, что ток его коллектора будет увеличиваться.Коллектор транзистора Т2 соединен с транзистором Т1. Таким образом, ток коллектора T2 является базовым током T1. Следовательно, ток коллектора T1 увеличивается. Но ток коллектора T1 является базовым током T2. Это действие является накопительным, поскольку увеличение тока в одном транзисторе вызывает увеличение тока в другом транзисторе. В результате этого действия оба транзистора доводятся до насыщения, и через нагрузку RL протекает сильный ток. В таких условиях SCR закрывается.

Характеристики SCR:

Это кривая между анодно-катодным напряжением и анодным током Ia при постоянном напряжении затвора (Vg). На рисунке показаны характеристики SCR.

Прямые характеристики: Когда узел положительный по отношению к катодной кривой между V и I при постоянном напряжении затвора, называемый прямыми характеристиками. Когда напряжение питания увеличивается с 0, в точке A SCR начинает пропускать ток через него. Напряжение в точке A, когда SCR проводит, называется напряжением пробоя.После пробоя напряжение внезапно падает и почти равно напряжению на нагрузке. Значение напряжения пробоя изменяется при постоянном напряжении затвора. При правильном напряжении затвора мы можем получить напряжение пробоя при небольшом напряжении.

Обратные характеристики: когда анод отрицательный по отношению к катодной кривой между V и I при постоянном напряжении затвора, называемые обратными характеристиками. Максимальное обратное напряжение, при котором начинает проводиться тиристор, называется напряжением обратного пробоя.На рисунке вы можете увидеть обратные характеристики SCR.

Заключение:

Надеюсь, вы понимаете все, что связано с двухтранзисторной аналогией SCR. Scr может быть представлен двумя транзисторами (pnp и npn транзистор). С двухтранзисторной моделью принцип работы SCR можно легко понять. Если у вас есть какие-либо сомнения относительно этой статьи, оставьте комментарий ниже. Спасибо за поддержку ..

Продолжить чтение

Как выпрямитель с кремниевым управлением (тиристорный выпрямитель) обеспечивает выпрямление и регулирование напряжения? — Статьи знаний — Новости

31 мая 2020

Выпрямитель — это устройство, преобразующее переменный ток в постоянный.Основное применение выпрямителя — преобразование мощности переменного тока в мощность постоянного тока. Поскольку для многих электрооборудования необходимо использовать постоянный ток, но энергоснабжающая компания использует переменный ток, поэтому, если не используется батарея, в противном случае выпрямители незаменимы внутри источника питания.

Как обычно используемый выпрямитель, выпрямители с кремниевым управлением широко используются в ионообменном мембранном электролизе каустической соды, электролизе цветных металлов, электролизе воды для получения водорода, электролизе редкоземельных элементов, электролизе фтороводорода для получения хлора, электролизе морской воды для производства гипохлорита натрия, электролиз рассола для производства гипохлорита натрия, гальваника, анодирование Электрофорез, электрополировка, зарядка, нагрев в дуговых печах постоянного тока, нагрев кристаллов, ядерно-энергетические эксперименты и другие области широко используются в различных отраслях народного хозяйства.

Так как же кремниевый управляемый выпрямитель обеспечивает преобразование переменного тока в постоянный, то есть выпрямление и регулировку выходного напряжения?

1. Схема диодного выпрямителя

Выпрямление (схема выпрямления) — это процесс, который использует однонаправленную проводимость диода для преобразования переменного тока в пульсирующий постоянный ток. Обычные выпрямительные схемы имеют однополупериодное, двухполупериодное, мостовое выпрямление и удвоитель напряжения.

Давайте сначала воспользуемся диодом в качестве примера, чтобы описать принцип выпрямления:

Мостовой выпрямитель (мостовой выпрямитель): четыре диода соединены в мост, поэтому он называется мостовым выпрямителем.

В положительной половине напряжения на вторичной обмотке трансформатора D1 и D3 включены, D2 и D4 выключены, а направление тока i1 показано красной стрелкой. Во время отрицательного полупериода напряжения направление тока i2 показано синей стрелкой.

