Электродвигатель своими руками в домашних условиях: Изготавливаем электродвигатель своими руками!

Содержание

Электродвигатель своими руками — 100 фото постройки полноценного устрйоства

Для понимания процесса изготовления асинхронного электродвигателя своими руками следует знать его устройство и принцип работы. При следовании пошаговой инструкции самостоятельно изготовить конструкцию с минимальными затратами на материалы, так как при сборке используются подручные средства.

Краткое содержимое статьи:

Подготовка материалов

До начала сборки необходимо удостовериться в наличии необходимых материалов:

  • изолента;
  • термо- и суперклей;
  • батарейка;
  • несколько болтиков;
  • велосипедная спица;
  • проволочка из медного материала;
  • пластинка из металла;
  • гайка и шайба;
  • фанера.

Необходимо подготовить несколько инструментов, в том числе плоскогубцы, пинцет, ножик, ножницы.

Изготовление

Сначала проводится равномерная намотка проволочки. Её аккуратно накручивают на катушку. Чтобы облегчить процесс, можно воспользоваться основой, взяв, к примеру, аккумуляторную батарейку. Плотность намотки не должна быть большой, но и лёгкая тоже не нужна.

Полученную катушку необходимо снять с основы. Делают это осторожно, чтобы намотка не была повреждена. Это необходимо для изготовления регулятора оборотов для двигателя своими руками. Следует на следующем этапе провести удаление изоляции на концах провода.


На следующем этапе изготавливают частотник для электродвигателя своими руками. Делается конструкция просто. В 5 пластинах электродрелью просверливается отверстие, потом следует их надеть на велосипедную спицу, которая берётся в качестве оси. Пластины прижимаются, при этом их фиксация проводится с помощью изоленты, излишек обрезается с помощью ножа канцелярского.

Когда через катушку проходит электрический ток, частотником создаётся возле себя магнитное поле, исчезающее после отключения электротока. Воспользовавшись этим свойством, следует проводить притягивание и отпускание деталей из металла, при этом проводят включение и отключение электротока.

Изготовление токового прерывательного приспособления

Взяв пластинку небольших размеров, проводят её крепление на оси, для надёжности прижав конструкцию с помощью плоскогубцев. Далее проводят изготовление обмотки якоря электродвигателя своими руками. Для этого необходимо взять нелакированную медную проволоку.

Проводят подключение одного её конца к пластинке из металла, установив на её поверхности ось. Электроток будет проходить через всю конструкцию, состоящую из пластины, металлического прерывателя и оси. При контакте с прерывателем происходит замыкание и размыкание цепи, что даёт возможность подключения электромагнита и его последующего отключения.

Изготовляем рамку

Рамка необходима, так как электродвигатель это приспособление руками позволяет не держать. Изготавливается конструкция рамки из фанеры.


Изготовление индуктора

В фанерной конструкции проделывают 2 отверстия, впоследствии здесь электродвигательная катушка закрепляется с помощью болтов. Подобные опоры выполняют следующие функции:

  • якорная опора;
  • осуществление функции электрического провода.

После соединения пластин следует конструкцию прижать болтами. Чтобы якорь был закреплён в вертикальном положении, делается рама из металлической скобы. В её конструкции сверлят 3 отверстия:  одно из них равно по размеру оси, а два – диаметра шурупов.

Процесс изготовления щёчек

На гайку необходимо положить бумагу, сверху следует пробить отверстие болтом. После надевания бумаги на болт в верхней части его ставится шайба. Всего следует проделать четыре такие детали. Накручивание гаек проводят на верхнюю щёчку, снизу следует подложить шайбочку и зафиксировать конструкцию с помощью термоклея. Конструкция каркаса готова.

Далее необходима перемотка проволоки для электродвигателей своими руками. Конец проволоки наматывают на каркас, скручивая при этом концы проволоки, чтобы катушка была красива и презентабельна. Далее следует раскрутить гайки  удалить болт. Начало и конец проволоки очищают от лака, а затем устанавливают конструкцию на болт.


Сделав подобным образом вторую катушку, необходимо соединить конструкцию и проверить, как работает электродвигатель. Шляпку болта подключают к плюсу. Следует провести плавный пуск электродвигателя, собранного своими руками.

Внимательно стоит отнестись к контактам. До пуска следует проверить их тщательность подключения. Конструкцию необходимо приклеить на суперклей. При увеличении тока происходит возрастание электродвигательной мощности.

Если катушки соединены параллельно, то происходит уменьшение суммарного сопротивления и возрастания электрического тока. Если соединяется конструкция последовательно. то суммарное сопротивление увеличивается, а электрический ток сильно уменьшается.


Проходя через конструкцию катушки, наблюдается увеличение электрического тока, что приводит к увеличению размеров магнитного поля. При этом электрический магнит сильно притягивает к себе электродвигательный якорь.

Если конструкция собрана правильно, то работа электродвигателя происходит быстро и эффективно. Чтобы собрать модель электродвигателя, не нужны какие-то специальные навыки и знания.

Можно на просторах интернета найти пошаговую инструкцию с  фото на каждом из этапов. Воспользовавшись этим, любой человек быстро может собрать электродвигатель из подручных материалов.

Фото электродвигателей своими руками

Как сделать простейший электродвигатель за десять минут. Настоящий одноцилиндровый электродвигатель своими руками Как собрать электродвигатель в домашних условиях

И сегодня расскажем о том, как сделать двигатель из батарейки, медной проволоки и магнита. Такой мини электродвигатель может использоваться, как подделка на столе у домашнего электрика. Собрать ее довольно просто, поэтому если Вам интересен данный вид занятий, далее мы предоставим подробную инструкцию с фото и видео примерами, чтобы сборка простейшего моторчика была понятной и доступной каждому!

Шаг 1 – Подготавливаем материалы

Чтобы сделать самый простой магнитный двигатель своими руками, Вам понадобятся следующие подручные материалы:

Подготовив все нужные материалы можно переходить к сборке вечного электродвигателя. Сделать маленький электрический моторчик в домашних условиях не сложно, в чем Вы сейчас и убедитесь!

Шаг 2 – Собираем самоделку

Итак, чтобы инструкция была для Вас понятной, лучше рассмотрим ее поэтапно с картинками, которые помогут визуально понять принцип работы мини электродвигателя.

Сразу же обращаем Ваше внимание на то, что Вы можете по-своему изобрести конструкцию самодельного маленького двигателя. Для примера ниже мы Вам предоставим несколько видео уроков, которые, возможно, помогут Вам сделать свою версию двигателя из батарейки, медной проволоки и магнита.

Что делать, если самоделка не работает?

Если вдруг Вы собрали вечный электродвигатель своими руками, но он не вращается, не спешите расстраиваться. Чаще всего причиной отсутствия вращения мотора является слишком большое расстояние между магнитом и катушкой. В этом случае Вам нужно всего лишь самому немного подрезать ножки, на которых держится вращающаяся часть.

Вот и вся технология сборки самодельного магнитного электродвигателя в домашних условиях. Если Вы просмотрели видео уроки, то наверняка убедились, что сделать двигатель из батарейки, медной проволоки и магнита своими руками можно разными способами. Надеемся, что инструкция была для Вас интересной и полезной!

Это будет полезно знать:

Всегда интересно наблюдать за изменяющимися явлениями, особенно если сам участвуешь в создании этих явлений. Сейчас мы соберем простейший (но реально работающий) электродвигатель, состоящий из источника питания, магнита и небольшой катушки провода, которую мы сами и сделаем.

Существует секрет, который заставит этот набор предметов стать электродвигателем. Секрет, который одновременно умен и изумительно прост. Вот что нам нужно:

    1,5В батарея или аккумулятор.

    Держатель с контактами для батареи.

  • 1 метр провода с эмалевой изоляцией (диаметр 0,8-1 мм).

    0,3 метра неизолированного провода (диаметр 0,8-1 мм).

Мы начнем с намотки катушки, той части электродвигателя, которая будет вращаться. Чтобы сделать катушку достаточной ровной и круглой, намотаем ее на подходящем цилиндрическом каркасе, например, на батарейке типоразмера АА.

Оставляя свободными по 5 см провода с каждого конца, намотаем 15-20 витков на цилиндрическом каркасе.

Не старайтесь особенно плотно и ровно наматывать катушку, небольшая степень свободы поможет катушке лучше сохранить свою форму.

Теперь аккуратно снимите катушку с каркаса, стараясь сохранить полученную форму.

Затем оберните несколько раз свободные концы провода вокруг витков для сохранения формы, наблюдая за тем, чтобы новые скрепляющие витки были точно напротив друг друга.

Катушка должна выглядеть так:


Сейчас настало время секрета, той особенности, которая заставит мотор работать. Это секрет, потому что это изысканный и неочевидный прием, и его очень сложно обнаружить, когда мотор работает. Даже люди, много знающие о работе двигателей, могут быть удивлены способностью мотора работать, пока не обнаружат эту тонкость.

Держа катушку вертикально, положите один из свободных концов катушки на край стола. Острым ножом удалите верхнюю половину изоляции, оставляя нижнюю половину в эмалевой изоляции.

Проделайте тоже самое со вторым концом катушки, наблюдая за тем, чтобы неизолированные концы провода были направлены вверх у двух свободных концов катушки.

В чем смысл этого приема? Катушка будет лежать на двух держателях, изготовленных из неизолированного провода. Эти держатели будут присоединены к разным концам батареи, так, чтобы электрический ток мог проходить от одного держателя через катушку к другому держателю. Но это будет происходить только тогда, когда неизолированные половины провода будут опущены вниз, касаясь держателей.

Теперь необходимо изготовить поддержку для катушки. Это просто витки провода, которые поддерживают катушку и позволяют ей вращаться. Они сделаны из неизолированного провода, так как кроме поддержки катушки они должны доставлять ей электрический ток.

Просто оберните каждый кусок неизолированного провода вокруг небольшого гвоздя — и получите нужную часть нашего двигателя.

Основанием нашего первого электродвигателя будет держатель батареи. Это будет подходящая база, потому что при установленной батарее она будет достаточно тяжелой для того, чтобы электродвигатель не дрожал.

Соберите пять частей вместе, как показано на снимке (вначале без магнита). Положите сверху аккумулятора магнит и аккуратно подтолкните катушку…


Если все сделано правильно, КАТУШКА НАЧНЕТ БЫСТРО ВРАЩАТЬСЯ! Надеемся, что у Вас, как и в нашем эксперименте, все заработает с первого раза.

Если все-таки мотор не заработал, тщательно проверьте все электрические соединения. Вращается ли катушка свободно? Достаточно ли близко расположен магнит (если недостаточно, установите дополнительные магниты или подрежьте проволочные держатели)?

Когда мотор заработает, единственное, на что нужно обратить внимание — чтобы не перегрелся аккумулятор, так как ток достаточно большой. Просто снимите катушку — и цепь будет разорвана.

А что вы делаете, когда отключают электричество в темное время суток? Скорее всего, зажигаете свечи и проводите вечер в ожидании подачи электроэнергии. А можно провести это время с пользой. Например, осветить комнату при помощи обычного магнита и проволоки, который позволит работать лампе без электричества. Или сделать мотор, который сможет работать автономно.

Электромагнитный двигатель своими руками

Данный самодельный электродвигатель легко изготовить из подручных материалов в домашних условиях. Стоит отметить, что такое устройство можно использовать не только в качестве наглядного примера, но и по прямому назначению, например прикрепив к ротору вентилятор.

Для изготовления понадобится:

  • Спица;
  • Тонкие металлические пластины;
  • Болты с гайками;
  • Медная проволока;
  • Кусок фанеры.

Из металлического листа толщиной 0,2 мм, вырезаем 5 прямоугольных пластин 40 на 15 мм. Во всех пластинах поделываем по центру отверстия и одеваем их на подготовленную спицу. Далее необходимо зафиксировать пластины между собой изолентой.

Для лучшего вращения ротора, концы спицы затачиваются, тем самым обеспечивается наименьший контакт с поверхностью.

Затем, на оси необходимо закрепить самодельный прерыватель тока, который выполняется из металла, из которого сделаны пластины. Размеры прерывателя 3 на 1 см. Данная пластина складывается пополам и надевается на ось.

Далее, изготавливаем основание из фанеры. Для этого на куске фанеры размерами 50 на 50 мм, просверливаем три отверстия (два для болтов по краям и одно по центру для установки ротора). Из металлической пластины изготавливаем П – образный держатель для верхней части ротора. И в нем просверливаем по центру отверстие.

После этого, для изготовления статора, вырезаем из металла три пластины, которые будут соединять болты в нижней части конструкции и проделываем в них по два отверстия для болтов. Надеваем данные пластины на болты, а боты вставляем в отверстия на деревянной площадке.

Далее, болты обматываются изолентой, и на нее наматывается медная проволока 500 витков. На одном из углов деревянной конструкции, крепится держатель для прерывателя контакта. К катушкам подключается электричество напряжением 12 Вольт.

Как правильно сделать моторчик из батарейки

Данный электромотор, носит скорее демонстрационный характер. Для того чтобы изготовить простейший мотор потребуется некоторое количество времени и подручные материалы.


Основные элементы:

  • Батарейка 1,5 В;
  • Небольшой магнит;
  • Булавки;
  • Скотч;
  • Пластилин.

В первую очередь, необходимо изготовить катушку, которая и будет выступать в качестве ротора. Для этого наматываем эмалированную медную проволоку вокруг батарейки (6 витков). Концы проволоки продеваем в получившуюся катушку и фиксируем узелками.

Для придания жесткости конструкции, лучше использовать проволоку сечение не менее о,5 мм.

Откусываем пассатижами концы катушки (они должны получиться примерно по 4 см). Один конец зачищаем от лака полностью, а второй только с одной стороны (он будет выступать в качестве прерывателя).

Далее, используя скотч, крепим булавки к контактам батарейки. Для этого нужно просто приложить булавки и обмотать батарейку скотчем. Затем, на батарейку при помощи пластилина производится установка магнита.

В ушки булавок вставляем катушку. В данной катушке образуется магнитное поле, за счет которого происходит вращение подвижного элемента конструкции. Если вращения не происходит, поменяйте контакты катушки местами.

Магнит от динамика, медная проволока и лампа для изготовления светильника

Самым простым способом привести в рабочее состояние люминесцентную лампу, является помещение ее в электромагнитное поле обычного магнита, который используется для работы в старых советских динамиках.

Устройство состоит из:

  • Круглый магнит;
  • Медная проволока.

Для изготовления данного устройства, в первую очередь необходимо извлечь магнит из динамика. Далее, используя молоток не применяя большой силы легкими ударами отбить металлические пластины с магнита.

Обратите внимание! Если пластины не отходят от магнита, можно замочить его на некоторое время в растворителе.

После того, как с магнита сняты пластины, необходимо его очистить от загрязнений. Для этого используйте обычную тряпку или ветошь.

Далее, производится изготовление обмотки. Для этого берется кусок медной проволоки в изоляции. Длины проволоки должно быть достаточно, чтобы сложить ее пополам и обмотать магнит пятью витками. Двойной конец проволоки продевается в получившееся ушко из проволоки.

После того как магнит обмотан, в центральную часть магнита вставляется обычная люминесцентная лампа. Данную конструкцию можно оснастить декоративными материалами и использовать как автономный светильник.

Лучшие самоделки из магнита

Применение магнитов в повседневности настолько широко, что перечисление всех займет много времени. Но так как, многие являются скорее развлекательными, подробнее остановимся на перечислении широко применяемых.

Магниты используют:

  • При монтажных работах;
  • Мытье окон;
  • В качестве держателей.

В первую очередь стоит отметить, что поиск магнитов не очень сложное занятие. Магниты небольших размеров, вы сможете найти в старых наушниках. Более мощные неодимовые магниты можно извлечь из старых жестких дисков компьютера.


Предположим, что вы работаете с деревянной конструкцией. В одной руке вы держите молоток, а в другой элемент данной конструкции. В данном случае держать охапку гвоздей не совсем удобно. Для этого, нужно просто поместить в нагрудный карман магнит и приклеить к нему гвозди.

Бывают ситуации, когда приходится закручивать саморезы в труднодоступных местах, в которых придержать саморез не представляется возможным. Для этого, просто крепите магнит на металлической части отвертки. Намагниченная отвертка позволяет держаться болту или саморезу самостоятельно.

Если приклеить небольшие магниты к компьютерному столу (в любом удобном месте), то можно использовать их в качестве держателей для различных USB или других видов проводов. Для этого на провода одеваются небольшие пружины (можно использовать пружины от ручек), которые и являются металлической примагничивающейся конструкцией.

Сила притяжения магнита зависит не только от его размеров, но и от времени его эксплуатации.

В качестве составного элемента декора, магниты можно использовать в качестве крепежных элементов пазла располагающегося на дверце холодильника. Для этого берется любая фотография, которая расчерчивается на определенные элементы. К каждому элементу при помощи обычного клея приклеивается небольшой магнит. Фото разделяется на составные элементы. После этого собирается на двери холодильника в виде пазла.

Что можно сделать из батарейки (видео)

Для того чтобы собрать практически вечный электродвигатель в домашних условиях, достаточно смекалки и обычных знаний в области электротехники. Что в ряде случаев несомненно вам пригодится.

Всё еще не знаете, чем развлечь детей? Тогда попробуйте провести эксперимент с магнитным моторчиком! Кажется, что это нельзя сделать в домашних условиях. Но вы удивитесь, возможности создать двигатель из простых предметов, которые всегда найдутся под рукой. В данной статье вы найдете схему моторчика, а также подробную инструкцию по сборке.

Как сделать моторчик – необходимые материалы

Чтобы собрать своими руками простой моторчик, вам понадобятся такие предметы и инструменты:

  • Проволока. Для поделки возьмите медную проволоку с диаметром не больше 1 мм. и длиной 80 см. Старайтесь придерживаться этого размера, так как более длинная проволока не сможет вращаться от одной батарейки.
  • Наждачная бумага. Выбирайте ее с меньшей зернистостью, так как вам придется зачищать срезы проволоки. Более мелкая наждачная бумага облегчит для вас работу.
  • Батарейка. Вам понадобится одна батарейка мощностью в 1,5 Вольта. Вы можете использовать как обычное устройство, так и аккумулятор.
  • Канцелярские скрепки. Всего вам необходимо две штуки. Они будут выступать в роли держателей катушки, поэтому выбирайте скрепки большого размера и из прочного металла.
  • Скотч. Для эксперимента лучше всего воспользуйтесь малярным скотчем, так как он имеет бумажную основу и обладает более сильным липким слоем.
  • Магнит. Возьмите небольшую часть магнита. Он должен быть по диаметру меньше, чем кольцо из проволоки и ширины батарейки.
  • Картон. Плотный картон будет выступать в роли основания, к которому вы прикрепите моторчик. С помощью него вы сможете переносить поделку.
  • Вспомогательные материалы. Дополнительно подготовьте кусачки и простой карандаш или ручку.

Когда все инструменты и предметы подготовлены, вы можете приступать к сборке конструкции магнитного моторчика.

Как сделать моторчик – ход работы

  • Если у вас проволока находится в мотке, тогда отщипните кусачками длину заготовки в 80 см. Из нее необходимо сделать кольцо с несколькими витками. В качестве основы воспользуйтесь поверхностью батарейки. Один край выровняйте и через 3-5 см. начните накручивать проволоку на батарейку. Второй край так же оставьте свободным и ровным.


  • Кольцо из проволоки будет представлять собой катушку, поэтому края завяжите на узел. Но при этом оставьте небольшую часть свободной. Сделайте ее ровной. Вот что у вас должно получиться.


  • Концы проволоки тщательно зачистите при помощи наждачной бумаги. Для удобства одной рукой придерживайте заготовку, а другой обрабатывайте край проволоки.


  • После обработки одного края вы получите проволоку светлого оттенка. Таким же способом зачистите второй конец провода.


  • Далее вам понадобится две больших скрепки и карандаш.


  • Подцепите карандашом один конец скрепки и разверните его в противоположную сторону от основания. При этом у вас должна получиться небольшая петелька в центре заготовки. Один край скрепки приложите к батарейке так, чтобы ее внутренняя часть сгиба была расположена вокруг выступа.


  • Таким же способом приложите вторую скрепку и зафиксируйте на батарейке при помощи малярного скотча. Затем положите заготовку на картон и закрепите липкой лентой как показано на картинке.


  • Над батарейкой поместите кольцо из проволоки. Свободные края проденьте в петельки на скрепках. Старайтесь не сгибать проволоку. Если это произошло, то обязательно выровняйте ее.


  • Магнит положите сверху батарейки, но под кругом из проволоки. Когда магнит пристанет, кольцо должно само закрутиться. В случае, если круг не начал крутиться, слегка подтолкните его рукой. Вот и всё, самый простой электрический моторчик готов к эксперименту!


Важно! Не оставляйте на длительное время бездействовать устройство. В это время батарейка с катушкой будут нагреваться, что приведет к неисправности прибора.

Всего за полчаса вы сможете сделать своими руками магнитный моторчик. При этом вам понадобятся самые простые материалы, которые всегда найдутся дома. Удивите друзей!

О том, как сделать более сложную модель простого моторчика, вы сможете увидеть на видео:

Сделать электромотор из того, что под руками вовсе не сложно.

Идею такого мотора я подсмотрел на сайте www.crafters.ucoz.ru Как видно на фото вверху для мотора нам понадобится скотч, пара булавок, магнит, батарейка и кусок медной проволоки.

Вместо обычной батарейки лучше взять аккумулятор потому как заряда батарейки для такого электромотора хватит не надолго. Возьмите медную проволоку и намотайте 30-50 витков вокруг батарейки.

Концы проволоки закрепите на противоположных краях получившегося ротора, они будут являться осью. Их можно завязать узлом.

Оба конца проволоки очистите от лаковой изоляции наждачной бумагой или ножом.

Теперь возьмите батарейку, скотч и булавки, прикрепите булавки скотчем в контактам батарейки, в ушки булавок вставьте приготовленный медный ротор.

ВНИМАНИЕ! В этот момент контур нашего ротора замыкает контакты батарейки и держать эту конструкцию в «спокойном» положении долго не рекомендуется! Электролит батарейки может сильно нагреваться, поэтому не делайте ротор меньше 30 витков, чем больше тем лучше (больше сопротивление). Теперь под ротор на батарейку положите магнит, он сам «прилипнет» к батарейке. Ротор начнет быстро вращаться.

Ротор не должен касаться магнита и даже лучше будет если магнит будет на расстоянии 5-10 мм от ротора. Попробуйте магнит в разных положениях, повращайте его, попробуйте отнести его подальше от медного ротора, добейтесь максимальной скорости вращения.

Это простейший пример электромотора, его схему мы не раз проходили в школе на уроках физики, но почему-то нам ни разу не показывали этой простой и интересной конструкции:) Смотрим видео как работает этот самодельный моторчик.

[видео утеряно сервисом rutube]

 

Перемотка электродвигателей своими руками — поиск и устранение причин поломки в домашних условиях (инструкция + 100 фото)

Во многих бытовых приборах сегодня используются электродвигатели. Главная их особенность в том, что они работают асинхронно. Это позволяет держать постоянную частоту вращения ротора даже при меняющихся нагрузках.

Все выпускаемые электродвигатели имеют разные конструктивные особенности. Каждая модификация может отличаться по количеству полюсов, типу ротора, и других составных частей. Технология перемотки электродвигателей делается по общему принципу, в некоторых нюансах могут быть различия.

Если устройство вышло из строя, то нужно обратиться в мастерскую. При ее отсутствии можно попытаться сделать перемотку двигателя в домашних условиях. Желательно иметь для этого необходимые навыки, но в целом этот процесс не такой сложный на вид.

«Движки» имеют два типа обмотки:

  • статорная;
  • роторная.

Если учесть, что конструкция и размеры устройств разные, можно дать общую инструкцию для перемотки двигателей. Остановимся на тех, которые используются в бытовых приборах и питаются от переменного тока.

Инструменты и приспособления

Для того чтобы самостоятельно осуществить перемотку якоря электродвигателя своими руками, потребуется наличие следующих инструментов и приспособлений.

  1. Мультиметра или индикатора напряжения, а также лампы 12 В (мощность не более 40 Вт), мегомметра.
  2. Обмоточного провода, его диаметр должен быть точно такой же, как и на вышедшем из строя электродвигателе.
  3. Картон диэлектрический толщиной 0,3 мм.
  4. Электрический паяльник.
  5. Толстые хлопчатобумажные нити.
  6. Эпоксидная смола или лак.
  7. Наждачная бумага.

Прежде чем начинать проводить работы, необходимо точно установить поломку. Для этого необходимо визуально осмотреть электродвигатель и проверить, идёт ли на коллектор напряжение. Осуществить диагностику кнопки запуска, прозвонить ее с помощью мультиметра. Только в том случае, если цепь питания полностью исправна, необходимо разбирать электродвигатель и заниматься его ремонтом.

Как прозвонить


Для качественной диагностики статора болгарки, следует выполнить полную разборку электроинструмента с целью устранения всех других конструктивных элементов, включая ротор, чтобы обеспечить свободный доступ ко всем его частям. На первоначальном этапе необходимо выполнить визуальный осмотр. Для более полной картины обязательно следует выполнить проверку наличия дефектов с помощью электрических приборов. Какими приборами и как прозвонить статор болгарки, подробно описано по ссылке «Как прозвонить статор болгарки».

Подготовка к перемотке

Прежде чем приступать к работе, необходимо изучить инструкцию по перемотке электродвигателей. Своими руками если это делать, потребуется не менее 4 часов, и это только на перемотку якоря. Перед началом ремонта необходимо выполнить следующие действия.

  1. Посчитать число пазов на якоре.
  2. Пересчитать количество ламелей на коллекторе.
  3. Определить, с каким шагом произведена намотка. Чаще всего укладываются катушки в начальный паз, после чего в седьмой, а крепится на первом.

Также иногда используется сброс влево или вправо. Если происходит намотка со сбросом вправо, катушка уходит вправо от начала обмотки. Например, если в якоре 12 пазов, шаг намотки 1-6 и сброс производится вправо, закладывается обмотка в первом, после чего в восьмом и проводится крепление во втором пазах. Все эти моменты обязательно необходимо учитывать, иначе после ремонта окажется, что электродвигатель вращается в другую сторону.

Направление намотки и начальный паз

Для того чтобы осуществить перемотку эл. двигателей в бытовых условиях, необходимо запоминать, записывать, либо же фотографировать каждый этап проведения работ. Это существенно облегчит ремонт, позволит избежать неточностей при сборке. Чтобы определить направление намотки и начальный паз, необходимо найти катушку, не прикрытую другими. Именно она является последней.

В том случае, если обмотка уложена вправо, то начальный паз находится справа от крайней катушки. Именно отсюда и необходимо начинать укладку провода. Только таким образом можно добиться максимально точной намотки, очень близкой к заводской. Если исходная обмотка симметрична, в ней укладываются попарно катушки, то начальных пазов будет два. Найти их можно точно так же, как и в прошлом случае.

Алгоритм разборки и изготовления статора перфоратора Макита 2450,2470

Вот последовательность при изготовлении статора перфоратора Макита 2450:

  1. Извлечение из корпуса статора в сборе.
  2. Удаление старой обмотки, определение направления намотки, диаметра провода.
  3. Намотка новых катушек согласно собранным данным по шаблонам.
  4. Подготовка изоляции на новые катушки.
  5. Изоляция новых катушек.
  6. Установка готовых катушек в пазы сердечника или намотка катушек в самом сердечнике.
  7. Подпайка выводов к концам катушек.
  8. Бронирование обмоток новых катушек.
  9. Пропитка намотанных катушек.
  10. Сборка статора.

Особенности

Мастеру обязательно нужно узнать, сколько витков провода уложено в одном пазу и во всей катушке. Для этого необходимо катушку, расположенную сверху, отделить и посчитать, сколько в ней витков. Если необходимо, то производите разборку при помощи газовой горелки. Число витков в пазу напрямую зависит от:

  • числа ламелей на коллекторе;
  • количества пазов на якоре.

После подсчёта необходимо подготовить коллектор, демонтаж его не требуется. Для этого нужно просто измерить значение сопротивления между корпусом и ламелями.

Сопротивление должно быть в пределах 200-250 кОм. После этого необходимо полностью демонтировать старый проводник, для этого удаляете обмотку. Тщательно защищаете все пазы и корпус якоря. Нагар, заусеницы, обязательно шлифуете при помощи наждачной бумаги. После этого из картона необходимо нарезать прямоугольные отрезки, соответствующие размерам пазов в якоре.

Намотка нового провода

После этого можно приступать к намотке новых проводников. Схема обязательно должно быть такой же, как и на заводской. Начинайте укладку с начального паза, соблюдайте сброс и шаг намотки. Крепеж производится при помощи хлопчатобумажных ниток непосредственно у коллектора. Синтетические нитки не рекомендуется применять, так как они подвержены горению.

После завершения всех работ необходимо проверить обмотки на межвитковое замыкание и обрывы. Если нет поломок, то необходимо нанести эпоксидную смолу или лак на обмотку. Чтобы ускорить процесс, необходимо якорь поместить в духовку, установив температуру в ней 80 градусов. Сушка должна проводиться не менее 20 часов.

Балансировка ротора

Для того чтобы электроинструмент после ремонта работал максимально эффективно, потребуется сделать балансировку. Так как все работы выполняются в домашних условиях, обязательно следует соблюдать определенные рекомендации. Перемотка электродвигателя своими руками выполняется довольно просто, намного сложнее окажется произвести балансировку.

  1. Подберите два стальных лезвия. Они должны быть ровные и гладкие.
  2. Эти лезвия обязательно устанавливаются параллельно и крепятся к жесткому основанию.
  3. Между ними необходимо соблюдать расстояние, которое равно размеру ротора.
  4. Размещаете на этих стальных лезвиях ротор и наблюдаете, как он перемещается.
  5. Обязательно якорь начнёт проворачиваться, наиболее тяжелая часть окажется снизу.
  6. Нужно сместить центр тяжести к оси ротора, закрепляя на нем грузы.

После балансировки якорь должен быть неподвижным.

Для того чтобы уравнять стороны ротора, необходимо навесить на нем небольшие грузики, изготовленные из пластилина. Только после того, как достигнете равновесия, необходимо снять пластилиновые грузики, взвесить их, припаять металл. После этого обязательно перепроверьте балансировку.

Особенности проверки асинхронных моторов

Асинхронные двигатели могут быть одно- и трехфазными. Существуют особенности проверки этих машин.

  1. У однофазных асинхронников у пусковой обмотки сопротивление больше, чем у рабочей. Проверить это можно при помощи любого мультиметра.
  2. Между обмотками и корпусом электродвигателя сопротивление должно быть большим.
  3. В трехфазных моторах у всех обмоток одинаковое сопротивление.

Чтобы узнать более точные параметры двигателя, нужно прочитать информацию, которая находится на его корпусе. На нем имеется пластина со всеми параметрами работы, а иногда даже со схемами соединения обмоток.

Осмотр двигателя

В случае поломки следует извлечь двигатель из бытового прибора. Очистив составные элементы, проводится внешний осмотр обмоток. Главное точно определить, где произошел пробой. Иногда случается так, что сгорают роторная и статорная обмотки. И тогда нужно их полностью заменить.

Когда возникает неисправность, внутри корпуса двигателя повышается температура. Это приводит к нарушению изоляции на всех элементах. Поэтому, в ремонте электродвигателя заменяются обмотки, и изоляционные покрытия.

Разборка асинхронного мотора

Прежде чем осуществлять перемотку статора асинхронного электродвигателя, необходимо его полностью разобрать. Для этого потребуется использовать съемник, так как крышки установлены на подшипниках очень плотно. Старайтесь все работы проводить как можно аккуратнее, чтобы не допустить разрушение крышки и не повредить обмотку.

Короткозамкнутые роторы очень редко ломаются, поэтому при ремонте его трогать не нужно. Потребуется менять только обмотки на статоре. В том случае, если присутствует почернение на проводах, это говорит о поломке в двигателе. Все соединения в асинхронных двигателях практически незаметны, так как они очень хорошо изолированы, ведь произведен крепеж бандажом.

Состав компонентный

Статор электромашин может быть либо постоянным магнитом, либо электромагнитом. Если он представляет собой электромагнит, то катушку, которая его активирует, называют обмоткой возбуждения. Катушки имеют металлический сердечник, усиливающий магнитное поле.

Сердечник катушки может быть либо железным, либо алюминиевым. Чтобы уменьшить потери нагрузки в двигателях, производители в качестве проводящего материала в обмотках всегда используют медь. Алюминий из-за его меньшей электропроводности может быть альтернативным материалом в двигателях с дробной мощностью, особенно когда двигатели используются достаточно короткие периоды.

Для информации.

Статор состоит из стальной рамы, охватывающей полый цилиндрический сердечник (состоящий из слоев кремниевой стали). Эти слои должны уменьшать гистерезис и потери вихревых токов.

Удаление обмотки

После разборки обязательно удалите старую обмотку. Для этого потребуется при помощи острого ножа срезать все верёвки и избавиться от клея. Провода максимально очищаются от грязи, электрические соединения при этом не разрушаете. Желательно производить фотографирование всех соединений, чтобы при сборке сделать всё правильно. Обязательно составляете схему соединения всех обмоток, можно использовать для этого справочники.

Затем необходимо выбить колья, изготовленные из текстолита или дерева, которые находятся внутри пазов статора. После этого демонтировать прокладки, освобождая провода. Найдите крайний провод, отведите его к середине статора, он должен полностью отклеиться от обмотки. После этого разматываете следующий виток, до тех пор, пока полностью не освободите паз.

Материал изготовления

Статор обычно изготавливается из кремниевой стали, называемой электротехнической сталью. Существует несколько марок стали, в зависимости от количества кремния в материале. Это позволяет создавать различные материалы с электромагнитными свойствами и применять их для разных целей.

Электротехническая сталь предоставляет собой листы толщиной от 0,1 мм до 1 мм, но может быть и в виде более толстых листов. Обычно на так называемых низковольтных двигателях (до 1000 В) используют листы, имеющие толщину 0,5 мм.

Листы из электротехнической стали пробивают, затем укладывают на оправку. Технологически процессы центрирования и ориентации листов должны обеспечивать решение двух основных задач: ограничить в заданных пределах перемещение листов на плоскости по двум координатным осям и вращение листов вокруг оси сердечника. Для этого зажимают и склеивают вместе стопку листов и подвергают сварке. После сварки конструкция готова к обмотке.

Намотка провода

Способов перемотки статора асинхронного электродвигателя существует несколько, но при выборе любого из них обязательно запоминаете каждый шаг при разборке. Это позволит облегчить ремонт, причём, значительно. Для намотки потребуется медный провод в лаковой изоляции, его сечение должно быть таким же, как и на ремонтируемом электродвигателе.

Убедитесь в том, что на корпусе и магнитопроводе электродвигателя отсутствуют повреждения. После этого необходимо изготовить гильзы, установить их в пазы на статоре. Чтобы не заниматься подсчетом количества витков, не определять толщину, прочность и термостойкость материалы для изготовления гильз, можно воспользоваться справочной литературой. Для этого необходимо узнать тип и модель асинхронного мотора.

Все работы в специализированных мастерских производятся на станках. Автоматом производится даже подсчет числа витков. Но как в домашних условиях перемотать электродвигатель, если таких условий нет? Придётся всё считать самостоятельно, либо же брать все данные из сервисной книжки к электродвигателю.

Сборка электродвигателя

Чтобы собрать двигатель следует поставить ротор на место и наживить необходимое количество болтов. Все крепления ставить не нужно, собираем для замера токов в цепи.

Замерять токи каждой фазы необходимо прибором «токовые клещи». Токи должны быть равны по трём фазам и соответствовать табличным данным.

После проведения испытаний вращения двигателя и проверки работы на холостом ходу, разбираем мотор снова.

Производим покрытие статора лаком. Когда пропитались обмотки и заполнились все пустоты, статор размещают в подвешенном состоянии на длительное время. Лишний лак должен стечь и высохнуть в течение 3 часов на открытом воздухе. Можно просушить покрытые детали в печи.

Просушив двигатель, проводим сборку электродвигателя, проверяем ещё раз сопротивление изоляции. Затем осуществляем проверку токов на холостом ходу.

  1. Не рекомендуется перемотанный двигатель сразу включать в полное напряжение. Сначала подвергают запуск через трансформатор — понижающий. Электродвигатель должен слабо начать вращение, отсутствие дыма и запахов подгорания свидетельствует об исправной работе.
  2. Если замечены какие-то отклонения в работе, следует выявить причину на неработающем моторе. Только после этого повторив проверку при помощи трансформатора, следует включать на полное напряжение.

В итоге получили перемотанный электродвигатель.

Рекомендации специалистов по перемотке

  • При определении неисправности двигателя необходимо помнить, что в довольно в частых случаях, когда сопротивление изоляции упало и имеет какие-то малые значения, двигатели достаточно очистить от грязи и просушить от накопленной влаги применяя печку, называемой «тепловой пушкой».
  • В редких случаях возможен ремонт старой изоляции: если произошло короткое замыкание из-за вибрации и место соприкосновения под фланцами. Поможет зачистка изоляции, её восстановление и залить лаком.
  • При прозвонке установлено межвитковое замыкание? Сопротивление одной обмотки ниже чем других. Определяется омметром. Можно попытаться определить нужный виток. Для этого придётся перекусывать провода между витками и определять сопротивление каждого.
  • В редких случаях можно извлечь испорченный виток, заменить на новый, спаять концы и проверить на стенде. Такие же шаги можно использовать при коротком замыкании.
  • Перематывать виток на шаблон необходимо равномерно, заполняя провод к проводу, без перекосов, без нахлестов, согласно размерам статора. Иначе есть риск при сборке не вставить ротор. Сечение и марка проводов должно соответствовать оригиналу.

Далее, следует залить обмотку специальным лаком. Обязательно перед заливкой надо проверить вращение двигателя с помощью трансформатора. Потом под полным напряжением. Эта проверка исключит возможность испорченного материала.

Использование поверенных приборов для определения параметров двигателя: сопротивления и тока холостого хода. При проверке в схеме питания двигателя должна стоять исправная защита, настроенная выше двух третьих номинального тока.

Практически все электродвигатели, установленные в различных моделях бытовых приборов, являются асинхронными. Одно из преимуществ такого технического решения в том, что изменение нагрузки никак не отражается на частоте вращения. Во многом этим и обусловлена популярность таких моделей.

Промышленность выпускает различные модификации этих устройств, которые имеют конструктивные отличия в исполнении составных частей – разное количество полюсов, ротор или короткозамкнутый, или фазный (значительно реже), и ряд других. Но общий принцип ремонта электродвигателей остается неизменным, разница может быть только в отдельных нюансах.

В случае поломки эл/двигателя простейший способ восстановления его работоспособности – обратиться в мастерскую. Однако не в каждом населенном пункте «частники» смогут выполнить эту работу качественно, если, конечно, вообще за нее возьмутся. Поэтому нередко возникает дилемма – выкинуть его в мусорный ящик или попробовать перемотать самостоятельно.

Учитывая разнообразность конструкций и габаритов «движков», а также то, что все они имеют как статорную, так и роторную обмотки (для эл/двигателей постоянного тока – якорную), изложим только порядок действий по перемотке электродвигателей своими руками и общие рекомендации по этому вопросу. Остановимся на двигателе переменного тока, так как именно такие изделия чаще всего входят в состав различных бытовых приборов и агрегатов.

Внешний осмотр

Необходимо, частично разобрав двигатель, произвести очистку всех составных частей и определить, в чем собственно дело. Одновременное выгорание и роторной, и статорной обмоток происходит довольно редко. Поэтому и следует понять, какой из них придется заниматься.

Но здесь нужно учесть, что резкое повышение температуры внутри механизма в момент возникновения неисправности сопровождается нарушением изоляционного покрытия на всех составных частях. Поэтому ограничиваться одной лишь перемоткой нельзя. Следовательно, придется уточнить, что еще необходимо будет сделать и какие материалы приготовить.

Читать также: Usb в com порт

Определение параметров провода

Можно попробовать найти соответствующую информацию в интернете (намоточные данные). Часто люди делятся личным опытом, как они ремонтировали эл/дрель, фен своей жене, насосную станцию на даче и так далее. Но нужно понимать, что это должна быть ТОЧНО ТАКАЯ ЖЕ модель, иначе не факт, что после ремонта ваша станет работать.

На практике же обычно приходится все вопросы выяснять непосредственно при осмотре. Даже если двигатель выгорел довольно сильно, то всегда можно найти участок, на котором обмотка более-менее сохранилась. В этом месте нужно все тщательно очистить для того, чтобы можно было пересчитать все проводки в «укладке». Все, что нам нужно – определить количество витков и сечение провода.

Заботиться о целостности провода, естественно, смысла нет. Поэтому подойдет все, что поможет удалить нагар и частицы расплавленного лака – бензин, спиртосодержащие жидкости и тому подобное. Как вариант – произвести обжиг (горелка, костер и так далее). Главное – результат.

Обмотка выступает за габариты «железа». На той ее части, которая цела и пригодна к осмотру, срезается (срубается, спиливается) верхушка. Подходящий инструмент подбирается в зависимости от толщины провода, но нужно иметь в виду, что он довольно мягкий (медь). Наша задача – добиться того, чтобы одну часть намотки можно было «распушить». Тогда и число проводков посчитать несложно, и сечение их замерить.

Подготовка «железа»

Основой и ротора, и статора служит специальная сталь. При внешнем осмотре на них иногда можно обнаружить небольшие вмятины или заусеницы. Такие места необходимо аккуратно обработать или «мягким» надфилем, или мелкой «наждачкой», не повреждая металл.

Подбор провода

В идеале он должен быть точно таким же. Но это не всегда получается. Следовательно, придется использовать материал с другим сечением, который занимает в соответствующей таблице соседнюю позицию. При этом нужно вспомнить закон Ома и учесть, что с уменьшением диаметра провода его сопротивление возрастает.

Значит, нужно будет изменить и число витков, например, вместо 350 наматывать 400 или 320. Возможно, такое решение – «на глазок» – приведет к некоторому снижению мощности. Тем, для кого это принципиально, придется произвести точные расчеты, тем более что все исходные данные есть – номинал напряжения питания (220 В), сечение имеющегося провода, габариты «железа», на которое он будет наматываться (значит, общая длина проводника).

Изготовление обмотки

Это делается при помощи шаблона. Его несложно изготовить самостоятельно, из плотного картона или фанеры. Главное – правильно снять все размеры с «железа». Намотку провода лучше делать на специальном станке, который не является дефицитом и стоит копейки. Такое приспособление можно смастерить и самому, из подручного материала. Как выглядят станок и шаблон, ясно из рисунка.

Если делать намотку вручную, на это уйдет времени значительно больше, да и есть вероятность того, что можно ошибиться в количестве витков. Кроме того, работая с тонким проводом, его легко порвать, а с толстым – уложить неплотно, что вызовет трудности при постановке обмотки на место из-за увеличения ее габаритов.

Установка обмотки

Ничего сложного в этом нет, необходимо лишь соблюдать аккуратность. После укладки изоляции в пазы по месту «сажается» изготовленная «катушка» (такие «гильзы» изготавливаются из материалов категории «диэлектрик»). Как они ставятся, понятно из рисунка.

Следует избегать любого повреждения не только провода, но и его внешней изоляции (лаковое покрытие). В некоторых случаях целесообразно использовать специальное приспособление – «трамбовку». С ее помощью обмотка «уплотняется» в посадочных пазах. Все фазные катушки надежно изолируются друг от друга.

Пропитка

Она делается с целью изоляции всех токоведущих частей. Рекомендовать какой-то конкретный состав смысла нет, так как в продаже имеется большой ассортимент соответствующей продукции. Но вот кое-что посоветовать стоит.

Все лаки делятся на 2 категории. Одни не требует температурного воздействия, так как просыхают естественным путем. Для других необходима термическая обработка. На производстве с этим проблем нет, так как используются специальные печи. А вот как просушить лак в домашних условиях, придется подумать.

Проверка эл/двигателя

После того, как просушка закончена, нужно убедиться в том, что он готов к включению. Что необходимо? «Прозвонить» все обмотки, по очереди, чтобы выяснить, нет ли где обрыва или «неконтакта» в местах соединений. Кроме того, нужно замерить сопротивление между катушками и на корпус (удостовериться в отсутствии КЗ).

И только после этого можно проверять изделие в работе.

Включение

Для проверки работоспособности двигатель не следует сразу же запитывать от источника 220 В. Сначала нужно проверить его работоспособность через понижающий трансформатор. Если ротор, хоть и «вяло», но крутится и эл/двигатель не греется, не дымит, значит, все сделано правильно.

После включения в промышленную сеть (220) целесообразно замерить потребляемый устройством ток. В паспорте на изделие такие данные есть. В случае чрезмерного отклонения измеренной величины от «номинала» необходимо разбираться с вероятной причиной.

Практические советы

  • В процессе намотки провода на шаблон нужно укладывать его равномерно, «виток к витку». Наложения проводков друг на друга, с «перехлестом», следует избегать. Иначе полученная катушка просто не поместится в месте установки из-за увеличенных габаритов.
  • Еще в процессе разборки эл/двигателя необходимо обратить внимание, как и чем выполнена изоляция внутренних частей (например, фазных катушек), по какой схеме они соединены («треугольник», «звезда») и так далее. Это поможет произвести правильную сборку, так как ее придется делать «один в один». Не стоит надеяться на память. Надежнее все это «зарисовать», с указанием всех особенностей инженерного решения.
  • Если пришлось сдать «движок» в ремонт, то следует поинтересоваться, какие в мастерской применяются пропиточные составы и есть ли соответствующее оборудование для просушки обмоток.

В принципе, ничего особо сложного в самостоятельной «перемотке» эл/двигателя нет. Следует только вспомнить азы электротехники и учесть вышеприведенные рекомендации. Тогда не придется платить за дорогостоящий ремонт (а в мастерской, как правило, «накручивают» смету) или приобретать другую бытовую технику вместо отправленной в утиль.

Завершение намотки

После того как уложите все обмотки в пазах, необходимо вставить между катушками изоляторы. Бандаж необходимо проводить на тыльной стороне статора. Проводите нить через все петли, старайтесь при этом стягивать все изоляторы и провода. Добейтесь того, чтобы изоляционные пластины не соскользнули со своих мест.

Обязательно по завершению выполнить диагностику всей обмотки, после чего прогреть статор и нанести специальный лак. Статор обязательно нужно полностью погружать в лак. Именно так сможете добиться максимальный механической прочности обмоток, ведь заполните пустоты и пазы. На этом перемотка электродвигателя своими руками окончена, можно приступать к эксплуатации.

Видео

Когда речь заходит о перемотке статора, в подавляющем большинстве случаев, подразумевается ремонт инструмента. В качестве примера выполнения означенного процесса можно привести перемотку статора на болгарке.

Означенный процесс по замене обмоток в одной из частей электрического двигателя можно осуществить и бытовых условиях. Объяснить это можно полным повторением сгоревшей обмотки. То есть, выбирается точно такой же проводник, с точно такой же изоляцией.

Ниже представлены самые распространенные причины, которые так или иначе могут привести к выходу статора из строя:

  • разрыв обормотки в результате перенапряжений;
  • электрическое замыкание соседних витков;
  • частично выгоревшая обмотка;
  • нарушение изоляции.

Как правило, присутствует сразу несколько симптомов из означенного списка. Также наблюдается выход оборудования из строя, при существенном увеличении нагрузки на инструмент.

Любое нарушение эксплуатационных правил, технически может привести к поломке инструмента. Однако, если самое худшее произошло, это не означает, что придётся покупать новую болгарку.

Ведь значительно дешевле осуществить замену электрической обмотки (или сгоревшей её части) и продолжить эксплуатацию оборудования.

Действительно, перед тем, как осуществить перемотку, необходимо подготовить статор. Для этого предварительно укладывают его в раскалённое масло. В результате изоляция (нередко используется электротехнический лак) размягчается.

Удаление выполняется при помощи металлической щётки.

После удаления становится понятно, каким проводом была осуществлена намотка на заводе. С отрезком этого провода идём на рынок и покупаем в точности такой (по техническим характеристикам).

Естественно, запрещается менять металл проводника. То есть, если обмотка была выполнена медным проводом, не стоит выбирать более толстый, но алюминиевый. Наша задача – максимально достоверно восстановить выгоревшую обмотку.

Перемотку статора болгарки в настоящее время можно сделать и самостоятельно. Для этого нужно запастись только необходимыми знаниями. При наличии у мастера необходимых инструментов, навыков проведения ремонтных работ и определенного объема знаний в области электротехники, вопрос о том, как своими руками устранить неисправность этого инструмента решается достаточно легко.

Перемотка электродвигателя сделать самому своими руками в домашних условиях

Если у вас хотя бы раз была электрическая пила или другой подобный инструмент, то вы наверняка должны знать о том, как порой сложно бывает отыскать и устранить возникшую неисправность. И беда тут не только в том, что поломки сложно диагностировать, а в невозможности купить необходимую деталь. Именно поэтому многие домашние умельцы нередко идут на риск, самостоятельно их устраняя. В этой статье мы расскажем, как выполняется перемотка электродвигателя (своими руками).

Выводим переменные

Сперва нужно будет подсчитать количество ламелей и пазов. Выведем переменную К, указывающую отношение ламелей к пазам. Предположим, что первых ровно 48, тогда как вторых – 24. Делим 48 на 24, получаем значение: К=2. Затем следует узнать направление укладки, намоток, их сброс, шаг и первый ламель.

Направленность укладки

Направление укладки несложно определить, просто посмотрев на нее. К слову, не смотрите на предельную простоту этого совета: если вами впервые делается перемотка электродвигателя своими руками, то об этой мелочи вполне можно забыть. Представьте свои чувства в том случае, если в конце работы выяснится, что ее придется полностью переделывать!

Шаг обмотки

Шаг выявляют, взглянув на первую верхнюю катушку. Считаем, что одна из ее сторон лежит в первом пазу. Внимательно считаем, сколько пазов отделяет ее от противоположной стороны, включив в расчет и этот первый паз. Предположим, что вы насчитали шесть штук. Таким образом, при правосторонней укладке шаг будет равняться 1-6; при левосторонней укладке (при наличии 12 пазов) — 1-8.

Смещение первой ламели

Закончив с этим делом, выясним, насколько смещена первая ламель относительно первого паза. Положите двигатель прямо, проведя вдоль него мысленную линию. Обозначим ее буквой Z. Желательно не полагаться при этом на свою память, а внимательно все записывать и зарисовывать, чтобы в последующем не возникало любопытных ситуаций. Сразу предупредим, что перемотка электродвигателей в домашних условиях – дело непростое, будьте крайне внимательны!

Определяем первый паз

Чтобы определить первый паз, вам понадобится специальный прибор, а также переменный ток на 3В. Как его изготовить, мы расскажем чуть ниже.

При левосторонней укладке он будет располагаться чуть правее, в пазе, где лежит последняя катушка. Как-нибудь отметьте его. К помеченному вами месту прикладываем наше самодельное устройство, подавая напряжение на две соседних ламели. Маркером сразу же метим те, на которых хоть как-то отклоняется значение миллиамперметра.

Напомним, что для примера мы выявили значение: К=2. Таким образом, прибор должен показать отклонение на двух парах ламелей, а отметки должны быть на трех ламелях. В противном случае необходимо поменять паз. Если прибор отклоняется на большем числе пар, то это прямое свидетельство наличия замыканий между витками в катушках конкретной группы.

Направление сброса

И вновь нам пригодится наш самодельный прибор. Не меняя тех ламелей, на которые нами подавалось напряжение, аккуратно сместите шаг вправо или влево. Отклонение в каком-либо из этих направлений свидетельствует и о соответствующем сбросе.

Направление намоток

Исходя из направления намотки последней катушки, определяем общее его значение. К примеру, если самый верхний провод выходит из левого паза, то и намотка левонаправленная.

Количество витков

Количество витков легко найти по формуле: Wk=Wn/K/2. Здесь Wn равняется количеству витков в одном пазе.

Описание самодельного прибора

Как мы и обещали, приводим порядок сборки соответствующего прибора, который поможет вам перемотать электродвигатель. Если у вас есть хоть какие-то электротехнические навыки, изготовить его будет совсем несложно. Для начала подбираем любой подходящий сердечник, наматывая на него подходящий тонкий провод.

Ширина этого сердечника не должна быть больше 0,2 см, а толщина стенки – 4-5 мм. Можно взять для этого парочку простых обрезков шинки 5х40, длина которых не больше 5 см, а между ними ввернуть втулку 15 мм, сжав всю конструкцию на болт. В таком случае обмотку удобно расположить на каркасе вокруг вышеупомянутой втулки. Миллиамперметр же, самую важную часть прибора, вы можете взять от любого старого советского магнитофона. После проведения всех вышеозначенных мероприятий, перейдем к снятию обмотки с якоря. Итак, с чего начинается перемотка электродвигателя? Своими руками вам предстоит удалить старую обмотку.

Удаление старой обмотки

Чаще всего вам не удастся обойтись без отжига якоря для удаления с него старой обмотки. Разумеется, перед этим вам нужно будет удалить коллектор. Лобная часть самой намотки должна быть удалена только после обжига. Делается это при помощи качественного зубила. Тщательно удаляем все ее остатки. Удалив намотку, прокладываете освободившиеся пазы, пользуясь для этой цели электротехническим картоном.

В целях большей его сохранности можно подложить под картон электротехническую пленку. Особенно это касается тех случаев, когда выполняется перемотка асинхронных электродвигателей: на них приходится большая нагрузка, так что изоляция должна быть максимально хорошей.

Монтаж коллектора

Начиная перематывать якорь, коллектор лучше ставить сразу же. Не следует также медлить с припаиванием провода. После того как вы установите коллектор, обязательно измерьте сопротивление его изоляции между валом и самими ламелями. Используйте вышеупомянутый омметр на 500 В. Учтите, что показатели сопротивления не должны быть меньше 0,2 МОм.

Часть вала, которая расположена между коллектором и сердечником, обязательно нужно качественно изолировать. Для этой цели прекрасно подойдет небольшая пластмассовая трубка с подходящими размерами. Такие трубки следует поставить и с противоположной от вентилятора стороны. Итак, как же проводится перемотка электродвигателя своими руками?

Приступаем к перемотке якоря

Как следует помучившись со всеми вышеперечисленными процедурами, наконец-то приступаем к наиболее ответственной части нашей работы. Начинается перемотка якоря электродвигателя!

После снятия всех промеров и удаления остатков старой обмотки наматываем на катушки проволоку. Берем провод для перемотки электродвигателей диаметром 0.2 мм (это произвольная величина, все зависит от конкретной модели), припаиваем его к ламели №1. Пропускаем проволоку в первый же паз, пробросив его вокруг вала. С первого паза выводим провод в шестой (еще раз повторимся, что все делать нужно по вашим промерам), наматывая нужное нам количество витков. Припаиваем провод ко второй ламели, пробрасываем его в первый и шестой паз. Набрасываем нужное количество витков, припаиваем его к третьей ламели. Все, первая группа сделана.

Вторую группу мотать начинают с третьей ламели. Все делается аналогично вышеописанной процедуре. Если все сделано как следует, то конец первой катушки должен оказаться точно на первой ламели. Вот так делается перемотка обмотки электродвигателя.

Уложили провод? Аккуратно заверните картон, причем для полного исключения вырывания катушек не помешает вставить клинья. После этого можно заливать обмотки лаком, но лучше полностью погрузить их в лак. Просушивать следует при температуре строго 80-90 градусов по Цельсию (в духовке, на минимальном жаре). Через сутки у вас на руках окажется перемотанный вручную якорь, который при правильном исполнении вами всех вышеперечисленных инструкций будет работать не хуже «родного». Вот так выполняется перемотка якоря электродвигателя.

особенности смены обмотки статора и якоря двигателя своими руками

Бытовые роторы часто применяются в различных инструментах. Они бывают постоянного и переменного тока. Перемотать электродвигатель в домашних условиях в таких приборах довольно сложно. Сначала производится разборка агрегатов со складыванием всех болтов в коробку. Рекомендуется на её дно положить магнит, чтобы болты, шпильки и гайки не потерялись.

Определение неисправности

Роторы постоянного тока шуруповёртов, миксеров и вентиляторов бывают коллекторные и бесщёточные. У последних двигателей коммутация обмоток, расположенных на статоре, происходит с помощью контроллера. Поэтому перед перемоткой необходимо точно убедиться в исправности ключей и самого контроллера. Электрические двигатели переменного тока делятся на:

  • асинхронные с короткозамкнутым ротором;
  • синхронные или щёточные с фазным ротором.

Для определения неисправности обмоток ротора используют специальный индукционный прибор. Установить поломку обмоток асинхронного двигателя можно с помощью тестера или омметра. Иногда применяют специализированные электронные приборы для выявления короткозамкнутых витков.

Неисправность роторов чаще всего бывает из-за замыкания в якоре. Отпаивая проводники от контактной группы и проверяя их на короткое замыкание, находят неисправность контактов или витков ротора. В случае замыкания последних поломку устраняют путём замены провода. Если мало витков, а провод ротора толстый и без повреждений, то делают его хорошую изоляцию, подкладывая пластинку из картона или ткани, смоченную изоляционным лаком.

В случае замыкания в контактной группе необходим её ремонт или замена. Можно вырезать тонкий паз между замкнутыми контактами и вставить пластинку из текстолита, проклеенную эпоксидным клеем. Наждачной бумагой устраняют неровности на контактной группе.

Особенности процесса

Для перемотки электродвигателей своими руками необходимо обладать хотя бы минимальными понятиями о способах подключения обмоток двигателей. Если перемотка производится впервые, необходимо хорошо изучить этот вопрос. Следует также обратить особое внимание на полярность обмоток и направление движения витков.

У некоторых заводских катушек провод сначала наматывают в одном направлении, а затем возвращаются обратно. При разборке необходимо витков 10 размотать поштучно, освободив катушку от изоляции, после чего точно определить и записать направление витков в обмотке.

Работа со статором

Сначала составляют схему расположения и подключения обмоток электродвигателя. Если двигатель трёхфазный, то аккуратно составляют схему катушек для каждой фазы. Они намотаны обычно одним проводом. Только после хорошего изучения и правильного составления схемы подключения обмоток можно приступить к их разборке и удалению. Лучше пометить обмотки разной краской и сфотографировать. Также нужно проверить, можно ли разобраться по фотографиям и схемам.

Перед перемоткой статора электродвигателя изготавливают шаблон по его размеру. Ширина равна размеру между пазами, в который будет укладываться катушка. Для изоляции статора от обмотки в пазы вставляют пластинки из картона или специального изоляционного материала. При укладке катушки в пазы используют деревянную или пластмассовую лопатку — трамбовку.

После намотки одной катушки провод не откусывают, катушку укладывают в пазы и продолжают мотать на шаблон. Все катушки одной фазы мотают цельным проводом, не перекусывая его. Перематывают сначала все витки одной из фаз, поочерёдно укладывая их. Аналогично мотают и укладывают катушки для остальных фаз. Верхнюю часть обмотки в пазах статора над витками закрывают пластинками из того же изоляционного материала, что и в самих пазах статора.

После намотки и укладки катушек одной из фаз обязательно производят обвязку и формируют катушки в ровные пучки, стараясь, чтобы витки были в одной связке и не касались корпуса статора. Если катушка великовата и прикасается к корпусу, то на неё одевают разрезанный кембрик, после чего обвязывают. Касание проводов корпуса вне изоляции недопустимо, так как при вибрации от электромагнитного поля лак может протереться, в результате чего катушка замкнёт на корпус. После укладки проверяют омметром сопротивление.

Количество витков во всех катушках необходимо точно соблюдать во избежание перегревания некоторых обмоток. Особое внимание и аккуратность необходимы, чтобы избежать перехлёстов витков в обмотке. Кроме того, необходимо следить, чтобы провод не завязывался в виточный узел и не был с обтёртой изоляцией. Все элементы, выходящие за пределы корпуса пазов, аккуратно утрамбовывают.

Выводы от катушек заправляют в изоляционные трубки — кембрики. Они должны быть не только из материала с хорошей изоляцией, но обладать устойчивостью к нагреванию провода. Во избежание плавления необходим класс изоляции не ниже ранее используемого. Классы стойкости изоляции к температуре:

  1. У — с пределом 90 ⁰С, материалы — бумага, хлопчатобумажная ткать, шёлк и пряжа без пропитки.
  2. А — с пределом 105 ⁰С, те же материалы, но с пропиткой.
  3. Е — с пределом 120 ⁰С, материалы — органическая и синтетическая плёнка.
  4. В — с пределом 130 ⁰С, материалы — стекловолокно, слюда, асбест с органическими связующими веществами.
  5. F — с пределом 155 ⁰С, те же материалы, но с синтетическими пропитывающими и связывающими материалами.
  6. H — с пределом 180 ⁰С, те же материалы, но с кремнийорганическими пропитывающими и связывающими материалами.
  7. С — с пределом выше 180 ⁰С, материалы — стекло, керамика, кварц, слюда с неорганическими связующими составами или без них.

Проверка и сборка

Далее делают сборку двигателя, наживив основные болты для «прозвонки» и проверки токов каждой фазы. С помощью токовых клещей проверяют токи обмоток каждой из фаз через нагрузку и автоматический выключатель. Они должны быть одинаковыми. Затем двигатель собирают, закручивая все болты и проверяя его на правильность вращения и работу в холостом режиме.

Если всё работает нормально, то механизм разбирают снова для покрытия обмоток статора лаком. Статор помещают в лак для пропитки обмоток и заполнения пустот. Затем его поднимают, давая стечь лаку, и сушат на открытом воздухе или в специальной сушилке. Для ускорения сушки применяют лампу накаливания мощностью 0,5—1 кВт, вставленную в статор и включённую в сеть.

После просушки двигателя производят его полную сборку, ещё раз проверяют сопротивление изоляции. Делают проверку двигателя на холостом ходу. Лучше для этой цели использовать понижающий трансформатор и автоматический выключатель (желательно УЗО). Только после проверки можно использовать двигатель на полном напряжении.

Правильно провести перемотку помогут следующие советы специалистов:

  1. Во время определения неисправностей электродвигателя необходимо знать, что сопротивление изоляции часто снижается из-за грязи и попадания металлической стружки. В таких случаях двигатель достаточно хорошо очистить, вымыть грязь и просушить феном или тепловой пушкой.
  2. Во многих случаях необязательна вся перемотка. При коротком замыкании под фланцами из-за вибрации поможет устранение повреждений изоляции. После этого нужно провести зачистку и замену изоляции с заливкой места повреждения лаком.
  3. Если при «прозвонке» имеется межвитковое замыкание, то при помощи омметра определяют замкнутый виток. Если удаётся определить испорченный элемент, его заменяют, концы спаивают и изолируют. Далее двигатель проверяют на стенде.
  4. Чтобы перемотать обмотку электродвигателя на шаблон равномерно, нужно укладывать провод к проводу без нахлестов и перекосов по размерам статора. Затем следует внимательно проверить, не выступает ли изоляция обмотки из пазов статора, чтобы при вставке ротора он не цеплял её. Провод должен быть без витковых узлов. Марка провода и его сечение должны соответствовать параметрам оригинала.

При проведении всех работ необходимо пользоваться исправным инструментом, а также заведомо исправными измерительными приборами и тестерами. Особое внимание нужно обратить на исправность защиты элементов питания, качество изоляции и влажность материалов, применяемых во время ремонта.

Соблюдение техники безопасности и правил пользования инструментом является непременным условием при проведении испытаний. Лучше для этого пригласить специалиста с большим опытом работы с электродвигателями.

Перемотка электродвигателей своими руками — инструкция


Многие бытовые устройства и самодельные конструкции работают от электроприводов, которые имеют небольшую мощность. Однако электродвигатели, хоть и отличаются высокой надежностью, они также не редко могут выходить из строя по разным причинам. С учетом относительно высокой стоимости таких моторов проще будет их ремонтировать, а не менять. В этой статье мы рассмотрим, как перематывать электродвигатели своими силами.

Обычно в бытовой технике применяются коллекторные моторы с постоянным током и бесколлекторные асинхронные модели с переменным током. Сейчас мы разберемся, как осуществлять ремонт именно такого оборудования. Конструктивные особенности и принципы работы систем асинхронного и коллекторного типа можно найти у нас на сайте.

Как ремонтировать асинхронные двигатели


Если в двигателе есть проблемы, то это проблемы или механического, или электрического характера. В первом случае поломка может сопровождаться сильной вибрацией и характерным шумом. Обычно это указывает на проблемы с подшипником – как правило, в торцевой крышке. Не устраните поломку вовремя – и вал может заклинить, а в итоге из строя выйдут обмотки статора. В это же время может не успеть сработать функция тепловой защиты автоматического выключателя.

Практика показывает, что примерно в 90% неисправностей моторов асинхронного типа появляются проблемы в обмотке статора – в виде обрыва, межвиткового замыкания, КЗ на корпус. В это время короткозамкнутый якорь чаще всего продолжает функционировать исправно. Таким образом, если повреждения двигателя имеют механическую причину, электрическую часть обязательно следует проверять.


Чаще всего проблему можно выявить по внешним признакам и характерному запаху (рис. 1). Если поломку не удалось обнаружить эмпирическим способом, тогда прибегаем к диагностированию и делаем прозвонку на обрыв. Если мы ее обнаружили, выполняем разборку мотора (про это детальнее мы поговорим дальше) и тщательно осматриваем соединения. Когда дефекты не обнаружены, можно сказать, что у нас обрыв в какой-нибудь катушке. Поэтому нужно делать перемотку.

Если после прозвонки обрыв не зафиксирован, тогда мы измеряем сопротивление обмоток, при этом учитываем такие нюансы:
• необходимо, чтобы сопротивление изоляции катушек на корпус стремилось к бесконечности;
• нужно, чтобы у трехфазного привода обмотки показывали одинаковое сопротивление;
• требуется, чтобы у однофазных моделей сопротивление пусковых катушек превышало эти параметры рабочих обмоток.

Также нужно помнить о том, что статорные катушки имеют весьма низкое сопротивление. Поэтому, чтобы его измерить, нет смысла пользоваться приборами, которые имеют низкий класс точности – это большая часть мультиметров. Решить вопрос можно, если собрать простую схему на потенциометре, добавив дополнительный источник питания – к примеру, автомобильную аккумуляторную батарею.


Как проводить измерения:
• подключаем катушку привода к схеме, которая представлена выше;
• с помощью потенциометра устанавливаем ток 1 А;
• делаем расчет сопротивления катушке, используя такую формулу: где R К и U ПИТ описаны на рис. 2. R – сопротивление потенциометра, – падение напряжения на катушке измерения (на схеме показывает вольтметр).

Работа со статором


При ремонте и перемотке электродвигателя в первую очередь составляется схема расположения и подключения обмоток мотора. В случае с трехфазным двигателем под каждую фазу аккуратно составляется схема катушек. Они наматываются, как правило, одним проводом. Только, когда схема подключения обмоток хорошо изучена и правильно составлена, можно их разбирать и удалять. Для удобства помечаем обмотки разными цветами и фотографируем. Также проверяем, все ли понятно в фотографиях и схемах.
Перед тем, как делать перемотку статора электромотора, изготовляем шаблон по его размеру. Ширина равняется размеру между пазами, в который будет уложена катушка. Чтобы заизолировать статор от обмотки, в пазы вставляем картонные или специальные пластиковые пластинки. Чтобы уложить катушку в пазы, используется деревянная или пластмассовая лопатка – трамбовка.

Когда одну катушку намотали, провод не откусываем, катушку укладываем в пазы и продолжаем мотать на шаблон. Все катушки одной фазы мотаем, используя цельный провод, не перекусываем его. В первую очередь перематываем все витки одной фазы, и поочередно их укладываем. Аналогичным путем мотаем и укладываем катушки для других фаз. Верхняя часть обмотки в пазах статора над витками закрывается пластинками из того самого материала изоляции, что применен в пазах статора.


Когда катушка одной из фаз намотана и уложена, в обязательном порядке делается обвязка и формировка катушек в ровные пучки. Стараемся, чтоб витки находились в одной связке, не касаясь корпуса статора. Если катушка чуть большая и касается корпуса, одеваем на нее разрезанный кембрик, и потом обвязываем. Не следует допускать касание неизолированных проводов корпуса, поскольку во время вибрации, к которой приводит электромагнитное поле, лак может протираться, и в итоге произойдет замыкание катушки на корпус. После укладки берется омметр и проверяется сопротивление.

Нужно точно следить за количеством витков в каждой катушке, чтобы избежать перегревания обмоток. Следует обращать пристальное внимание на то, чтобы не появилось перехлестов витков на обмотке. Также необходимо следить, дабы провод не завязался в виточный узел, чтоб на нем не была обтертая изоляция. Те элементы, которые выходят за пределы корпуса пазов, аккуратным образом утрамбовываем.


Каждый вывод от каждой катушки заправляем в кембрик – изоляционную трубку. Материал трубок должен обладать не только изоляционными свойствами, но и стойкостью к нагреванию проводов. Чтобы избежать плавления, класс изоляции должен применяться не ниже, чем применимый раньше.

Классы устойчивости изоляции к температуре:

Проверяем и собираем


Следующий этап – сборка мотора. Наживляем основные болты, чтобы сделать прозвонку и проверяем ток каждой из фаз. Используя токовые клещи, проверяем токи обмоток каждой фазы через нагрузку и автоматический выключатель. Нужно, чтобы они были одинаковы. После этого мотор собираем, закручиваем все болты и проверяем его на правильность вращения и работу в холостом режиме.
Если все работает, систему снова разбираем, чтобы покрыть обмотки статора лаком. Статор помещаем в лак для пропитки обмоток и заполнения пустот. После этого его поднимаем, чтобы лак стек, и сушим, поместив в специальную сушилку или на открытый воздух. Чтобы ускорить сушку, воспользуемся лампой накаливания (мощность 0,5–1 кВт) – ее вставляем в статор и включаем в сеть.

Когда мотор просушен, полностью его собираем, и снова проверяем сопротивление изоляции. Проверяем, как работает электродвигатель на холостом ходу. Для этой задачи лучше воспользуемся понижающим трансформатором и автоматическим выключателем (рекомендуется УЗО). И лишь когда мотор прошел проверку, его можно применять, давая полное напряжение.


Для правильного проведения перемотки стоит следовать таким рекомендациям специалистов:
• Когда мы определяем неисправности электромотора, то учитываем, что сопротивление изоляции часто может снижаться по той причине, что на него может попасть грязь или металлическая стружка. В таком случае мотор нужно аккуратно прочистить, промыть от грязи и высушить, используя фен или тепловую пушку.

• Очень часто не обязательно делать всю перемотку. В случае короткого замыкания под фланцами по причине вибрации следует устранить поврежденную изоляцию. В итоге мы проводим зачистку и меняем изоляцию, после чего заливаем место повреждения лаком.

• Если во время прозвонки происходит межвитковое замыкание, то с помощью омметра определяем замкнутый виток. После того, как испорченный элемент удалось определить – заменяем его, концы спаиваем и изолируем. После этого двигатель проверяем на стенде.

• Если вы хотите, чтобы обмотка электромотора была перемотана на шаблон равномерно, тогда укладываем провод к проводу, не делая нахлесты и перекосы по размерам статора. После этого внимательно проверяем, нет ли выступов изоляции обмотки из пазов статора, чтобы во время вставки ротора он ее не цеплял. На проводе не должны быть витковые узлы. Марка и сечение провода должны быть такими же, как и в оригинале.


Теперь у вас есть полная инструкция и понимание того, как перемотать электродвигатель своими руками. Успехов!

Как сделать точило из электродвигателя


В советское время электродвигатель являлся дефицитным товаром. Его не считали предметом первой необходимости, поэтому поставки велись только для производств, выпускающих на их базе множество различной техники. Заполучить мотор можно было из старого пылесоса, насоса и прочих изделий. В свободной продаже были лишь слишком мощные модели, неудобные в использовании. Домашние мастера приспособились делать точило из электродвигателя своими руками, существенно расширяя перечень доступных методов обработки в домашних условиях. Этими приспособлениями был оборудован практически каждый гараж.

Перечислим преимущества, по которым лучше изготовить собственное устройство:

  • Вы получаете возможность регулировать мощность, обороты и использовать более доступные для покупки промышленные камни.
  • Стоимость готового точила будет примерно в 2 раза больше, чем образец, собранный собственными руками.
  • Производители редко ставят на свои изделия хорошие электромоторы. Намного проще подобрать двигатель, обладающий лучшими характеристиками. Ведь он является основой устройства.

Подбор электродвигателя

Здесь можно лишь дать общий свод рекомендаций, полезных при выборе. Мощность и габариты напрямую зависят от размеров используемых наждачных кругов. Слабый двигатель не сможет раскрутить маховик, а при остановке момент инерции будет негативно воздействовать на центровку вала. Обычно это не больше 2.5 кВт. Большая мощность не нужна в быту, иначе непроверенные камни может просто разрывать от центробежной силы.


Ещё одним определяющим фактором при выборе является наличие достаточно длинного выносного вала. Чтобы определить отсутствие биения, придётся подключить регулятор напряжения, запустить двигатель, а затем снижать обороты. Неровное вращение будет хорошо видно без специальных приборов. Также желательно покупать новый электромотор, иначе бывшие в активном использовании силовые установки сильно расшатываются. Для большинства видов обработки, кроме полировки, достаточно 3000 оборотов в минуту.

Как собрать электрическое точило

Дадим ряд общих рекомендаций, но универсальной схемы сборки не существует. Эти подсказки позволят быстро подобрать решение для имеющегося у вас в распоряжении электродвигателя:

  1. Если имеющаяся модель не имеет креплений в виде проушин, то придётся использовать гибкие хомуты, захватывающие концевые крышки через резиновую подложку. Иначе со временем вибрация протрёт металл. Обычно для этого выбирается стальная полоса, толщиной не менее 1 мм.

  2. Кнопка включения в бытовых условиях нужна крайне редко. Лучше использовать силовую вилку и надежный шнур. Так вы обезопасите себя от случайного включения после отключения света и прочих неприятностей. Кнопка нужна только для подстраховки.
  3. Чтобы надеть круг на вал, необходимо нарезать на нём резьбу, установив опорную шайбу и прижимную гайку. Они должны затягиваться против направления вращения, чтобы обеспечить защиту от раскручивания в момент начала движения.
  4. Чтобы избежать резкого рывка и износа, можно оснастить схему устройством плавного пуска. Она снижает напряжение, увеличивая его в течение определенного отрезка времени.

  5. Не пытайтесь приспособить трехфазный мотор под бытовые нужды. Это крайний вариант, нежелательный для использования. В неумелых руках и без знания нюансов, схема может быть опасна для жизни.

Если вы подумывайте приобрести б/у двигатель, то лучше об этом не думать вовсе. Недорогое и качественное изделие можно купить в нашем интернет-магазине. Вы не можете посмотреть внутрь и точно определить износ обмоток. При правильной эксплуатации электродвигатель может служить практически вечно, но неизвестно что с ним делал предыдущий хозяин. Лучше не рисковать своим здоровьем и деньгами.

Глава 2: Электромагнетизм — быстрый самодельный электродвигатель

Мотор большего размера

Наш следующий мотор — просто увеличенная версия первого, с базой из дерева вот так:

В середине основания мы разместили магнит. Вокруг магнита мы просверлили четыре небольших отверстия для опорных проводов.

Катушку наматываем толстым проводом (этот провод эмалированный медный 20 калибра провод). Мы используем ячейку «D» в качестве формы катушки:

Для опор используем латунную проволоку, а все соединения делаем под база, поэтому все выглядит красиво и аккуратно.Для подключения батареи, мы используем зажим для батареи 9 вольт.

Готовый мотор выглядит так:

Как это работает?

Когда электричество проходит через катушку с проводом, катушка становится электромагнит . Электромагнит действует так же, как обычный магнит. Он имеет северный полюс и южный полюс и может притягивать и отталкивать другие магниты.

Наша катушка становится электромагнитом, когда голая медная половина провода арматуры касаются оголенного провода опор, и электричество течет в катушку.Электромагнит имеет северный полюс, притягивается к южному полюсу обычного магнита. Он также имеет южный полюс, который отталкивается южным полюсом регулярного магнит.

Когда мы соскребали изоляцию с проводов якоря, мы были осторожны. делать это стоя катушкой, а не лежа на столе. Это заставляет полюса электромагнита указывать влево и вправо. (как будто был невидимый обычный магнит, который обмотал провод вокруг него). Если бы катушка лежала плоско на столе, полюса были бы направлены вверх и вниз.

Поскольку полюса указывают влево и вправо, они должны двигаться, чтобы выровняться. вверх с магнитом внизу, полюса которого выровнены вверх и вниз. Таким образом, катушка вращается, чтобы выровняться с магнитом. Но как только катушка точно выровнена с магнитом, изолированная половина провода теперь касаясь опор вместо оголенной половины. Электричество отключено выключен, и катушка больше не является электромагнитом. Это оставляет его свободным двигаться по инерции до тех пор, пока голая медь снова не коснется голой опоры, и начать весь процесс заново.

Более быстрый двигатель

Один простой способ заставить двигатель работать быстрее — добавить еще один магнит. Держите магнит над двигателем во время его работы. Когда вы приближаете магнит к вращающейся катушке, происходит одно из двух. случится. Либо двигатель остановится, либо он будет работать быстрее. Что из этого произойдет, будет зависеть от того, какой полюс магнита вы имеют обращенную к катушке. Убедитесь, что вы держите двигатель так, чтобы магниты не будем дружно прыгать и давить моторчик!

Есть еще один способ ускорить мотор.Двигатель получает только электричество в течение половины цикла. Во второй половине изоляция блокирует течение тока. Это необходимо, потому что после вращения катушки вокруг магнита, если мы позволим току продолжать течь, он застрять там, лицом к магнитному полюсу, к которому оно притягивается.

Но предположим, что вместо того, чтобы просто остановить ток, мы повернули его вспять, так что северный полюс электромагнита стал южным полюсом, и наоборот. Катушка захочет снова перевернуться! И поскольку он уже движется в одном направлении, это направление он решит продолжить движение (из-за инерции и импульса катушка).

Теперь все, что нам нужно сделать, это выяснить, как заставить ток повернуться вспять, и как сделать так, чтобы это произошло в нужное время.

Это оказывается довольно легко. Поместите двигатель перед собой так, чтобы ось идет слева направо. Теперь прикрепите оголенный провод к левой опоре, и пусть он покоится на правой оси, сразу за правой опорой. Повторяй штука с правой опорой и левой осью.

В одной половине цикла голая половина оси будет обращена вниз и коснитесь оголенного провода опоры, как и раньше.На другой половине цикла оголенная половина оси будет касаться новых проводов, которые опираясь на ось. Так как эти провода подключены к противоположному опоры, ток будет течь в обратном направлении. Мотор будет получить два толчка за цикл вместо одного, и никогда не будет двигаться по инерции, он будет всегда иметь власть. Пройдет в два раза быстрее.

Ниже фото мотора построенного таким образом. Соединения скрыты под основанием для аккуратности, но вы можете видеть провода, лежащие на вершины осей, и знать, что они соединены с противоположными поддерживает.

Ниже представлен крупный план того же двигателя. Обратите внимание, что есть два крошечные стеклянные бусины, помещенные на оси. Эти шарики ускоряют мотор тем более, что они уменьшают трение якоря о поддерживает. Поскольку это уменьшение трения уравновешивает дополнительное трение с новыми проводами двигатель по-прежнему работает примерно в два раза быстрее, чем старый, более простой мотор.

Следующий: 10-минутный двигатель без магнита.

Дополнительную информацию об электромагнетизме см. Рекомендуемое чтение раздел.

Заказать супер магниты здесь.

Вкусные

Некоторые из моих других веб-сайтов:


Отправить письмо на Саймон Квеллен Филд через [email protected] > Google

10 простых и креативных проектов «сделай сам» с использованием электродвигателя

Если вы хотите использовать двигатель, который у вас есть в гараже, или помочь своему ребенку с его научным проектом, вот десять творческих и недорогих проектов «сделай сам». можно сделать с помощью мотора.

1. Автоматическая кормушка для кошек

Устали от того, что кошка требует от вас еды в нерабочее время? Эта самодельная автоматическая кормушка изменит правила игры. Он выдает корм вовремя и в нужном количестве, поэтому ваша кошка получает здоровое питание независимо от того, находитесь ли вы рядом. Это удивительно легко и доступно сделать.

Он использует Arduino в качестве мозга, контейнер в качестве держателя для еды и серводвигатель, который вращается для управления открытием и закрытием крышки контейнера, поэтому еда высвобождается.Чтобы настроить его, запрограммируйте Arduino на раздачу еды в желаемые часы и в определенном количестве, а затем спроектируйте кормушку. Вы можете спроектировать его так, как хотите, если расположите серводвигатель под углом поворота.

Связанный: Отличные проекты Arduino для начинающих

2. Auto Tinder

Этот проект «сделай сам» с использованием мотора берет на себя всю тяжелую работу, заключающуюся в том, чтобы назначить свидание в tinder, проводя пальцем по экрану. Распечатайте автоматический трут-пальец (любой дизайн, который вы сочтете подходящим), соедините детали, протестируйте и соберите все это.

Вам понадобится Arduino (UNO), шаговый двигатель, стилус для сенсорного экрана и палец, который можно распечатать на 3D-принтере. Если вы не можете получить доступ к машине для 3D-печати, пересадите силиконовый палец и вместо этого прикрепите его к двигателю.

3. Машинка на радиоуправлении с Arduino

Владеть машинкой на радиоуправлении еще веселее, когда ее сделал ты. Сначала вам нужно разобрать настоящую радиоуправляемую машину с аккумулятором, чтобы понять, как все работает и куда девается.

Как только вы это поймете, переходите к следующему шагу и удалите все детали, оставив нетронутыми только аккумулятор и двигатель.Аккумулятор остается неповрежденным, чтобы питать оригинальный двигатель постоянного тока и облегчать вашу работу.

Замените оригинальный электрический модуль автомобиля на Arduino Uno, а приемник на модуль HC-06 для лучшего дистанционного управления. Наконец, подключите 9-вольтовую батарею к устройству через VIN для питания Arduino.

Связанный: Что нужно для создания собственного автономного робота

4. Робот следящего за линией

Для этого творческого проекта вам понадобится шасси с двигателем и колесами для тела, Arduino Uno для управления работой робота, переключатель, датчики приближения, моторный щит L293D, провода-перемычки и держатель батареи.

Прикрепите моторный шилд L293D к Arduino и подсоедините его к шасси. Сделайте то же самое и для других частей, запустите код Arduino, и ваш робот точно определит и будет следовать по заранее определенным линиям.

5. Самовоспроизводящаяся мелодия

Эта самовоспроизводящаяся мелодия прослушивает загруженные фрагменты мелодии и пытается воспроизвести звук в режиме реального времени. Как и в большинстве творческих проектов «сделай сам» с использованием двигателя, Arduino является мозгом проекта.Он управляет двигателем постоянного тока, электроклапаном и позволяет самоиграющей мелодике получать и обрабатывать управляющие значения.

Вам понадобится Arduino Nano R3, резистор 1 кОм, два драйвера двигателя (L928), кнопочный переключатель, источник питания 12 В 5 А, регулятор напряжения, соленоид и двигатель постоянного тока 12 В с энкодером.

6. Мини-робот-пожарный

Мини-робот-пожарный не просто эффективно использует ваши старые двигатели; он также способен обнаруживать, приближаться и даже тушить пожар.Он работает на Arduino, но обнаруживает возгорание через сенсорный модуль.

После обнаружения двигатели движутся к огню через модуль L293D, и робот тушит его, разбрызгивая воду из небольшого контейнера с насосом. Прямо под контейнером находится серводвигатель для управления распылением воды.

Вам понадобится Arduino Uno, три пожарных датчика, серводвигатель SG90, модуль драйвера двигателя L293D, погружной насос 5 В, крошечная макетная плата, двухмоторное шасси робота с двумя колесами, небольшая банка и соединительные провода.Эти предметы легко найти, и они столь же доступны по цене.

7. Разыграли! Коробка с подвижными салфетками

Если вы хотите отомстить тому, кто вас разыграл, или напугать друга, эта подвижная коробка с салфетками обязательно вам поможет. Все, что вам нужно, это радиоуправляемая машинка (вы можете сделать свою, как описано выше), коробка из папиросной бумаги обычного размера и ножницы. Подготовьте коробку, вытащив все ткани и обрезав ее дно.

Поместите машинку на радиоуправлении в коробку и, если возможно, закрепите ее скотчем для устойчивости.Добавьте примерно треть салфеток, которые вы удалили ранее, положите их на стол и передвигайте коробку всякий раз, когда кто-то прикасается к ней, чтобы напугать их.

8. POV Clock

Замените свои старые настенные часы, используя мотор, чтобы сделать крутые POV-часы для своего помещения. Он показывает время на постоянно обновляемом движущемся дисплее. Как и в большинстве творческих проектов «сделай сам» с использованием мотора из нашего списка, его легко сделать, и вам также понадобится Arduino (Nano R3).

Другие компоненты, которые вам понадобятся, включают печатную плату, стандартные светодиоды, резисторы на 220 Ом, батарею 9 В, двигатель постоянного тока и импульсный стабилизатор.Чтобы сделать это, сначала соберите светодиоды на печатной плате (вы можете использовать светодиоды разных цветов для лучшего эффекта), а затем припаяйте резисторы.

Резистор помогает защитить светодиоды от высокого напряжения. Затем подключите импульсный регулятор для преобразования тока и подключите 9-вольтовую батарею, чтобы завершить настройку. Наконец, подключите Arduino к компьютеру и запустите код, чтобы часы заработали

.

9. Открывалка секретной двери

Если вы постоянно теряете ключи, этот потайной дверной замок — идеальный способ найти хорошее применение вашему старому мотору и полностью избавиться от ключей.Вам понадобится Arduino UNO, шаговый двигатель и драйвер шагового двигателя, зуммер, емкостный датчик, адаптер 12 В, перемычки и монтажная лента.

Когда все будет готово, с помощью мультиметра найдите проводящую поверхность для системы. Хорошие места для проверки включают дверную ручку, замочную скважину и глазок. Соедините все части вместе с помощью перемычек.

Найдите место рядом с электрической розеткой для адаптера на 12 В, установите систему, подключите ее и вуаля! Ваш секретный открыватель двери будет готов.

Ознакомьтесь с пошаговым руководством по выполнению этого проекта.

10. Колесо обозрения с функцией распознавания лиц

Этот проект требует определенных усилий, но результаты стоят каждой секунды, потраченной на его создание. Как следует из названия, это колесо обозрения с возможностью распознавания лиц. Итак, вам понадобится; комплект Lego Ferris Wheel Kit, Arduino, модуль драйвера L293D, двигатель постоянного тока с высоким крутящим моментом, макетная плата, Raspberry Pi Zero и модуль камеры Raspberry Pi.

Сначала настройте код, чтобы двигатель вращался, и соберите L293D, чтобы управлять им. Затем подключите двигатель к колесу обозрения, чтобы оно вращалось.

Этот последний шаг немного технический, и вам придется демонтировать нижнюю часть колеса, чтобы освободить место для некоторых компонентов. По завершении колесо обозрения с распознаванием лиц поворачивается, когда вы улыбаетесь, и останавливается, когда вы улыбаетесь.

Вот пошаговое руководство по выполнению этого проекта.

Используйте старые моторы с пользой

Десять творческих проектов «сделай сам» с использованием мотора, описанных выше, просты, недороги и увлекательны. Используйте свои старые моторы уже сегодня, опробовав приведенные выше проекты.

7 самодельных проектов, упрощающих изучение технологий

Самодельная электроника не обязательно должна быть простой.Эти проектные идеи просты и достижимы для всех уровней.

Читать Далее

Об авторе Алан Блейк (опубликовано 29 статей)

Алан Блейк — страстный и опытный писатель, который любит исследовать, учиться и делиться своими открытиями в увлекательной форме.Он не только любит идти в ногу с тенденциями SEO, но и технологическими достижениями. В настоящее время он работает писателем в MakeUseOf, где, помимо других ниш, занимается технологиями DIY.

Более От Алана Блейка
Подпишитесь на нашу рассылку

Подпишитесь на нашу рассылку технических советов, обзоров, бесплатных электронных книг и эксклюзивных предложений!

Нажмите здесь, чтобы подписаться

Вопрос: Как сделать самодельный мотор

Можно ли построить мотор дома?

Однако на более базовом уровне почти каждый может построить электродвигатель, используя дешевые и общедоступные инструменты.Этот простой электродвигатель использует электричество и магнетизм для вращения проволочной катушки, поддерживаемой скрепками.

Как сделать мотор из подручных средств?

Возьмите скрепку и зубочистку или другой кусок дерева. Воткните зубочистку в скрепку рядом со средней кривой и согните скрепку, чтобы получилась небольшая петля. Повторите этот шаг, чтобы у вас было две опоры для двигателей.

Из каких частей состоит простой двигатель?

Простой двигатель состоит из следующих частей: Источник питания — в основном постоянный ток для простого двигателя.Полевой магнит — может быть постоянным магнитом или электромагнитом. Якорь или ротор. Коммутатор. Кисти. Ось.

Можно ли сделать двигатель без магнитов?

Асинхронные двигатели не содержат материалов с постоянными магнитами, вместо этого они работают, индуцируя электрические токи в проводниках ротора двигателя; эти токи, в свою очередь, создают магнитное поле в роторе и, таким образом, создают крутящий момент.

Как сделать автомобильный двигатель с нуля?

Как собрать автомобильный двигатель с нуля Замочите новые подъемники в моторном масле не менее чем на пять или шесть часов, а лучше на ночь.Установите поршневые кольца на поршень. Переверните блок и установите верхнюю половину коренных и шатунных подшипников. Переверните блок обратно. Переверните блок. Установите подъемники.

Как сделать небольшой двигатель постоянного тока?

Что нужно для изготовления самодельного мотора с магнитами Медная проволока с изоляцией или магнитная проволока. Черный перманентный маркер (например, Sharpie) Ножницы. Маленькие неодимовые дисковые магниты. D-элементная батарея. Держатель батарейки (вместо нее можно использовать клейкую ленту или глину для лепки) Большая резиновая лента (не нужна, если используется держатель батарейки) 2 большие скрепки.

Что делает мотор сильнее?

Мы можем увеличить силу вращения (или крутящий момент), которую может создать двигатель, тремя способами: либо мы можем иметь более мощный постоянный магнит, либо мы можем увеличить электрический ток, протекающий по проводу, либо мы можем сделать катушку такой, чтобы она имеет много «витков» (петлей) очень тонкой проволоки вместо одного «витка» толстой проволоки.

Работают ли электродвигатели под водой?

Подавляющее большинство электродвигателей не являются водонепроницаемыми, в основном потому, что это не требуется для приложения, в котором они используются.Можно создать водонепроницаемый электродвигатель.

Как работает электродвигатель своими руками?

Этот простой электродвигатель работает за счет магнитной силы F = IL x B. Ток проходит по катушке так, что он указывает одно направление на один конец петли и другое направление на другой конец петли. Магнитное поле в обоих этих пятнах направлено в одном направлении.

Можно ли сделать двигатель с магнитами?

Таким образом, идея двигателя, приводимого в движение только постоянными магнитами, вполне осуществима и не может быть отклонена как нарушение закона сохранения энергии.Двигатель с постоянными магнитами не будет производить энергию и не будет вечным двигателем.

Что будет, если положить батарейку на магнит?

Магниты притягиваются и прилипают к стальным частям аккумулятора. Когда эта стопка батарей и магнита помещается на тонкий слой проводящей алюминиевой фольги, через фольгу проходит электрический ток. В присутствии магнитного поля этот ток создает силу, которая приводит в движение автомобиль.

Как увеличить мощность двигателя?

10 простых способов повысить мощность двигателя Синтетические смазочные материалы.Поскольку синтетические смазочные материалы, такие как синтетические моторные масла Mobil 1™, снижают трение, они продлевают срок службы двигателей. Зажигание. Увеличенный корпус дроссельной заслонки и форсунки. Сжатие. Найденная бонусная сила. Стек скорости. Правильный подбор топливной магистрали. Двухплоскостной коллектор.

Дешевле ли построить двигатель?

Создание двигателя означает, что вам нужны правильные детали и правильные инструменты. Если в вашем распоряжении еще нет нужных инструментов, сборка двигателя будет стоить на тысячи долларов больше, чем покупка двигателя в ящике.

Могу ли я использовать генератор переменного тока в качестве двигателя?

Скромный автомобильный генератор скрывает интересный секрет. Известные как часть, которая преобразует энергию внутреннего сгорания в электричество, необходимое для работы всего остального, они также могут сами использоваться в качестве электродвигателя.

Как мы можем сделать простой двигатель для коммерческого использования?

Ответ: Реверсирование тока повторяется на каждом полуобороте, что приводит к непрерывному вращению катушки и оси.В коммерческом двигателе вместо постоянного магнита используется электромагнит. Коммерческие двигатели имеют большее количество витков проводящего провода в токоведущей катушке.

Как работают магниты в электродвигателях?

Электродвигатель преобразует электрическую энергию в физическое движение. Электродвигатели генерируют магнитные поля с помощью электрического тока через катушку. Затем магнитное поле вызывает силу с магнитом, которая вызывает движение или вращение, приводящее в движение двигатель.

Почему необходимо соскребать покрытие с концов проволоки?

c) Магнитный провод имеет внешнее эмалевое покрытие для изоляции медного центра.Чтобы электроны текли от батареи через скрепки и катушку, вам нужно соскоблить половину этого покрытия.

Как сделать электрическую катушку?

Шаг 1. Выберите магнитопровод. Во-первых, у вас должен быть магнитный сердечник. Шаг 2 – Оберните сердцевину. Затем, выбрав сердечник, оберните его магнитной проволокой. Шаг 3 — Прикрепите катушку к сердечнику. С помощью клея или скотча прикрепите катушку к сердечнику. Шаг 4 – Оголите провод. Шаг 5 – Используйте магнитную катушку.

Как заставить что-то вращаться с помощью батарейки?

Что делать: Поместите магнит на отрицательный полюс батареи. Согните провод так, чтобы один конец касался магнита, а часть провода касалась положительного конца батареи. Поместите провод на батарею так, чтобы он касался положительного конца батареи и магнита. Смотрите, что происходит.

Как работает двигатель скрепки?

Катушка вступает в электрический контакт со скрепкой, позволяя току проходить через катушку.Катушка провода действует как маленький электромагнит. При наличии магнитного поля от неподвижного магнита на основании катушка будет вращаться, чтобы выровняться с магнитным полем.

Как работает небольшой аккумуляторный двигатель?

Электродвигатель представляет собой электрическую машину, преобразующую электрическую энергию в механическую. Большинство электродвигателей работают за счет взаимодействия между магнитным полем двигателя и электрическим током в проволочной обмотке для создания силы в виде крутящего момента, приложенного к валу двигателя.

Нужны ли двигателям магниты?

Понимая, как работает двигатель, вы можете многое узнать о магнитах, электромагнитах и ​​электричестве в целом. Электродвигатель использует магниты для создания движения. Если вы когда-нибудь играли с магнитами, то знаете об основном законе всех магнитов: противоположности притягиваются, а подобное отталкивается.

Все ли электродвигатели имеют магниты?

Магниты являются основным компонентом электродвигателей. Чтобы работать, они должны быть сделаны из катушки проволоки, которая может вращаться и окружена сильными магнитами.Когда в катушке индуцируется электрический ток, она излучает магнитное поле, противоположное магнитному полю, излучаемому сильными магнитами.

Простое руководство — @ryandewitt

Конечно, это было бы технически возможно, и некоторые электромобили используют двигатели переменного тока, но они с системами управления стоимостью 10 тысяч долларов. Причина в том, что AC отличается от AC. Переменный ток означает «переменный ток» и это то, что выходит из вашей настенной розетки. Он используется, потому что он лучше передает на большие расстояния по проводам (от электростанции к вам) и не так сильно поражает людей электрическим током.DC означает «Постоянный ток» и это то, что выходит из батареи. Это обычное электричество, и это то, что вы хотите использовать для картинга.

Чтобы получить более подробную информацию, переменный ток называется «переменным», потому что полярность (+ и -) меняется на противоположную в переменном токе в вашем доме, это происходит 60 раз в секунду. Это необходимо двигателю переменного тока. Теперь из постоянного тока можно сделать переменный ток. Большинство людей видели инверторы, которые вы можете подключить к прикуривателю автомобиля, а затем подключить ноутбук, блендер, что угодно. Почему бы просто не использовать один из них?

Ответ тока и мощности.Для хорошего электрического картинга ваши требования к мощности будут составлять около 1000 Вт или более. Доступны инверторы мощностью 1000 Вт, но они не будут работать — почему бы и нет? Из-за импульсного тока. Электродвигатель является «индуктивной» нагрузкой. Вы когда-нибудь видели, как гаснет свет на кухне, когда включается холодильник или микроволновая печь? Это потому, что это как индуктивные нагрузки, так и индуктивные нагрузки требуют тонны мощности для запуска. Скажем, какому-то электродвигателю может потребоваться 250 Вт во время работы — для запуска под нагрузкой (как это делает картинг) ему может потребоваться 1000 или 1500 Вт для запуска.Мотору вашего картинга мощностью 1000 Вт, запускающемуся под нагрузкой, может потребоваться 5000 Вт. Цена инвертора на 5000 ватт. Да, ты не хочешь этого делать.

Итак, чтобы было ясно, вы не можете разумно использовать двигатель переменного тока в картинге  если вы не хотите идти дальше самого длинного удлинителя. Это означает, что не стоит заморачиваться с двигателями с пометкой AC или моторами, которые выходят из стиральной машины, ленточной шлифовальной машины или всего, что подключается к стене. Есть два исключения: беговые дорожки и очень громкие электроинструменты.В большинстве беговых дорожек используется двигатель постоянного тока на 90 В — беговая дорожка содержит выпрямитель, который преобразует переменный ток в постоянный. Громкие электроинструменты, такие как угловые шлифовальные машины и циркулярные пилы, используют двигатель, называемый «универсальным двигателем», который может работать как на переменном, так и на постоянном токе.

Я бы тоже не стал использовать ни беговую дорожку, ни универсальный мотор. Почему нет? Они производятся на напряжение от 90 до 120 вольт (в США) и не очень мощные. Хотя двигатель беговой дорожки может показаться мощным, учтите, что вам придется носить с собой не менее семи аккумуляторов (размером с автомобильный аккумулятор), чтобы получить достаточное напряжение и мощность.Это то же самое, что и с инвертором — технически возможно, но как производитель картов своими руками, это не то, что вам нужно.

Хорошо, это все плохие новости. Какие хорошие новости?  Что ж, существует множество электрических моторов постоянного тока, идеально подходящих для картинга. Что вы должны искать в электрических двигателях для тележек постоянного тока?

1. Низкое напряжение. Чем ниже напряжение, тем меньше батарей вам придется носить с собой. Кроме того, если номинальное напряжение ниже, вы можете перенапрячь двигатель, что даст вам большую мощность.Скажем, у вас есть двигатель на 24 В — вы можете запустить его на 36 В и получить гораздо больше мощности. Не могли бы вы запустить его на 48В… или 72В? Да… но очень недолго. 48 В, вероятно, является пределом для двигателя 24 В (двойное правило для предела). Почему? Что ж, добавление этого дополнительного напряжения в двигатель электрического тележки вызывает дополнительный ток, откуда и исходит ваша мощность. Это проблема, потому что чем больше ток, тем горячее становится двигатель, а когда он становится слишком горячим, он сгорает, взрывается и оставляет вас стоять.

Дело в том, что изоляция двигателя электромобиля рассчитана на определенный срок службы (скажем, 20 лет) при низкой температуре. Если вы удвоите эту температуру, этот рейтинг может упасть, скажем, до 1 года. Если его очень сильно разогреть, он может поджариться за десять секунд. Не перегревайте моторы.

Мотор 12В можно сделать на 18В или 24В. Вы можете сделать двигатель на 24 В на 36 или 48 В. Вы можете сделать двигатель 36v на 48v. Я бы не стал ставить в карт более 48 В по двум причинам: вес (батареи тяжелые, а 4 батареи по 12 В — это примерно столько, сколько вы хотите носить с собой) и безопасность.48В — это высокое напряжение для постоянного тока. Человек с сухими пальцами может дотронуться до обеих клемм 12-вольтовой батареи и (вероятно) не поджариться. Однако сделайте это с домашним напряжением 120 В, и вы получите неприятный шок. Это потому, что для преодоления сопротивления вашего тела (особенно вашей кожи) требуется определенное напряжение. Как только напряжения будет достаточно, чтобы преодолеть это сопротивление, вас ударит током. Чтобы остановить ваше сердце, требуется всего 0,025 ампера, и с этим легко справится любая батарея. Если вы собираетесь сделать электрический картинг, вам нужно научиться технике безопасности при работе с электричеством.Я не буду писать эту книгу здесь, но почитайте о ней — и не ставьте в карт более 48 В, если вы не прошли обучение на уровне технического специалиста. (Примечание: я не говорю, что 48v «безопасны», но и картинги тоже) Ладно, папина лекция по технике безопасности окончена.

Где можно найти хорошие моторы для электрических картов?  


Последнее, что я хочу сказать об электродвигателях, это их мощность. Есть две важные вещи, которые вам нужно знать: электродвигатели рассчитаны на непрерывную мощность, а это означает, что они могут производить эту мощность весь день, всю ночь, в течение многих лет.Газовые двигатели рассчитаны на мгновенную мощность, то есть на то, сколько они могут произвести за мгновение. Во-вторых, электродвигатели производят максимальный крутящий момент (силу, с которой вращаются колеса) при нулевых оборотах. Вы когда-нибудь ездили на двухтактном мотоцикле? Вся мощность достигается при 5000 об/мин, поэтому вам нужно подождать, пока двигатель наберет обороты, ТОГДА вы получаете мощность. С электродвигателями все наоборот: вы получаете все свое ускорение в самом начале, и оно линейно уменьшается по мере увеличения скорости. Это делает взлеты очень увлекательными, если ваши батареи, контроллер и мотор позволяют это.

Это означает, что  вы должны иначе относиться к номинальной мощности.  Газовый двигатель Harbour Freight мощностью 6,5 л. Сладкий. Вы можете использовать электродвигатель с гораздо меньшей мощностью, чем бензиновый, и получать такое же удовольствие.

Итак, как дросселировать электродвигатель?  У вас есть три варианта: управление включением/выключением (вероятно, что-то поджарится), прогрессивное управление включением/выключением с несколькими батареями и контроллер.Управление включением/выключением — это когда у вас просто есть большой переключатель (или, что более вероятно, большое реле или контактор), и вы получаете полную мощность, как только нажимаете переключатель. Я бы не рекомендовал это, так как явление импульсной мощности, о котором я упоминал выше, означает, что вы включаете БОЛЬШОЕ количество тока одновременно, и довольно часто это фактически приводит к сварке контактов вашего переключателя в закрытом состоянии. положение, что теперь означает, что вы сидите на картинге, который работает на полную мощность и не выключается.Я знаю человека, который пробовал что-то подобное на электрическом мотоцикле, и у него есть шрамы, подтверждающие это. Если только это не маленький двигатель и большой переключатель, я бы этого избегал.

Как насчет прогрессивного включения/выключения? Проще говоря, это означает, что вы включаете батареи по одной. Допустим, вы используете двигатель на 24 В и перенапрягаете его до 36 В. Скорее всего, у вас будет три батареи по 12 В. Что вы сделаете, так это три переключателя (реле). Один включит первую батарею 12v. Второй будет включать и первый, и второй, давая вам 24v.Последний включит все три батареи в цепь, дав вам полную мощность. Это с меньшей вероятностью убьет вас… если вы все подключите правильно. Я не буду рисовать для вас схему, но есть кое-что, чтобы посмотреть. Я предупрежу вас, что если вы просто нарисуете один, легко подключить все так, что вы закорачиваете батарею, что может спаять ваши контакты, что приведет к взрыву батареи, если вы не сможете разорвать цепь. Будь осторожен. Будьте осторожны с этим  , потому что ваша первая батарея, которая будет включена, будет разряжаться намного быстрее, чем ваша последняя батарея.Вам нужно будет зарядить аккумуляторы по отдельности (не последовательно) и немедленно прекратить движение , когда производительность с первым аккумулятором [/i]только[/i] начнет снижаться. Вы навсегда повредите свои батареи, если переразрядите их.

Наконец, вы можете использовать контроллер. Это лучший вариант и, как ожидается, самый дорогой. Ваш лучший выбор — контроллер тележки для гольфа. Они созданы для такой работы и не требуют специального радиовхода, как бесщеточный контроллер (только потенциометр, который является простым электронным компонентом).Их можно купить на ebay, и бренд, с которым вам, скорее всего, повезет, — это Curtis. Изучите свой контроллер и убедитесь, что он предназначен для двигателя постоянного тока (постоянный магнит, постоянный ток). Если он предназначен для последовательного двигателя, это нормально (и последовательные двигатели можно использовать), но вам придется внимательно изучить электрическую схему. и прочитайте, чтобы подключить все правильно.

Вы также можете найти контроллеры для электрических велосипедов и скутеров, но они, вероятно, будут слишком малы для использования в «забавном» картинге, если только вы не делаете что-то для своего восьмилетнего ребенка весом 60 фунтов.

Наконец, вы можете получить контроллеры двигателей для боевых роботов с того же сайта, на который я ссылался для двигателей. Это хороший вариант, но опять же дорогой и требует самодельного дросселя, потому что он предназначен для взаимодействия с радио. Это будет хорошим вариантом, если вы нашли дешевый большой двигатель постоянного тока и не против потратить несколько долларов, чтобы использовать его.

Запрещается перенапряжение контроллеров. Максимальный номинальный рейтинг — это максимальный рейтинг, вот и все. Контроллер может быть мгновенно уничтожен, если его номинальное напряжение будет превышено, даже на мгновение.  Производители предусмотрели небольшую свободу действий, потому что аккумуляторная батарея на 24 В будет больше похожа на 28 В, когда она только что снята с зарядного устройства, но номинальное напряжение — это все, что вы можете использовать.

Последнее, о чем я расскажу, это аккумуляторы.

Если вы не более продвинуты, чем тот, кому нужна информация в этом посте, вы будете использовать свинцово-кислотные аккумуляторы. Это та же технология, что и автомобильный аккумулятор. Однако не используйте автомобильные аккумуляторы, потому что они не того типа. Здесь есть два вида аккумуляторов – пусковые и аккумуляторы глубокого разряда.Автомобильный аккумулятор должен подавать огромное количество тока в течение примерно трех секунд, когда вы заводите машину, а затем проводит остаток своей жизни, либо заряжаясь от генератора переменного тока, либо подавая микроскопический ток, чтобы сохранить настройки вашего автомобильного радио в памяти. . Автомобильные аккумуляторы созданы для этой цели, и если вы попытаетесь использовать их на картинге, вы будете развлекаться минут десять, затем аккумуляторы умрут, и не просто разрядятся, а будут безвозвратно повреждены. Не пытайтесь это сделать, если вы не хотите разочароваться или будете довольны недолговечным и дорогим проектом.Если у вас есть стопка автомобильных аккумуляторов, вы можете использовать их для тестирования, но не более того. Кроме того, автомобильные аккумуляторы содержат жидкую серную кислоту, которая может вытечь легче, чем вы думаете. Если он попадет на вас, он ослепнет, сожжет вас, рефинансирует вашу ипотеку под 10%, поставит ключ на вашу машину и ударит вас под дых. Не связывайтесь с кислотой.

В отличие от этого, вы хотите иметь возможность ездить на тележке в течение, скажем, 30-60 минут, постоянно потребляя умеренный ток. Для этого вам понадобится аккумулятор глубокой разрядки.Единственными автомобильными аккумуляторами, которые подходят для этого, являются аккумуляторы Optima Yellowtop или Bluetop или аналогичные. Они не имеют внутри жидкой кислоты и предназначены для глубокого разряда. Это отличные аккумуляторы, если вы можете себе их позволить. Вы можете найти другие свинцово-кислотные батареи, называемые AGM или Absorbed Glass Mat. Они похожи на герметичные свинцово-кислотные (см. ниже), за исключением того, что электролит (кислота) поглощается стекловолоконными матами внутри батареи, что делает их ударопрочными. AGM обычно отличаются высоким качеством и высокой стоимостью.

Также можно использовать герметичный свинцово-кислотный аккумулятор (SLA). Это здорово, и, вероятно, то, что я бы использовал. У вас возникнет искушение купить маленькие — они бывают крошечных, доступных размеров, которые совершенно не годятся для использования на картах. Вам нужны большие. Минимум 12 Ач для небольшого мотороллер-карта, на котором ездит ваш восьмилетний ребенок, и 18-30 Ач и более для картов большего размера. Чем больше батарея, тем лучше в 99% случаев. Пока вы не дойдете до того, что в вашем картинге столько батареи, что он весит столько же, сколько бронтозавр, вам помогут дополнительные батареи.

Почему? Из-за тока, опять же. Карты требуют большого тока. Маленькие батареи успешно выдают небольшой ток или большой ток, а затем сразу умирают. Если вы не хотите, чтобы вас ограничивали в производительности и убивали ваши батареи, используйте большие батареи. Точно так же, как чрезмерная разрядка ваших батарей путем их полной разрядки убьет их до смерти, чрезмерная разрядка путем одновременного запроса слишком большого тока быстро убьет их.

Вдобавок ко всему, если вы попросите большой ток, вы сократите время, в течение которого вы сможете ездить. Из-за явления, называемого эффектом Пейкерта, потребление большого количества энергии от батареи существенно сокращает срок ее службы.Аккумулятор SLA обычно рассчитан на 20-часовую скорость разряда. Таким образом, в нем может быть 18 Ач сока … но только если вы попросите его медленно в течение 20 часов. Если вы попросите весь его сок за 30 минут, вы можете получить только 10 Ач. (Я взял эту цифру из воздуха). Тем не менее, это довольно значительный эффект.

Ладно, что такое А? Ah обозначает ампер-часы. Если батарея рассчитана на 18 Ач, она может выдавать один ампер в течение 18 часов, или, если игнорировать эффект Пейкерта, который я только что объяснил, 18 ампер в течение одного часа.Или 9 ампер на 2 часа. Возьми? Вы также можете увидеть батареи с рейтингом «RC» или «Резервная емкость». Именно столько минут протянет аккумулятор при разряде 25А (то есть, если у вас генератор выдаст, а вам нужны ваши фары и блок управления двигателем). Вы можете преобразовать RC в Ah с помощью простой математики — если вы приступили к сборке электрического карта, решите, что один из них должен быть чем-то, что вы можете сделать.

Как насчет CCA и CA? Это не оценки того, как долго будет работать батарея, или оценки, которые вы увидите на батареях, которые вы хотите использовать в картинге.Обратите внимание, что выше я говорил о пусковых батареях и батареях глубокого разряда. CCA расшифровывается как «Cold Cranking Amps» и является мерой того, сколько тока батарея может подать на мгновение, когда она холодная. (CA — это то же самое, но не аккумуляторы, влияющие на холод — холод). Как правило, только пусковые батареи рассчитаны на CCA или CA. Есть некоторые батареи двойного назначения, которые могут быть рассчитаны на CCA и по-прежнему иметь глубокую разрядку, но они дороже, и вы можете добиться большего успеха с глубокой разрядкой батареи подходящего размера.Большие аккумуляторы для инвалидных колясок подходят для большинства картингов.

Как вы заряжаете аккумуляторы? Я бы порекомендовал приобрести несколько обычных автомобильных зарядных устройств на 12 В и заряжать каждую батарею таким образом, или использовать одну и заряжать каждую батарею после последней. (Это займет вечность) Если вы можете найти его или позволить себе его купить, лучше всего подойдет зарядное устройство для гольф-кара, которое соответствует вашему напряжению.

Некоторые базовые вещи в завершение:
Параллельное подключение означает + к +, — к -. Вы получите то же напряжение, но больший ток и емкость.
Последовательное соединение означает + к -, а затем вы отключаете питание от других + и -. Вы получаете больше напряжения (оно добавляет), но без дополнительного тока или емкости.

Текущая мера того, сколько электричества течет, подобно скорости воды через трубу. Ток измеряется в амперах.

Напряжение измеряет электрическую «силу», подобно давлению воды в трубе. Напряжение измеряется в вольтах.

Мощность представляет собой комбинацию этих двух параметров и подобна измерению того и другого: сколько воды течет по трубе и с какой силой.Мощность измеряется в ваттах, а произведение вольт на ампер равняется ваттам. Вы также можете пойти в обратном направлении: двигателю мощностью 500 Вт при 24 В потребуется 500 Вт, деленное на 24 В = 20,8 А, 90 164 теоретически 90 165, но на практике потребуется больше из-за потери эффективности. 70% — это справедливая оценка эффективности двигателя, поэтому на самом деле это будет около 20,8, разделенное на 70% (0,70) = 29,7 А.

Хорошо, это хорошая отправная точка для того, что вам нужно знать об электрических системах на картах.

Итак, вы хотите сделать веселый электрический картинг? Склонен к излишествам? Вот ваш рецепт, предварительно перегруженный:

Купите электродвигатель для гольф-мобиля, вероятно, он будет на 36 В и достаточно мощный.Получите контроллер тележки для гольфа на 48 В и четыре батареи Optima Yellowtop. Прикрепите все это к рамке нужного вам формата и отправляйтесь развлекаться.

Хотите сделать забавный маленький электрический карт для вашего ребенка, который перерос свои электрические колеса? (Или ты худой?) Возьми один из этих моторов для скутеров мощностью 900 Вт и запусти его на 36 В вместо 24 В, и используй SLA на 18 Ач, которые являются общими для инвалидных колясок.

Ну вот. Дерзайте и создавайте крутые электрические карты.

Некоторые решения

Briggs & Stratton ETEK MOTOR

MotEnergy Me1305 PMAC Мотор, 24-48 В, 6 HP Cont, 15 л.с. PK (заменяет ME0907)

Alltrax ESC SR48300

48V 100AH ​​литиевые батареи

Работает в любом классическом автомобиле

«Ни в какой другой отрасли не происходит таких быстрых технологических изменений, как в автомобильной, — говорит Зоран Филипи, заведующий кафедрой автомобильного машиностроения Международного центра автомобильных исследований Университета Клемсона.«Это обусловлено необходимостью соблюдения надвигающихся, все более строгих правил CO 2 и критериев выбросов, при этом поддерживая беспрецедентные темпы развития автоматизации и информационно-развлекательных систем, а также оправдывая ожидания клиентов в отношении производительности, комфорта и полезности».

В ближайшие годы произойдут еще большие изменения, поскольку все больше автопроизводителей обязуются отказаться от своих автомобилей с двигателями внутреннего сгорания (ДВС) для достижения глобальных целей в области изменения климата, заменив их электромобилями (EV), которые в конечном итоге будут способны автономная работа.

Прошедшее десятилетие развития автомобилей с ДВС свидетельствует о быстром прогрессе, которого они добились, а также о том, куда они движутся.

Диаграмма : Марк Монтгомери

«Когда-то программное обеспечение было частью автомобиля. Теперь программное обеспечение определяет стоимость автомобиля», — отмечает Манфред Брой, почетный профессор информатики Технического университета Мюнхена и ведущий специалист по программному обеспечению в автомобилях. «Успех автомобиля зависит от его программного обеспечения гораздо больше, чем от механической части.«Почти все автомобильные инновации автопроизводителей или производителей оригинального оборудования (OEM), как их называют инсайдеры отрасли, теперь связаны с программным обеспечением, — говорит он.

Десять лет назад только автомобили премиум-класса содержали 100 микропроцессорных электронных блоков управления (ЭБУ), объединенных в сеть по всему корпусу автомобиля и выполняющих 100 миллионов строк кода или более. Сегодня автомобили высокого класса, такие как BMW 7-й серии, с передовыми технологиями, такими как передовые системы помощи водителю (ADAS), могут содержать 150 ЭБУ и более, в то время как пикапы, такие как Ford F-150, имеют 150 миллионов строк кода.Даже недорогие автомобили быстро приближаются к 100 ECU и 100 миллионам строк кода, поскольку все больше функций, которые когда-то считались роскошными опциями, таких как адаптивный круиз-контроль и автоматическое экстренное торможение, становятся стандартными.

Дополнительные функции безопасности, которые являются обязательными с 2010 года, такие как электронный контроль устойчивости, камеры заднего вида и автоматический экстренный вызов (eCall) в ЕС, а также более строгие стандарты выбросов, которым автомобили с ДВС могут соответствовать только с использованием еще более инновационной электроники и программного обеспечения. , привели к дальнейшему распространению ECU и программного обеспечения.

По оценкам консалтинговой фирмы Deloitte Touche Tohmatsu Limited, по состоянию на 2017 год около 40% стоимости нового автомобиля приходится на электронные системы на основе полупроводников, что вдвое больше, чем в 2007 году. По оценкам, к 2030 году эта сумма приблизится к 50%. Компания также прогнозирует, что каждый новый автомобиль сегодня содержит полупроводники на сумму около 600 долларов, состоящие из до 3000 чипов всех типов.

Суммарное количество ЭБУ и линий программного обеспечения лишь намекает на сложную электронную оркестровку и хореографию программного обеспечения, присутствующую в современных автомобилях.Наблюдая за тем, как они работают вместе, начинает проявляться необычайная сложность, которая должна быть невидимой с точки зрения водителя. Новые функции безопасности, комфорта, производительности и развлечений, коммерческий императив предлагать покупателям множество вариантов, что приводит к множеству вариантов для каждой марки и модели, а также переход от бензиновых двигателей и водителей-людей к электрическим и водителям с искусственным интеллектом и сотням миллионы строк нового кода, которые нужно будет написать, проверить, отладить и защитить от хакеров, превращают автомобили в суперкомпьютеры на колесах и заставляют автомобильную промышленность адаптироваться.Но может ли?

Особенности и варианты Сложность привода

В течение последних двух десятилетий стремление обеспечить больше функций безопасности и развлечений превратило автомобили из простых транспортных средств в мобильные вычислительные центры. Вместо стоек серверов и высокоскоростных оптических соединений ЭБУ и жгуты проводов передают данные по всему автомобилю и за его пределы. А еще есть десятки миллионов строк кода, которые запускаются каждый раз, когда вы идете в продуктовый магазин.

Вард Антинян, эксперт по качеству программного обеспечения в Volvo Cars, который много писал о сложности программного обеспечения и систем, объясняет, что по состоянию на 2020 год «Volvo имеет расширенный набор из примерно 120 ECU, из которых она выбирает для создания системной архитектуры, присутствующей в каждом Volvo. транспортное средство.В общей сложности они содержат в общей сложности 100 миллионов строк исходного кода». Этот исходный код, по словам Антиняна, «содержит 10 миллионов условных операторов, а также 3 миллиона функций, которые вызываются примерно в 30 миллионах мест в исходном коде».

Количество и типы программного обеспечения, размещенного в каждом ЭБУ, сильно различаются, в зависимости, среди прочего, от вычислительных возможностей ЭБУ, функций, которыми управляет ЭБУ, внутренней и внешней информации и сообщений, которые необходимо обрабатывать, и от того, запускаются событием или временем, наряду с обязательными требованиями безопасности и другими нормативными требованиями.За последнее десятилетие все больше программного обеспечения ЭБУ было посвящено обеспечению эксплуатационного качества, надежности, безопасности и защищенности.

«Количество программного обеспечения, написанного для обнаружения неправомерных действий с целью обеспечения качества и безопасности, растет», — говорит Нико Хартманн, вице-президент ZF Software Solutions & Global Software Center в ZF Friedrichshafen AG, одном из крупнейших в мире поставщиков автомобильных компонентов. Хартманн утверждает, что если десять лет назад, возможно, треть программного обеспечения ЭБУ была предназначена для обеспечения качественной работы, то сейчас часто больше половины или даже больше, особенно в системах, критически важных для безопасности.

Какие ЭБУ и связанное с ними программное обеспечение в конечном итоге будут устанавливаться на автомобили Volvo, такие как роскошный внедорожник XC90, который имеет примерно 110 ЭБУ, зависит от нескольких факторов. У Volvo, как и у всех производителей автомобилей, есть варианты каждой модели, предлагаемые для продажи, предназначенные для разных сегментов рынка. Как отмечает Антинян, «человек, покупающий точно такую ​​же модель Volvo в Швеции, может отличаться от той, что продается в США». Существуют не только региональные нормативные режимы, которым должен соответствовать каждый автомобиль, но и каждый отдельный владелец может выбирать между несколькими дополнительными функциями двигателя, привода, безопасности или другими функциями, которые предлагает Volvo.Независимо от того, какая конфигурация стандартного, дополнительного и требуемого по закону оборудования будет выбрана, будет определяться точное количество и типы ЭБУ, программного обеспечения и соответствующей электроники, которые должны быть встроены в автомобиль, и все они должны иметь возможность бесперебойно работать вместе.

«Управление вариантами транспортных средств очень сложно для автопроизводителя, — говорит Антинян, — потому что оно касается всех». Например, существует естественная напряженность между отделом маркетинга, который хочет, чтобы различные типы транспортных средств обладали множеством функций для различных сегментов клиентов, и отделами проектирования и проектирования, которые хотели бы иметь меньше вариантов, чтобы поддерживать системную интеграцию, тестирование, проверку. и усилия по проверке управляемы.Каждое расширение функциональности подразумевает дополнительные датчики, приводы, ЭБУ и сопутствующее программное обеспечение и, следовательно, дополнительные усилия по интеграции для обеспечения их правильной работы.

По оценкам Deloitte, 40% или более бюджета на разработку автомобиля с начала его разработки до начала производства приходится на системную интеграцию, тестирование, проверку и валидацию. Отслеживание всей текущей, а также устаревшей электроники и программного обеспечения в каждой произведенной и проданной модели может оказаться геркулесовой задачей.Неудивительно, что эффективное управление сложностью вариантов является серьезной проблемой в автомобильной промышленности.

Также неудивительно, что для подключения и питания всех ЭБУ, датчиков и других электронных устройств требуется большое количество проводов и ручных усилий, чтобы пропустить их через автомобиль. Тысячи вариантов жгутов проводов поддерживают индивидуальные настройки автомобиля и несколько физических сетевых шин для управления потоком сигнала через автомобиль.

Физическая электронная архитектура автомобиля накладывает больше ограничений на проектирование сети, с которыми необходимо бороться.Многие ЭБУ должны находиться рядом с датчиками и исполнительными механизмами, с которыми они взаимодействуют, например, ЭБУ для тормозных систем или управления двигателем. В результате жгут автомобильной сети, к которому можно присоединить тысячи компонентов, может содержать более 1500 проводов общей длиной 5000 метров и весом более 68 кг. Уменьшение веса и сложности жгутов проводов стало основной задачей автопроизводителей по мере роста количества ЭБУ, датчиков и связанных с ними электронных устройств.

Проблемы тестирования

Даже при значительных усилиях, времени и деньгах, затрачиваемых на обеспечение совместной работы всего разнообразного электронного оборудования, не все возможные комбинации сборки ЭБУ могут быть тщательно протестированы до начала производства.В то время как содержание безопасности транспортного средства, как правило, в основном фиксировано, сложность сборки ECU больше связана с дополнительным комфортом и удобством для потребителя или функциями производительности. В некоторых случаях из-за определенного сочетания дополнительных функций и функций «автомобиль, сходящий с конвейера, будет первым, когда будет протестирована конкретная конфигурация», — говорит Энди Уайделл, вице-президент ZF по планированию продуктов для автомобильных систем.

Диаграмма: Марк Монтгомери; Источник: Deloitte Touche Tohmatsu Limited .

Некоторые автопроизводители имеют сотни тысяч потенциальных комбинаций сборки отдельной модели автомобиля, если не больше.Чтобы протестировать вживую каждую комбинацию электроники, возможную в некоторых моделях автомобилей, «потребуется миллиард тестовых установок», — говорит он. Однако, как утверждает Уайделл, несколько комбинаций сборки ECU могут быть протестированы в лаборатории с использованием «макетных плат» OEM-производителями во время разработки автомобиля, без необходимости создавать уникальный автомобиль для каждого случая.

Даже для популярных моделей, прошедших тщательную проверку, ошибки, связанные с программным обеспечением, обычно обнаруживаются и исправляются после их продажи. Иногда коррекция нуждается в исправлении, как это произошло с General Motors в связи с отзывом ее самого продаваемого автомобиля Chevy Silverado 2019 года, а также легких грузовиков GMC Sierra и Cadillac CT6.

Управление вариантами, отмечает Уайделл, усложняется тем, что «почти весь дизайн ЭБУ и программное обеспечение передаются поставщикам на аутсорсинг, а OEM-производители интегрируют ЭБУ» для создания единой системы с желаемой настраиваемой функциональностью. Whydell говорит, что отдельные поставщики часто не имеют четкого представления о том, как OEM-производители интегрируют ECU вместе. Точно так же OEM-производители имеют ограниченное представление о программном обеспечении, находящемся в ЭБУ, которые часто приобретаются как «черный ящик» для поддержки одной из нескольких функций, таких как информационно-развлекательная система, контроль кузова и соответствия, телематика, силовая передача или автоматизированные системы помощи водителю.

То, как мало программного обеспечения разрабатывается автопроизводителями, иллюстрируется комментариями, сделанными в 2020 году Гербертом Диссом, тогдашним генеральным директором Volkswagen Group, а ныне его председателем, когда он признал, что «едва ли строчка программного кода исходит от нас». По оценкам VW, только 10% программного обеспечения в его автомобилях разрабатывается собственными силами. Остальные 90% вносят десятки поставщиков, а у некоторых OEM-производителей это число, как сообщается, достигает более 50.

Так много поставщиков программного обеспечения, каждый со своим собственным подходом к разработке, использующих свои собственные операционные системы и языки, очевидно, добавляет еще один уровень сложности, особенно при выполнении проверки и валидации.Это подтверждается недавним опросом разработчиков программного обеспечения по всей цепочке поставок автомобилей, проведенным Strategy Analytics и Aurora Labs. Они задались вопросом, насколько сложно было узнать, когда изменение кода в одном ECU влияет на другой. Около 37% опрошенных указали, что это было сложно, 31% указали, что это было очень сложно, 7% указали, что это чертовски близко к невозможности, а 16% указали, что это невозможно.

Автомобильные компании и их поставщики понимают, что они должны больше сотрудничать, чтобы лучше контролировать управление конфигурацией данных, чтобы предотвратить непредвиденные последствия из-за непредвиденных изменений кода ECU.Но оба признают, что есть еще путь.

Повышение безопасности

Конечно, автопроизводители должны гарантировать, что программное обеспечение не только безопасно и надежно, но и защищено. Дистанционный захват Jeep Cherokee 2014 года выпуска в 2015 году исследователями безопасности стал тревожным сигналом для отрасли. Каждый поставщик и OEM-производитель теперь осознают угрозу слабой кибербезопасности; Сообщается, что 90 инженеров GM работают полный рабочий день над разработкой мер противодействия кибербезопасности.

Однако десять лет назад «автомобильное программное обеспечение было разработано в первую очередь для обеспечения безопасности.Безопасность была на втором месте», — говорит Машрур Чоудхури, эксперт по кибербезопасности транспортных средств и директор Центра подключенной мультимодальной мобильности Министерства транспорта США в Университете Клемсона. Это следует отметить, поскольку большая часть программного обеспечения, разработанного десять или более лет назад, когда безопасность не была приоритетом, как сейчас, до сих пор используется в ЭБУ.

«Потенциальные поверхности для атак увеличиваются практически ежедневно».

Кроме того, за последнее десятилетие произошел взрывной рост внутренней и внешней связи транспортных средств.В 2008 году между электронными блоками управления роскошного автомобиля было обменено около 2500 сигналов данных. Антинян из Volvo говорит, что сегодня более 7000 внешних сигналов соединяют 120 ЭБУ автомобилей Volvo, а количество внутренних сигналов, которыми обмениваются автомобили, на два порядка больше. По оценкам консалтинговой фирмы McKinsey & Company, эта информация может легко превысить 25 гигабайт данных в час.

С бурным развитием мобильных приложений и облачных сервисов за последние десять лет, не говоря уже о все большем количестве сложной электроники, встроенной в сами автомобили, «потенциальные поверхности для атак увеличиваются практически ежедневно», — говорит Чоудхури.

Правительства также приняли это к сведению и возложили на автопроизводителей ряд обязательств по кибербезопасности. К ним относится наличие сертифицированной системы управления кибербезопасностью (CSMS), которая требует от каждого производителя «демонстрировать структуру управления на основе рисков для обнаружения, анализа и защиты от соответствующих угроз, уязвимостей и кибератак».

Кроме того, OEM-производителям потребуется система управления обновлениями программного обеспечения, чтобы обеспечить безопасное управление беспроводными обновлениями программного обеспечения.Автопроизводителям также рекомендуется «вести базу данных операционных компонентов программного обеспечения, используемых в каждом автомобильном ECU, каждом собранном автомобиле, а также журнал истории обновлений версий, применяемых на протяжении всего срока службы автомобиля». Этот список материалов программного обеспечения может помочь автопроизводителям быстро определить, какие ЭБУ и конкретные автомобили будут затронуты данной киберуязвимостью.

The Soft Mechanic

Большинство водителей не обращают особого внимания на окружающие их электронные блоки, если только они не раздражают или не перестают работать.С ростом количества электронного контента за последнее десятилетие у водителей появилось множество возможностей обратить внимание на электронику своего автомобиля.

Согласно отчету о дефектах и ​​отзывах автомобилей за 2020 год, составленному финансовой консалтинговой фирмой Stout Risius Ross, 2019 год стал рекордным: 15 миллионов автомобилей были отозваны из-за дефектов электронных компонентов. Половина отзывов была связана с дефектами программного обеспечения, это самый высокий показатель, зарегистрированный Stout с 2009 года.

Диаграмма: Марк Монтгомери; Источник: Стаут Рисиус Росс

Почти 30% дефектов были связаны с интеграцией программного обеспечения, когда отказ возникает из-за взаимодействия программного обеспечения с другими электронными компонентами или системами в автомобиле.Mitsubishi Motors отозвала 60 000 внедорожников, потому что программная ошибка в их блоке управления гидравлическим блоком мешала работе нескольких систем безопасности.

Наконец, более чем в 50 % дефектов был обнаружен сбой, который не был явно вызван программным дефектом, а использовалось обновление программного обеспечения. Ford Motor Company отозвала некоторые модели своих автомобилей Fusion и Escape, поскольку охлаждающая жидкость могла попасть в отверстия цилиндров их двигателей, что могло привести к необратимому повреждению их двигателей. Решение Форда заключалось в перепрограммировании программного обеспечения управления силовой передачей транспортных средств, чтобы уменьшить вероятность попадания охлаждающей жидкости в цилиндры двигателя.Данные Стаута показывают, что за последние пять лет количество случаев использования программного обеспечения для устранения проблем с аппаратным обеспечением автомобилей неуклонно росло.

«Средний объем отзыва снижается, как и средний возраст автомобилей, — говорит Нил Стейнкамп, управляющий директор Stout. «Производители используют технологии, чтобы быстрее обнаруживать дефекты», особенно те, которые связаны с электроникой. Дефекты, связанные с программным обеспечением, как правило, обнаруживаются в новых автомобилях, в то время как дефекты ЭБУ и других электронных компонентов, как правило, проявляются только по прошествии некоторого времени с момента появления автомобиля на рынке.

Stout Директор Роберт Левин отмечает, что в последнее время наблюдается рост дефектов компонентов, связанных с электроникой автомобиля, «переход от удобства владельца к компонентам, критически важным для безопасности». Например, в США была волна отзывов камер заднего вида, поскольку все автомобили, произведенные после 1 мая 2018 года, должны были обеспечивать водителей видимой зоной размером 3 x 6 метров непосредственно позади автомобиля. Многие OEM-производители обнаруживают, что интеграция более сложного программного обеспечения камеры с другими системами безопасности транспортных средств оказывается сложной задачей.

Работа других новых систем безопасности автомобилей также не была гладкой. Исследование, проведенное Американской автомобильной ассоциацией (AAA) передовых систем помощи при вождении, которые могут помочь водителю либо с рулевым управлением, либо с торможением/ускорением, показало, что эти системы часто отключаются без предупреждения, мгновенно возвращая управление водителю. Его тесты показали, что какие-то проблемы возникали в среднем каждые 13 км, в том числе трудности с удержанием автомобиля на своей полосе или слишком близкое приближение к другим автомобилям или ограждениям.

Повышение стоимости ремонта

Многие автовладельцы осознают возрастающую сложность своих автомобилей, когда им приходится платить за ремонт. Почти 60% затрат на оплату труда при устранении последствий аварии с участием автомобиля с расширенными функциями безопасности приходится на электронику автомобиля. Даже незначительное повреждение, скажем, треснутое лобовое стекло, которое раньше стоило от 210 до 220 долларов, выросло до 1650 долларов, если автомобиль оснащен установленной на лобовом стекле камерой для автоматического экстренного торможения, адаптивным круиз-контролем и системами предупреждения о выходе из полосы движения, 2018 Исследование ААА показывает.Расходы на калибровку всех этих систем, которая обычно выполняется вручную, являются основным фактором затрат.

Поскольку даже небольшая ошибка калибровки датчиков может резко снизить эффективность этих функций безопасности, «поставщики разработали системы автоматического выравнивания и автоматической калибровки, которые могут исключить или упростить ручной процесс», — говорит Уайделл из ZF, помогая повысить точность калибровки во время вождения. снижение затрат на ремонт.

Whydell также сообщает, что поставщики и OEM-производители ищут способы размещения датчиков, которые, как правило, устанавливаются по периметру транспортного средства в местах, которые с меньшей вероятностью будут повреждены в случае аварии.AAA сообщает, что стоимость ремонта только ультразвуковой системы, расположенной в заднем бампере, которая обеспечивает помощь при парковке, составляет около 1300 долларов; если задние радарные датчики, используемые для мониторинга слепых зон и предупреждения о перекрестном движении, также будут повреждены, еще 2050 долларов США могут быть понесены в виде дополнительных расходов в связи с повреждением задней части.

Поскольку стоимость ремонта растет из-за электроники, она достигла точки, когда для страховой компании становится менее затратным объявить транспортное средство полной гибелью. В недавнем отчете компании по управлению претензиями Mitchell International говорится, что ее данные показывают, что средний возраст транспортных средств, объявленных общими потерями, снижается из-за стоимости ремонта автомобильной электроники.Ожидается, что эта тенденция сохранится, поскольку «усложнение транспортных средств возрастает», говорится в отчете.

EV + AI = неуправляемая сложность

Автопроизводители попали в своеобразную головоломку. Согласно последнему исследованию надежности транспортных средств в США, проведенному J.D. Power, сегодня автомобили с двигателем внутреннего сгорания являются самыми надежными за последние 32 года. Они также более удобны, безопасны и меньше загрязняют окружающую среду. Тем не менее, чтобы решить растущую озабоченность правительства и общественности по поводу изменения климата во всем мире, производители оказались в положении, когда им приходится отказываться от своих сложных транспортных средств с ДВС в пользу электромобилей, которые когда-нибудь должны быть способны к автономному вождению. в будущем.

Еще больше усложняет их дилемму то, что для разработки электромобилей производители должны прыгнуть через пропасть программного обеспечения.

В современных автомобилях «программное обеспечение, использующее современные архитектуры, становится неуправляемым», — отмечает Энди Уайделл из ZF. Другие также разделяют это убеждение. По данным консалтинговой фирмы McKinsey & Company, сложность программного обеспечения в автомобилях быстро превышает возможности его разработки и обслуживания. Сложность программного обеспечения выросла в четыре раза за последнее десятилетие, но производительность программного обеспечения поставщиков и OEM-производителей практически не выросла за то же время.Кроме того, в следующем десятилетии сложность программного обеспечения, вероятно, возрастет еще в три раза. Как производители автомобилей, так и поставщики изо всех сил пытаются сократить «разрыв между развитием и производительностью».

«Когда-то программное обеспечение было частью автомобиля. Теперь программное обеспечение определяет стоимость автомобиля».

Частично проблема заключается в поддержке неуклонно растущей кодовой базы. Один из лидеров автомобильной компании сообщил McKinsey, что при нынешних темпах сопровождение программного обеспечения существующей кодовой базы будет потреблять все ее ресурсы НИОКР, если разрыв не будет ликвидирован.Фактически, Уайделл отмечает, что «в некоторых случаях автомобильная промышленность больше не рассматривает общее количество строк кода как меру сложности, а количество персонала, занимающегося программным обеспечением, которое OEM или поставщик нанимает для удовлетворения текущих и будущих потребностей».

Преодоление разрыва между разработкой и производительностью выглядит особенно пугающе, если, как говорит председатель Volkswagen Герберт Дайс, «на программное обеспечение будет приходиться 90% будущих инноваций в автомобиле». Владение необходимыми знаниями программного обеспечения будет основным ключом к успеху.Как сформулировал McKinsey: «Хотя автомобильные организации должны преуспевать на многих уровнях, чтобы выиграть игру программного обеспечения, привлечение и удержание лучших специалистов, вероятно, является наиболее важным аспектом». Неудивительно, что правильное использование программного обеспечения является «одной из вещей, которые не дают мне спать по ночам», — признается Уайделл из ZF. Это также не дает спать всем другим поставщикам и OEM-менеджерам.

OEM-производители с опозданием осознали, во многом благодаря концепции автомобиля Илона Маска с программным управлением в форме Tesla, что их нынешние подходы к аутсорсингу необходимого программного обеспечения и электроники поставщикам, а затем их интеграция в автомобили с ДВС не работают для электромобили.

Функциональность и сложность децентрализованных архитектур ЭБУ, используемых в автомобилях с ДВС, «достигли своего предела», — цитирует Wards Auto слова Тамары Сноу, руководителя отдела исследований и передовых разработок поставщика автомобилей уровня 1 Continental AG. Это особенно верно, если для полного автономного вождения требуется примерно 500 миллионов или более строк кода.

«В некоторых случаях автомобильная промышленность больше не рассматривает общее количество строк кода как меру сложности, а количество сотрудников, занимающихся программным обеспечением, которое OEM или поставщик нанимает для удовлетворения текущих и будущих потребностей.”

Новое программное обеспечение для транспортных средств и физическая архитектура потребуются для управления банками аккумуляторов вместо двигателя внутреннего сгорания и связанной с ним трансмиссии. Архитектура будет содержать всего несколько мощных, чрезвычайно быстрых компьютерных процессоров, выполняющих код, управляемый микросервисами, и будет осуществлять внутреннюю связь через большее количество датчиков по более легким жгутам проводов или даже по беспроводной сети, просто для начала. Внешняя коммуникация также будет в разы больше.И эти новые архитектуры, отмечает Хартманн из ZF, должны быть разработаны с низкими затратами и при постоянном сокращении временных циклов командами разработчиков программного обеспечения в OEM-производителях и поставщиках, которые будут изучать новые методы разработки программного обеспечения и систем.

Вероятно, самая большая проблема заключается в недостаточном опыте работы с программным обеспечением в управленческих пакетах, чтобы понять необходимость трансформации, утверждает Манфред Брой. Хотя сложность аппаратного обеспечения является наиболее заметным аспектом транспортного средства, Брой отмечает: «Что я считаю более важным, так это сложность программного обеспечения (которая в решающей степени зависит от выбора аппаратного обеспечения) и, в частности, стоимость программного обеспечения, которая совершенно неясна для понимания. OEM-производители и более важны из-за его долгосрочной эволюции.Он говорит, что офисы руководителей автомобильных компаний заполнены «людьми вчерашнего дня, но они по-прежнему у руля».

Зоран Филипи из Clemson поясняет: «Более ста лет OEM-производители концентрировались на совершенствовании двигателей внутреннего сгорания, отдавая остальные свои автомобили поставщикам, а затем интегрируя все компоненты вместе. Тот же подход применялся, когда электроника и программное обеспечение начали использоваться в транспортных средствах — они были просто еще одним «черным ящиком», который нужно было интегрировать в транспортное средство.«Теперь, — говорит он, — OEM-производители и их поставщики должны перейти от подхода, ориентированного на аппаратное обеспечение, к менталитету, ориентированному на программное обеспечение, при этом продолжая поддерживать и улучшать автомобили с ДВС, используя существующие подходы, по крайней мере, еще одно десятилетие».

Петер Мертенс, бывший глава отдела исследований и разработок Audi AG и член совета директоров, заявил в недавнем интервью CleanTechnica: «Немецкая автомобильная промышленность предоставляет свои самые важные новые продукты, которые определят, выживут ли они как компании в своей существующей структуре, для ответственность менеджеров, которые имеют наименьший опыт и знания о своей наиболее важной части, программном обеспечении.”

Далее Мертенс говорит, что необходим способ отсеять руководителей, которые не подходят для их должности. «Проведите завтра оценку работы со всеми топ-менеджерами VW, Audi, Porsche, BMW и Daimler и попросите их написать небольшую игру или простой, но работающий вирус», — говорит он. «Если они не могут этого сделать, немедленно уволите их, потому что они не подходят для этой работы». Сколько останется, спрашивает Мертенс? Кровь, оставшаяся на полу, будет подсказкой.

Двигатель переменного/постоянного тока — Руководство по переоборудованию электромобиля

DC — это скорее дебаты о прошедших днях. Постоянный ток раньше был дешевым, распространенным решением, а переменный ток был превосходным, непомерно дорогим вариантом, но с потоком OEM-трансмиссий переменного тока на рынке сейчас это приводит к тому, что огромное количество удивительных двигателей переменного тока по довольно хорошей цене пространство DIY, если вы готовы иметь дело с управлением CAN.

Двигатели постоянного тока действительно хороши в создании потрясающего крутящего момента на низких оборотах при более низком напряжении, и… ну… на этом преимущества заканчиваются. Недостатками являются то, что они требуют экспоненциально большего обслуживания, их чрезвычайно трудно поддерживать в прохладном состоянии при поездках на работу по шоссе, рекуперативное торможение невозможно, и они значительно уступают трансмиссиям переменного тока по общей эффективности.Двигатели постоянного тока раньше были предпочтительным вариантом для тех, кто хотел преобразовать электромобиль, но я настоятельно призываю всех держаться подальше от преобразования постоянного тока, если только они не строят этот автомобиль исключительно для дрэг-рейсинга на 1/8 или 1/4 мили.

 

Сложность электрического управления:

Основным преимуществом трансмиссии постоянного тока является снижение сложности электрической настройки. Все, что вам нужно было сделать, это подключить несколько 12-вольтовых проводов и потенциометр для педали газа, и все готово, в то время как у AC действительно не было готовых комплектов, подобных этому.

Однако времена изменились. Лучшая компания по производству контроллеров двигателей постоянного тока (Evnetics) полностью ушла с рынка электромобилей, а блестящие ребята из EVTV вышли на рынок с избытком OEM-приводов переменного тока с прекрасно спроектированным оборудованием CAN. Они упростили превосходные OEM-приводы переменного тока до уровня, на котором даже новичок-любитель сможет запустить их без чрезмерного количества исследований, базовых знаний и устранения неполадок.

Адаптер трансмиссии Сложность:

Простота физической интеграции в транспортное средство — одна из областей, в которой двигатели постоянного тока по-прежнему претендуют на превосходство.Это не означает, что конечный результат DC превосходит AC, но простота достижения конечного результата намного проще с DC. Поскольку двигатели постоянного тока использовались в переоборудовании электромобилей на протяжении десятилетий, существует большое количество переходных пластин и соединителей валов для множества транспортных средств, для сборки которых не требуется ничего, кроме ручных инструментов. С другой стороны, двигатели переменного тока

были разработаны для конкретного автомобиля OEM и в основном не предназначены для общих применений. Краткий ответ здесь заключается в том, что адаптация двигателя переменного тока к вашему конкретному транспортному средству для переоборудования потребует индивидуального проектирования САПР и обработки с ЧПУ.Независимо от того, соответствует ли это вашему личному уровню навыков или вам нужно обратиться за поддержкой по этому вопросу, к сожалению, это нетривиальная задача.

Электродвигатель переменного тока Siemens 1PV5135-4WS14

Электрические «двигатели в ящиках» облегчают превращение вашего автомобиля с бензиновым двигателем в электромобиль

Связи

  1. Новые автомобили
  2. Электромобили
  3. 77 -play – батарейки в комплект не входят – но имейте в виду, пуристы могут не одобрить

    Photo by Electric GT

    Содержание статьи

    Не одна, а две компании в этом месяце представили то, о чем давно просили любители электромобилей – электрические «корзинные двигатели». ”, который можно довольно легко заменить на любой автомобиль с бензиновым двигателем, в который они физически влезут.Батарейки в комплект не входят.

    Объявление

    Это объявление еще не загружено, но ваша статья продолжается ниже.

    Содержание статьи

    Согласно Autoblog , выскочка Electric GT (EGT), возглавляемая Эриком Хатчисоном, планирует вскоре предложить комплект для переоборудования электромобиля с одним и двумя двигателями.

    Оба могут крепиться болтами к механическим коробкам передач, и уже разработано множество опор двигателя и пластинчатых адаптеров для различных коробок передач; компания также может разрабатывать адаптеры по индивидуальному заказу.

    1. Этот инженер-исследователь из Университета Далхаузи превратил свой Triumph Spitfire 1971 года в электрический

    2. VW объединяется с бутиком для создания электрических Beetles 308, заменив старый 2,9-литровый V8 автомобиля, который выдавал 280 лошадиных сил и 181 фунт-фут. крутящего момента – на три электродвигателя AC51 HPEVS общей мощностью 465 л.с. и 330 фунт.-фт.

      Объявление

      Это объявление еще не загружено, но ваша статья продолжается ниже.

      Содержание статьи

      https://www.instagram.com/p/B1fczzXnxzL/?utm_source=ig_embed&utm_campaign=dlfix

      Новый двигатель e-crate имеет форму классического двигателя V8, за исключением того, что он примерно на 5 дюймов длиннее большинства классические смолл-блоки Chevy или Ford. Одномоторный комплект составляет 140 л.с. и 240 фунто-футов; в то время как сдвоенные двигатели имеют мощность 240 л.с. и 340 фунтов.-фт.

      Swindon Powertrain в Великобритании также бросает свою шляпу в кольцо электронных ящиков и предлагает двигатель меньшего размера, более европейского типа.

      Мотор Swindon имеет более обычную поперечную конструкцию для переднеприводных автомобилей или небольших автомобилей со средним расположением двигателя. Он весит больше 70 кг в стиле Чепмена и развивает респектабельные 110 лошадиных сил. Размеры составляют 600 мм в ширину, 440 мм в глубину и всего 280 мм в высоту, что означает, что он поместится практически в любом месте, в том числе под капотом Mini.

      Объявление

      Это объявление еще не загружено, но ваша статья продолжается ниже.

      Содержание статьи

      Стоит отметить, что если вы переоборудовали свой классический автомобиль на электродвигатель, FIVA ( Fédération Internationale des Véhicules Anciens ), глобальная организация, занимающаяся сохранением старых автомобилей, недавно объявила, что рассмотрит ваш автомобиль – или любой винтажный автомобиль, переделанный в электромобиль, — осквернен.

      Группа регулярно лоббирует права владельцев классических автомобилей в правительствах по всему миру; но в их глазах ваш переделанный в электромобиль антиквариат больше не является «классическим автомобилем», так что вы будете предоставлены сами себе.


      ПОСЛУШАЙТЕ: В выпуске этой недели мы рассказываем обо всех потрясающих новостях с автосалона в Лос-Анджелесе в 2019 году со старшим автором Postmedia Driving Дэвидом Бутом, в том числе о смелом внедорожнике Ford Mustang Mach-e. И, конечно же, мы получаем мнение Бута о Tesla Cybertruck.

      Подключен доступен в Apple Podcasts, Spotify, Stitcher и Google Podcasts.

      Плеер не работает? Кликните сюда.

      Поделитесь этой статьей в своей социальной сети

      Подпишитесь, чтобы получать Вождение.информационный бюллетень ca’s Blind-Spot Monitor по средам и субботам

      Нажав кнопку подписки, вы соглашаетесь получать вышеуказанный информационный бюллетень от Postmedia Network Inc. Вы можете отказаться от подписки в любое время, нажав на ссылку отказа от подписки в нижней части наших электронных писем. Постмедиа Сеть Inc. | 365 Bloor Street East, Торонто, Онтарио, M4W 3L4 | 416-383-2300

      Спасибо за регистрацию!

      Приветственное письмо уже в пути. Если вы его не видите, проверьте папку нежелательной почты.

      Следующий выпуск журнала Driving.ca «Мониторинг слепых зон» скоро будет в вашем почтовом ящике.

Добавить комментарий

Ваш адрес email не будет опубликован.