Защитное и рабочее заземление в чем разница: Что такое рабочее, технологическое и защитное заземление

Содержание

Что такое рабочее, технологическое и защитное заземление

В данной статье мы постараемся объяснить, что такое рабочее и технологическое заземление, и чем они отличаются от защитного.


Рабочим называют заземление, предназначенное для отвода нежелательных токов, также оно является возвратным контуром фазных токов.
Технологическое заземление нельзя использовать в качестве возвратного контура, его функция — защита чувствительного оборудования. Технологическое заземление — резервный низкоомный токовый контур.
Защитное заземление используется для безопасности при аварии (короткое замыкание).
Рабочее же заземление служит исключительно для защиты силового оборудования.
Технологическое заземление служит для защиты оборудования, однако, в некоторых случаях, может также использоваться в качестве защитного.


Защитное заземление

Защитное заземление выполняют, присоединяя все металлические нетоковедущие части оборудования (элементы, по которым в нормальном рабочем состоянии не протекают электрические токи) к земле. Это могут быть корпуса, стойки, станины и т.д.
Задача защитного заземления — минимизировать риск поражения электрическим током при касании оборудования персоналом во время короткого замыкания (КЗ).
При КЗ на нетоковедущих частях оборудования может оказаться электрический потенциал большой величины (относительно земли). При касании данных частей человеком, его тело может оказаться под воздействием электрического тока.
Чтобы избежать этого все нетоковедущие части оборудования присоединяют к системе заземления. Таким образом, все аварийные токи будут отведены через заземляющее устройство в землю.


Рабочее заземление

Рабочее заземление выполняют присоединяя к системе заземления токоведущие части (токопроводы, по которым в нормальном рабочем состоянии протекают электрические токи). Например, заземление нейтрали силового трансформатора со схемой соединения обмоток «звезда».
Данный вид заземления служит для защиты оборудования электрических систем и обеспечения надежного контура для возврата фазных токов от электрооборудования до источника электроэнергии.


Технологическое заземление

Технологическим называют заземление, обусловленное требованиями технологического процесса. Оно может выполнять множество функций: защита оборудования, безопасность персонала, обеспечение точности измерений и т.п.
Функциональное назначение технологического заземления в каждом случае индивидуально и зависит от используемого оборудования.

Просмотров: 13643| Опубликовано: Воскресенье, 13 Март 2016 13:02|

Рабочее заземление, отличие от защитного заземления

Заземляющими принято называть устройства, способные обеспечить надежные пути стекания аварийного тока в землю. Необходимость в этом может возникнуть по самым разным причинам, основные из которых – создать условия для нормального функционирования электроустановки или гарантировать безопасность работающих на ней людей. Эти функциональные различия следует четко усвоить. Они помогут понять, что называется рабочими заземлениями и в чем их отличие от защитных мер. В рассмотренных ранее причинных определениях в первом случае используется рабочее или функциональное заземление, а во втором – его аналог.

Рабочее заземление

Выдержка из ПУЭ-7, пункт 1.7.30. Рабочее (функциональное) заземление — заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности).

В отличие от защитного заземления, используемого исключительно в целях безопасности людей, рабочее заземление предназначается для того, чтобы гарантировать нормальную работу электрических приборов и устройств.

Обратите внимание: Эта его функция должна выполняться независимо от того, в каких условиях работает электрооборудование: в нормальных штатных или в аварийных.

Реализуется функциональное заземление самым непосредственным образом – через подсоединение металлических токопроводящих частей к так называемому «заземлителю». В качестве этой разновидности ЗУ допускается использовать подключенные к заземляющей конструкции молниеотводы, защищающие предприятия и другие объекты от грозы. Эти же устройства помогают уберечь действующее оборудование от наведенных (или индуцированных) ЭДС, представляющих ничуть не меньшую угрозу для него.

Схема рабочего заземления через пробивной предохранитель в трехпроводной сети Схема рабочего заземления с глухозаземленной нейтралью в четырехпроводной сети

В ряде случаев функциональное заземление организуется для того, чтобы создать условия для срабатывания специальных приспособлений пробивного типа (предохранителей, резисторов и подобных им).

Хорошо усвоив, что называют рабочими заземлениями, пользователь сможет понять не только их отличие от защитного, но и то, что эффективность его действия зависит от параметров конструкции ЗУ. Под ним в первую очередь понимается сопротивление цепи стекания тока в землю, величина которого согласно требованиям ПУЭ не должна превышать нормируемого значения (25-30 Ом).

Защитное заземление

Защитным заземлением называют умышленное соединение металлических нетоковедущих частей с землей или же ее аналогом с целью защиты людей от удара током.

Дополнительная информация: Функцию заземлителя в этом случае могут выполнять и естественные ЗУ, под которыми понимаются уже проложенные в земле элементы строительных конструкций и коммуникаций.

Схема сети с заземленной нейтралью и защитным заземлением потребителя электроэнергии.

С помощью искусственных и естественных заземляющих конструкций удается предотвратить поражение человека током в ситуациях, когда корпус оборудования или бытового прибора случайно оказывается под напряжением. В этом случае срабатывает принцип шунтирования аварийной цепи более низким сопротивлением, по которому опасный ток «уходит» в землю.

Согласно этому рисунку через тело прикоснувшегося к корпусу человека протекает лишь малая доля общего тока, а большая его часть «стекает» в грунт через параллельную цепь.

Чем они отличаются

Разницу между двумя этими видами сможет уловить только основательно изучивший их особенности человек. Для непрофессионала они с трудом различимы, поскольку чаще всего организуются с привлечением одних и тех же технических средств.

Отличия между рабочим заземлением и защитным заземлением проявляется не столько в технической части, сколько в том, для каких конкретных целей они организуются. В обоих случаях для обустройства ЗУ используются специальные приспособления (конструкции), способные отводить опасные токи на землю. И там и там потребуется присоединить корпуса приборов через толстую медную жилу к тому сооружению, которое выбрано для надежной защиты электрооборудования и людей.

Хорошо различимое отличие рабочего заземления от своего аналога состоит в следующем:

  1. функциональное заземление делается с целью защиты оборудования и приборов, подключенных к данной электрической сети, от выхода их из строя;
  2. для его реализации допускается использовать молниеотводы и распределенные системы выравнивания потенциалов, подключенные к местному заземляющему контуру;
  3. оно в меньшей мере, чем защитное, обеспечивает безопасность работающего на линии персонала и простых людей.

Хороший пример такой разницы – так называемые «переносные» или временные конструкции, применяемые исключительно для защиты работающих на отключенном оборудовании специалистов. К защите электроустановок они никакого отношения не имеют (последние отключены) и даже при случайной подаче в линию стороннего напряжения представляют угрозу лишь для человека. То есть это – чисто защитная мера.

Другим характерным отличием защитного заземления является обязательное присоединение к заземлителю все металлические части корпусов оборудования, то есть каркасы, рамы, стальные ограждения и тому подобное. Функцию самого заземлителя в этом случае могут выполнять как искусственно созданные конструкции, так и уже проложенные в земле стальные элементы коммуникаций (включая различные виды металлических труб и кабельных экранов).

Важно! Исключение составляют элементы газовых и нефтяных трубопроводов.

К частям оборудования, подлежащим обязательному рабочему занулению и заземлению относятся:

  • Приводы всех без исключения электрических аппаратов.
  • Корпуса работающих на объекте электрических машин, а также понижающих трансформаторов, используемых для питания переносных светильников.
  • Обмотки измерительных преобразователей, относящихся к разряду вторичных.
  • Стальные остовы и корпуса передвижных (переносных) электрических приемников.
  • Все открытые части работающего в данный момент оборудования.

Во всех этих случаях при невозможности организации заземления для снижения опасности поражения людей согласно ПУЭ используют электроприемники, рассчитанные на напряжение не более, чем 42 Вольта.

В заключение еще раз отметим, что различия двух типов заземлений в основном проявляются в их назначении и касаются технической стороны лишь не в значительной мере.

Чем рабочее заземление отличается от защитного

Заземляющими сейчас принято называть устройства, которые могли бы быть использованы с целью создания надежного пути тока через землю. В преимущественном большинстве случаев, такая необходимость возникает, когда потребителям нужно обеспечить работу электроустановки в рабочем, либо-же аварийном режимах работы. Ярким примером рабочего заземления является преднамеренное соединение с землей всевозможных разрядников, трансформаторов, ну или генераторов, в крайнем случае.

В качестве рабочего заземления нередко воспринимается также и присоединение к заземлению молниеотводов, наличие которых обуславливается необходимостью защиты электроустановки от индуцированных перенапряжений, а также от прямых ударов молнии. Та разновидность заземления, которая выполняется с целью обеспечения безопасности людей, принято называть защитным.

Отличительной особенностью данной разновидности заземления является то, что ему подлежат абсолютно все металлические части корпуса, каркасы, рамы, соответствующие ограждения и так далее. Что касается так называемого заземляющего устройства, то им принято называть уже совокупность заземлителя и заземляющих проводников.

В настоящий момент времени, принято различать также и такое понятие, как искусственный заземлитель. В его качестве, выступает заземлитель, электропроводящие части коммуникации которого, находиться в соприкосновении с землей. Заземляющим проводником называют заземляемые части, соединяющиеся с заземлителем.

Какие элементы подлежат заземлению?

К тем частям, которые подлежат не только занулению, но также и заземлению относится следующее:

  • Приводы соответствующих электрических аппаратов.
  • Корпуса определенного рода электрических машин. Последние, кстати говоря, могут быть представлены также и в форме трансформаторов, светильников и так далее.
  • Те обмотки измерительных трансформаторов, которые относятся к числу вторичных.
  • Металлические корпуса передвижных, а также переносных электроприемников.
  • Открывающие части. На последних, в обязательном порядке должны быть установлено электрооборудование, напряжение переменного тока которого равняется более 42В.
  • Опорные конструкции так называемых струн, шинопроводов, коробов тросов и так далее.

Особенности, которые отличают рабочее заземление от защитного

Если говорить в общем, то следовало бы отметить такие отличительные особенности защитного и рабочего заземлений:

Защитным заземлением, в настоящий момент времени, называют преднамеренное электрическое соединение с землей, либо-же ее эквивалентом, в качестве которого, кстати говоря, могут выступать также и металлические нетоковедущие части. Последние, нередко оказываются под напряжением, которое возникает вследствие замыкания на корпус или по каким-то другим причинам. Главное предназначение защитного заземления, сводится к устранению поражения током, в том случае, если потребитель случайно прикоснется к корпусу электроустановки, а также к каким-либо другим, нетоковедущим металлическим частям, что оказались по напряжением в результате замыкания на корпус, к примеру

Защитное зазаемление

Рабочее заземление, в свою очередь, представляет собой преднамеренное соединение с землей сразу-же нескольких отдельных точек электрической цепи. В их качестве могут выступать нейтральные точки обмоток генераторов, а также разнообразных измерительных трансформаторов. В отличие от защитного заземления, рабочее предназначается для того, чтобы обеспечивать правильную работу электроустановок, причем вне зависимости от того, в каких условиях будут работать последние: в нормальных или аварийных. Осуществляется данная разновидность заземления непосредственное — то есть, путем соединения заземляемых частей вместе с так называемым заземлителем.

В некоторых, гораздо более редких случаях случаях, оно осуществляется также и с помощью специальных приспособлений: всевозможных пробивных предохранителей, резисторах и так далее.

В любом случае, следовало бы отметить, что вне зависимости от того, какой разновидности заземления вы отдали свое предпочтение, эффективным оно будет только в том случае, если ток замыкания на землю не будет увеличиваться в результате уменьшения сопротивления заземлителя.

описание, принцип действия и назначение, схемы подключения и отличия,

Во время эксплуатации электроприборов необходимо использовать заземляющие устройства. В соответствии с назначением, возможно использование защитного и рабочего заземления. Первый вид позволяет обеспечить нормальную работу оборудования, а второй предназначен для защиты людей. Эти виды мер безопасности имеют различное назначение и принцип работы.

Защита электрооборудования

Рабочее (функциональное) заземление — соединение с землей определенных точек токоведущих частей электрооборудования. Чаще всего это

нейтральные точки обмоток трансформаторов и генераторов. Для реализации этого вида защиты используются надежные проводники либо специальные устройства, например, пробивные предохранители. Основной задачей рабочего заземления является предотвращение замыканий и сбоев в работе электроустановок.

Согласно правилам техники безопасности, эти виды защиты от электротока не могут совмещаться. Дело в том, что токи помех (например, атмосферные разряды) могут накладываться на протекающие в электроцепи. В результате оборудование может быть повреждено, а защитное заземление не будет выполнять свои функции. Также следует помнить, что показатель сопротивления функционального не должен превышать 4 Ом.

Защитное заземление

Благодаря электрическому соединению металлических конструкций оборудования промышленного и бытового назначения с землей

повышается безопасность его эксплуатации. Этот способ защиты людей от поражения электротоком называется защитным заземлением. Даже если в цепи используются специальные автоматические устройства, скорость их работы не позволяет полностью обезопасить человека.

Принцип работы

Если фазный провод коснется металлической конструкции оборудования, то его корпус окажется под напряжением. Если этот вид защиты был организован правильно, то создается электроцепь с низким сопротивлением. В результате этот путь станет для тока более предпочтительным, прикосновение человека к корпусу окажется безопасным. Так кратко можно описать принцип действия защитного заземления.

Основные функции:

  1. Защита обеспечивается даже в ситуации, когда опасное напряжение на корпусе было образовано токами индукции, а не коротким замыканием.
  2. Использование глухозаземленной нейтрали позволяет получить при коротком замыкании длительные импульсы с большой амплитудой, способствующие срабатыванию защитной автоматики.
  3. Заземляющий проводник способен обеспечить надежную защиту оборудования при попадании в него молнии.

Последняя функция не является целевой и носит второстепенный характер. Основное назначение защитного заземления — обеспечение безопасности людей во время работы на оборудовании.

Схемы подсоединения

Для выбора оптимального варианта защиты следует разобраться в схемах организации заземления, а также их преимуществах и недостатках. Первый вид — глухозаземленная нейтраль (тип TN). Эта схема используется в бытовом и промышленном электрооборудовании, предназначенном для работы в сетях до 1 кВ. Для ее реализации нейтральный провод источника питания соединяется с заземлителем. Затем к общему проводнику подключаются корпус, экран и шасси.

Наибольшей популярностью пользуются три схемы, обозначающиеся соответствующей буквой:

  1. C — проводник выполняет одновременно защитную и рабочую функцию. Схема предельно проста в реализации, но при разрыве электроцепи теряет свои защитные свойства.
  2. S — применяется два отдельных нулевых провода. Стоимость схемы несколько выше, но ее надежность существенно увеличивается.
  3. C-S — комбинация двух предыдущих систем. При ее использовании необходимо принять меры по предотвращению механического повреждения защитных проводников, иначе схема перестанет выполнять свою функцию.

На воздушных линиях электропередач используется схема ТТ. К источнику питания подключается глухозаземленная нейтраль, а энергия передается по четырем проводникам. На стороне потребителя монтируется автономная система защиты, к которой и подключается оборудование.

Еще одна схема реализации этого вида защиты — схема IT. Она активно применяется в исследовательских центрах, так как позволяет дополнительно устранить паразитные электрические наводки. Для уменьшения показателя сопротивления приходится сокращать длину проводника. Решается эта задача с помощью создания по периметру объекта специального заземляющего контура.

Категории заземлителей:

  1. Искусственные — изготавливаются специально для создания защитного заземления и не должны покрываться лакокрасочными материалами. Допускается использование в роли заземлителя электропроводящего бетона.
  2. Естественные — электропроводящие части сетей и коммуникаций строений, находящиеся в контакте с землей.

Такая классификация носит условный характер, так как в любом случае для обеспечения безопасности людей используются металлические части здания, расположенные в земле. Рекомендуется создавать защитное заземление с помощью естественных заземлителей. Однако для решения поставленной задачи запрещено применять трубопроводы, подающие горючие вещества.

Назначение и устройство защитного заземления существенно отличается от функционального, поэтому их нельзя совмещать. Подробно вопросы организации защиты оборудования и людей от воздействия электротока изложены в особом документе «Правила устройства электроустановок».

Что называется рабочим заземлением! Рабочее и защитное заземление

Какое заземление называется рабочим? В чем его особенности, преимущества и радикальные отличия от защитного? Мы расскажем, что называется рабочим заземлением и как его сделать.

Рабочее и защитное заземление. В чем разница?

Монтаж электрооборудования предполагает обязательное обеспечение его безопасной эксплуатации. Для этого следует учитывать особенности сети, самого прибора и рекомендаций производителя. Также важно соблюдать требования нормативов. Правила разработаны с учетом характеристик отечественных электросетей и минимизируют возможные риски.

Однако непосвященному человеку нелегко разобраться в терминологии нормативных актов. В статье мы расскажем о рабочем заземлении и защитном. Ведь главная сложность – понять задачи каждого из них.

Рабочее

ПУЭ (1.7.8) определяют его как соединение с заземлителем одной или нескольких точек токопроводящих частей оборудования, обеспечивающее функционирование агрегата. Рабочее заземление электроустановок чаще всего обустраивают при наличии указания от производителя техники.

Защитное

Предполагает подключение к заземлителю составляющих установки, для достижения электробезопасности людей (ПУЭ 1.7.7). К нему выдвигаются более жесткие, по сравнению с предыдущим типом, требования. Их выполнение имеет первоочередную важность.

Чем отличается рабочее заземление от защитного заземления?

Мы уже рассмотрели различия в определении терминов. Для большей наглядности, стоит поинтересоваться предназначением данных типов защит.

  1. Назначение рабочего заземления:
  • мощные приборы, не способные стабильно работать в системе TN-C;
  • чувствительное оборудование, восприимчивое к качеству защиты;
  • медицинские и лабораторные электроустановки;
  • техника, требующая соответствия высоким запросам защиты информации в объектах лабораторной и другой направленности.
  1. Второе выполняют для следующего электрооборудования:
  • приборы (менее 1кВ), работающие в сетях AC (трехфазные, трехпроводные), предусматривающих изолированную нейтраль;
  • устройства (до 1кВ), функционирующие в электросети AC (однофазные, двухпроводные), изолированных от грунта;
  • агрегаты, подключенные к электросети DC (1кВ максимум, двухпроводная), имеющих изолированную среднюю точку обмоток источника питания;
  • техника, питающаяся от сети постоянного/переменного тока (больше 1кВ), с любым режимом нейтрали, либо средней точки обмоток источников тока.

Особенности рабочего заземления

Является специальным соединением нескольких точек электроцепи с грунтом. Таковыми могут быть нейтральные точки измерительных подстанций и обмоток генераторов. Решение не направлено на достижение безопасности людей, а обеспечивает стабильное функционирование электроприборов. Причем независимо от условий работы (стандартные или аварийные).

Для реализации такового части установки соединяются с почвой посредством проводника. Иногда выполняется с помощью специализированных приспособлений. Ими могут быть резисторы или пробивные предохранители.

← Предыдущая статья Следующая статья →

отличия от рабочего, назначение, схема и устройство

На чтение 10 мин Просмотров 391 Опубликовано Обновлено

Работающие электрические приборы должны иметь заземление. В зависимости от цели оно может быть рабочим или защитным. Первое предназначено для корректной работы устройств, а второе – для защиты людей. Принцип действия одного и второго разный.

Основные цели и задачи заземления

Заземление представляет собой заземлитель и заземляющие проводники, по которым ток стекает в грунт и нейтрализуется

Почва способна нейтрализовать электрический ток, так как степень ее напряжения равна нулю. Сопротивление – это основной показатель заземляющего устройства, по которому можно судить о его качестве и способности выполнять свое предназначение. Удельное сопротивление зависит от состава почвы, наличия в ней химических веществ – кислотных или щелочных, влажности, рыхлости. В зависимости от состава почвы может потребоваться использование какого-либо специального комплекта заземления или же полная замена грунта для корректной работы заземляющих устройств.

Заземление – это соединение какого-либо прибора, электрической установки или части сети с заземляющим устройством. Оно представляет собой заземлитель и заземляющие проводники, по которым ток стекает в грунт и нейтрализуется.

Заземлителей может быть несколько. В распределенной схеме они располагаются по периметру объекта, электрическую сеть которого необходимо обезопасить. Проводящая часть (заземлители) обычно выполняются из металла. К ним подводятся заземляющие электроды, которые имеют непосредственный контакт с почвой.

Устройство контура заземления

Заземляющее устройство монтируется по контуру. Контур заземления – это несколько проводников электродов, которые забиваются в грунт. Их длина – 3 метра, располагаются они на небольшом расстоянии друг от друга. В качестве соединения применяется горизонтальная металлическая полоса, которую укладывают в почву на небольшую глубину – до 1 метра. Соединение с электродами осуществляется с помощью обычной сварки. В специальных заземляющих комплектах части оборудования соединяются резьбой, что никак не влияет на рабочие свойства.

Рабочее заземление необходимо в следующих случаях:

  • Защита оборудования от накопления статического электричества. Процессы, происходящие в природе, например, молнии, могут влиять на ток, протекающий в цепи, в результате чего оборудование может быть повреждено. Электроды, установленные в грунте, отводят излишки тока.
  • Защита сети от замыканий.
  • Защита от перенапряжения.

Пример рабочего заземления – молниеотвод, который присоединен к электродам. Особенно актуально в генераторах, трансформаторах.

Принцип защитного заземления

Защитное заземление – это комплекс мер, которые направлены на защиту оборудования и людей, которые с ним работают. Используется для устранения электромагнитных помех, возникающих из-за работающего рядом устройства, а также для нейтрализации помех при коммутации в цепи питания.

Защита от попадания молнии

Схема защиты дома от молний

Воздушная среда – это участок с большим сопротивлением, но разряд имеет мощность, превосходящую данное сопротивление, поэтому пробивает его. По пути следования из верхних слоев атмосферы к земле молния выбирает участки с наименьшим сопротивлением – мокрые участки, стены, деревья и капли воды. Этим объясняется тот факт, что разряды часто попадают в дерево – оно имеет сопротивление меньше, чем воздух вокруг. При попадании в здание ток также проходит по участкам с наименьшим сопротивлением – это металлические трубы, электрические приборы или их металлические детали, влажные стены. Если устройство не имеет заземления, прикосновение к нему в момент прохождения заряда может быть смертельным.

При установке молниеотвода на крыше заряд попадает в него, а далее движется в землю и нейтрализуется. Важно, чтобы токи не распространялись внутрь объекта, поэтому материалы, которые используются для обустройства заземления, имеют низкое сопротивление. По правилам оно не должно превышать показатель в 4 Ом. Сам молниеотвод должен быть соединен с электродами в грунте.

Защита от импульсного перенапряжения

Устройства защиты от импульсных перенапряжений

Электронное оборудование чувствительно к скачкам напряжения или работающим в их радиусе мощным электрическим установкам. Повредить электронику может внезапно возникший разряд молнии вблизи.

В качестве примера: во время грозы может возникнуть избыточный заряд в медном кабеле, которыми соединены дома и по которым проходит ток. Заряд при увеличении его размера способен разрушить кабель. В этом случае на линии питания ставится УЗИП – устройство защиты от импульсного перенапряжения, чтобы избыток заряда стравливался в грунт.

Защита людей

Корпуса приборов, все металлические элементы способны проводить ток. Если коснуться незаземленного прибора, в котором накопилось статическое электричество, можно получить сильный удар. Это отразится прежде всего на сердечно-сосудистой и нервной системе. Снизить удар помогает резиновая обувь, прорезиненные перчатки, абсолютно сухое помещение, но люди редко ходят по квартире или офису в резиновых сапогах. Подключение третьего провода к корпусу приборов, а затем соединение его с электродами позволяет утилизировать в грунт лишний ток.

В старых частных и многоквартирных домах заземляющие мероприятия не проводились, поэтому все электрические приборы представляют потенциальную опасность для людей.

Самодельные устройства могут выглядеть следующим образом: к корпусу прибора подсоединен провод, который выводится на улицу и соединяется с вбитым в землю металлическим изделием (труба, уголок, ведро, арматура). Эти изделия являются хорошими проводниками тока, в отличие от человеческого тела, поэтому ток выбирает металл и уходит в грунт.

Отличие рабочего заземления от защитного

Рабочее и защитное заземление по правилам техники безопасности не должно совмещаться водной схеме. При атмосферных разрядах электрические приборы могут повредиться, при этом защитное заземление не сработает.

В схеме функционального (рабочего) заземления все токонесущие конструкции соединяются с электродами, установленными в грунте. Для корректной работы рабочего заземления используются также предохранители, которые принимают напряжение на себя и выходят из строя.

Рабочее заземление оборудуется в том случае, если к приборам прилагается указание производителя и требования, которые защищают данное устройство.

К защитному заземляющему устройству предъявляется больше требований, так как оно имеет более важные задачи: сохранение жизни людей.

Назначение рабочего заземляющего устройстваНазначение защитного заземления
Большая мощность приборовТрехфазные приборы мощностью менее 1 кВт
Электронное чувствительное оборудованиеОдно- и двухфазные устройства, не имеющие контакта с грунтом
Медицинские приборыТехника мощностью более 1 кВт
Электронная техника, которая является носителем важной информацииВ схемах с предохранителями и нулевым защитным проводником

Самое надежное заземление предусмотрено в схеме электросети дома. Кабели, которые подходят к каждой розетке, должны быть трехжильными. Третья жила соединяется с землей и отводит статическое электричество, а также предотвращает короткие замыкания и попадание молнии внутрь здания.

Требования к защитному заземлению

Чтобы заземляющие установки выполняли свои функции, они должны соответствовать определенным параметрам и указаниям производителя оборудования.

Нюансы, которые влияют на функционал:

  • Сопротивление грунта из-за его физико-химических особенностей. Лучше всего проводит ток влажная глина, графитовая крошка, торф, солончаки или морская вода. Хуже – сухой песок или твердые породы – гранит, щебень, кварц, асфальт, бетон.
  • Площадь контакта заземлителя с почвой. Чем больше площадь, тем более благоприятные условия создаются для перетекания тока, тем быстрее это происходит. Увеличить площадь можно, установив большее количество электродов по контуру здания. В этом случае их соединяют вместе стальной пластиной в единое целое. Если увеличить размер одного электрода, общая площадь также увеличится. Увеличить площадь помогает установка вертикального металлического контура, если нижние слои грунта имеют большее сопротивление, чем поверхностные.

Поскольку добиться идеального сопротивления почвы трудно, устройства создаются исходя из ее характеристик. Для каждой электрической установки существуют свои нормы сопротивления заземлительных устройств. Например, для электрической подстанции с напряжением более 100 кВт сопротивление не должно быть больше 0,5 Ом, а для домашней сети с системой ТТ, а также применением автоматического отключения – до 500 Ом.

Необходимо обязательно обрабатывать сварные швы заземления от коррозии

Заземлители из металла не должны покрываться лакокрасочными материалами. Иногда в качестве заземляющего устройства используется подземная часть здания с металлическими конструкциями – электропроводящий бетон с арматурой внутри. Нельзя использовать газовые металлические трубы для решения проблемы заземления.

Согласно Правилам устройства электроустановок заземлению подлежат:

  • Сети, напряжение которых выше 380 В.
  • Особо опасные и наружные установки.

Части оборудования, подлежащие занулению и заземлению:

  • Корпуса электрического оборудования.
  • Вторичная трансформаторная обмотка.
  • Приводы электрических приборов.
  • Распределительные щиты, каркасы шкафов.
  • Металлические конструкции оборудования.
  • Железная оболочка кабеля.

Если напряжение не превышает 42 В переменного тока или 110 В постоянного, заземление не требуется.

Бытовое заземление

Заземление ванны в квартире

Большая часть несчастных случаев в бытовых условиях связана с касанием прибора, который имеет повреждение изоляции. Тело человека в данном случае является проводником тока. Электрические варочные плиты, стиральные и посудомоечные машины, радиаторы отопления, микроволновки, бойлеры, ПК, мойки для посуды – все это металлические конструкции, которые хорошо проводят ток и без заземления могут причинить вред здоровью.

Короткое замыкание – это соприкосновение фазного и нулевого провода в сети, что приводит к срабатыванию аварийной защиты и отключению прибора от питания. Чаще всего происходит не короткое замыкание, а утечка тока, который накапливается в корпусе бытового оборудования. Это может привести к поражению электричеством.

Для безопасности человека необходимо устанавливать розетки с заземляющими контактами. К розетке должен быть подведен трехжильный кабель. При двухжильной и трехжильной системе заземление оборудуется по-разному – от распределительной коробки или электрического щитка.

В качестве заземлителя нельзя использовать газовые, водопроводные или трубы централизованного отопления.

Работа заземления при неисправностях электрооборудования

Под неисправностью оборудования подразумевают повреждение изоляции и возникновение фазы в корпусе прибора. Если части оборудования находятся под напряжением, но не имеют защиты в виде заземления и УЗО, человек, не подозревающий об опасности, может получить удар током.

Во втором варианте утечка тока может быть не значительной, устройство защиты оборудования не среагирует на напряжение и не отключит прибор. Человек может получить незначительный удар.

Если корпус не заземлен, но УЗО установлено, оно сработает через 0,02 секунды после прикосновения человека к корпусу прибора. Этого времени не достаточно для нанесения вреда здоровью.

Самой эффективной с точки зрения безопасности схемой является наличие заземления и УЗО. При возникновении утечки тока и переходе его в грунт УЗО реагирует и отключает прибор.

Как производится расчет параметров основных заземляющих элементов

Расчет параметров заземляющего устройства выполняется по формулам. Исходными элементами являются:

  • сопротивление грунта на данном участке;
  • длина, толщина, диаметр электродов, а также их количество.

На практике во всех случаях бывают расхождения с намеченным планом работ, так как показатель почвы необходимо анализировать более точно. Сделать это практически невозможно: на 100 квадратных метрах необходимо пробурить около 100 мини шахт глубиной до 10 м, чтобы оценить слои почвы, ее состав и включения элементов – глины, известняка, песка и других компонентов.

Установку заземляющих устройств проводят по главному принципу заземления: наличие запаса прочности, имея усредненные значения параметров. Чем ниже получается сопротивление, тем лучше для всех электрических приборов и людей.

Установка заземлителей

Вертикальные электроды более эффективно выполняют свои функции, так как их можно установить на большую глубину. При горизонтальной укладке на небольшую глубину сопротивление увеличивается, особенно в зимний период, когда верхние слои грунта промерзают.

Для электродов применяют штыри, длина которых более 1 метра (обычно 1,5 м). Такие конструкции легко забить в грунт с помощью обычного молотка, соединение выполняется в горизонтальной плоскости не менее 0,5 м в глубину.

Функциональное заземление | Статьи и видео о продукции ГК Полигон

Рабочее (функциональное) заземление – заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки ( не в целях электробезопасности ). (ПУЭ п. 1.7.30)

Примечание: фраза «не в целях электробезопасности» — акцент на надежную работу оборудования, но если сопротивление функционального заземления не более 4 Ом, то проблем с электробезопасностью не возникает в принципе.

Определение FE для сетей питания информационного оборудования и систем связи дано в следующих ГОСТах:

«Функциональное заземление: заземление для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал ( иногда для этого требуется наличие отдельного электрически независимого заземлителя )» ГОСТ Р 50571.22-2000 п.3.14 (707.2)

«Функциональное заземление может выполняться путем использования защитного проводника (РЕ-проводника) цепи питания оборудования информационных технологий в системе заземления TN-S.

Допускается функциональный заземляющий проводник (FE-проводник) и защитный проводник (РЕ-проводник) объединять в один специальный проводник и присоединять его главной заземляющей шине (ГЗШ)» ГОСТ Р 50571.21-2000 п.548.3.1

ПУЭ 1.1.17. Для обозначения обязательности выполнения требований ПУЭ применяются слова «должен», «следует», «необходимо» и производные от них.

Слова «как правило» означают, что данное требование является преобладающим, а отступление от него должно быть обосновано.

Слово «допускается» означает, что данное решение применяется в виде исключения как вынужденное (вследствие стесненных условий, ограниченных ресурсов необходимого оборудования, материалов и т.п.).

Слово «рекомендуется» означает, что данное решение является одним из лучших, но не обязательным.

Слово «может» означает, что данное решение является правомерным.

Обозначение:

FE – рабочее ( функциональное, технологическое ) заземление.

Исторически, в связи с широким распространением вычислительной техники в 90-х годах, возникла необходимость обеспечения надежной работы нового оборудования в сетях типа ТN-C.

При передаче информации по линии связи между двумя компьютерами за опорную точку принимается корпусное заземление. Заземление, выполненное проводником РЕN, по которому текут рабочие токи, приводит к разнице потенциалов между корпусами приборов. Помимо разницы потенциалов вносимых в линию связи, туда же вносятся пульсации, гармоники и высокочастотные помехи при работе оборудования с большими реактивными токами. Локальное применение отдельной системы рабочего ( функционального ) заземления позволяло «малой кровью» обеспечить устойчивую работы вычислительной техники. Разумеется, перемонтаж всей электроустановки на «пятипроводную» систему типа TN-S обходился значительно дороже.

Вторая причина распространения функционального заземления – «безобразное» состояние защитного заземления в существующих электроустановках. Поставщик дорогостоящего цифрового оборудования не без оснований требует от заказчика выполнения отдельного заземления для своей «нежной» техники. Третья причина – специфические требования по защите информации, специализированные испытательные лаборатории и тд.

Основные схемы выполнения функционального заземления представлены на рис.2.


Вариант «А» — наиболее опасный из представленных, с точки зрения электробезопасности и безопасности объекта в целом. Нужно иметь «очень веские» основания для применения данной схемы или быть безграмотным инженером проектировщиком. Далее будут приведены аргументы против использования данной схемы.

Вариант «В» — формальное, но законное выполнение системы функционального заземления. Фактически представляет собой качественное защитное заземление с радиальной схемой разводки. Применяется для вновь строящихся объектов.

Вариант «С» — удобная схема для реконструируемых объектов. Имеет существенное преимущество перед вариантом «В» с точки зрения воздействия помех на ответственное оборудование.

Аргумент против схемы «А» №1: разрушение целостности основной системы уравнивания потенциалов и как следствие появление разности потенциалов на независимых системах заземления в процессе эксплуатации.

Причины появления разницы потенциалов:

1.КЗ на корпус в сети ТN-S до срабатывания системы защиты ( ~110B ).

2.Внешние электромагнитные поля ( близкий разряд молнии ) из-за разницы в длине проводников. Может достигать единиц киловольт.

3.Занос потенциала на ГЗШ при срабатывании молниеприемника. Разница потенциалов достигает сотен киловольт. См. статьи «Защитное заземление. Основная и дополнительные системы уравнивания потенциала» и «Занос потенциала в электроустановку.

Аргумент против схемы «А» №2:

крайне низкие токи короткого замыкания фаза – корпус применительно к сетям типа TN-S со всеми вытекающими последствиями.

Рассмотрим простой пример:

Рис.3. Схема протекания тока замыкания на корпус аппарата при использовании независимого функционального заземления в сети типа TN.

Так как функциональное заземление в отличие от защитного не имеет точки соединения с ГЗШ, а соответственно с нейтралью, то токи короткого замыкания составят не сотни и тысячи ампер, как это происходит при защитном заземлении, а всего лишь десятки ампер. Ситуация усугубится тем, что в цепи отсутствует УЗО ( вычислительная техника, томографы, рентгеновское оборудование и тд. ). Максимальный ток короткого замыкания составит 36,6А.


Время отключения составит от 30 до 120 секунд и все это время на корпусе будет присутствовать практически фазное напряжение по корпусным элементам будет протекать достаточно значительный ток ( возможность возгарания ). При наличии автоматов с номинальным рабочим током более 32А цепь вообще не отключится.

Использовать данный вариант для сетей типа TN-S опасно!

В случае варианта «D» FE соединено с ГЗШ посредством разрядника уравнивания потенциалов.

Проблема схемы с разрядником заключается в том, что срабатывать он будет исключительно в случае заноса потенциала при грозовых разрядах, когда разница в напряжении достаточна для срабатывания разрядника ( 600 – 900В ). В остальных случаях целостность системы основного уравнивания потенциалов электроустановки остается нарушенной и проблема электробезопасности при первичном пробое остается актуальной.

Успокоить поставщика «нежного» оборудования, о котором говорилось ранее, можно установкой в разрыв проводника уравнивания потенциалов дроссельного фильтра заземления ( Квазар Ф – ХХХРЕ изготовитель ГК «Полигон» ), как это представлено на схеме варианта «Е».

Далее рассматриваются варианты построения функционального заземления с постепенным улучшением уровня защиты ответственного электрооборудования от помех, без проблем, связанных с электробезопасностью.



Функциональное заземление применительно к учреждениям ЛПУ — для обеспечения нормальной, без помех работы высокочувствительной электроаппаратуры при питании от разделительного трансформатора или согласно техническим требованиям на некоторые виды оборудования.

При отсутствии особых требований изготовителей аппаратуры общее сопротивление растеканию тока заземляющего устройства не должно превышать 2 Ом. См. Циркуляр №24/2009. « …Устройство независимых заземлителей для защитного и/или функционального заземления медицинского оборудования, не подключенных к ГЗШ, в зданиях с медицинскими помещениями не допускается…»

Применение и удаление защитного заземления

Средства индивидуальной защиты для защиты электротехников в случае случайного включения оборудования.

Индивидуальное защитное заземление для электрического обслуживания включает в себя кабель, подключенный к обесточенным линиям и оборудованию путем перемычки и соединения с соответствующими зажимами, чтобы ограничить разницу напряжений между доступными точками на рабочем месте до безопасных значений, если линии или оборудование были случайно повторно включены. .

Должны быть размещены средства индивидуальной защиты для создания эквипотенциальной зоны на рабочем месте. Защитные заземления рассчитываются с учетом доступного тока короткого замыкания и продолжительности повреждения. Фото: USBR.

Защитные заземления рассчитаны на пропускание максимально доступного тока короткого замыкания на рабочем месте. Также называется перемычкой заземления, это преднамеренно низкоомный путь к земле.

Любой сотрудник, работающий с обесточенным высоковольтным оборудованием, несет ответственность за понимание требований и процедур защитного заземления.Только обученные и квалифицированные рабочие должны применять и удалять временные средства индивидуальной защиты.

Примечание: Необходимо разместить временное защитное заземление для создания эквипотенциальной зоны на рабочем месте. Защитные заземления рассчитываются с учетом доступного тока короткого замыкания и продолжительности повреждения. Площадки безопасности не должны быть слишком длинными, потому что они могут начать резкое движение в случае неисправности и нанести кому-либо травму. Ссылка NFPA 70B Раздел 7.7.4.2.4


Шаг 1: Обесточьте линию в соответствии с процедурами.

Используйте задокументированную процедуру LOTO, чтобы убедиться, что цепь или оборудование обесточены и изолированы от всех источников опасной энергии. Желательно разместить временные защитные площадки для создания эквипотенциальной зоны в рабочей зоне на месте проведения работ.


Шаг 2: Проверить цепь на наличие напряжения.

Зажимы на концах проводов должны устанавливаться и отсоединяться с помощью горячих палочек соответствующего номинала и длины.При нанесении грунта всегда используйте защитные средства индивидуальной защиты от поражения электрическим током и дуговым разрядом соответствующего уровня.

Не думайте, что цепь была обесточена только потому, что она была выключена. Другие источники энергии, такие как индукция от близлежащих цепей, могут привести к смертельным ударам и другим травмам.

Требуется выполнить трехточечный тест с помощью чувствительных устройств измерения напряжения для проверки состояния нулевой энергии. Примеры чувствительных устройств для проверки напряжения включают в себя «бесконтактные» тестеры, такие как светящиеся палочки (похожие на световые ручки), тик-трассеры (они издают звук) или высоковольтные вольтметры с прямым считыванием.

Трехточечный тест состоит из проверки измерителя напряжения на известном источнике под напряжением, чтобы убедиться, что он работает правильно. (Тест № 1) .

Затем проверьте цепь, на которой должны выполняться работы (Тест № 2) .

Наконец, протестируйте тестер напряжения на том же источнике питания, который использовался в тесте № 1, чтобы убедиться, что тестер все еще работает правильно. (Тест № 3) .

ВАЖНАЯ ИНФОРМАЦИЯ: При нанесении грунта всегда используйте средства индивидуальной защиты, защищающие от поражения электрическим током и дуговым разрядом соответствующего уровня.

Рекомендовано: Обзор средств индивидуальной защиты от поражения электрическим током и дугового разряда


Шаг 3: Очистите все соединения.

Следует исключить дополнительное сопротивление, вызванное коррозией и грязью, чтобы поддерживать чрезвычайно низкое сопротивление заземления, в противном случае одноточечное заземление будет неэффективным.


Шаг 4: Сначала установите зажимы заземления и снимите их в последнюю очередь.

Это гарантирует, что во время установки не будет времени, в течение которого оператор мог бы стать трактом заземления с наименьшим сопротивлением.Механические соединения должны быть достаточно прочными, чтобы выдерживать силы, создаваемые электромагнитной индукцией.


Шаг 5: Зажимы на концах проводника должны устанавливаться и отсоединяться горячими палками соответствующего номинала и длины.

Если физически невозможно использовать инструменты горячей линии для нанесения грунта, для защиты рабочего требуются дополнительные средства индивидуальной защиты от ударов и дуги.


Список литературы

Эквипотенциальное заземление: уроки, полученные в полевых условиях

Когда первые линейные монтеры впервые начали заземлять линии для защиты рабочих, они прикрепили к проводникам небольшую цепь — известную как цепь заземления — концом, опущенным на землю.Когда я начал работать линейной бригадой, мне грустно сказать, что мои методы заземления были не намного лучше, чем те, которые использовались в первые дни. Я бы хотел, чтобы кто-то лучше объяснил мне ситуации, которые могут возникнуть, способы заземления, которые могут защитить меня, и лучшие методы для этого. Итак, чтобы помочь другим линейным работникам в электроэнергетике, я хочу поделиться на следующих страницах некоторыми важными аспектами заземления, которым я научился на протяжении всей своей карьеры.

Защита рабочих
С момента вступления в силу 29 CFR 1910.269, начавшаяся в 1994 году, OSHA требовала практики заземления, которая защитит сотрудников в случае повторного включения линии или оборудования, на котором они работают. Эквипотенциальная зона, или EPZ, предназначена именно для этого.

Если вы прочитаете параграф 1910.269 (n) (3), обсуждение преамбулы и Приложение C к 1910.269, озаглавленное «Защита от опасной разницы в электрическом потенциале», намерения OSHA кажутся ясными. Подводя итог, установите временные заземления и соединения на рабочем месте таким образом, чтобы поддерживать на рабочем месте одинаковый потенциал и предотвращать нанесение вреда рабочим, даже если линия была случайно повторно включена или подвергнута наведенному напряжению.Вы можете следовать Приложению C как универсальный подход или выполнить собственный инженерный анализ для создания процедур. Но имейте в виду, что если вы создаете свои собственные процедуры, вы должны быть в состоянии продемонстрировать, что они защитят ваших сотрудников.

Важно понимать, что эквипотенциальное заземление состоит из двух компонентов:
1. Заземление на рабочем месте с низким импедансом для ограничения повышения напряжения в цепи при одновременном повышении тока короткого замыкания, достаточного для срабатывания защитного устройства.
2. Связывание на рабочем месте (EPZ) для устранения различий в потенциале, которым может подвергаться рабочий, тем самым ограничивая прохождение тока через тело рабочего.

Заземление может быть связано с системой заземления или храниться отдельно от нее. В любом случае функция заземления имеет решающее значение. Если он «перегорает» или выходит из строя, рабочий подвергается смертельной опасности поражения электрическим током.

Склеивание на рабочем месте
Склеивающий механизм — это устройство, которое эффективно соединяет между собой все токопроводящие объекты на рабочем месте. На него не распространяются те же требования к размерам, что и для защитного заземления, поскольку оно не предназначено для проведения тока короткого замыкания, когда оно не соединено напрямую в качестве одного из токоведущих компонентов.Он просто устанавливает и поддерживает на рабочем месте равный потенциал, помогая обеспечить безопасность рабочего независимо от уровня напряжения в ноль или 5000 вольт.

Электропроводность компонентов рабочего места имеет значение. Стальная конструкция создает естественный связующий элемент для рабочего. В статье Джима Вона, опубликованной в августе 2015 г., о заземлении для индивидуальной защиты (см. Www.incident-prevention.com/ip-articles/equipment-operations/train-the-trainer-101-practical-personal-protective-grounding) описывается, как каждый проводящий элемент, введенный в рабочая зона должна быть объединена в одну и ту же систему, чтобы предотвратить индукционные смертельные случаи в системах передачи.Подземные маты обеспечивают прочное соединение с подземными системами.

Полупроводящий материал, такой как дерево, более проблематичен из-за различий в материалах и постоянно меняющихся значений сопротивления. При наличии рабочих багров на шесте необходимо учитывать как внешний, так и внутренний вид. Наилучшее соединение обеспечивает хороший путь для электронов, перемещающихся по внешней и внутренней части столба в месте расположения ног рабочего до глубины багров. Несмотря на то, что было проведено много отраслевых испытаний, споры по поводу механизмов соединения, таких как кластерные стержни и полюсные заземления, не ушли.Каждому коммунальному предприятию и подрядчику необходимо следовать принципам, изложенным в Приложении C к 1910.269, или создавать свои собственные процедуры с помощью собственного инженерного анализа.

Заземленные линии под напряжением
OSHA использует термин «заземленные под напряжением» для обозначения повышения напряжения на заземленной линии. В Приложении C к 1910.269 говорится, что при работе с заземленной линией без использования EPZ нет необходимости производить изоляцию в соответствии с полным напряжением системы, а только с тем уровнем, до которого линия может быть под напряжением.

Основываясь на моем обзоре исследования, проведенного Национальным центром испытаний, исследований и приложений в области электроэнергетики, а также из бесед с отраслевыми экспертами, я узнал, что в результате некоторых испытаний было получено 17-24% напряжения, что произвело впечатление на заземленный объект. Одна коммунальная компания, принадлежащая инвестору, заявила, что это приведет к почти половине напряжения, приложенного к эффективно заземленной линии. Поскольку уязвимый рабочий никогда не будет держаться за заземленную линию, которая достигает 1700 вольт (24 процента от источника 7200 вольт), почему тот же рабочий не решается защитить от этого? Многие линейные мастера, которые так усердно устанавливают основание для строительной площадки, либо не понимают этого, как я делал в прошлом, либо просто полагают, что с ними этого никогда не случится.

Протекание тока через тело
Разность напряжений через тело создает ток, протекающий через тело. Системы передачи и распределения имеют ток короткого замыкания в тысячи раз больше, чем смертельный порог. Ток, протекающий через тело человека во время электрического контакта, равен разности напряжений на теле, деленной на сопротивление тела. При доступном токе короткого замыкания 2000 ампер, даже если параллельное заземление с низким сопротивлением поглощает 99,9%, остается 2000 мА для неравномерного резистора (рабочего) на параллельном пути, что значительно превышает смертельное значение и даже приводит к остановке сердца. порог.

Эффективная EPZ позволяет большему току проходить через защитное заземление, уменьшая ток, протекающий через тело, до приемлемого уровня. Изоляция, эффективно используемая в качестве приемлемой замены EPZ, полностью устранит любой ток, протекающий через рабочего.

Как показали исследования Чарльза Далзиэля, длительность шока имеет большое значение. Многие коммунальные предприятия основывают свои безопасные пороги на быстрой блокировке. Одна известная мне утилита — это ошибочно предполагаемая быстрая блокировка до тех пор, пока на заземленную линию через резистор не подаст напряжение, и рабочий, производящий ремонт, не сможет отпустить ее во время продолжительного электрошока.«Безопасный» порог в 50 миллиампер был недостаточным, потому что ток 20 миллиампер на устойчивом уровне вызывает летальный паралич дыхания.

Защита рабочих и деревянные столбы
По мере того, как окружающая среда меняется с сухой на влажную и наоборот, значения сопротивления деревянного столба, а также линейного мастера постоянно смещаются по шкале от высокого до низкого. Безопасность работников обратно пропорциональна этим постоянно меняющимся значениям. Если хотя бы одно из значений становится низким, незащищенный работник подвергается серьезному риску.Если оба значения сопротивления становятся низкими, создается наихудший сценарий, в результате чего работник подвергается чрезвычайному риску, если линия будет под напряжением без EPZ или использования изоляции.

Возраст, обработка и влажность — все это влияет на прочность деревянной опоры. Чем ниже значение сопротивления, тем выше проводимость. При отсутствии EPZ повышенная проводимость увеличивает разницу потенциалов между ногами и руками, когда линия находится под напряжением. Однако, когда создается EPZ, такое же низкое сопротивление может фактически усилить EPZ и повысить безопасность рабочих.Чем ближе крепежный механизм к ногам рабочего, тем он прочнее и безопаснее.

NIOSH утверждает, что сухое человеческое тело может оказывать сопротивление до 100000 Ом, но пот, вода, влажность, дождь и поврежденная кожа могут снизить его до 1000 Ом. При сопротивлении 1000 Ом постоянный ток в 120 вольт может быть столь же фатальным, как скачок тока в 120 миллиампер через тело. Хотя напряжение низкое, возникающий устойчивый ток может вызвать фибрилляцию желудочков.

NIOSH также заявляет, что электрический контакт с напряжением более 600 вольт проткнет кожу в точках входа и выхода, еще больше снизив сопротивление тела до 500 Ом, позволяя току свободно проходить через внутреннюю влажную ткань.По этой причине, как указано в преамбуле к окончательному правилу 2014 г., касающемуся 1910.269 и 1926 г., подраздел V, «OSHA посчитал, что минимальное сопротивление сотрудника составляет 500 Ом, а не 1000 Ом, как указано в документе (59 FR 4406). . »

Низкое сопротивление деревянного столба может создавать разницу между руками и ногами более 600 вольт без EPZ. Во время электрического контакта точки входа и выхода с сопротивлением 500 Ом могут нанести смертельный удар. Например, разница в 600 вольт приведет к сильному разряду в 1200 миллиампер, способному вызвать фибрилляцию желудочков всего за несколько циклов.

Защита наземных рабочих
Поскольку создание ЗЭП не является вариантом для наземных рабочих при ремонте вышедших из строя проводов, необходимо изучить другие методы защиты.

OSHA устанавливает в Приложении C к 1910.269, что сотрудники не должны работать с заземленными проводниками или оборудованием, которое может находиться под напряжением до опасного напряжения, если только сотрудники не находятся в пределах EPZ или не защищены изоляционным оборудованием.

По сути, если EPZ нецелесообразно, используйте изоляцию.

Рабочие должны защищать себя с помощью изоляционного оборудования, рассчитанного на напряжение, которое может быть приложено к эффективно заземленной линии. Изоляция не устраняет необходимость в заземлении рабочего места, если не соблюдаются все требования 1910.269 (l) «Работа с открытыми частями под напряжением или рядом с ними».

Диэлектрическая обувь
Поскольку проводники могут случайно контактировать с телом во время борьбы с ним на земле, эффективность резиновых перчаток может быть ограничена.Это подводит нас к диэлектрической обуви как дополнительной форме изоляции.

В преамбуле к окончательному правилу 2014 г., касающемуся 1910.269 и 1926, подраздела V, OSHA заявило, что агентство «пересматривает свой общий отраслевой стандарт защиты ног, 29 CFR 1910.136, чтобы требовать от работодателей, чтобы каждый пострадавший сотрудник использовал защитную обувь, когда Использование защитной обуви защитит пострадавшего сотрудника от поражения электрическим током, например, статического разряда или поражения электрическим током, которое сохраняется после того, как работодатель примет другие необходимые меры защиты.”

Вот пример применения: вышедший из строя проводник заземляется на рабочем месте как основная форма защиты рабочего. На земле рабочий одет в резиновые перчатки для защиты от напряжения, которое может вызвать напряжение в линии, но проводник может контактировать с неизолированными частями тела. Высоковольтная диэлектрическая обувь теперь становится дополнительной формой защиты, необходимой для устранения остающейся опасности поражения электрическим током.

Целостность оболочки и передача потенциала
Необходимо поддерживать непрерывность на концентрической нейтрали даже при разрезании промежуточного участка однофазного кабеля.Как вы можете соединиться через нейтраль, а также создать EPZ с грунтовым покрытием в канаве, полной грязи и воды?

Полная изоляция всех источников энергии и заземления может быть наилучшим вариантом, но она должна соответствовать всем критериям, указанным в 1910.269 (n) (2) — 1910.269 (n) (2) (iii), и обычно требует кабеля в оболочке. Полная изоляция устраняет необходимость в EPZ и устраняет возможность передачи потенциала. Работник должен использовать систематический процесс, чтобы свести к минимуму человеческую ошибку, поскольку эта процедура выходит за рамки традиционного заземления.

Резюме
EPZ — важная, необходимая часть индивидуального защитного заземления. Если это нецелесообразно, альтернативная форма защиты также может спасти вашу жизнь, если заземленная линия, над которой вы работаете, окажется под напряжением. С тобой такое когда-нибудь случится? Только Бог знает, но вашей семье нужно, чтобы вы вернулись домой, даже если это произойдет, и EPZ и приемлемые альтернативы могут помочь в этом.

Об авторе: Дуайт Миллер начал работать с линейными бригадами 32 года назад и последние 10 лет посвятил безопасности и обучению.В настоящее время он служит в компании Ohio Electric Cooperatives в качестве директора по безопасности и контролю за потерями, где он стремится продвигать культуру, в которой линейные рабочие думают, добросовестность поддерживается на высоком уровне, а безопасность не подлежит обсуждению.

Powerlineman Magazine — ЗАЩИТНОЕ СОЕДИНЕНИЕ И ЗАЗЕМЛЕНИЕ ЛИНЕЙНЫХ ЭКИПАЖЕЙ

Пару недель назад я прочитал в газете статью об аварии, которая произошла с линейной бригадой во время работы на «обесточенной» линии электропередачи. Линейщик был серьезно ранен под воздействием высокого напряжения на линии.Члены экипажа заявили, что «думали, что линия вышла из строя».

Это заявление — «они думали, что линия вышла из строя» — действительно меня зацепило. В конце концов, с современными технологиями и передовыми знаниями в области безопасности, почему линейная бригада могла думать, что цепь вышла из строя, если не предпринял необходимых шагов, чтобы убедиться, что она действительно обесточена?

И это не одинокий инцидент. Вы можете найти похожие случаи в Интернете, в том числе этот на сайте CDC, где отмечается: «Умерший мог предположить, что линия была обесточена.”

Даже одна травма — это слишком много, и проблема постоянно повторяется. Возможно, уместно кратко взглянуть на связывание и заземление — разницу между ними, наши цели, как эти цели достигаются, и особенно пять практик связывания и заземления, которые помогут вам выжить. Потому что небольшое резюме может иметь большое значение в предотвращении боли и потерь.

Основы подключения и заземления

Разница между «соединением» и «заземлением» с точки зрения индивидуальной защиты заключается в следующем:

«Соединение» означает соединение двух или более проводящих компонентов в рабочей зоне вместе с другим проводником, например отрезком провода или другим проводящим устройством.Целью соединения является устранение разницы потенциалов (напряжений) между соединяемыми объектами. Другими словами, связь дает одинаковый потенциал. Поскольку связанные компоненты имеют одинаковый потенциал, между ними будет очень небольшой ток. Таким образом, к соединительному проводу не предъявляются требования по допустимой нагрузке; это может быть небольшой провод, такой как медь № 9 или № 6, или 1/0 мягкотянутый полностью алюминий.

«Заземление», с другой стороны, означает подключение нормально токоведущего проводника к земле или чему-то, что представляет собой землю, например, металлической конструкции, закрепленной в земле.Заземление обеспечивает путь к земле (земле), который имеет допустимую нагрузку (ток), чтобы передавать ток короткого замыкания на землю в случае, если линия запитана от своего нормального источника, в том числе в случае ошибки человека. При этом заземление заставляет изолирующие устройства (плавкие предохранители, реле, автоматические выключатели и т. Д.) Срабатывать и обесточивать цепь как можно быстрее. Это означает, что у заземляющего кабеля действительно есть требования к допустимой токовой нагрузке; он должен пропускать ток короткого замыкания в течение времени, необходимого для отключения цепи.

Итак, соединение требует напряжения, а заземление — тока . На рабочем месте система заземления должна быть подключена к системе заземления, чтобы все проводящие компоненты в рабочей зоне имели одинаковый потенциал. После этого создается эквипотенциальная зона (EPZ).

Зачем мы подключаем и заземляем обесточенную линию электропередачи

Все было бы проще и безопаснее, если бы не было необходимости в подключении и заземлении.Однако многие факторы могут привести к необходимости. Если вы регулярно обращаете внимание только на некоторые из факторов, способствующих этому, просмотр полного списка может оказаться полезным.

  • Линия все еще находится под напряжением. Обычный источник мог никогда не отключаться, как в нашем вводном примере.
  • Человеческая ошибка. Кто-то ошибается и подает напряжение в линию, замыкая изолирующие устройства.
  • Случайный контакт. Проводник, над которым работают, каким-то образом контактирует с проводником, находящимся под напряжением.
  • Обратная подача. Это может произойти от генератора, трансформатора и т. Д.
  • Молния.
  • Тестирование.
  • Отказ оборудования.
  • ИНДУКЦИЯ. Это может быть вызвано такими факторами, как близлежащие линии под напряжением и ураганы.

Я поставил ИНДУКЦИЮ заглавными буквами, потому что, по моему опыту, индуцированное напряжение от близлежащих линий, находящихся под напряжением, ежегодно вызывает в США больше травм и смертей среди электриков, чем все другие перечисленные причины вместе взятые.

Цели соединения и заземления

Рабочие линии электропередач должны установить ЗЭП на рабочем месте, соединив все проводящие компоненты, включая фазные проводники, вместе с соединительными и заземляющими кабелями соответствующего сечения. Как видно из приведенного выше списка, подача энергии может произойти в любое время по множеству причин. Таким образом, линейные монтажники должны принять меры для ограничения возможного протекания тока через себя в случае подачи напряжения (от любого источника) до уровня менее 100 миллиампер.Точно так же они должны ограничивать падение напряжения на рабочем в случае подачи напряжения (от любого источника) до уровня менее 50 вольт.

Ограничение сквозного тока и падения напряжения на линейном механизме достигается путем прокладки кабеля подходящего размера параллельно рабочему от точки, где рабочий контактирует с проводником, до точки, где рабочий контактирует с землей ( земля). Таким образом, вокруг линейного монтера был помещен шунт, так что большая часть тока будет проходить через шунт, а очень небольшая часть (если таковая имеется) пройдет через рабочий.Кроме того, шунт помещает рабочего на тот же потенциал, что и проводник, тем самым ограничивая падение напряжения на нем или на ней.

«Правила пяти, которые помогут вам выжить»

Техническое обслуживание

Powerline может проводиться в хаосе, а работа может происходить посреди ночи, когда линейные монтеры не находятся в полной боевой готовности. Безопасность следует сводить к простейшим и легко запоминающимся компонентам. Итак, если краткий список кратких мер предосторожности поможет вам разобраться в основах заземления и соединения, попробуйте следующее:

  1. Убедитесь, что вы находитесь на правильной цепи.
  2. Убедитесь, что цепь отключена от всех известных источников.
  3. Проверить цепь на отсутствие напряжения с помощью прибора для определения напряжения, который подает как визуальный, так и звуковой сигнал.
  4. Скрепите вместе все токопроводящие компоненты в рабочей зоне.
  5. Заземлите проводник на землю с помощью заземляющих кабелей. Соедините систему заземления и систему заземления.

Хотел бы я предложить более запоминающуюся аббревиатуру, чем I.I.T.B.G. , но это действительно порядок, в котором эти пять шагов должны выполняться.

Безопасность

После того, как конструкция была сделана безопасной для рабочих на высоте путем установки EPZ, любой ток, который находится в фазных проводниках, потому что они находятся под напряжением (опять же, с помощью любого источника ), будет течь на землю (землю) через заземляющие кабели. . Если есть какие-либо находящиеся под напряжением высоковольтные линии электропередач на той же полосе отчуждения, что и линия, на которой ведутся работы, то в якобы «мертвой» линии будут индуцированные напряжение и ток .Величина наведенного напряжения и тока зависит от нескольких факторов:

  • Напряжение параллельно включенной линии. Чем выше напряжение на линии, находящейся под напряжением, тем выше величина наведенного напряжения на «мертвой» линии.
  • Количество тока в линии под напряжением. Чем выше ток (нагрузка) в линии, находящейся под напряжением, тем выше величина напряжения, индуцированного в «мертвой» линии.
  • Расстояние между «мертвой» линией и параллельной линией под напряжением.Чем ближе они друг к другу, тем выше величина наведенного напряжения в «мертвой» линии.
  • Расстояние (длина), на котором прямые параллельны друг другу. Чем больше длина, тем выше величина наведенного напряжения в «мертвой» линии.

Любой ток, протекающий от заземленных фазных проводов к земле через заземляющие кабели, создает градиенты напряжения в земле вокруг точки, где он входит в землю. Эти градиенты напряжения состоят из ступенчатых потенциалов, потенциалов прикосновения и переданных потенциалов прикосновения.

Рис. 1. Разница между током тела ступенчатого и контактного потенциала.

Эти ступенчатые, касательные и переданные потенциалы прикосновения очень трудно контролировать и они очень опасны для рабочих на земле. Если градиенты напряжения являются результатом индуцированных токов от близлежащих линий, находящихся под напряжением, величина my сильно варьируется в течение дня из-за нагрузки на соседнюю линию, изменения условий почвы вокруг заземляющего электрода (она может высохнуть в течение дня). , и другие факторы.

Кроме того, если несколько бригад работают над одним и тем же проводом в разных местах, индуцированный ток будет течь через землю от одной точки заземления к другой, создавая градиенты напряжения в каждой точке заземления. Это называется «циркулирующий ток». Чем больше мест заземлен провод, тем больше путей циркулирующего тока устанавливается, что приводит к градиентам напряжения в каждой точке. В каждом месте заземления необходимо контролировать градиент напряжения с помощью вольтметра.Кроме того, когда устанавливается новое заземленное место или когда оно удаляется, градиенты напряжения в других заземленных местах изменятся, потому что изменилось количество путей циркулирующего тока. Вот почему линейные бригады, работающие с одним и тем же проводом в разных местах, должны связаться друг с другом перед установкой или удалением заземления, потому что это окажет влияние на их рабочем месте.

По этим и другим причинам линейные бригады должны постоянно измерять градиент напряжения в земле в точке заземления с помощью измерителя, который показывает, какая разница потенциалов между точкой заземления и местом на определенном расстоянии (обычно около 15 футов) от заземления. точка.Одним из наиболее эффективных инструментов для этой работы является прибор Step and Touch, производимый компанией Delta Computer Systems, Inc., Battle Ground, Вашингтон. Инструмент отслеживает и сигнализирует о ступенчатом и касательном потенциале, вызванном повышением потенциала земли. Step and Touch предлагает звуковые и визуальные предупреждения о тревоге, когда датчик обнаруживает опасные уровни напряжения. Каждый диапазон напряжения имеет отчетливую диаграмму ярких мигающих светодиодов (желтый от 101 до 499 В, красный при 500 В и выше) и сигнал тревоги 80 дБ (А). Инструмент также обнаруживает и предупреждает о потерянных соединениях зонда и низком уровне заряда батареи.При правильном использовании такие инструменты, как Step and Touch, могут значительно повысить безопасность экипажа Powerline.

Рис. 2. Комплект инструментов Step and Touch от Delta Computer.

«Если он не заземлен, он не мертв».

Это мой наименее любимый девиз заземления, потому что он может заставить вас поверить, что если он заземлен, заземлен, то значит мертв. Поверьте мне: если проводник находится под напряжением из-за индукции, заземление не убьет его! Скорее, в точке эта точка и в этой точке только проводник и земля были помещены под один и тот же потенциал, что означает, что разница напряжений между ними по существу равна нулю вольт.Однако в любой другой точке между проводником и землей разность потенциалов будет расти, и чем дальше расстояние между местом, где проводник соединен с землей, и точкой контакта с проводником, тем больше будет напряжение между два.

Вместо этого вводящего в заблуждение изречения давайте попробуем что-нибудь лучше, способное защитить вас: «Не удивляйтесь и не удивляйтесь; убедитесь, что он соединен и заземлен! »

Классы функционального заземления и защиты в источниках питания

При выборе источника питания необходимо учитывать множество технических характеристик и требований.В частности, вам необходимо учитывать необходимый вам класс защиты и может ли потребоваться функциональное заземление для уменьшения электромагнитных помех (EMI). В этом руководстве мы обсудим классы защиты Международной электротехнической комиссии (МЭК) и объясним, чем они отличаются друг от друга. Мы также подробно рассмотрим, чем функциональное заземление отличается от заземления и какие последствия оно имеет для электрических устройств, особенно на медицинских рынках.

КЛАССЫ ЗАЩИТЫ IEC

IEC установил три класса защиты электронного оборудования: класс I, класс II и класс III.В этом руководстве мы в первую очередь обсудим классы I и II, которые обеспечивают защиту пользователя от поражения электрическим током.

Классы I и II IEC предотвращают поражение электрическим током за счет использования двух типов защиты. Они могут обеспечивать защиту от опасного напряжения с помощью одного или нескольких типов систем изоляции. Базовая система изоляции и система усиленной изоляции. Базовая изоляция — это одно из средств защиты, а усиленная изоляция — это усиленная система изоляции, эквивалентная двойной основной изоляции.В дополнение к изоляции предусмотрено защитное заземление для отвода энергии короткого замыкания в случае случайного пробоя основной изоляции. Наличие двух типов защиты обеспечивает резервное копирование. Второй уровень защищает пользователя, если уровень напряжения становится настолько опасным, что первый уровень выходит из строя. В классе III вход подключается к цепи безопасного сверхнизкого напряжения (SELV), после чего дополнительная защита не требуется.

Для подключения защитного заземления, заземления или защитного заземления используется защитный провод для безопасного направления тока короткого замыкания в землю и вдали от контактирующего человека.Он также имеет защитное устройство — предохранитель или автоматический выключатель — для прерывания электрического тока в неисправной цепи. С другой стороны, в изоляции обычно используется пластик в качестве изолирующего барьера, который помогает безопасно поддерживать электрический ток в его правильной цепи и предотвращать утечку, не требуя этого заземления.

Успех каждой из этих систем зависит от напряжения изоляции — испытательного напряжения, используемого для оценки целостности изоляции. . Большинство изоляторов имеют очень высокий импеданс, поэтому они могут блокировать ток.Однако, когда напряжение на системе изоляции становится достаточно высоким и если напряжение напряжения сохраняется достаточно долго, это может разрушить изоляцию, потенциально вызывая поражение электрическим током человека, с которым происходит контакт. Следовательно, изоляционные системы должны обладать достаточной выдерживающей целостностью или выдерживаемым диэлектрическим напряжением, чтобы гарантировать, что они постоянно сохраняют свои изоляционные свойства.

КЛАСС I

IEC класс I защищает от поражения электрическим током благодаря комбинации безопасного заземления и основной изоляции.Прибор класса I имеет проводящее шасси, подключенное к защитному заземлению. Эти устройства должны иметь трехжильный шнур питания, одобренный для обеспечения безопасности, который содержит провод защитного заземления. Этот заземляющий провод прикреплен к металлическому листу прибора или прикручен болтами. T Вместо того, чтобы передавать его лицу, контактирующему с устройством. Электрохирургические аппараты, катетеры артериального давления и системы электрокардиограммы (ЭКГ) часто относятся к оборудованию класса I.

КЛАСС II

Защита источника питания IEC Class II предотвращает поражение электрическим током за счет двух уровней изоляции: основной изоляции и дополнительной изоляции.Примером базовой изоляции является однослойная пластиковая изоляция, которая оборачивается вокруг проводника шнура питания и защищает пользователя от ударов при нормальных условиях. Примером дополнительной изоляции является второй слой, который защищает пользователей от опасных уровней напряжения, если основной слой не может этого сделать. Например, в устройстве с жестким пластиковым корпусом защитный корпус обычно является дополнительной изоляцией.

Устройства класса II должны иметь усиленную систему изоляции, также называемую усиленной изоляцией.Усиленная изоляционная система может состоять из двух слоев базовой изоляции или одного слоя толщиной и достаточной прочности, чтобы соответствовать двум основным слоям. Поскольку он равен двум слоям основной изоляции, его также называют двойной изоляцией. Устройства класса II не нуждаются в защитном заземлении. В устройствах класса II используется двухжильный шнур питания, поэтому нет средств для подключения корпуса устройства к защитному заземлению. Поскольку физическое защитное заземление отсутствует, приборам класса II требуется двойная или усиленная изоляция.Медицинские адаптеры питания, предназначенные для домашнего медицинского оборудования, часто являются устройствами класса II, на самом деле, чтобы соответствовать стандарту IEC60601-1-11, источник питания для домашнего здравоохранения должен быть класса II и работать с двухпроводным шнуром питания.


ИСПОЛЬЗОВАНИЕ ФУНКЦИОНАЛЬНОГО ЗАЗЕМЛЕНИЯ В УСТРОЙСТВАХ КЛАССА II

В некоторых случаях устройства класса II могут иметь функциональное заземление. Хотя устройства класса II не требуют защитного заземления, иногда им требуется функциональное заземление для обеспечения электромагнитной совместимости (ЭМС).Как и в случае защитного заземления, трансформатор блокирует прохождение силового тока на землю, но позволяет любому переходному току или утечке течь на землю.

ФУНКЦИОНАЛЬНОЕ ЗАЗЕМЛЕНИЕ VS. ЗАЗЕМЛЕНИЕ

Функциональное заземление отличается от защитного заземления тем, что оно не обеспечивает защиты от поражения электрическим током от опасного напряжения. Однако это помогает уменьшить электромагнитный шум или EMI. Эта защита может иметь первостепенное значение на медицинском рынке. Функциональное заземление снижает электромагнитные помехи. Обеспечивает правильную работу устройств, не создавая помех для расположенного поблизости электронного оборудования.

Какое значение имеет функциональное заземление по сравнению с заземлением для медицинских устройств? Хотя для медицинского оборудования может не требоваться заземление, для снижения электромагнитных помех может потребоваться функциональное заземление. Функциональное заземление помогает обеспечить высокую производительность медицинских устройств критического класса II даже в клинической среде, содержащей радиопередатчики, беспроводные радиочастотные устройства и оборудование, такое как МРТ и компьютерные томографы.

При изоляции медицинского устройства класса II устройству не требуется безопасное соединение с заземлением, поскольку его двойная изоляция означает, что пользователи не будут соприкасаться с какими-либо токоведущими частями.Напомним, что прибор класса II не может подключаться к защитному заземлению из-за двойной изоляции, необходимой между доступными частями и частями под напряжением. Однако для оборудования класса II может потребоваться функциональное заземление для снижения электромагнитных помех и шума, а также завершения цепи. Требования к заземлению медицинского устройства класса II могут требовать, чтобы устройство было привязано к функциональному заземлению по причинам ЭМС.

ПРИЛОЖЕНИЯ ДЛЯ УСТРОЙСТВ КЛАССА II

Многие приборы, предназначенные для домашнего использования, нуждаются в защите класса II.Медицинские клиники, но не больницы, также начинают требовать класса II для двойного слоя защитной изоляции. Больницам нужен только класс I, так как они имеют вилки с заземлением для обеспечения дополнительной защиты.

СВЯЗАТЬСЯ С ASTRODYNE TDI ПО ЛЮБОМУ ИСТОЧНИКУ ПИТАНИЯ

Если вам нужна защита электронного оборудования класса I или класса II, обратитесь к специалистам Astrodyne TDI, чтобы найти идеальное решение. Мы предлагаем различные источники питания для удовлетворения ваших потребностей в заземлении и изоляции, а наши качественные фильтры электромагнитных помех могут помочь вашему предприятию достичь и поддерживать электромагнитную совместимость.

В Astrodyne TDI мы имеем обширный опыт работы с особыми требованиями клиентов к сертификации, поэтому мы можем помочь вам ориентироваться в требованиях к защитному заземлению класса I, требованиям к функциональному заземлению класса II и помочь вам удовлетворить сложные требования к электрическому медицинскому оборудованию. Если вам нужно индивидуальное решение, мы будем рады работать с вами, чтобы помочь вам удовлетворить ваши потребности в электроэнергии.

Свяжитесь с нами сегодня, чтобы узнать больше.


Заземление электрических сетей: то, о чем вы не знаете, может навредить

Электромонтажники, особенно линейные, регулярно используют системы заземления в качестве меры защиты от поражения электрическим током.Многие работники электроэнергетических компаний десятилетиями соблюдают определенные принципы заземления, но в последние годы были обнаружены некоторые более безопасные методы. Важно оставаться в курсе этих изменений.

Джим Вон и Дэнни Рейнс — эксперты в области электроэнергетики и опытные профессионалы в области безопасности. Они рассказали нам о некоторых важных основополагающих принципах, в том числе о некоторых, которые были обновлены в последние годы. Вот краткое изложение того, что они сказали:

Что такое заземление?

Заземление с целью защиты сотрудников имеет два основных требования:

  1. Для немедленного срабатывания защитных устройств в случае случайного включения электропитания в линии или оборудование
  2. Для предотвращения опасной разницы в электрическом потенциале каждого сотрудника

Важно отметить, что заземление электросети отличается от постоянного заземления.Постоянные системы заземления в зданиях устанавливаются таким образом, чтобы токи не протекали, за исключением аварийных ситуаций. Однако в системах заземления инженерных сетей ток всегда течет, даже в постоянных заземлениях.

Факты о заземлении

  • Оборудование площадки может убить вас даже при отсутствии неисправности.
  • Высокое напряжение по-прежнему будет появляться на заземленном проводе или неисправном оборудовании, просто оно не будет оставаться горячим так долго, потому что сработает.
  • В точке «заземления» будут градиенты напряжения, простирающиеся до 15 футов или более при неисправности напряжения распределения.
  • Эквипотенциальный — это когда все проводящие объекты в пространстве имеют одинаковый уровень электрического заряда или его отсутствие. Это означает, что вы можете получить травму через землю, просто стоя возле заземляющего стержня.
  • Требуется около 50 вольт, чтобы сломать электрическое сопротивление вашей кожи, и около 50 миллиампер, чтобы серьезно повредить вас от электрического воздействия.

Две пиктограммы ниже показывают ступенчатый и контактный потенциалы, а также уровни рассеиваемого напряжения с расстоянием:

Описание неисправностей и заземление

Причина номер один для заземления электрической системы состоит в том, чтобы вызвать немедленное отключение, обеспечивая путь к земле для токов короткого замыкания.Возможно, люди думают, что заземление останавливает ток электричества, но в заземленной системе все еще есть ток и напряжение.

Распространенное заблуждение состоит в том, что заземление защищает вас от травм. Но в то время как заземление действительно вызывает немедленное срабатывание защитного устройства цепи, его соединение защищает человека. В заземленной цепи протекает ток, и в ней может появиться напряжение, что означает, что вам все равно может быть причинен вред.

Эквипотенциальные зоны

Могут быть различия в электрическом потенциале, создаваемые разным сопротивлением, особенно на механическом оборудовании, таком как прицепы с катушками, съемники и натяжители.Использование подвижного заземления для соединения через оборудование выравнивает все потенциальные напряжения даже на поверхностях с высоким сопротивлением, таких как подшипники и механические соединения. Распространенной ошибкой является подключение подвижного заземления к заземляющему стержню, который мало что делает для выравнивания напряжений, которые могут возникать в оборудовании.

Решение состоит в том, чтобы прикрепить провод к оборудованию, чтобы создать зону уравнивания потенциалов. Благодаря соединению провода и движущегося оборудования вместе, человек на оборудовании не подвергается воздействию и не может получить травму.У подножия оборудования установите эквипотенциальный коврик, чтобы у человека, стоящего рядом с оборудованием или взбирающегося на него, не было ступенчатого или касательного потенциала.

На фотографии ниже показан один из способов соединения оборудования с помощью коврика (желтого цвета) на земле под оборудованием, подключенным к подвижной земле.

В областях, где у вас есть несколько единиц оборудования, соединенных вместе, вы можете построить большую плоскость уравнивания потенциалов, взяв такой материал, как армирующие панели, и соединив их вместе с алюминием № 4, чтобы все они были электрически соединены.Затем вы создали плоскость эквипотенциальности, которая защитит всех внутри этой зоны, даже от разломов и индукции.

Заземление рабочей зоны (эквипотенциальное заземление)

На протяжении многих лет считалось, что работа на открытом воздухе защищает вас. Но когда руки линейного монтера находятся на первичной обмотке (см. Рисунок ниже), а их ступни являются опорой, они становятся параллельными путями, что делает их восприимчивыми к току.

Equipotential исключает возможность протекания тока через ваше тело, потому что он уравнивает потенциал, связывая фазу, нейтраль и структуру, на которой вы находитесь, вместе так, чтобы все они имели одинаковое повышение напряжения, и это повышение напряжения минимально.Пока напряжение на вашем теле ниже 50 вольт, ток не может течь, и вы не пострадаете.

Узнайте больше об обучении по электробезопасности сегодня!

Разница между заземлением, заземлением и соединением

В чем разница между заземлением, заземлением и соединением?

Существует необычная путаница в понимании основной концепции и основных различий между заземлением, заземлением и соединением, даже некоторые профессионалы поменяли местами слова для обозначения заземления, заземления и соединения, такого как заземление, соединение земли и т. Д.Кроме того, электрическое соединение — это совсем другое дело, чем заземление и заземление.

Фактически, заземление и заземление — это одно и то же понятие, выраженное разными терминами, используемыми для них. Между заземлением и заземлением есть небольшая разница, которую мы подробно обсудим ниже.

  • Термин «Заземление » аналогичен используемому для заземления в США и Канаде на основе NEC , CEC , IEEE , UL и ANSI стандартов .
  • Термин «Заземление » используется в ЕС, Великобритании и других странах, которые следуют стандартам IEC и IS .
  • Термин «соединение» или «электрическое соединение» используется в США, Великобритании и ЕС (NEC и IEC) для соединения и соединения двух проводников (провода, насосы, машины, трубы и т. Д.) И металлических корпусов (нетоковедущие во время нормальной работы. ) для постоянного выравнивания разности потенциалов на обоих машинах или системах, соединенных соединительным проводом.

Короче говоря, заземление — это термины местной версии, используемые в США и Великобритании.Например, защитное заземление « PG » используется в США, а защитное заземление « PE » используется в Великобритании и ЕС. Аналогично, увеличение потенциала земли « GPR » или повышение потенциала земли « EPR » используются в США и Великобритании соответственно. Другими простыми словами, термины «двухпозиционный переключатель» и «трехпозиционный переключатель» используются для обозначения того же самого, что используется для тех же целей в США и Великобритании соответственно.

А теперь давайте подробно обсудим их по порядку.

Что такое заземление?

Заземление — это соединение между токоведущими частями машины (которые пропускают ток при нормальной работе) и землей, например нейтралью генератора или нейтралью силового трансформатора, соединенного звездой. Это заземление обеспечивает эффективный путь к токам короткого замыкания от оборудования к источнику питания, что обеспечивает защиту установок и устройств энергосистемы.

Заземление также используется для балансировки системы дисбаланса.Например, все три фазы (линии) становятся несбалансированными, когда в системе происходит короткое замыкание, следовательно, заземление разряжает ток неисправности на землю и снова балансирует систему с общим током нейтрали, равным «0» (это невозможно. чтобы получить это значение в конкретных случаях, но оно сводится к почти идеальному случаю, т.е. ближайшему значению).

Кроме того, заземление обеспечивает защиту от перенапряжения (молнии, сбои в линии и скачки) и отводит перенапряжение на землю, что делает систему стабильной и надежной с максимальным КПД трансформатора.

  • Для цепей переменного и постоянного тока в электротехнике и электронике необходим опорный потенциал «0 В», известный как земля, который делает возможным протекание тока от генерируемого источника к стороне нагрузки.
  • Не обязательно всегда подключать заземление к земле, например, в транспортных средствах и автомобилях, где заземление подключено к металлическому корпусу и шасси, которое дополнительно изолировано от земли резиновыми шинами. Земля заземляется на стороне потребителя или в точке распределения энергии в системе распределения энергии.
  • Нет необходимости заземлять нейтральный провод, поскольку может существовать напряжение между нейтралью и землей из-за падения напряжения в электропроводке или этих двух проводов, используемых в других системах.

Полезно знать:

  • Заземление можно использовать как нейтраль, но нейтраль нельзя использовать как заземление. По этой причине никогда не заземляйте нейтральный провод дважды (т. Е. Нейтраль должна быть заземлена (заземлена) на конце блока потребителя или распределительного трансформатора в здании электростанции или на опорах электросети.
  • Более одного заземления создадут проблемы для правильной работы OCPD (устройств защиты от перегрузки по току), поскольку величина тока будет недостаточной для работы этих устройств защиты. В некоторых случаях незаземленные цепи WYE (защитное заземление оборудования все еще подключено) используются для предотвращения срабатывания OCPD (однофазное замыкание на землю).
  • GFCI (прерыватель цепи замыкания на землю) — это защитное устройство, используемое для обнаружения дисбаланса токов между горячим (незаземленным) и нейтральным (заземленным) проводниками и отключения цепи в случае неисправности для защиты жизней (эти защитные устройства являются не рекомендуется в больничных отделениях интенсивной терапии и других чувствительных областях, где требуется постоянное и бесперебойное питание.Узнайте больше об установках GFCI и AFCI Wiring.

Связанное сообщение: Как определить размер проводника заземления, вывода заземления и электродов заземления?

Что такое заземление?

Заземление — это соединение между металлическими (проводящими) частями (такими как рама корпуса, металлический корпус, который не находится под током во время нормальной работы) электрического прибора или установки и землей (заземлением) .Электрическое заземление также известно как заземление в США.

Если провод под напряжением (фазный, горячий или линейный) касается металлической рамы корпуса машины или корпуса распределительной коробки, и кто-то касается (прикосновением) рамы машины или металлического корпуса, он получит сильный удар электрическим током ( из-за высокого расположения между землей и корпусом корпуса) может произойти даже поражение электрическим током из-за тока короткого замыкания, протекающего через тело пострадавшего на землю.

По этой причине, голый или зеленый или зеленый с желтой полосой провод подключается между металлическим корпусом и заземляющими электродами (или заземляющей пластиной, закопанной в землю) через провод заземления.Таким образом, ток короткого замыкания разряжается на землю, следовательно, система заземления защищает человека от опасного поражения электрическим током.

Рекомендуется как заземление (заземление в США), так и соединение между внешними поверхностями и металлическими частями машин и заземлением для дополнительной и идеальной защиты. Более того, высоковольтные машины, такие как двигатели, трансформаторы и генераторы, должны быть заземлены дважды, то есть из двух разных и разных мест (с использованием отдельных заземляющих проводов и пластин заземляющих электродов).

Заземление также обеспечивает безопасный путь разряда для разряда молнии через разрядники, ограничители перенапряжения и молнии, что делает систему надежной и плавной.

Что такое склеивание?

Соединение или электрическое соединение — это процесс соединения и постоянного соединения двух электрических проводников, машин, труб, устройств и всех металлических частей в силовых установках. В этом процессе все мертвые металлические части (нетоковедущие при нормальных условиях) установки соединяются посредством проводящего провода, который уравновешивает преднамеренную разницу между ними.

Таким образом, человек по-прежнему будет защищен (от поражения электрическим током), даже если он коснется двух (связанных) машин одновременно, подключенных к разным источникам. Другими словами, соединительный стержень уравновешивает и обеспечивает одинаковые уровни электрического потенциала на обеих поверхностях. Таким образом, отсутствует возможность протекания тока из-за отсутствия разности потенциалов, следовательно, система и персонал хорошо защищены.

По указанной выше причине система заземления скважин используется для защиты людей, устройств, оборудования и других установок, поскольку система заземления гарантирует, что все подключенные устройства имеют одинаковый уровень напряжения, поэтому нет никаких шансов. для разряда и тока.

Заземление широко используется для обеспечения того, чтобы все проводники (человек, поверхность и продукт) имели одинаковый электрический потенциал. Когда все проводники имеют одинаковый потенциал, разряда не может произойти.

Связывание гарантирует, что эти две соединенные детали будут иметь одинаковый электрический потенциал. Это означает, что мы не сможем накапливать электроэнергию в одном оборудовании или между двумя разными устройствами. Между двумя соединенными телами не может быть тока, потому что они имеют одинаковый потенциал.

Если отдельная машина или распределительная коробка правильно заземлена (заземлена) и подключена к другой коробке, не будет никаких шансов на протекание тока из-за нулевого (заземленного) потенциала между соединенными коробками или машинами.

Соединение само по себе не защищает, но обеспечивает обратный путь с низким сопротивлением к источнику питания. Таким образом, начнет течь большой ток, который приведет к срабатыванию защитного автоматического выключателя и устранению неисправности.

Склеивание необходимо по двум причинам, связанным с безопасностью..

  • Если соединения нет, человек, одновременно касающийся двух разных устройств (оба оборудования с разными уровнями напряжения), будет действовать как эквалайзер и получит поражение электрическим током из-за накопления энергии между разностями потенциалов на обоих концах.
  • Если токоведущий провод касается металлического корпуса машины и контактирует с человеком (который работает с ним), это может привести к поражению электрическим током со смертельным исходом.

Правильно подключенная и заземленная система обеспечивает защиту от обоих вышеупомянутых сценариев.

Основное различие между заземлением и заземлением

Заземление и заземление — это почти одно и то же, то есть подключение электрического устройства к земле (заземляющая пластина или заземляющий электрод с помощью регулятора целостности или защитного стержня). Эта система обеспечивает необходимое опорное напряжение в цепи для защиты установок от ударов молнии и разрядки тока короткого замыкания на землю, следовательно, система защищает жизнь.

Для нерезидентов США существует небольшая (почти незначительная) разница между землей и землей, как показано ниже.

  • Два термина используются для одного и того же, например, заземление используется в США (NEC), а заземление используется в Великобритании (IEC) так же, как трехпозиционный переключатель (в США), а двухсторонний переключатель (в Великобритании) в то время как оба используются для тех же целей.
  • Заземление — это одиночный путь с низким сопротивлением для разряда неисправного тока на землю, в то время как заземление — это двойной путь (иногда обратный путь для основного тока и источник нежелательных токов).
  • Когда нейтраль трехфазного несимметричного соединения подключается к земле (для балансировки системы), это называется «заземлением».С другой стороны, «Заземление» — это соединение между устройствами / установками и землей для защиты от повреждений устройств и оборудования и снижения риска поражения электрическим током.
  • Заземление — это общая точка в цепи для поддержания уровней напряжения и балансировки несимметричных фаз, в то время как заземление защищает систему от высоких скачков напряжения.
  • Заземление в качестве нейтрального заземления используется для защиты систем и оборудования, а заземление обеспечивает защиту от поражения электрическим током и используется (для спасения жизней людей / животных) в качестве меры безопасности.

Связанное сообщение: Назначение заземления или заземляющего провода в воздушных линиях передачи.

Сравнение заземления, заземления и соединения

В следующей таблице показано сравнение и различия между соединением, заземлением и заземлением.

Характеристики Заземление Заземление Соединение
Терминология Заземление обычно используется для заземления в Северной Америке ( US ) и канадских стандартах, таких как NEC , IEEE , ANSI и UL. Заземление используется в стандартах Европы, Содружества и Великобритании ( UK ), таких как IS и IEC и т. Д., В то время как заземление немного отличается. Термин «электрическое соединение» используется как в NEC, так и в IEC (США и Великобритания) , но полностью отличается от заземления и заземления.
Символ
Определение Для подключения токоведущей части электрической системы к заземляющему электроду, закопанному в землю через провод заземления. Соединение металлических (проводящих) частей (таких как корпус, рама, которая не находится под током во время нормальной работы) электрического прибора или установки с землей (землей) называется заземлением (и / или заземлением в США). Для соединения двух электрических систем (например, проводов, оборудования и труб и т. Д.) Вместе, чтобы привести их к одинаковому уровню потенциала, пока они не проводят ток во время нормальной работы.
Место установки Соединение между токоведущими частями системы (например, нейтраль как обратный путь для тока) с землей. Соединение между металлической рамой корпуса и пластиной заземления в земле через провод заземления и заземляющий провод. Соединение между двумя устройствами, проводами, трубами и т. Д. (Которые не проводят ток во время нормальной работы через проводник.
Типы Твердое заземление, резистивное заземление и реактивное заземление. Заземление труб, пластинчатое заземление, вода Основное заземление, стержневое заземление и заземление из ленточных проводов Основное соединение и дополнительное соединение.
Код цвета провода Зеленый с желтой полосой или неизолированный провод. Зеленый или зеленый с желтой полосой или неизолированный провод. Зеленый с желтой полосой.
Путь Обеспечивает обратный путь к току в случае ненормальных и неисправных состояний. Обеспечивает путь к большой поверхности до нулевого потенциала. Обеспечивает путь для выравнивания разности потенциалов на двух разностных поверхностях.
Потенциал «0» Нейтраль, подключенная к земле, может иметь некоторый потенциал (нулевой потенциал, когда алгебраический ток равен нулю, известный как «виртуальное заземление».) Нулевой потенциал из-за физического соединения оборудования с землей. Одинаковый нулевой электрический потенциал на обоих подключенных устройствах.
Защита Защищает электрические системы и силовое оборудование во время неисправности, поскольку обеспечивает обратный путь для фазных токов. Он защищает человека от опасного поражения электрическим током, поскольку является профилактической мерой для разряда нежелательной электрической энергии на землю. Защищает оборудование и персонал, уменьшая ток между двумя машинами, имеющими разный потенциал. Соединение само по себе ничего не защищает без заземления.
Примеры Нейтраль трансформатора, соединенного звездой, или токоведущей части в качестве нейтрали в генераторе, подключенном к земле. Металлический корпус и кожух электрических машин (трансформатор, двигатели, генераторы и т. Д.), Подключенные к заземляющему электроду (пластине заземления). Любой провод, соединенный между двумя металлическими корпусами электрических машин и устройств для выравнивания разности потенциалов на них.
Использование Он используется для балансировки несбалансированной нагрузки и защиты системы. Он используется для защиты от поражения электрическим током и неисправностей в системе. Используется для отключения автоматического выключателя, когда протекает большой ток из-за наличия / изменения разницы положений.
Приложения Заземление обеспечивает эффективный обратный путь тока между электрооборудованием и энергосистемой. Заземление направляет нежелательную энергию на землю для защиты человека, который касается металлического корпуса машины во время неисправности. Соединение гарантирует, что оба подключенных устройства имеют одинаковый уровень напряжения и обеспечивает обратный путь с низким сопротивлением к источнику для отключения выключателя в случае токов короткого замыкания.

Связанные сообщения:

Электрическое заземление, защита от перенапряжения и молнии

Обзор

Электрическое заземление — это часто неправильно понимаемый и неправильно реализованный компонент систем экологического мониторинга.Системы, в которых не используются компоненты электрического заземления, могут испытывать либо полный отказ системы, либо периодические проблемы, которые трудно диагностировать. Однако простого использования заземляющих устройств недостаточно. Неправильная установка компонентов электрического заземления может вывести их из строя. Установка системы с надлежащим заземляющим оборудованием и соблюдение надлежащих инструкций по установке может сократить возможное время простоя, а также дорогостоящий ремонт системной электроники.

Зачем нужна защита от заземления?

Большинство регистраторов данных и датчиков сделаны из тонких кремниевых чипов, таких как микропроцессоры и другие интегральные схемы.Это оборудование может быть легко повреждено переходными напряжениями, такими как скачки напряжения и скачки напряжения. Эти скачки и всплески могут привести к необратимым повреждениям, например, как удар молнии поблизости может сжечь электронику и провода. Они также могут вызывать небольшие скрытые отказы, которые разрушают оборудование и со временем вызывают необратимые повреждения. Эти небольшие скрытые сбои являются наиболее сложными для диагностики, потому что кажется, что электроника просто вышла из строя в один прекрасный день, тогда как на самом деле система была склонна к непрерывным периодическим скачкам и скачкам напряжения, постоянно ухудшающим ее производительность.

Применение надлежащих методов заземления не только защищает от разрушительных скачков и скачков напряжения, но, что еще более важно, предохраняет систему от негативных последствий скрытых сбоев системы.

Что вызывает скачки и скачки напряжения?

Скачки и скачки напряжения, которые повреждают схемы регистраторов данных и датчиков, проходят через самую простую точку доступа: кабели, которые входят в регистратор данных и выходят из него. Эти кабели могут быть проводами, передающими сигналы датчиков, или коаксиальным радиочастотным кабелем, или телефонными проводами, обеспечивающими телеметрическую связь.Эти скачки напряжения и скачки напряжения чаще всего вызываются:

1. Молния
2. Другие электрические системы
3. Электростатический разряд (ESD)

Молния

Молния — это наиболее часто встречающийся скачок или скачок напряжения, приводящий к повреждению. электронные устройства.

Молния может повредить систему двумя способами: прямым ударом или переходными скачками напряжения, которые распространяются от прямого удара в близлежащие области. Ничто не может предотвратить повреждение от прямого удара молнии.При установке систем в местах, подверженных ударам молнии, или там, где телеметрические столбы или антенны расположены на более высоких отметках, чем их окружение, следует устанавливать громоотводы. Громоотводы не притягивают молнию; они просто отводят удары молнии от прямого повреждения близлежащих участков. Тогда устройства защиты от перенапряжения могут защитить от разрушительных скачков напряжения, возникающих при прямом ударе. Как и все устройства защиты от перенапряжения, молниеотводы должны быть правильно заземлены, чтобы быть эффективными. Более подробная информация представлена ​​ниже в разделе «Установка».

Удар молнии может показаться редкостью, но он встречается чаще, чем можно было бы подумать. Повреждения от ударов молнии, проходящих по телефонным линиям или коаксиальным радиочастотным кабелям, возникают часто и разрушают регистраторы данных, датчики и телеметрические модемы. Кроме того, скачки напряжения могут вызвать скрытые неожиданные сбои, которые впоследствии выйдут из строя.

Другие электрические системы

Скачки могут исходить изнутри здания или объекта от таких вещей, как факсы, копировальные аппараты, кондиционеры, лифты и / или двигатели / насосы, и это лишь некоторые из них.Эти устройства обычно работают от высоких напряжений переменного тока. Лучше всего держать оборудование для регистрации данных об окружающей среде, включая кабели датчиков, подальше от таких устройств, поскольку сигналы, генерируемые электродвигателями, вызывают большие шумы в сигнале.

Электростатический разряд (ESD)

Электростатический разряд, называемый ESD, возникает в результате трения двух непроводящих материалов друг о друга. Это заставляет электроны переходить от одного непроводящего материала к другому. Электростатический разряд — это шок, вызванный прикосновением к дверной ручке после перемещения по ковру.Этот электростатический разряд обычно превышает 10 кВ (10 000 вольт) и может серьезно повредить чувствительную электронику. Большинство, если не все, регистраторы данных и датчики, представленные сегодня на рынке, имеют встроенную защиту от электростатического разряда для защиты при обращении с ними. Кроме того, редко приходится обращаться с печатной платой напрямую при установке и обслуживании системы регистрации данных об окружающей среде. Однако всегда следует проявлять осторожность при обращении с электронными схемами, чтобы избежать разряда. Этого можно достичь, используя заземляющий браслет, прикоснувшись к металлическому объекту, чтобы разрядить накопившиеся электроны перед работой со схемами, и избегая работы на ковре при работе с печатными платами.

Как работают устройства защиты от перенапряжений (SPD)

Устройства защиты от молний и перенапряжений работают, направляя скачки и скачки напряжения от электрических компонентов, которые они защищают, и рассеивая их на заземляющую поверхность, такую ​​как земля или медная труба внутри здания. Таким образом, каждая система заземления состоит из двух основных компонентов: устройства защиты, которое направляет повреждающие сигналы, и заземляющего соединения, на которое направляются сигналы. Важно, чтобы оба компонента были на месте и использовались надлежащим образом.Одно без другого или одно правильно реализованное с неправильным выполнением другого — это то же самое, что полное отсутствие системы защиты от перенапряжения.

Типы устройств защиты

Существует несколько областей защиты устройств мониторинга окружающей среды, таких как:

— Входящая мощность от батареи или источника постоянного напряжения
— Защита от перенапряжения переменного тока
— Кабели беспроводной передачи, такие как коаксиальные кабели, используемые для радио-, сотовой или спутниковой телеметрии
— Телефонные линии при использовании стационарной телефонной телеметрии
— Защита входа датчика

Защита линии электропередачи

Предохранители обычно являются одноразовыми устройствами, которые защищают от напряжения или токовые перегрузки, а также короткие замыкания от источника питания системы экологического мониторинга.Предохранители состоят из корпуса, содержащего металлическую проволоку, которая плавится при нагревании заданным электрическим током, называемым отключающей способностью. Это предотвращает попадание скачка напряжения на чувствительную электронику, к которой подключен предохранитель.

Предохранители следует выбирать на основе:

— Номинальная отключающая способность, которую для любого предохранителя следует выбирать чуть выше максимального ожидаемого тока системы
— Уровень напряжения системы и номинальное напряжение предохранителя
— Упаковка предохранителей.Предохранители бывают многих стандартных размеров и типов, например, стеклянные картриджи, вставные и т. Д. Выберите упаковку, которая поддерживается вашим оборудованием.

Существуют другие виды защиты типа предохранителей, такие как автоматические выключатели или сбрасываемые предохранители, но они обычно не используются. Автоматические выключатели лучше подходят для больших токов, как в сети переменного тока, в отличие от напряжений постоянного тока в системах окружающей среды. Восстанавливаемые предохранители в несколько раз дороже стандартных предохранителей, которые широко используются в системах мониторинга окружающей среды.

Устройства защиты от перенапряжения переменного тока

Устройство защиты от перенапряжения переменного тока ограничит влияние скачков напряжения в линиях питания переменного тока на дорогостоящее контрольно-измерительное оборудование. Устройство защиты от перенапряжения переменного тока может быть таким же простым, как приобретенное в универмагах для использования в домашних условиях. Обратите внимание, что блоки питания намного шире, чем простой кабель питания переменного тока, и могут покрывать более одного слота на типичном сетевом фильтре.

Защита также может быть получена от источников питания переменного тока в постоянный или зарядных устройств переменного тока.Источники питания переменного тока в постоянный бывают двух видов: импульсные и преобразующие. Импульсные источники питания небольшие, легкие и недорогие, поскольку в них используются интегральные схемы для преобразования переменного тока в постоянный. Преобразовательные источники питания обычно более громоздкие, тяжелые и более дорогие, чем импульсные источники питания, поскольку они используют большую катушку провода, называемую трансформатором, для преобразования переменного тока в постоянный ток. Однако блоки питания-трансформеры обычно более прочные и обеспечивают хорошую защиту систем мониторинга.Если мощность переменного тока резко возрастет, это приведет к повреждению подключенного к нему оборудования, но преобразующий источник питания выйдет из строя и повредит только себя, защищая оборудование, которое он питает. С другой стороны, импульсный источник питания, если он не указан в спецификации, может посылать повреждающее напряжение на систему, которую он питает.

Примечание. При покупке устройства защиты от перенапряжения переменного тока оно должно соответствовать стандарту UL 1449. Этот рейтинг присваивается лабораторией андеррайтеров и означает, что устройство было протестировано на защиту от перенапряжения.Это также указывает на то, что устройство соответствует стандартам термического предохранителя 1998 года, что означает, что оно будет отключать питание во время сильных скачков напряжения, в конечном итоге не давая ему загореться.

Защита беспроводной телеметрии

Существует несколько видов устройств для защиты беспроводной телеметрии от радио, сотовых или спутниковых сигналов. К ним относятся:

— Ограничители воздушного зазора
— Газоразрядные трубки
— Изоляторы питания

Примечание. При выборе любого устройства беспроводной защиты убедитесь, что устройство рассчитано на диапазон частот, в котором работает ваше беспроводное устройство.Например, безлицензионное радио с расширенным спектром может работать в диапазоне от 902 МГц до 928 МГц. Следовательно, с этой системой следует использовать устройство беспроводной защиты, используемое с этой телеметрией.

Молниеотводы с воздушным зазором являются наименее дорогими и наименее защищенными из устройств беспроводной телеметрической защиты. Первоначально разработанные для защиты старых ламповых телевизоров, эти устройства не обеспечивают достаточной защиты для устройств на базе микропроцессоров, используемых сегодня. Они лучше, чем отсутствие защиты вообще, но не так надежны и не так хорошо спроектированы для защиты от скачков и скачков напряжения, как другие средства защиты беспроводной телеметрии.

Газоразрядные трубки обычно являются следующими наименее дорогими. Они защищают оборудование от скачков напряжения в высокочастотных диапазонах и являются наиболее распространенной защитой оборудования беспроводной передачи.

Изоляторы питания намного дороже, но обеспечивают наиболее эффективную защиту. В изоляторах питания используется особый вид феррита для передачи высокочастотных беспроводных сигналов через магнитное поле вместо физического соединения.

Защита телефонной линии

В соответствии с Национальным электротехническим кодексом (статья 800-32) все устройства защиты от перенапряжения, подключенные к линиям стационарной телефонной связи, должны быть протестированы и внесены в списки UL.Установка определенных защитных устройств, не включенных в перечень, может противоречить местным, государственным и / или национальным строительным нормам. Установка устройства защиты стационарного телефона, не включенного в список UL, может повлечь за собой ответственность установщика в случае пожара.

Защита телефонной линии от перенапряжения необходима для любой системы мониторинга телефонной телеметрии. Хотя это может показаться ненужным, поскольку телефоны обычно не имеют внешней защиты от перенапряжения, модемы более подвержены скачкам напряжения, чем телефоны. В модемах более тонкая электроника, и они обычно подключаются к дорогостоящему оборудованию.Повреждающий скачок напряжения через модем может и потенциально может повредить электронику, к которой он подключен.

Установка

Как упоминалось ранее, подключение к заземлению так же важно, как и само устройство защиты от перенапряжения. Для работоспособной системы электрического заземления требуется соблюдение надлежащих методов установки и подключение к соответствующим плоскостям заземления.

Выбор материала заземления

Любая система заземления после защитного устройства состоит из трех основных частей: плоскости заземления, заземляющего провода и соединения между ними.

Плоскость заземления:

1. Лучшие плоскости заземления:
a. Вбитые в землю стержни заземления с медным или медным покрытием
b. Медные водопроводные трубы или другие строительные площадки, такие как металлический каркас
c. Металлические корпуса и корпуса (которые, в свою очередь, должны быть заземлены)

2. Заземляющие стержни должны быть из меди или оцинкованной стали и иметь минимальный диаметр 5/8 дюйма.

3. Алюминий не следует использовать при непосредственном закапывании почвы в качестве заземляющего стержня, так как щелочность почвы вытравливает металл.Это вызывает отключение и увеличение сопротивления между системой заземления и заземлением.

Заземляющий провод:

1. Для прокладки заземляющего провода используйте провода толстого сечения (10 AWG или больше). Это важно, поскольку более толстый сечение провода вместе с коротким кабелем обеспечивает меньшее сопротивление заземляющего провода, сводя к минимуму падение напряжения во время скачков напряжения.

2. Кабель может быть одножильным или многожильным (при условии, что он достаточно толстого сечения).Провод может быть как неизолированным, так и изолированным.

Связь между ними:

1. Следует избегать использования разнородных металлов для подключения устройства защиты от перенапряжения к плоскости заземления. Со временем соединение может изнашиваться и вызывать нежелательные эффекты в системе заземления, так как соединение будет ухудшаться из-за окисленных слоев, которые образуются между ними.

2. Заземляющие провода должны быть прикреплены к заземляющей плоскости (например, заземляющему стержню или медным водопроводным трубам) с помощью заземляющих зажимов.Обязательно выберите зажим, соответствующий размеру стержня или трубы.

3. И медь, и алюминий одобрены UL для использования в системах защиты заземления. Однако медь лучше проводит электричество и может использоваться в меньших калибрах.

Рекомендации по правильной установке:

1.

Добавить комментарий

Ваш адрес email не будет опубликован.