За один цикл переменного напряжения u2 диоды D1, D3 и D2, D4 по очереди включаются и выключаются, и на нагрузке RL получается одно направление двухполупериодных пульсаций напряжения и тока, этот процесс реализует переменный ток до DC, то есть исправление.

2. Что такое SCR?

SCR (кремниевый управляющий выпрямитель) также называется тиристором, представляет собой управляемый однонаправленный проводящий переключатель, может использоваться в качестве мощного полупроводникового устройства, управляемого сильным электричеством, потому что он может быть надежным под воздействием слабого токового сигнала, который он контролирует различные схемы сильной электрической системы, поэтому применение технологии полупроводниковой электроники расширяется от слабого электрического поля до сильного электрического поля.Тиристоры могут пропускать большие токи и обладают такими преимуществами, как высокое сопротивление давлению, быстрый отклик, хорошие характеристики управления, небольшой размер, легкий вес, удобство использования и обслуживания и т. Д., Поэтому они широко используются в различных областях научных исследований, таких как энергетика, электроника и управление, и все чаще используются. В системе управления медицинского рентгеновского аппарата. Однако у него также есть недостатки, такие как низкая перегрузочная способность и плохая защита от помех, которые необходимо преодолеть в практических приложениях.

Тиристор добавляет затвор на основе диода. В схеме выпрямителя сигнал запуска затвора должен быть подан на затвор для управления временем проводимости тиристора для достижения выпрямления и регулировки выхода постоянного тока.

3. Устройство и принцип работы тиристора

(1) Структура тиристора

Тиристор состоит из двух слоев полупроводника P-типа и двух слоев полупроводника N-типа попеременно. Его три электрода: анод A, катод K и управляющий электрод G.В середине этого устройства PNPN сформированы три PN перехода J1, J2, J3, что эквивалентно трем диодам, включенным последовательно в прямой и обратной фазах. Если между анодом A и катодом K приложено только напряжение, независимо от полярности приложенного напряжения, по крайней мере, один из трех диодов находится в обратном смещении, поэтому он не будет включаться, и устройство находится в выключенном состоянии. штат.

(2) Принцип работы тиристора

Чтобы объяснить принцип работы тиристора, мы рассматриваем его как образованный путем соединения двух кристаллических транзисторов типа PNP и NPN, база каждого транзистора соединена с коллектор другого транзистора, как показано на рисунке.Анод A соответствует эмиттеру PNP-транзистора T1, а катод K соответствует эмиттеру NPN-транзистора T2.

После включения падение напряжения очень мало, напряжение источника питания почти полностью добавляется к нагрузке, и ток нагрузки протекает через тиристор. После включения тиристора его состояние проводимости полностью поддерживается. положительный эффект обратной связи самой трубки. Даже если ток управляющего электрода пропадает, тиристор все еще находится в состоянии проводимости.Следовательно, роль полюса управления состоит только в том, чтобы активировать тиристор, и после включения полюс управления теряет управление. Чтобы выключить тиристор, анодный ток должен быть уменьшен так, чтобы он не мог поддерживать процесс положительной обратной связи, или анодное питание может быть отключено, или обратное напряжение добавлено между анодом и катодом тиристора.

Таким образом, тиристор представляет собой управляемый однонаправленный токопроводящий переключатель. По сравнению с диодом разница в том, что прямая проводимость SCR контролируется током управляющего полюса; по сравнению с триодом, отличие состоит в том, что тиристор не усиливает ток управляющего полюса.

4. Тиристорное выпрямление

Процесс применения тиристора для преобразования переменного тока в выходное напряжение постоянного тока с регулируемой величиной называется управляемым выпрямлением. Наиболее часто используемая схема управляемого выпрямителя представляет собой схему полууправляемого мостового выпрямителя, которая похожа на схему однофазного неуправляемого мостового выпрямителя, за исключением того, что диоды в двух плечах заменены тиристорами.

