В звезду треугольник: Пуск трехфазного асинхронного двигателя по схеме переключение «звезда – треугольник» ~ Электропривод

Содержание

Эквивалентное преобразование треугольника в звезду

Расчет и исследование сложных электрических цепей во многих случаях можно значительно облегчить и сделать более наглядным путем преобразования электрических схем одного вида в схемы другого вида. Одним из способов является эквивалентное преобразование треугольника в звезду. В этом методе выполняется преобразование пассивной части электрической цепи, т.е. приемников электрической энергии.

Определение соединения сопротивлений треугольником

Если три сопротивления соединены так, что образуют собою стороны треугольника, то такое соединение сопротивлений называют треугольником сопротивлений.

Соединение, при котором три сопротивления, находящиеся в пассивных ветвях, соединены между собою попарно и образуют замкнутый контур — называется треугольником.

Обычно в курсе электротехники принято элементы рисовать только горизонтально и вертикально. На следующем рисунке так же представлено соединение треугольником.

Определение соединения сопротивлений звездой

Если соединение трех сопротивлений имеет общий узел и имеет внешний вид трехлучевой звезды, то такое соединение сопротивлений называется звездой.

Причина преобразования треугольника в звезду

При расчете электрической цепи бывают случаи, когда нет ни последовательных, ни параллельных соединений сопротивлений. В этом случае можно попробовать отыскать соединение сопротивлений треугольником и выполнить экивалентное преобразование треугольника в звезду.

Если в электрической цепи нашли соединение сопротивлений треугольником, то в узлы соединения сопротивлений подставляем концы лучей соединения сопротивлений в виде звезды.

 Далее убираем (удаляем первоначальное) соединение треугольником. В результате получается эквивалентное соединение звездой.

Формулы для расчета  преобразования треугольника в звезду

           

Пример преобразования

Для электрической цепи необходимо выполнить преобразование треуголькника R12 — R23 — R31 в звезду.

 

Добавляем к узлам подключения сопротивлений треугольником концы лучей подключения сопротивлений звездой.

Удаляем соединение сопротивлений треугольником. В результате остается подключение сопротивлений звездой. По формулам рассчитываются значения сопротивлений R1, R2, R3.

Эквивалентное преобразование звезды в треугольник

Любые сложные электрические цепи можно упростить. Один из методов — эквивалентное преобразование звезды в треугольник. При этом в электрической схеме уменьшается количество узлов или количество ветвей. Преобразование треугольника в звезду возможно только для пассивных элементов, т.е. для потребителей электрической энергии.

Определение соединения сопротивлений звездой

Если соединение трех сопротивлений имеет общий узел и имеет внешний вид трехлучевой звезды, то такое соединение сопротивлений называется звездой. 

Способ соединения трех сопротивлений, находящихся в пассивных ветвях (ветвь не содержит источник ЭДС), при котором все 3 сопротивления имеют одну общую точку, называется звездой.

Ветви, составляющие звезду сопротивлений называются лучами.

В курсе теоретических основ электротехники обычно принято электрические элементы цепи изображать горизонтально и вертикально. Так что схема ниже так же является соединением звездой.

Определение соединения сопротивлений треугольником

Если три сопротивления соединены так, что образуют собою стороны треугольника, то такое соединение сопротивлений называют треугольником сопротивлений.

Причина использования преобразования звезды в треугольник

При выполении расчета сложной электрической цепи иногда необходимо выполнить упрощение (свертку, преобразование) схемы. Обычно для этого ищут сначала последовательное или параллельное соединений сопротивлений. Если таких соединений не находят то выполняют экивалентное преобразование звезды в треугольник, если в электрической цепи есть соединение сопротивлений звездой.

Если в электрической цепи нашли соединение сопротивлений звездой, то между концами лучей подставляем сопротивления в виде треугольника.

Удаляем соединение звездой. Получается эквивалентное преобразование звезды в треугольник.

Формулы для расчета эквивалентного преобразования звезды в треугольник

        

Пример преобразования

Для приведенной электрической цепи необходимо выполнить экивалентное преобразование звезды R1 -R2 -R3 в треугольник R12 — R23 — R31.

Дорисовываем три сопротивления R12, R23, R31 к концам лучей сопротивлений R1, R2 и R3.

Удаляем сопротивления R1, R2 и R3. Параметры эквивалентных сопротивлений R12, R23, R31 рассчитываем по формулам.

Лекция по теме «СОЕДИНЕНИЕ «ЗВЕЗДА» И «ТРЕУГОЛЬНИК». ПРИНЦИП ПОДКЛЮЧЕНИЯ. ОСОБЕННОСТИ И РАБОТА»

СОЕДИНЕНИЕ «ЗВЕЗДА» И «ТРЕУГОЛЬНИК».

ПРИНЦИП ПОДКЛЮЧЕНИЯ. ОСОБЕННОСТИ И РАБОТА.

До сих пор мы изучали переменный ток, который создавался одной э. д. с. Такой ток называется однофазным переменным током.

Система из трех однофазных токов, создаваемых тремя э. д. с. одной частоты, но сдвинутых один относительно другого на одну треть периода (120°), называется трехфазным током.

Нагрузка в трехфазной электрической цепи подразделяется на симметричную и несимметричную.

 При симметричной нагрузке сопротивления фаз совпадают как по величине, так и по характеру.

Нагрузка считается несимметричной, когда сопротивление хотя бы одной из фаз не равно сопротивлениям других фаз.

Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей («звезда» и «треугольник»).

Схемы.

Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току.

  Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах — «звезда» и «треугольник».

Схема «звезда».

Соединение различных обмоток по схеме «звезда» предполагает их подключение в одной точке, которая называется нулевой (нейтральной), и имеет обозначение на схемах «О», либо х, у, z. Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение имеется. Если такое соединение есть, то такая система считается 4-проводной, а если нет такого соединения, то 3-проводной.

Схема «треугольника».

При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на «треугольник», и соединение обмоток в ней идет последовательно друг с другом.

Нужно отметить отличие от схемы «звезда» в том, что в схеме «треугольник» система бывает только 3-проводной, так как общая точка отсутствует.

В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.

Фазные и линейные величины.

В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные.

Фазное напряжение – это его величина между концом и началом фазы приемника.

Фазный ток протекает в одной фазе приемника.

При применении схемы «звезда» фазными напряжениями являются Ua, Ub, U

c,

а фазными токами являются a, I b, I c.

При применении схемы «треугольник» для обмоток нагрузки или генератора фазные напряжения — U, U, U, фазные токи – ac, I , I .

Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.

В случае схемы «звезда» линейные токи равны фазным, а линейные напряжения равны ab, Ubc, ca.

В схеме «треугольник» получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны a

, I b, I c.

Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.

Особенности схем.

Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.

Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать. При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов. Электродвигатель будет работать с малой скоростью, которая меньше номинальной.

Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.

Для этого можно применить некоторые методы:

  • Подключить на запуск электродвигателя реостат, дроссель, либо трансформатор.

  • Изменить вид соединения обмоток ротора электродвигателя.

В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность. Здесь работает принцип переключения обмоток электромотора на такие схемы, как звезда и треугольник. То есть, при запуске мотора его обмотки имеют соединение «звезда», после набора эксплуатационных оборотов, схема соединения изменяется на «треугольник». Этот процесс переключения в промышленных условиях научились автоматизировать.

В электромоторах целесообразно применение сразу двух схем — «звезда» и «треугольник». К нулевой точке необходимо подключить нейтраль источника питания, так как во время использования таких схем возникает повышенная вероятность перекоса фазных амплитуд. Нейтраль источника компенсирует эту асимметрию, которая возникает вследствие разных индуктивных сопротивлений обмоток статора.

Построение векторных диаграмм ( см. видео по ссылке:

https://www.youtube.com/ ›watch?v=wcyQvK84lsU

youtube.com›watch?v=XBoF0gFU_FI)

Достоинства схем.

Соединение по схеме звезды имеются важные преимущества:

  • Плавный пуск электрического мотора.

  • Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.

  • Электродвигатель будет иметь нормальный рабочий режим при различных ситуациях: при высоких кратковременных перегрузках, при длительных незначительных перегрузках.

  • При эксплуатации корпус электродвигателя не перегреется.

Основным достоинством схемы треугольника является получение от электродвигателя наибольшей возможной мощности работы. Целесообразно поддерживать режимы эксплуатации по паспорту двигателя. При исследовании электромоторов со схемой треугольника выяснилось, что его мощность повышается в 3 раза, по сравнению со схемой звезды.

При рассмотрении генераторов, схемы – звезда и треугольник по параметрам аналогичны при функционировании электродвигателей. Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако, при повышении напряжения снижается сила тока, так как по закону Ома эти параметры обратно пропорциональны друг другу.

Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. В современных мощных электромоторах при запуске схемы – звезда и треугольник переключаются автоматически, так как это позволяет снизить нагрузку по току, возникающей при пуске мотора.

Процессы, происходящие при изменении схемы «звезда» и «треугольник» в разных случаях.

Здесь, изменение схемы — имеется ввиду переключение на щитах и в клеммных коробках электрических устройств, при условии, что имеются выводы обмоток.

Обмотки генератора и трансформатора.

При переходе со звезды в треугольник напряжение уменьшается с 380 до 220 вольт, мощность остается прежней, так как фазное напряжение не изменяется, хотя линейный ток увеличивается в 1,73 раза.

При обратном переключении возникают обратные явления: линейное напряжение увеличивается с 220 до 380 вольт, а фазные токи не изменяются, однако линейные токи снижаются в 1,73 раза. Поэтому можно сделать вывод, что если есть вывод всех концов обмоток, то вторичные обмотки трансформатора и генераторы можно применять на два типа напряжения, которые отличаются в 1,73 раза.

Лампы освещения.

При переходе со «звезда» в «треугольник» лампы сгорят. Если переключение сделать обратное, при условии, что лампы при треугольнике горели нормально, то лампы будут гореть тусклым светом. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и распределяется равномерно между фазами. Такое подключение применяется в театральных люстрах.

Рассмотрим примеры решения задач.

Задача 1.

Освещение здания питается от четырехпроводной трехфазной сети с линейным напряжением UЛ = 380 В. Первый этаж питается от фазы «А» и потребляет мощность 1760 Вт, второй – от фазы «В» и потребляет мощность 2200 Вт, третий – от фазы «С», его мощность 2640 Вт. Составить электрическую схему цепи, рассчитать токи, потребляемые каждой фазой, и ток в нейтральном проводе, вычислить активную мощность всей нагрузки. Построить векторную диаграмму.

Анализ и решение задачи 1

Схема цепи показана на рис. 1

Лампы освещения соединяются по схеме звезда с нейтральным проводом.

 
Рис. 1

Расчет фазных напряжений и токов. При соединении звездой UЛ = UФ, отсюда UФ = UЛ /  = 380 /  = 220 В. Осветительная нагрузка имеет коэффициент мощности cos φ = 1, поэтому PФ = UФ · IФ и фазные токи будут равны:

IА = PА / UФ = 1760 / 220 = 8 А; IB = PB / UФ = 2200 / 220 = 10 А; IC = PC / UФ = 2640 / 220 = 12 А.

Построение векторной диаграммы и определение тока в нейтральном проводе.

Векторная диаграмма показана на рис. 6.27. Ее построение начинаем с равностороннего треугольника линейных напряжений ÚAB, ÚBC, ÚCA, и симметричной звезды фазных напряжений Úa, Úb, Úc. При таком построении напряжение между любыми точками схемы можно найти как вектор, соединяющий соответствующие точки диаграммы, поэтому диаграмму называют топографической.

Токи фаз ÍA, ÍB, ÍC связаны каждый со своим напряжением; в нашем случае по условию φ = 0, и токи совпадают по фазе с напряжениями. Ток в нейтральном проводе ÍN = ÍA + ÍB + ÍC. По построению (в масштабе) по величине ÍN = 2,5 А.

Вычисление активной мощности в цепи.

Активная мощность цепи равна сумме мощностей ее фаз:

P = PA + PB + PC = 1760 + 2200 + 2640 = 6600 Вт.

Домашнее задание:

1.Выучить лекцию.

2. Ответьте на вопросы для самоконтроля:

Вопросы для самоконтроля:

1. Что такое симметричная трехфазная система напряжений? Чем отличаются друг от друга системы с прямым и обратным следованием (чередованием) фаз? Показать на векторных диаграммах.

2. Как обозначаются (маркируются) начала и концы фаз трехфазных источников и потребителей? Как осуществить их соединение звездой и треугольником?

3. Дать определение фазных и линейных напряжений. Каково соотношение между линейными и фазными напряжениями на зажимах генератора, соединенного по схеме звезда?

4. Дать определение фазных и линейных токов. Каково соотношение между этими токами при соединении приемника по схеме звезда?

5. Какая нагрузка называется симметричной?

6. Как вычислить фазные токи приемника, соединенного звездой, если известны линейные напряжения источника и сопротивления фаз приемника?

7. В каких случаях применяется четырехпроводная система электроснабжения? Каково значение нейтрального провода?

8. Как вычислить ток в нейтральном проводе?

9. Каково соотношение между линейными и фазными напряжениями при соединении фаз источника или приемника треугольником?

10. Как вычислить фазные и линейные токи приемника, соединенного треугольником, если известно линейное напряжение источника и сопротивление фаз приемника?

11. Каково соотношение между линейными и фазными токами симметричного приемника, соединенного треугольником?

12. Может ли ток в нейтральном проводе быть равным нулю?

13. Как изменится режим работы цепи, если в одну из фаз вместо освещения включить двигатель?

14. Какие токи изменятся, если в одной из фаз произойдет обрыв?

15. Как изменится режим работы цепи при обрыве нейтрального провода?

Некоторые ошибки при соединениях в звезду, треугольник, зигзаг

Дата публикации: .
Категория: Электротехника.

Ошибки при соединении в треугольник

При соединениях иногда допускают ошибки, в результате которых вместо треугольника (рисунок 1, а) получается другое соединение (рисунок 1, в). Его причина – другое направление намотки одной из обмоток или, проще, ошибочное определение ее конца и начала. Пока треугольник еще разомкнут, то есть точки y и z еще не соединены, между ними получается двойное фазное напряжение 2U. Если их соединить, произойдет короткое замыкание.

Рисунок 1. Ошибки при соединениях обмоток трансформаторов в треугольник.

Чтобы избежать этой ошибки, поступают следующим образом. Соединяют два каких-либо конца разных обмоток и измеряют напряжение между свободными концами, принимая необходимые меры предосторожности, например, проводя испытания при значительно пониженном напряжении. Если концы выбраны правильно, то вольтметр V покажет фазное напряжение U (рисунок 1, б). Если же напряжение будет в 1,73 раза больше фазного 1,73U (рисунок 1, г), то у одной из обмоток нужно переменить концы. Затем к одному из свободных концов присоединяют один конец третьей обмотки и снова измеряют напряжение между свободными концами (рисунок 1, д). Оно должно быть равно нулю. Но если третья обмотка «вывернута» (рисунок 1, в), то вольтметр покажет удвоенное фазное напряжение 2U. Тогда у третьей обмотки нужно переменить концы.

Следует здесь же заметить, что при наличии третьих гармоник (смотрите статью «Понятие о магнитном равновесии трансформатора») вольтметр может показать некоторое (меньше, чем двойное фазное) напряжение. В этом случае надо соединить концы через сопротивление R и амперметр А (рисунок 1, е). Если напряжение, показываемое вольтметром, происходит от третьих гармоник, то отклонение стрелки амперметра невелико. Это объясняется тем, что для токов тройной частоты обмотки представляют большое сопротивление. Если же перепутано направление обмотки, амперметр покажет значительный уравнительный ток.

Ошибки при соединении в звезду

Переворачивание одной из обмоток при соединении в звезду вместо звезды (рисунок 2, а) дает «веер» («елочку»), как показано на рисунке 2, б. Короткого замыкания при этом не будет, но напряжение, близкое к номинальному, сохранится только между фазами a и c. Между фазами a и b, b и c напряжение будет значительно понижено и равно примерно фазному напряжению. В сетях освещения «елочка» вместо звезды приведет к недокалу ламп.

Рисунок 2. Правильное (а) и неправильное (б) соединения вторичных обмоток трансформаторов в звезду.

В сетях, соединенных «елочкой» и питающих электродвигатели (а также при включении обмоток электродвигателя, соединенного «елочкой»), не только уменьшится мощность на валу (что может привести к остановке и сгоранию электродвигателя), но изменится направление его вращения. Почему? Потому что если при правильном соединении обмоток вращающееся магнитное поле имело направление a, b, c (смотрите стрелку на рисунке 2, а), то при соединении «елочкой» оно, а следовательно, и ротор электродвигателя меняют направление на обратное, а именно a, c, b, и, конечно, резко снижается вращающий момент из-за нарушения симметрии.

В трехфазных стержневых трансформаторах важно правильно соединить первичные обмотки, то есть соединить их так, чтобы в каждый данный момент поток в одном стержне был направлен вверх, а в двух других стержнях вниз (рисунок 3, а). Если же одну фазу «вывернуть» (неправильно определены ее конец и начало или намотка выполнена в другом направлении), то потоки ФA, ФB и ФC во всех стержнях будут иметь одинаковое направление (рисунок 3, б). Иными словами, поток одной фазы, направленный навстречу потокам других фаз, будет размагничивать их стержни, что приведет к увеличению намагничивающего тока.

Рисунок 3. Правильное (а) и неправильное (б) соединение в звезду первичных обмоток трехфазного стержневого трансформатора.

Ошибки при соединении в зигзаг

Все сказанное о соединениях в звезду еще в большей мере относится к соединению в зигзаг – звезду, так как приходится соединять значительно больше выводов. Результат неправильного определения конца и начала одной из обмоток (показано штриховой линией) иллюстрирует рисунок 4, б (сравните с векторной диаграммой на рисунке 4, а). Рисунок 4, в показывает, что в результате неправильного определения концов и начал трех обмоток получены √3 раз меньшие напряжения, чем нормальное. Кроме того, векторная диаграмма повернулась на 90°.

Рисунок 4. Соединение в зигзаг: правильное (а) и неправильные (б и в).

Источник: Каминский Е. А., «Звезда, треугольник, зигзаг» – 4-е издание, переработанное – Москва: Энергия, 1977 – 104с.

Соединение электродвигателя по схемам звезда

  

Разберем свойства соединения обмоток электродвигателя по схемам звезда — треугольник на конкретном примере.

Электродвигатель АИР250S4, 75 кВт, треугольник-звезда и соответствующие им U=380/660В и I=143/82,8А.

Подключаем треугольником на 380В. Полная мощность будет вычисляться по формуле S=U·I·√3.
S=380·143·1,73=94008 в·а.

Если мы подключим этот электродвигатель по схеме звезда к той же сети, то полная мощность будет вычисляться, конечно, по той же формуле S=U·I·√3. Но значения в нее нужно подставлять уже другие.
При переключении на звезду на каждую обмотку пришлось в √3 меньшее напряжение. Соответственно ток тоже уменьшился в √3 раза. И это еще не все. При схеме треугольник линейный ток был в √3 раза больше фазного, а при переключении стал равным фазному. Т.е. ток уменьшился в итоге в √3·√3=3 раза.

Полная мощность станет равна S=380·143/3·1,73=31336 в·а.

Такая ситуация возникает чаще всего (по нашему опыту) в двух случаях.
Во-первых, непонимание электриками вышеупомянутых расчетов.
Во-вторых, в случае когда в эксплуатации был аналогичный двигатель, но с напряжением 220/380В и соответственно схемой подключения треугольник-звезда. Такие двигатели даже большой мощности до сих пор производятся некоторыми заводами. При замене двигателя электрик «на автомате» подключает звездой и двигатель выходит из строя.

Вот цитата из письма одного из предприятий, после того как двигатель вышел из строя из-за неправильной схемы подключения.

 

Т.е. непонимание свойств соединений и того что указано на шильдике.

Также стоит обратить внимание на то, что пуско-защитная аппаратура подбирается на номинальную мощность электродвигателя, но при некорректном подключении звездой просто физически не может выполнять свои функции.

Наиболее полную защиту электродвигателя можно обеспечить с помощью термисторных реле. В наших электродвигателях начиная от 160 высоты оси вращения установлены РТС термисторы и контакты выведены в клеммную коробку.

Еще одна важная по нашему мнению информация. При пуске электродвигателя для уменьшения пусковых токов многие используют общеизвестную схему переключения со звезды на треугольник, т.е. запуск производится на звезде и после набора оборотов происходит переключение на треугольник с помощью реле времени (этот метод описан на множестве сайтов).
Такой метод работает, к сожалению, не всегда.
Если производится пуск, например центробежного насоса или вентилятора (имеется ввиду правильный пуск на закрытую задвижку), то такая схема успешно работает. Центробежный насос и вентилятор при пуске на закрытую задвижку потребляют минимальную мощность, которая увеличивается по мере открывания.
Но такую схему крайне нежелательно применять в условиях тяжелого пуска (т.е. таких механизмов которые при пуске уже потребляют мощность близкую к номинальной), например пресса, дробилки и др.
Также важно обратить внимание на время переключения, оно не должно быть большим. После того как двигатель набрал обороты нужно сразу производить переключение на треугольник. В большинстве случаев набор оборотов занимает до 5-10 сек., поэтому установка реле на 30-50 сек. грозит выходом из строя электродвигателя.

Если у вас есть замечания или мы в чем-то ошибаемся, пишите: [email protected]

 

Звезда треугольник разница в мощности — Moy-Instrument.Ru

Значения напряжения, тока и мощности при соединениях звездой и треугольником

Открытие великим Фарадеем закономерности: при пересечении проводником силовых линий магнитного поля, в проводнике наводится электродвижущая сила, вызывающая ток в цепи, в которую входит этот проводник, — послужило основой для создания электрогенераторов с вращающимся ротором — магнитом. ЭДС наводится при этом в обмотках статора (смотрите — Практическое применение закона электромагнитной индукции Фарадея).

Получаемые напряжения могут быть самые разные: все зависит от конструкции генератора, от числа обмоток в статоре и способах их соединения. Однако в практической электротехнике самое широкое распространении получила трехфазная система синусоидального тока, предложенная выдающимся русским инженером М.О. Доливо-Добровольским в 1888 году (через 57 лет после открытия Фарадея).

Из всех многофазных систем трехфазная обеспечивает наиболее экономичную передачу электрической энергии на дальние расстояния и позволяет создать надежные в работе и простые по устройству генераторы, электродвигатели и трансформаторы. Но и три обмотки могут быть соединены двумя способами: «треугольником» (рис. 1) и «звездой» (рис. 2).

Фазным называют напряжение Uф создаваемое одной обмоткой, линейным Uл — напряжение между двумя линейными проводами. Другими словами, фазное напряжение — это напряжение между каждым из линейных проводов и нулевым проводом.

При соединении симметричного генератора в звезду линейное напряжение по значению в 1,73 раз больше фазного, т.е. Uk = 1,73•Uф. Это следует из того, что Uл — основание равнобедренного треугольника с острыми углами по 30°: Uл = UАВ = Uф 2 cos 30° = 1,73•Uф.

При соединении и нагрузки в звезду соответствующий линейный ток равен фазному току нагрузки. Если трехфазная нагрузка симметричная, то ток в нулевом проводе будет равен 0. В этом случае надобность в нулевом проводе вообще отпадает и трехфазная цепь превращается в трехпроводную. Это соединение называют «звезда-звезда без нулевого провода». При симметричной нагрузке фаз линейные токи по величине в 1,73 больше фазных токов, Iл = 1,73•3Iф.

При соединении трехфазного генератора звездой используются два напряжения, что выгодно отличает это соединение от соединения треугольником. Но при соединении нагрузки треугольником все фазы находятся под одним и тем же по числовому значению линейным напряжением независимо от сопротивления фаз, что важно для осветительной нагрузки — ламп накаливания.

Трехфазная система с нулевым проводом применяется для питания приемников двух напряжений, различающихся в 1,73 раз, например, лапм, включаемых на фазное напряжение, и двигателей, включаемых на линейное напряжение.

Номинальное напряжение определяется конструкцией генераторов и способом соединения его обмоток.

На рисунке 3 показаны зависимости, определяющие значение мощности для цепи переменного тока при соединениях звездой и треугольником.

По виду формулы одинаковы, казалось бы нет ни выигрыша, ни проигрыша в мощности для этих двух разновидностей электроцепей. Но не спешите с выводами.

При пересоединении из треугольника в звезду на каждую фазную обмотку приходится в 1,73 раза более низкое напряжение, хотя напряжение в сети остается прежним. Уменьшение напряжения приводит к уменьшению и тока в обмотках в те же 1,73 раза. И еще — при соединении в треугольник линейный ток был в 1,73 раза больше фазного, а теперь эти токи равны. В итоге линейный ток при пересоединении в звезду уменьшился в 1,73 • 1,73 = 3 раза.

Новую мощность вычисляют действительно по той же формуле, но подставляя иные величины!

При пересоединении электродвигателя с треугольника на звезду и питании его от той же сети мощность, развиваемая этим двигателем, снижается в 3 раза. При переключении со звезды на треугольник обмоток генераторов или вторичных обмоток трансформаторов напряжение в сети понижается в 1,73 раза, например, с 380 до 220 В.

Мощность генератора или трансформатора остается прежней, потому что напряжение и ток в каждой фазной обмотке сохраняются, хотя ток в линейных проводах возрастает в 1,73 раза. При переключении обмоток генераторов или вторичных обмоток трансформаторов с треугольника на звезду происходят обратные явления: линейное напряжение сети повышается в 1,73 раза, токи в фазных обмотках остаются теми же, токи в линейных проводах уменьшаются в 1,73 раза.

Расчет мощности двигателя при схеме соединения звезда-треугольник

В этой статье я хотел бы рассказать как изменяется мощность двигателя при схеме соединения обмоток звезда – треугольник и наоборот.

В связи со спецификой своей работы я сталкиваюсь с ремонтов различных асинхронных двигателей и в большинстве случаев выход из строя двигателя происходит при неправильном переключении обмоток двигателя, так как люди не понимают, как изменяется мощность двигателя при переключении с треугольника на звезду и обратно, и как это может отразится на работоспособности самого двигателя.

Определение мощности при схеме соединения звезда

Известно [Л1. с. 34], что при соединении в звезду линейные токи Iл и фазные токи Iф равны между собой, при этом между фазным Uф и линейным напряжением Uл существует соотношение, где Uл = √3*Uф , в результате Uф = Uл/√3.

Исходя из этого, полная мощность определяется через линейные величины:

Определение мощности при схеме соединения треугольник

При схеме соединения в треугольник, фазные и линейные напряжения равны между собой Uл = Uф, при этом между токами существует соотношение: Iл = √3*Iф, в результате Iф = Iл/√3.

Исходя из этого, полная мощность определяется, как:

Для определения активной и реактивной мощности используются формулы:

Из-за того что формулы для схемы соединения звезды и треугольника имеют одинаковый вид, у мало опытных инженеров происходят недоразумения, будто вид соединения безразличен и ни на что не влияет.

Рассмотрим на примере, на сколько ошибочные данные утверждения. В данном примере будем рассматривать электродвигатель типа АИР90L2, который имеет две схемы подключения ∆/Y, технические характеристики двигателя:

  • коэффициент мощности cosφ = 0,84;
  • коэффициент полезного действия, η = 78,5%;

Определяем ток двигателя при напряжении 380 В и схеме соединения треугольник, мощность при таком соединении составляет 3 кВт:

Теперь соединим обмотки двигателя в звезду. В результате на фазную обмотку пришлось на 1,73 раза более низкое напряжение Uф = Uл/√3, соответственно и ток уменьшился в 1,73 раза, но так как при соединении в треугольник Uл = Uф, а линейный ток был в 1,73 раза больше фазного Iл = √3*Iф, то получается, что при соединении в звезду, мощность уменьшится в √3*√3 = 3 раза, соответственно и ток уменьшиться в 3 раза.

Из всего выше изложенного можно сделать, следующие выводы:

1. При переключении двигателя со звезды на треугольник, мощность двигателя увеличивается в 3 раза и наоборот. Использовать данные переключения, можно если схемы подключения двигателя позволяет выполнять переключения ∆/Y, в противном случае, двигатель может сгореть, когда Вы будете выполнять переключение со звезды на треугольник.

2. Как Вы уже поняли, используя схему переключения обмоток двигателя со звезды на треугольник, мы уменьшаем пусковые токи при пуске двигателя на пониженном напряжении, а затем его повышаем до номинального. Когда обмотки двигателя соединены в звезду, к каждой из них подводиться напряжение меньше номинального в 1,73 раза. В процессе пуска, двигатель увеличивает скорость вращения и ток снижается. В это время происходит переключение на треугольник.

Обращаю Ваше внимание, что двигатели, которые недогружены, работают с очень низким cosφ. Поэтому рекомендуется заменить недогруженный двигатель, на двигатель меньшей мощности. Если же у недогруженного двигателя, запас мощности велик, то cosφ можно поднять путем переключения обмоток с треугольника на звезду без риска перегреть двигатель.

Как мы видим ничего сложного нету в определении мощности при схеме звезда и треугольник.

1. Звезда и треугольник. Е.А. Каминский, 1961 г.

Звезда и треугольник принцип подключения. Особенности и работа

Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей (звезда и треугольник).

Схемы

Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току. Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах — звезда и треугольник.

Схема звезды

Соединение различных обмоток по схеме звезды предполагает их подключение в одной точке, которая называется нулевой (нейтральной), и имеет обозначение на схемах «О», либо х, у, z. Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение имеется. Если такое соединение есть, то такая система считается 4-проводной, а если нет такого соединения, то 3-проводной.

Схема треугольника

При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на треугольник, и соединение обмоток в ней идет последовательно друг с другом. Нужно отметить отличие от схемы звезды в том, что в схеме треугольника система бывает только 3-проводной, так как общая точка отсутствует.

В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.

Фазные и линейные величины

В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные. Фазное напряжение – это его величина между концом и началом фазы приемника. Фазный ток протекает в одной фазе приемника.

При применении схемы звезды фазными напряжениями являются Ua, Ub, Uc, а фазными токами являются I a, I b, I c. При применении схемы треугольника для обмоток нагрузки или генератора фазные напряжения — U, U, U, фазные токи – I ac, I , I .

Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.

В случае схемы звезды линейные токи равны фазным, а линейные напряжения равны U ab, Ubc, U ca. В схеме треугольника получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны I a, I b, I c.

Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.

Особенности схем

Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.

Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать. При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов. Электродвигатель будет работать с малой скоростью, которая меньше номинальной.

Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.

Для этого можно применить некоторые методы:
  • Подключить на запуск электродвигателя реостат, дроссель, либо трансформатор.
  • Изменить вид соединения обмоток ротора электродвигателя.

В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность. Здесь работает принцип переключения обмоток электромотора на такие схемы, как звезда и треугольник. То есть, при запуске мотора его обмотки имеют соединение «звезда», после набора эксплуатационных оборотов, схема соединения изменяется на «треугольник». Этот процесс переключения в промышленных условиях научились автоматизировать.

В электромоторах целесообразно применение сразу двух схем — звезда и треугольник. К нулевой точке необходимо подключить нейтраль источника питания, так как во время использования таких схем возникает повышенная вероятность перекоса фазных амплитуд. Нейтраль источника компенсирует эту асимметрию, которая возникает вследствие разных индуктивных сопротивлений обмоток статора.

Достоинства схем
Соединение по схеме звезды имеются важные преимущества:
  • Плавный пуск электрического мотора.
  • Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.
  • Электродвигатель будет иметь нормальный рабочий режим при различных ситуациях: при высоких кратковременных перегрузках, при длительных незначительных перегрузках.
  • При эксплуатации корпус электродвигателя не перегреется.

Основным достоинством схемы треугольника является получение от электродвигателя наибольшей возможной мощности работы. Целесообразно поддерживать режимы эксплуатации по паспорту двигателя. При исследовании электромоторов со схемой треугольника выяснилось, что его мощность повышается в 3 раза, по сравнению со схемой звезды.

При рассмотрении генераторов, схемы – звезда и треугольник по параметрам аналогичны при функционировании электродвигателей. Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако, при повышении напряжения снижается сила тока, так как по закону Ома эти параметры обратно пропорциональны друг другу.

Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. В современных мощных электромоторах при запуске схемы – звезда и треугольник переключаются автоматически, так как это позволяет снизить нагрузку по току, возникающей при пуске мотора.

Процессы, происходящие при изменении схемы звезда и треугольник в разных случаях

Здесь, изменение схемы — имеется ввиду переключение на щитах и в клеммных коробках электрических устройств, при условии, что имеются выводы обмоток.

Обмотки генератора и трансформатора

При переходе со звезды в треугольник напряжение уменьшается с 380 до 220 вольт, мощность остается прежней, так как фазное напряжение не изменяется, хотя линейный ток увеличивается в 1,73 раза.

При обратном переключении возникают обратные явления: линейное напряжение увеличивается с 220 до 380 вольт, а фазные токи не изменяются, однако линейные токи снижаются в 1,73 раза. Поэтому можно сделать вывод, что если есть вывод всех концов обмоток, то вторичные обмотки трансформатора и генераторы можно применять на два типа напряжения, которые отличаются в 1,73 раза.

Лампы освещения

При переходе со звезды в треугольник лампы сгорят. Если переключение сделать обратное, при условии, что лампы при треугольнике горели нормально, то лампы будут гореть тусклым светом. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и распределяется равномерно между фазами. Такое подключение применяется в театральных люстрах.

Подключение звезда и треугольник – в чем разница?

Обмотки генераторов, трансформаторов, электродвигателей и других электрических приемников при их подключении к трехфазной сети соединяются двумя способами: звездой или треугольником. Эти схемы подключения сильно отличаются друг от друга и несут на себе разные токовые нагрузки. Поэтому есть необходимость разобраться в вопросе, как производится подключение звезда и треугольник – в чем разница?

Что собой представляют схемы

Подключение обмоток звездой – это их соединение в одной точке, которая носит название нулевая точка или нейтральная. Она обозначается буквой «О».

Схема подключения треугольником – это последовательное соединение концов рабочих обмоток, в которых начало одной обмотки соединяется с концом другой.

Разница очевидна. Но какую цель преследуют эти виды соединения, почему звезда треугольник применяются в разных электрических установках, в чем эффективность той и другой. Вопросов по данной теме возникает немало, с ними и надо разобраться.

Начнем с того, что при запуске того же электродвигателя ток, который называется пусковым, обладает высоким значением, который превышает номинальную его величину раз в шесть или восемь. Если это маломощный агрегат, то защита такую силу тока может выдержать, а если это электродвигатель большой мощности, то никакие защитные блоки не выдержат. И это вызовет обязательно «проседание» напряжения и выход из строя предохранителей или автоматических выключателей. Сам же двигатель начнет вращаться с небольшой скоростью, отличающуюся от паспортной. То есть, проблем с пусковым током немало.

Поэтому его надо просто снизить. Есть несколько для этого способов:

  • установить в систему подключения электрического двигателя один из перечисленных приборов: трансформатор, дроссель, реостат;
  • изменяется схема подключения обмоток ротора.

Именно второй вариант используется на производстве, как самый простой и эффективный. Просто производится преобразование схемы звезда в треугольник. То есть, во время пуска двигателя его обмотки соединяются по схеме звезда, затем как только мотор наберет обороты, переключается на треугольник. Процесс переключения звезды на треугольник производится автоматически.

Рекомендуется в электродвигателях, где используются одновременно два варианта соединения – звезда-треугольник, к соединению обмоток по схеме звезда, то есть, к их общей точке подключения, подсоединить нейтраль от сети питания. Для чего это необходимо делать? Все дело в том, что во время работы по данному варианту подсоединения появляется высокая вероятность асимметрии амплитуд разных фаз. Именно нейтраль будет компенсировать данную асимметрию, которая обычно появляется за счет того, что обмотки статора могут иметь разное индуктивное сопротивление.

Преимущества двух схем

У схемы звезда достаточно серьезные достоинства:

  • плавный запуск электрического двигателя;
  • номинальная его мощность будет соответствовать паспортным данным;
  • двигатель будет работать нормально и при кратковременных высоких нагрузках, и при долгосрочных небольших перегрузов;
  • в процессе работы корпус мотора не будет перегреваться.

Что касается схемы треугольник, то основное ее преимущество – это достижение электрическим двигателем в процессе его работы максимальной мощности. Но при этом рекомендуется строго придерживаться эксплуатационных режимов, которые расписаны в паспорте мотора. Тестирование электродвигателей, соединенных по схеме треугольник, показало, что его мощность в три раза больше, чем соединенных по схеме звезда.

Если говорить о генераторах, которые выдают ток в питающую сеть, то схемы соединения звезда и треугольник по своим техническим параметрам точно такие же. То есть, выдаваемое напряжение треугольником будет больше, правда, не в три раза, но не менее 1,73 раза. По сути, получается, что напряжение генератора при звезде, равное 220 вольт, преобразуется в 380 вольт, если провести переключение с одного варианта на другой. Но необходимо отметить, что мощность самого агрегата при этом остается неизменной, потому что все подчиняется закону Ома, в котором напряжение и сила тока находятся в обратной пропорциональности. То есть, увеличение напряжения в 1,73 раза, снижает ток точно на такую же величину.

Отсюда вывод: если в клеммной коробке генератора располагаются все шесть концов обмоток, то можно будет получить напряжение двух номиналов, отличающихся друг от друга коэффициентом 1,73.

Делаем выводы

Почему соединения треугольником и звездой сегодня присутствуют во всех современных мощных электродвигателях? Из всего вышесказанного становится понятным, что основное требование ситуации – это снизить токовую нагрузку, которая возникает в процессе пуска самого агрегата.

Если расписать формулы такого подключения, то они будут выглядеть вот так:

Uф=Uл/1,73=380/1,73=220, где Uф – напряжение на фазах, Uл – на питающей линии. Это соединение звездой.

После того, как электрический агрегат разгонится, то есть, скорость его вращения станет соответствовать паспортным данным, произойдет переход на треугольник со звезды. Отсюда фазное напряжение станет равным линейному.

Чем отличаются соединения звездой и треугольником

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

  • Устойчивый и длительный режим безостановочной работы двигателя;
  • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
  • Максимальная плавность пуска электрического привода;
  • Возможность воздействия кратковременной перегрузки;
  • В процессе эксплуатации корпус оборудования не перегревается.

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Соединение «треугольником» и его преимущества

Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.

При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

Основные преимущества применения схемы «треугольник»:

  • Увеличение до максимального значения мощности электрооборудования;
  • Использование пускового реостата;
  • Повышенный вращающийся момент;
  • Большие тяговые усилия.

Недостатки:

  • Повышенный ток пуска;
  • При длительной работе двигатель сильно греется.

Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Тип соединения «звезда-треугольник»

В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

Основные преимущества комбинации:

  • Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
  • Возможность создания двух уровней мощности.

Свойства звезды и треугольника

Дата публикации: 17 июля 2013 .
Категория: Электротехника.

Типичные случаи соединений в звезду и треугольник генераторов, трансформаторов и электроприемников рассмотрены в статьях «Схема соединения «Звезда» и «Схема соединения «Треугольник». Остановимся теперь на важнейшем вопросе о мощности при соединениях в звезду и треугольник, так как для работы каждого механизма, приводимого в действие электродвигателем или получающего питание от генератора или трансформатора, в конечном итоге важна именно мощность.

При определении мощности генераторов в формулы входят э. д. с, при определении мощности электроприемииков – напряжения на их зажимах. При определении мощности электродвигателей учитывают также коэффициент полезного действия, так как на табличке электродвигателя указывается мощность на его валу.

Мощность при соединении в звезду

При соединении в звезду линейные токи I и фазные токи Iф равны, а между фазными
и линейными напряжениями существует соотношение U = √3 × Uф, откуда Uф = U / √3.

Сопоставляя эти формулы, видим, что выраженные через линейные величины при соединении в звезду мощности равны:
полная S = 3 × Sф = 3 × (U / √3) × I = √3 × U × I;
активная P = √3 × U × I × cos φ;
реактивная Q = √3 × U × I × sin φ.

Мощность при соединении в треугольник

При соединении в треугольник линейные U и фазные Uф напряжения равны, а между фазными и линейными токами существует соотношение I = √3 × Iф, откуда Iф = I / √3.

Поэтому выраженные через линейные величины при соединении в треугольник мощности равны:
полная S = 3 × Sф = 3 × U × (I / √3) = √3 × U × I;
активная P = √3 × U × I × cos φ;
реактивная Q = √3 × U × I × sin φ.

Важное замечание. Одинаковый вид формул мощности для соединений в звезду и треугольник иногда служит причиной недоразумений, так как наталкивает недостаточно опытных людей на неправильный вывод, будто вид соединений всегда безразличен. Покажем на одном примере, насколько ошибочен такой взгляд.

Электродвигатель был соединен в треугольник и работал от сети 380 В при токе 10 А с полной мощностью

S = 1,73 × 380 × 10 = 6574 В×А.

Затем электродвигатель пересоединили в звезду. При этом на каждую фазную обмотку пришлось в 1,73 раза более низкое напряжение, хотя напряжение в сети осталось тем же. Более низкое напряжение привело к тому, что ток в обмотках уменьшился в 1,73 раза. Но и этого мало. При соединении в треугольник линейный ток был в 1,73 раза больше фазного, а теперь фазный и линейный токи равны.

Таким образом, линейный ток при пересоединении в звезду уменьшился в 1,73 × 1,73 = 3 раза.

Иными словами, хотя новую мощность нужно вычислять по той же формуле, но подставлять в нее следует иные величины, а именно:

S1 = 1,73 × 380 × (10 / 3) = 2191 В×А.

Из этого примера следует, что при пересоединении электродвигателя с треугольника в звезду и питании его от той же электросети мощность, развиваемая электродвигателем, снижается в 3 раза.

Что происходит при переключении со звезды в треугольник и обратно в наиболее распространенных случаях?

Оговариваем, что речь идет не о внутренних пересоединениях (которые выполняют в заводских условиях или в специализированных мастерских), а о пересоединениях на щитках аппаратов, если на них выведены начала и концы обмоток.
1. При переключении со звезды в треугольник обмоток генераторов или вторичных обмоток трансформаторов напряжение в сети понижается в 1,73 раза, например с 380 до 220 В. Мощность генератора и трансформатора остается такой же. Почему? Потому что напряжение каждой фазной обмотки остается таким же и ток в каждой фазной обмотке такой же, хотя ток в линейных проводах возрастает в 1,73 раза.

При переключении обмоток генераторов или вторичных обмоток трансформаторов с треугольника в звезду происходят обратные явления, то есть линейное напряжение в сети повышается в 1,73 раза, например с 220 до 380 В, токи в фазных обмотках остаются теми же, токи в линейных проводах уменьшаются в 1,73 раза.

Значит, и генераторы и вторичные обмотки трансформаторов, если у них выведены все шесть концов, пригодны для сетей на два напряжения, отличающихся в 1,73 раза.

2. При переключении ламп со звезды в треугольник (при условии их присоединения к той же сети, в которой лампы, включенные звездой, горят нормальным накалом) лампы перегорят.

При переключении ламп с треугольника в звезду (при условии, что лампы при соединении в треугольник горят нормальным накалом) лампы будут давать тусклый свет. Значит, лампы, например, на 127 В в сеть напряжением 127 В должны включаться треугольником. Если же их приходится питать от сети 220 В, необходимо соединение в звезду с нулевым проводом (подробнее смотрите статью «Схема соединения «Звезда»). Соединять в звезду без нулевого провода можно только лампы одинаковой мощности, равномерно распределенные между фазами, как, например, в театральных люстрах.

3. Все сказанное о лампах относится и к сопротивлениям, электрическим печам и тому подобным электроприемникам.

4. Конденсаторы, из которых собирают батареи для повышения cos φ, имеют номинальное напряжение, которое указывает напряжение сети, к которой конденсатор должен присоединяться. Если напряжение сети, например, 380 В, а номинальное напряжение конденсаторов 220 В, их следует соединять в звезду. Если напряжение сети и номинальное напряжение конденсаторов одинаковы, конденсаторы соединяют в треугольник.

5. Как объяснено выше, при переключении электродвигателя с треугольника в звезду мощность его снижается примерно втрое. И наоборот, если электродвигатель переключить со звезды в треугольник, мощность резко возрастает, но при этом электродвигатель, если он не предназначен для работы при данном напряжении и соединении в треугольник, сгорит.

Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник

применяют для снижения пускового тока, который в 5 – 7 раз превышает рабочий ток двигателя. У двигателей сравнительно большой мощности пусковой ток настолько велик, что может вызвать перегорание предохранителей, отключение автомата и привести к значительному снижению напряжения. Уменьшение напряжения снижает накал ламп, уменьшает вращающий момент электродвигателей 2 , может вызвать отключение контакторов и магнитных пускателей. Поэтому стремятся уменьшить пусковой ток, что достигается несколькими способами. Все они в итоге сводятся к понижению напряжения в цепи статора на период пуска. Для этого в цепь статора на период пуска вводят реостат, дроссель, автотрансформатор либо переключают обмотку со звезды в треугольник. Действительно, перед пуском и в первый период пуска обмотки соединены в звезду. Поэтому к каждой из них подводится напряжение, в 1,73 раза меньшее номинального, и, следовательно, ток будет значительно меньше, чем при включении обмоток на полное напряжение сети. В процессе пуска электродвигатель увеличивает частоту вращения и ток снижается. Тогда обмотки переключают в треугольник.

Предупреждения:
1. Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят пусковой реостат.
2. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, то есть имеющие, обмотки, рассчитанные на линейное напряжение сети.

Переключение с треугольника в звезду

Известно, что недогруженные электродвигатели работают с очень низким коэффициентом мощности cos φ. Поэтому рекомендуется недогруженные электродвигатели заменять менее мощными. Если, однако, выполнить замену нельзя, а запас мощности велик, то не исключено повышение cos φ переключением с треугольника в звезду. Нужно при этом измерить ток в цепи статора и убедиться в том, что он при соединении в звезду не превышает при нагрузке номинального тока; в противном случае электродвигатель перегреется.

1 Активная мощность измеряется в ваттах (Вт), реактивная – в вольт-амперах реактивных (вар), полная – в вольт-амперах (В×А). Величины в 1000 раз большие соответственно называют киловатт (кВт), киловар (квар), киловольт-ампер (кВ×А).
2 Вращающий момент электродвигателя пропорционален квадрату напряжения. Следовательно, при снижении напряжения на 20% вращающий момент снижается не на 20, а на 36% (1² — 0,82² = 0,36).

Источник: Каминский Е.А., «Звезда, треугольник, зигзаг» — 4-е издание, переработанное — Москва: Энергия, 1977 — 104с.

НОВОСТЕЙ BBC | Великобритания | Тайна самолета Бермудского треугольника решена


Два самых загадочных исчезновения так называемого Бермудского треугольника в конце 1940-х годов могли быть раскрыты.

Считается, что множество кораблей и самолетов бесследно исчезли за десятилетия в огромной треугольной области океана с воображаемыми точками на Бермудских островах, Флориде и Пуэрто-Рико.

Но новая экспертиза журналиста Тома Мангольда для BBC дает правдоподобные объяснения исчезновения двух британских коммерческих самолетов в этом районе с потерей 51 пассажира и членов экипажа.

Один самолет, вероятно, потерпел катастрофический технический отказ из-за плохой конструкции, а у другого, вероятно, закончилось топливо.

Шестьдесят лет назад коммерческие рейсы из Лондона на Бермуды были новыми и опасными. Для этого потребовалась бы дозаправка на Азорских островах перед перелетом протяженностью 2000 миль на Бермуды, который на тот момент был самым длинным беспосадочным коммерческим заграничным рейсом в мире.

Самолеты работали бы на пределе своей дальности.Сегодня у самолетов, прибывающих на крошечный атлантический остров, достаточно топлива, чтобы в случае чрезвычайной ситуации перелететь на восточное побережье США за 700 миль.

А самолеты послевоенной эпохи были намного менее надежными, чем сегодняшние авиалайнеры.

British South American Airways (BSAA), которая эксплуатировала этот маршрут, имела мрачные показатели безопасности. За три года он потерпел 11 серьезных аварий и потерял пять самолетов, погибли 73 пассажира и 22 члена экипажа.

Неразгаданная тайна

30 января 1948 года самолет BSAA Avro Tudor IV бесследно исчез.На борту «Звездного тигра» находились двадцать пять пассажиров и экипаж из шести человек. Никаких тел или обломков не обнаружено.

Официальное расследование исчезновения пришло к выводу: «Можно с полным правом сказать, что больше не возникало проблем.

» Что произошло в этом случае, никогда не будет известно, и судьба Звездного Тигра должна оставаться неразгаданной тайной. «

На высоте 2000 футов вы оставите очень небольшую высоту для маневра — в любой серьезной аварийной ситуации в полете самолет мог бы потерять высоту за секунды и упасть в море

Эрик Ньютон
Следователь по расследованию авиационных происшествий

Но в официальном отчете об аварии есть ряд улик, которые показывают, что Звездный Тигр столкнулся с проблемами до того, как достиг Азорских островов.

Нагреватель самолета был заведомо ненадежным и вышел из строя в пути, а один из компасов оказался неисправным.

Вероятно, чтобы самолет не замерз, пилот решил пролететь весь трансатлантический маршрут очень низко, на высоте 2000 футов, сжигая топливо с большей скоростью.

Приближаясь к Бермудским островам, Star Tiger немного сбился с курса и вылетел на час позже запланированного.

Кроме того, в официальном отчете Министерства гражданской авиации говорится, что встречный ветер, с которым столкнулся Star Tiger, мог быть намного сильнее, чем прогнозировалось.Это привело бы к более быстрому сгоранию топлива.

«На высоте 2000 футов они израсходовали бы гораздо больше топлива», — сказал Эрик Ньютон, один из самых высокопоставленных следователей Министерства гражданской авиации по расследованию авиационных происшествий, который рассматривал сценарий для BBC.

«На высоте 2000 футов вы оставите очень небольшую высоту для маневра. В любой серьезной аварийной ситуации в полете они могли бы потерять высоту за секунды и уйти в море».

Что бы ни случилось с самолетом, это было внезапно и катастрофически — не было времени послать сигнал тревоги.

Пять самолетов ВМС США пропали без вести в районе треугольника в 1945 году

Avro Tudor IV был переоборудованным военным самолетом, который в конечном итоге был выведен из эксплуатации из-за низкого уровня безопасности. Только BSAA продолжала управлять самолетом.

Гордон Сторе был главным пилотом и операционным менеджером в BSAA. В интервью местной газете в ноябре прошлого года он сказал, что не доверяет двигателям Tudor.

«Его системы были безнадежными… вся гидравлика, оборудование для кондиционирования воздуха и вентиляторы рециркуляции были забиты вместе под полом, не задумываясь. Существовали обогреватели, работающие на топливе, которые никогда не работали», — сказал он.

Вторая авария

Спустя почти год после исчезновения Звездного Тигра еще один Avro Tudor IV, принадлежащий BSAA, исчез между Бермудскими островами и Ямайкой.

Ровно через час после вылета с Бермуд 17 января 1949 года пилот «Звездного Ариэля» отправил обычное сообщение о своем местонахождении.Но затем самолет бесследно исчез на высоте 18 000 футов.

По мнению экспертов, это потребовало бы внезапной катастрофы.

Опять же, никаких обломков, обломков или тел обнаружено не было.

Недостаток топлива на такой высоте был маловероятным, прогноз погоды был хорошим, и ошибка пилота была исключена.

По словам Дона Макинтоша, бывшего пилота BSAA Tudor IV, виновата в этом плохая конструкция самолета. Обогреватель кабины, установленный под полом, где сидел второй пилот, — его главный подозреваемый.

Моя теория состоит в том, что гидравлический пар вышел из утечки, попал в горячий нагреватель и вызвал взрыв

В то время технология подогрева самолетов находилась в зачаточном состоянии.

«Нагреватель подавал воздух из авиационного топлива в горячую трубу, а также находился довольно близко к гидравлическим трубам», — говорит он.

Реле давления должно было позволить нагревателю работать, когда он находился в воздухе, но он был ненадежным и часто умышленно замыкался персоналом, что позволяло пилоту управлять вручную.

Переключатель предотвращает протекание горючего топлива, но если нагреватель был включен вручную, газ, который мог скопиться, мог воспламениться.

Капитан Питер Даффи, бывший пилот BSAA, который впоследствии стал капитаном British Airways Concorde, также считает, что близость обогревателя и гидравлических труб была значительной.

«Моя теория заключается в том, что гидравлический пар вышел из утечки, попал в горячий нагреватель и вызвал взрыв», — говорит он.

В отчете г-на Ньютона был сделан аналогичный вывод: «Если бы обогреватель загорелся под половицами, он мог бы развиться до катастрофического состояния, прежде чем экипаж узнал бы что-нибудь об этом.

« Не было автоматического огнетушителя. это как сейчас. Там, где хранился обогреватель, не было сигнала тревоги… так что никто не узнает, возможно, пока не станет слишком поздно.»

Официальное расследование авиационного происшествия обнаружило, что из-за ошибки связи поисково-спасательные группы были отправлены только через семь с половиной часов.

К тому времени все, что осталось от самолета, и тела должны были затонуть.

В отчете об исчезновении первого самолета, Звездного Тигра, говорилось кое-что, что, поскольку его можно было легко неправильно истолковать, помогло аварии получить известность.

В момент философских догадок исследователи подумали, что, возможно, «какая-то внешняя причина может ( иметь) сокрушить (ред) и человека, и машину «.

Эти комментарии британских государственных служащих в трезвых костюмах открыли шлюзы для теоретиков заговора, журналистов-хакеров и интриганов, добавив тайны Бермудского треугольника.

Как слушать расследование Тома Мангольда: внутри Бермудского треугольника — разгадки тайн:

Радио 4: 1545 BST, будние дни с понедельника 14 по пятницу 25 сентября

Онлайн в веб-сайт программы

наблюдений «Летающего треугольника» на подъеме

Они стали легендарными в кругах НЛО.Огромные, бесшумно движущиеся «летающие треугольники» были замечены наземными наблюдателями, медленно и низко ползая по небу возле городов и спокойно курсируя по шоссе.

Национальный институт науки открытий, или NIDS, каталогизировал наблюдения Треугольника, просеивая и комбинируя базы данных, чтобы пристально взглянуть на загадочный корабль. NIDS — это частный научный институт, базирующийся в Лас-Вегасе, который занимается серьезными исследованиями в области воздушных явлений. Результаты их исследования только что были обнародованы и приводят к некоторым тревожным и загадочным выводам.

В исследовании указывается: «В настоящее время в Соединенных Штатах наблюдается волна наблюдений за« летающим треугольником », которая, возможно, усилилась в 1990-х годах, особенно во второй половине 1990-х годов. Волна продолжается. «Летающие треугольники» открыто развертываются над и вблизи населенных пунктов, в том числе вблизи основных межгосударственных автомагистралей ».

Тайные операции?
Ключевой вывод NIDS состоит в том, что действия этих треугольных летательных аппаратов не соответствуют предыдущим схемам скрытого развертывания непризнанных самолетов.Кроме того, «ни повестка дня, ни происхождение летающих треугольников в настоящее время неизвестны».

В 1990-2004 годах наблюдалась интенсивная волна самолетов «Летающий треугольник», говорится в исследовании. Анализируя отчеты сотен очевидцев, в оценке NIDS говорится, что поведение транспортных средств «не похоже на тайное развертывание передового DoD [США]. Министерство обороны] самолет ».

Скорее, это соответствует (а) обычному и открытому развертыванию непризнанного передового самолета Министерства обороны или (б) регулярному и открытому развертыванию самолета, принадлежащего и эксплуатируемого персоналом, не входящим в состав Министерства обороны, предполагает исследование NIDS.

«Последствия последней возможности вызывают тревогу, особенно в эпоху после 11 сентября, когда воздушное пространство Соединенных Штатов Америки чрезвычайно строго охраняется и контролируется», — поясняет исследование NIDS. «В поддержку варианта (а) существует гораздо большая потребность в наблюдении в Соединенных Штатах в эпоху после 11 сентября, и, конечно, возможно, что развертывание платформ наблюдения на малой высоте будет обычным и открытым».

«Открытый, даже наглый»
По словам Колма Келлехера, администратора NIDS, недавно завершенный квази-«мета-анализ» Flying Triangles объединяет три основные базы данных из NIDS, Mutual UFO Network и независимого исследователя Ларри Хэтча. , создатель и владелец одной из крупнейших и наиболее полных в мире баз данных об НЛО.

Келлехер сказал, что анализ показывает, что развертывание «Летающих треугольников» является открытым, а не скрытым, и включает в себя низколетящие, ярко освещенные самолеты, которые обычно используются над густонаселенными районами, включая города и межгосударственные шоссе.

«Однако я не могу сказать, относятся ли это к самолетам ВВС США. Мы просто не знаем », — сказал Келлехер Space.com. «Но, похоже, это не соответствует скрытым схемам развертывания, которые мы видели с F-117 и B-2 до их подтверждения.Это открыто, даже нагло ».

Например, поверхностный взгляд на то, как прошлые программы военных самолетов-невидимок скрывались от общественности — хотя они в конечном итоге и стали известны — отличается от моделей для летающих треугольников.

До признания существования самолетов F-117 и B-2 в малонаселенных районах Невады, Калифорнии и некоторых других штатов происходили лишь редкие ночные наблюдения. О полетах на малой высоте над населенными пунктами для F-117 или B-2 сообщалось редко.

«Напротив, развертывание« Летающего треугольника », особенно в 1990-е годы, кажется более совместимым с открытой и публичной эксплуатацией этих самолетов», — поясняет исследование. Тенденция к открытому развертыванию «летающих треугольников» не согласуется с секретной эксплуатацией перспективного военного самолета.

Никаких попыток скрыть
Исследование Летающего треугольника на основе базы данных показывает следующие закономерности:

  • Наблюдения происходят вблизи городов и на автомагистралях между штатами.
  • Они видны на небольшой высоте на глазах очевидцев.
  • Они летают на крайне низкой скорости или зависают на глазах у очевидцев.
  • Транспортные средства иногда летают с легко заметными яркими огнями — либо ослепляющими белыми огнями, либо «яркими огнями дискотек», которые обычно мигают комбинациями красного, зеленого или синего цветов.

Исследование NIDS подчеркивает, что управление этими транспортными средствами может быть более гармоничным с попыткой показать или быть замеченным. Похоже, что попыток спрятаться почти нет.Это открытие привело к модификации более ранней гипотезы NIDS о том, что «Треугольники» являются скрытно размещенными самолетами Министерства обороны.

Хотя еще слишком рано отвергать ранее опубликованную корреляцию NIDS между наблюдениями Triangle и подмножеством баз ВВС США, очевидная связь с населенными пунктами может указывать на далеко от тайной программы. «Скорее, это соответствует обычному и открытому развертыванию перспективного самолета», — заключает исследование NIDS.

Сгруппированы на обоих побережьях
В последующие годы (2000-2004) NIDS получил сотни сообщений от людей из США и Канады, сообщавших о больших треугольных самолетах, часто бесшумных и часто летающих на очень малой высоте и в условиях низкой воздушной среды. скорость.Во многих случаях объекты были ярко освещены. Файлы NIDS также включают отчеты о летающих треугольниках из удаленных районов.

В середине 2004 года NIDS проверил свою базу данных, в которой указаны местоположения наблюдений «Треугольника» в Соединенных Штатах. Треугольники появляются в основном вблизи населенных пунктов и вдоль межгосударственных автомагистралей, причем наблюдения сосредоточены на обоих побережьях.

NIDS собрал почти 400 отдельных наблюдений треугольных / бумеранговых / клиновидных объектов. Многие из этих аппаратов ярко освещены, низколетят и движутся с неожиданно низкой скоростью.

В более ранних отчетах NIDS описал предварительную корреляцию между сообщениями о наблюдениях Треугольников и местоположением баз командования воздушной мобильности и командования материальной частью ВВС в США.

Как в «Звездном пути», разоблачение
По мнению наземных наблюдателей, черты Черного треугольника действительно впечатляют.

Например, исследование NIDS включает наблюдение человека в Порт-Вашингтоне, штат Висконсин, который столкнулся с большим объектом, пролетевшим над ее домом на высоте около 150 метров над уровнем моря в октябре 1998 года.Ее взгляд в ясную звездную ночь был прерван, когда корабль оказался в ее поле зрения.

«Внезапно это чудовище появилось из ниоткуда, точно так же, как« разоблачение »из« Звездного пути », без шуток … такое тихое, что я не мог поверить в это, и такое огромное … не выше 500 футов или около того. и достаточно большой, чтобы занять мое поле зрения неба », — сообщила она.

С помощью грубой математики, по словам свидетеля, судно получило шириной около 200 футов и длиной 250 футов (60 на 75 метров).

Завершая свой взгляд на растущее число наблюдений за Летающим треугольником в Соединенных Штатах, NIDS также принял во внимание работу писателей и исследователей, углубляющихся в эту тему как в Соединенных Штатах, так и за рубежом.

Эти анализы делятся на два лагеря: один утверждает, что треугольники созданы людьми, а другой утверждает, что это не так.

«В 2004 году чрезвычайно трудно провести различие между этими двумя возможностями, поскольку первый вариант в значительной степени пересекается с законными соображениями национальной безопасности, в то время как в отсутствие гораздо большего количества вещественных доказательств последний вариант не поддается проверке», — заключает оценку NIDS. .

Калькулятор прямоугольного треугольника

Укажите 2 значения ниже, чтобы рассчитать другие значения прямоугольного треугольника.Если в качестве единицы измерения угла выбраны радианы, он может принимать такие значения, как пи / 3, пи / 4 и т. Д.


Калькулятор связанных треугольников | Калькулятор по теореме Пифагора

Прямой треугольник

Прямоугольный треугольник — это тип треугольника, угол которого составляет 90 °. Правые треугольники и отношения между их сторонами и углами являются основой тригонометрии.

В прямоугольном треугольнике сторона, противоположная углу 90 °, является самой длинной стороной треугольника и называется гипотенузой.Стороны прямоугольного треугольника обычно обозначают переменными a, b и c, где c — гипотенуза, а a и b — длины более коротких сторон. Их углы также обычно обозначаются прописной буквой, соответствующей длине стороны: угол A для стороны a, угол B для стороны b и угол C (для прямоугольного треугольника это будет 90 °) для стороны c, как показано ниже. . В этом калькуляторе для обозначения неизвестных угловых величин используются греческие символы α (альфа) и β (бета). h обозначает высоту треугольника, которая представляет собой длину от вершины прямого угла треугольника до гипотенузы треугольника.Высота делит исходный треугольник на два меньших, похожих треугольника, которые также похожи на исходный треугольник.

Если все три стороны прямоугольного треугольника имеют целые числа, он известен как треугольник Пифагора. В треугольнике этого типа длины трех сторон в совокупности известны как тройка Пифагора. Примеры включают: 3, 4, 5; 5, 12, 13; 8, 15, 17 и др.

Площадь и периметр прямоугольного треугольника рассчитываются так же, как и любого другого треугольника.Периметр — это сумма трех сторон треугольника, а площадь можно определить с помощью следующего уравнения:

Специальные прямоугольные треугольники

треугольник 30 ° -60 ° -90 °:

30 ° -60 ° -90 ° относится к угловым измерениям в градусах этого типа специального прямоугольного треугольника. В этом типе прямоугольного треугольника стороны, соответствующие углам 30 ° -60 ° -90 °, имеют соотношение 1: √3: 2. Таким образом, в треугольнике этого типа, если длина одной стороны и соответствующий угол стороны известны, длина других сторон может быть определена с использованием указанного выше соотношения.Например, учитывая, что сторона, соответствующая углу 60 °, равна 5, пусть a — длина стороны, соответствующей углу 30 °, b — длина стороны 60 °, а c — длина стороны 90 °. сб .:

Углы: 30 °: 60 °: 90 °

Соотношение сторон: 1: √3: 2

Длина сторон: a: 5: c

Тогда используя известные отношения сторон этого особого типа треугольника:

Как видно из вышеизложенного, знание только одной стороны треугольника 30 ° -60 ° -90 ° позволяет относительно легко определить длину любой другой стороны.Этот тип треугольника можно использовать для вычисления тригонометрических функций, кратных π / 6.

45 ° -45 ° -90 ° треугольник:

Треугольник 45 ° -45 ° -90 °, также называемый равнобедренным прямоугольным треугольником, поскольку он имеет две стороны равной длины, представляет собой прямоугольный треугольник, в котором стороны, соответствующие углам, составляют 45 ° -45 ° -90 °, соблюдайте соотношение 1: 1: √2.

Добавить комментарий

Ваш адрес email не будет опубликован.