В момент времени t1 включается T1, а в момент T / 2 + t1 включается T2, а форма волны схемы такая, как показано на рисунке.Предположим, что

α = 0 , Uo = 0,9U2 , Выходное напряжение является самым высоким, что эквивалентно однофазному мостовому выпрямительному напряжению неуправляемого диода; α = 180 ° , Uo = 0 , Тиристор полностью выключен. Среднее значение выпрямленного тока в сопротивлении нагрузки RL составляет:

Видно, что при фиксированном U2 изменение угла управления α, то есть изменение времени добавления триггерного импульса, может изменить среднее значение. значение выходного напряжения постоянного тока, и цель управляемого выпрямления достигнута.

В практических приложениях форма выпрямления более сложная, с трехфазным мостовым полностью управляемым выпрямлением, двойной антизвездой со сбалансированной схемой выпрямителя реактора, 6-импульсным, 12-импульсным, 24-импульсным и другим многоимпульсным выпрямлением, синфазным. антипараллельная Несинфазная антипараллельная структура и так далее.

Если у вас возникнут вопросы по выпрямителю, звоните нам:

+86 13810151476

[email protected]

сайт: www.gprectifier.com

Видео компании: https://youtu.be/VMMHVM-iDn0

Подключитесь к Linkedin: https://www.linkedin.com/in/alice-lee-20b63515b/

Принцип, структура, работа с приложением Схемы

10

Ссылки

[1] Теория тиристоров и соображения проектирования «, ON Semiconductor, номер

доступен по адресу www.onsemi.com/pub/Collateral/HBD855-D.PDF.

[2] MD Singh, KB Khanchandani, Power Electronics, Second Edition, Tata

McGraw-Hill, New Delhi, 2007, страницы 148-152

[3] Замечания по применению AN-3008, RC Snubber Networks for Thyristor Power

Control and Transient Suppression, Fairchild Semiconductor, номер

доступен по адресу http: // www.fairchildsemi.com/an/AN/AN-3008.pdf, страницы 1-5.

[4] «Чувствительные вентильные симисторы серии 2N6071A / B» (PDF). Полупроводник

Components Industries, LLC. Проверено 28 июня 2012 г.

[5] симисторов и микроконтроллеров — простое подключение.

http://www.st.com/web/en/resource/technical/document/application_note/CD0

0003868.pdf

[6] «Технические характеристики продукции Philips Semiconductors Triacs BT138

series» (PDF). http://www.nxp.com/documents/data_sheet/BT138_SER_D_E.

pdf

[7] «STMicroelectronics T3035H, T3050H Snubberless high temperature 30 A

Triacs» (PDF). st.com 100922.

http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_

LITERATURE / DATASHEET / CD00263568.pdf.

[8] Саиф Алдин Саад Обайес Аль-Кадхим, Прототип системы беспроводного контроллера

на базе Raspberry Pi и Arduino для гравировального станка, UKSim-AMSS

19-я Международная конференция по моделированию и моделированию, DOI:

10.1109 / UKSim.2017.20.

[9] Саиф Алдин Саад Обайес Аль-Кадхим, Промышленная мастерская на основе

Интернет вещей: технология автоматизированных производственных систем, Noor

Publishing (1 августа 2017 г.), ISBN-10: 3330965754, ISBN-13: 978 —

3330965751.

[10] Саиф Алдин Саад Обайес Аль-Кадхим, Станок с ЧПУ на базе

Встроенная беспроводная связь и Интернет вещей для разработки мастерских

Статья в IJCDS Journal Volume 6 (Issue 4): 205 · Июль 2017 , DOI:

10.12785 / ijcds / 060406.

[11] Аль-Кадхим, Саиф Алдин Саад Обайес. «Станок с ЧПУ

на базе встроенной беспроводной сети

и Интернета вещей для разработки мастерской

».

International Journal of Computing and Digital Systems 6.4 (2017): 205-

213.

[12] Obayes, Saif Aldeen Saad,

«Решетка микрополосковых антенн для мобильных устройств 5G

«, Journal of Communications, т. 13, вып. 5. С. 225-229,

2018.Doi:

10.12720 / jcm.13.5.225-229.

[13] Обайес, Саиф Алдин Саад. Скремблирование аналоговой речи с использованием

Wavelet

Transform. Дисс. University of Babylon, 2006.

SCR — выпрямители с кремниевым управлением | Работа, конструкция и применение

SCR означает кремниевый управляемый выпрямитель, он используется в промышленности, поскольку может выдерживать высокие значения тока и напряжения.

Конструкция SCR

Кремниевый управляющий выпрямитель SCR состоит из четырех слоев полупроводника, который формирует структуру PNPN или NPNP, имеет тройное соединение J1

J2 и J3, а также три клеммы, анодная клемма кремниевого управляющего выпрямителя SCR подключена к материалу P-типа структуры PNPN, а катодная клемма подключена к слою N-типа кремниевого управляющего выпрямителя, в то время как затвор кремниевый управляющий выпрямитель SCR подключен к материалу P-типа рядом с катодом, как показано на данном рисунке.

SCR Работа / Работа

Кремниевый управляющий выпрямитель SCR начинает проводить при прямом смещении. Для этого катод находится в отрицательном положении, а анод — в положительном. Когда на затвор подается положительный тактовый импульс, тиристор включается.

Когда напряжение прямого смещения подается на кремниевый управляющий выпрямитель SCR, переход J1 и J3 становится прямым смещением, а переход J2 становится обратным смещением. Когда мы подаем тактовый импульс на вывод затвора, переход J2 становится прямым смещением, и кремниевый управляющий выпрямитель SCR начинает проводить.

Кремниевый управляющий выпрямитель SCR включается и выключается очень быстро. В выключенном состоянии кремниевый управляющий выпрямитель SCR обеспечивает бесконечное сопротивление, а во включенном состоянии он предлагает очень низкое сопротивление, которое находится в диапазоне от 0,01 Ом до 10 Ом.

Срабатывание и срабатывание SCR

Кремниевый управляющий выпрямитель SCR обычно работает при пониженном напряжении прямого прерывания (VBO). Чтобы включить кремниевый управляющий выпрямитель SCR, мы применяем тактовый импульс на клемме затвора, который вызвал запуск кремниевого управляющего выпрямителя, но когда кремниевый управляющий выпрямитель SCR включился, теперь, если мы удалим напряжение запуска, кремниевый управляющий выпрямитель SCR останется в Состояние ВКЛ.Это напряжение называется напряжением зажигания.

Методы выключения кремниевого управляющего выпрямителя — SCR

Существует два способа выключения кремниевого управляющего выпрямителя SCR:

Метод прерывания анодного тока

В этом методе параллельный или последовательный переключатель используется для выключения кремниевого управляющего выпрямителя (электроники SCR) путем выключения переключателя.

Метод принудительной коммутации

В этом методе подключается батарея обратной полярности, поэтому ток через кремниевый управляющий выпрямитель SCR уменьшается, и он отключается.

Управление мощностью двигателя постоянного тока с помощью SCR

В данном ckt показан выпрямитель с однофазным управлением. который используется для управления скоростью двигателя постоянного тока. Этот ckt состоит из четырех SCR и четырех диодов. Постоянное напряжение подается на обмотку двигателя через четыре диода, а постоянное напряжение подается на якорь через четыре диода.

In Этот ckt двигатель управляется напряжением якоря, в то время как напряжение возбуждения имеет постоянное значение.

В ckt SCR 1 и SCR 4 запускаются одновременно в первом цикле, а в следующем полупериоде SCR 2 и SCR 3 работают.

Якорь двигателя получает постоянное или прерывистое напряжение в зависимости от угла включения тиристора, коэффициента мощности.

В прерывистом токе якоря SCR 1 и SCR 4 срабатывают под углом a, из-за чего путь прохождения тока формируется от a до ß, как показано на Рис .:

Якорь двигателя получает напряжения от a до ß, в то время как от ß до p + a двигатель не может получать ток.

Таким образом регулируется скорость двигателя постоянного тока.

Управление мощностью двигателя переменного тока с помощью SCR

Управление скоростью с помощью метода изменения частоты или переменной частоты.

Очень важен частотный метод, с помощью которого регулируется скорость асинхронного двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован.