Индикатор окончания заряда аккумулятора своими руками: Схемы индикаторов разряда li-ion аккумуляторов для определения уровня заряда литиевой батареи (например, 18650)

Содержание

Схемы индикаторов разряда li-ion аккумуляторов для определения уровня заряда литиевой батареи (например, 18650)

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Далее будут представлены только те индикаторы разряда li-ion аккумуляторов, которые не только проверены временем и заслуживают вашего внимания, но и с легкостью собираются своими руками.

Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить нагрузку либо использовать контроллеры разряда.

Вариант №1

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении).

Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный — чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом — переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше — тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко — между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации — 3 мА, при выключенном светодиоде — 0.3 мА.

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 — разрешено, 0 — запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector’ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD, TCM809TENB713, MCP103T-315E/TT, CAT809TTBI-G;
  • на 2.93V: MCP102T-300E/TT, TPS3809K33DBVRG4, TPS3825-33DBVT, CAT811STBI-T3;
  • серия MN1380 (или 1381, 1382 — они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы — MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Также можно взять советский аналог — КР1171СПхх:

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Неоспоримые достоинства схем на мониторах напряжения — чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую «моргалку» на двух биполярных транзисторах.

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза — коротка вспышка — опять пауза). Это позволяет снизить потребляемый ток до смешных значений — в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом — всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы — инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 — 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914:

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на «землю», можно перевести ее в режим «точка». В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения, т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339.

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке.

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют контроллерами заряда-разряда), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Внимание!!! Попадаются платы, включающие защиту от переразряда при недопустимо низком напряжении (2.5В и ниже). Поэтому из всех имеющихся у вас плат необходимо отобрать только те экземпляры, которые срабатывают при правильном напряжении (3.0-3.2V).

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 — это два миллиомных полевика, собранных в одном корпусе.

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Пожалуйста, учитывайте тот факт, что схемы индикаторов разряда сами потребляют энергию аккумулятора! Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, предотвращающие глубокий разряд.

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот — в качестве индикатора заряда.

Самый простой индикатор заряда батарейки. Как сделать индикатор заряда аккумулятора на светодиодах? Какие существуют индикаторы заряда автомобильного аккумулятора

От качества зарядки аккумулятора зависит, насколько успешно пройдет запуск автомобиля. Не многие водители следят за степенью зарядки АКБ. В статье рассматривается такое полезное устройство как индикатор заряда автомобильного аккумулятора: как устроен, работает, дается инструкция и видео, как его самостоятельно изготовить.

[ Скрыть ]

Характеристика индикатора уровня заряда батареи

На современных автомобилях с бортовым компьютером водитель имеет возможность получить информацию об уровне . Старые модели оборудованы аналоговыми вольтметрами, но они не отражают истиной картины состояния аккумулятора. Индикатор напряжения (ИН) аккумулятора — вариант иметь оперативную информацию о напряжении батареи.

Предназначение и устройство

На ИН возложены две функции – показывать, как заряжается АКБ от генератора, и информировать о величине заряда аккумулятора автомобиля. Проще всего собрать такое устройство своими руками. Схема самодельного устройства простая. Приобретя необходимые детали, легко собрать индикатор своими руками. Таким образом можно сэкономить, так как себестоимость прибора получается низкой (автор видео — AKA KASYAN).

Принцип действия

Индикатор уровня заряда имеет три светодиодные лампочки разных цветов. Обычно это: красный, зеленый и синий. Каждый из цветов имеет свою информативную нагрузку. Красный цвет означает низкую зарядку, которая является критичной. Синий цвет соответствует рабочему режиму. Зеленый цвет говорит о полной заряженности аккумулятора.

Разновидности

ИН могут быть размещены на аккумуляторных батареях в виде гидрометра или в виде отдельных устройств с информационным дисплеем. Встроенные ИН обычно размещают на . Они оснащаются поплавковым индикатором (гидрометром). Он имеет простую конструкцию.

Выпускаются заводские ИН:

  1. DC-12 В. Устройство представляет собой конструктор. С его помощью можно контролировать заряженность АКБ и работоспособность реле-регулятора.
  2. Для тех, у кого машина оборудована вторым аккумулятором, полезным устройством будет панель с индикатором от TMC. Это панель из алюминия с размещенным на ней вольтметром и переключателем с одной батареи на другую.
  3. ИН Signature Gold Style и Faria Euro Black Style – определяют уровень заряда аккумулятора. Но их стоимость слишком высокая, поэтому на них небольшой спрос.

Руководство по изготовлению устройства в домашних условиях

Самым простым и дешевым вариантом является ИН, изготовленный своими руками. Его назначение – контролировать, как работает АКБ при значении напряжения в бортовой сети в пределах 6-14В.

Чтобы прибор не работал постоянно, его следует подключать через замок зажигания. В этом случае он будет работать, когда вставлен ключ.

Для схемы понадобятся следующие детали:

  • печатная плата;
  • резисторы: 2 сопротивлением 1 кОМ, 1 сопротивлением 2 кОм и 3 сопротивлением 220 Ом;
  • транзисторы: ВС547 — 1 и ВС557 — 1;
  • стабилитроны: один на 9,1 В, один на 10 В;
  • светодиодные лампочки (RGB): красный, синий, зеленый.

У светодиодов с помощью тестера нужно определить и проверить выводы, чтобы они соответствовали цвету. Собирается прибор согласно схеме.


Компоненты примеряют на плату и вырезают ее соответствующих размеров. Желательно компоновать комплектующие так, чтобы они занимали поменьше места.

Светодиоды лучше припаивать к проводам, а не на плату, чтобы индикаторы удобнее было размещать на приборной панели.

По изготовленному устройству нельзя определить конкретные значения напряжения батареи, можно лишь ориентироваться в каких пределах оно находится:

  • красный горит, если напряжение от 6 до 11 В;
  • синий соответствует напряжению от 11 до 13 В;
  • зеленый означает полную зарядку, то есть напряжение превышает 13 В.

Индикатор напряжения аккумулятора можно устанавливать в любом месте салона. Удобнее всего размещать его в нижней части рулевой колонки: светодиоды будут хорошо видны, и не будут мешать управлению. Кроме того, прибор легко будет подключить к замку зажигания. После установки водитель сможет всегда знать, насколько заряжена батарея его автомобиля и заряжать свой аккумулятор в случае необходимости.

Делаем схему контроля зарядки аккумулятора для авто

В этой статье хочу рассказать, как сделать автоматический контроль за зарядным устройством, то есть, чтобы ЗУ само отключалось по завершению зарядки, а при снижении напряжения на АКБ опять включалось зарядное устройство.

Меня попросил мой отец сделать данный девайс, так как гараж находится далековато от дома и бегать проверять, как там себя чувствует зарядка, поставленная заряжать аккумулятор, не очень удобно. Конечно можно было купить данный девайс на Али, но после введения оплаты за доставку, плата подорожала и поэтому было решено сделать самоделку своими руками. Если кто хочет купить готовую плату, то вот ссылка..http://ali.pub/1pdfut

Поискал плату по инету в формате.lay, так и не нашёл. Решил делать всё сам. А программой Sprint Layout’ познакомился впервые. поэтому о многих функциях просто не знал (например шаблон), рисовал всё вручную. Хорошо, что плата не такая уж и большая, получилось всё нормально.Дальше перекись водорода с лимонной кислотой и травление.Все дорожки пролудил и просверлил отверстия.Дальше пайка деталей, Ну вот и готовый модуль

Схема для повторения;

Плата в формате.lay скачать…

Всего вам доброго…

xn--100—j4dau4ec0ao.xn--p1ai

Простой индикатор заряда и разряда аккумулятора

Данный индикатор заряда аккумулятора основан на регулируемом стабилитроне TL431. С помощью двух резисторов можно установить напряжение пробоя в диапазоне от 2,5 В до 36 В.

Приведу две схемы применения TL431 в качестве индикатора заряда/разряда аккумулятора. Первая схема предназначена для индикатора разрядки, а вторая для индикатора уровня заряда.

Единственная разница — это добавление n-p-n транзистора, который будет включать какой-либо сигнализатор, например, светодиод или зуммер. Ниже приведу способ вычисления сопротивления R1 и примеры на некоторые напряжения.

Схема индикатора разряда аккумулятора

Стабилитрон работает таким образом, что начинает проводить ток при превышении на нем определенного напряжения, порог которого мы можем установить с помощью делителя напряжения на резисторах R1 и R2. В случае индикатора разряда, светодиодный индикатор должен гореть, когда напряжение батареи меньше, чем необходимо. Поэтому в схему добавлен n-p-n транзистор.

Как можно видеть регулируемый стабилитрон регулирует отрицательный потенциал, поэтому в схему добавлен резистор R3, задачей которого является включение транзистора, когда TL431 выключен. Резистор этот на 11k, подобранный методом проб и ошибок. Резистор R4 служит для ограничения тока на светодиоде, его можно вычислить с помощью закона Ома.

Конечно, можно обойтись и без транзистора, но тогда светодиод будет гаснуть, когда напряжение упадет ниже выставленного уровня — схема ниже. Безусловно, такая схема не будет работать при низких напряжениях из-за отсутствия достаточного напряжения и/или тока для питания светодиода. Данная схема имеет один минус, который заключается в постоянном потреблении тока, в районе 10 мА.

Схема индикатора заряда аккумулятора

В данном случае индикатор заряда будет гореть постоянно, когда напряжение больше, чем то, которые мы определили с помощью R1 и R2. Резистор R3 служит для ограничения тока на диод.

Пришло время для того, что всем нравится больше всего — математики

Я уже говорил в начале, что напряжение пробоя может изменяться от 2,5В до 36В посредством входа «Ref». И поэтому, давайте попытаемся кое-что подсчитать. Предположим, что индикатор должен загореться при снижении напряжении аккумулятора ниже 12 вольт.

Сопротивление резистора R2 может быть любого номинала. Однако лучше всего использовать круглые числа (для облегчения подсчета), например 1к (1000 Ом), 10к (10 000 Ом).

Резистор R1 рассчитаем по следующей формуле:

R1=R2*(Vo/2,5В — 1)

Предположим, что наш резистор R2 имеет сопротивление 1к (1000 Ом).

Vo — напряжение, при котором должен произойти пробой (в нашем случае 12В).

R1=1000*((12/2,5) — 1)= 1000(4,8 — 1)= 1000*3,8=3,8к (3800 Ом).

Т. е. сопротивление резисторов для 12В выглядят следующим образом:

А здесь небольшой список для ленивых. Для резистора R2=1к, сопротивление R1 составит:

  • 5В – 1к
  • 7,2В – 1,88к
  • 9В – 2,6к
  • 12В – 3,8к
  • 15В — 5к
  • 18В – 6,2к
  • 20В – 7к
  • 24В – 8,6к

Для низкого напряжения, например, 3,6В резистор R2 должен иметь бОльшее сопротивление, например, 10к поскольку ток потребления схемы при этом будет меньше.

Источник

www.joyta.ru

Простейший индикатор уровня заряда батареи

Самое удивительное то, что схема индикатора уровня заряда аккумуляторной батареи не содержит ни транзисторов, ни микросхем, ни стабилитронов. Только светодиоды и резисторы, включенные таким образом, что обеспечивается индикация уровня подведенного напряжения.

Схема индикатора


Работа устройства основывается на начальном напряжении включения светодиода. Любой светодиод — это полупроводниковый прибор, который имеет граничную точку напряжения, только превысив которую он начинает работать (светить). В отличии от лампы накаливания, которая имеет почти линейные вольтамперные характеристики, светодиоду очень близка характеристика стабилитрона, с резкой крутизной тока при увеличении напряжения.Если включить светодиоды в цепь последовательно с резисторами, то каждый светодиод начнет включаться только после того, как напряжение превысит сумму светодиодов в цепи для каждого отрезка цепи в отдельности. Порог напряжения открытия или начала загорания светодиода может колебаться от 1,8 В до 2,6 В. Все зависит от конкретной марки.В итоге, каждый светодиод загорается только после того, как загорелся предыдущий.

Сборка индикатора уровня заряда батареи


Схему я собрал на универсальной монтажной плате, спаяв вывода элементов между собой. Для лучшего восприятия я взял светодиоды разных цветов.Такой индикатор можно сделать не только на шесть светодиодов, а к примеру, на четыре. Использовать индикатор можно не только для аккумулятора, но для создания индикации уровня на музыкальных колонках. Подключив устройство к выходу усилителя мощности, параллельно колонке. Тем самым можно отслеживать критические уровни для акустической системы.Возможно найти и другие применения этой, по истине, очень простой схемы.

sdelaysam-svoimirukami.ru

Индикатор окончания заряда аккумулятора на светодиодах

Индикатор заряда аккумулятора – нужная штука в хозяйстве любого автомобилиста. Актуальность такого устройства возрастает многократно, когда холодным зимним утром автомобиль, почему-то, отказывается заводиться. В этой ситуации стоит определиться, то ли звонить другу, что бы тот приехал и помог завестись от своей батареи, либо аккумулятор приказал долго жить, разрядившись ниже критического уровня.

Зачем следить за состоянием аккумулятора?

Автомобильный аккумулятор состоит из шести последовательно соединённых аккумуляторных батарей с напряжением питания 2,1 — 2,16В. В норме АКБ должен выдавать 13 — 13,5В. Нельзя допускать значительного разряда аккумуляторной батареи, поскольку при этом падает плотность и, соответственно, повышается температура промерзания электролита.

Чем выше износ аккумулятора, тем меньшее время он удерживает заряд. В тёплое время года это не критично, а вот зимой забытые во включённом состоянии габаритные огни к моменту возвращения способны полностью «убить» аккумулятор, превратив содержимое в кусок льда.

В таблице можно увидеть температуру промерзания электролита, в зависимости от степени заряженности агрегата.

Зависимость температуры промерзания электролита от степени заряда аккумулятора
Плотность электролита, мг/см. куб. Напряжение, В (без нагрузки) Напряжение, В (с нагрузкой 100 А) Степень заряда АКБ, % Температура замерзания электролита, гр. Цельсия
1110 11,7 8,4 0,0 -7
1130 11,8 8,7 10,0 -9
1140 11,9 8,8 20,0 -11
1150 11,9 9,0 25,0 -13
1160 12,0 9,1 30,0 -14
1180 12,1 9,5 45,0 -18
1190 12,2 9,6 50,0 -24
1210 12,3 9,9 60,0 -32
1220 12,4 10,1 70,0 -37
1230 12,4 10,2 75,0 -42
1240 12,5 10,3 80,0 -46
1270 12,7 10,8 100,0 -60

Критическим считается падение уровня заряда ниже 70%. Все автомобильные электроприборы потребляют не напряжение, а ток. Без нагрузки даже сильно разряженный аккумулятор может показывать нормальное напряжение. Но при низком уровне, во время запуска двигателя, будет отмечаться сильная «просадка» напряжения, что является тревожным сигналом.

Своевременно заметить приближающуюся катастрофу возможно лишь в том случае, когда непосредственно в салоне установлен индикатор. Если во время работы автомобиля он постоянно сигнализирует о разрядке – пора ехать на СТО.

Какие существуют индикаторы

Многие АКБ, особенно необслуживаемые, имеют встроенный датчик (гигрометр), принцип работы которого основан на измерении плотности электролита.

Этот датчик контролирует состояние электролит и ценность его показателей относительна. Не очень удобно по несколько раз залазить под капот автомобиля, что бы проконтролировать состояние электролита в разных режимах работы.

Для контроля состояния АКБ значительно удобнее электронные приборы.

Виды индикаторов заряда аккумуляторной батареи

В автомагазинах продаётся множество таких устройств, различающихся дизайном и функционалом. Фабричные приборы условно делятся на нескольких типов.

По способу подключения:

  • к разъёму прикуривателя;
  • к бортовой сети.

По способу отображения сигнала:

  • аналоговые;
  • цифровые.

Принцип работы у них одинаков, определение уровня заряда АКБ и отображение информации в наглядном виде.

Принципиальная схема индикатора

Существуют десятки разнообразных схем контроля, но результат они выдают идентичный. Подобное устройство возможно собрать самостоятельно из подручных материалов. Выбор схемы и комплектующих зависит исключительно от ваших возможностей, фантазии и ассортимента ближайшего магазина радиотоваров.

Вот схема для понимания как работает индикатор заряда аккумулятора на светодиодах. Такую портативную модель можно собрать «на коленке» за несколько минут.

Д809 – стабилитрон на 9В ограничивает напряжение на светодиодах, а на трёх резисторах собран сам дифференциатор. Такой светодиодный индикатор срабатывает на силу тока в цепи. При напряжении 14В и выше сила тока достаточно для свечения всех светодиодов, при напряжении 12-13,5В светятся VD2 и VD3, ниже 12В — VD1.

Более продвинутый вариант при минимуме деталей можно собрать на бюджетном индикаторе напряжения — микросхеме AN6884 (KA2284).

Схема led индикатора уровня заряда АКБ на компараторе напряжения

Схема работает по принципу компаратора. VD1 – стабилитрон на 7,6В, он служит в качестве эталонного источника напряжения. R1 – делитель напряжения. При первоначальной настройке он выставляется в такое положение, чтобы при напряжении 14В светились все светодиоды. Напряжение, поступающее на входы 8 и 9, сравнивается через компаратор, а результат дешифруется на 5 уровней, зажигая соответствующие светодиоды.

Контроллер зарядки АКБ

Что бы отслеживать состояние аккума во время работы зарядного устройства, делаем контроллер заряда АКБ. Схема устройства и используемые компоненты максимально доступны, в то же время обеспечивают полный контроль над процессом подзарядки батарей.

Принцип работы контроллера следующий: пока напряжение на аккумуляторе ниже напряжения заряда – горит зелёный светодиод. Как только напряжение сравняется, открывается транзистор, зажигая красный светодиод. Изменение резистора перед базой транзистора меняет уровень напряжения, необходимого для открытия транзистора.

Это универсальная схема контроля, которую можно использовать как для мощных автомобильных аккумуляторов, так и для миниатюрных литиевых батареек-аккумуляторов.

svetodiodinfo.ru

Как сделать индикатор заряда аккумулятора на светодиодах?

Успешный пуск автомобильного двигателя во многом зависит от состояния заряда аккумулятора. Регулярно проверять напряжение на клеммах с помощью мультиметра – неудобно. Гораздо практичнее воспользоваться цифровым или аналоговым индикатором, расположенным рядом с приборной панелью. Простейший индикатор заряда аккумулятора можно сделать своими руками, в котором пять светодиодов помогают отслеживать постепенный разряд либо заряд батареи.

Принципиальная схема

Рассматриваемая принципиальная схема индикатора уровня заряда представляет собой простейшее устройство, отображающее уровень заряда аккумулятора (АКБ) на 12 вольт.
Её ключевым элементом является микросхема LM339, в корпусе которой собрано 4 однотипных операционных усилителя (компаратора). Общий вид LM339 и назначение выводов показан на рисунке.
Прямые и инверсные входы компараторов подключены через резистивные делители. В качестве нагрузки используются индикаторные светодиоды 5 мм.

Диод VD1 служит защитой микросхемы от случайной смены полярности. Стабилитрон VD2 задаёт опорное напряжение, которое является эталоном для будущих измерений. Резисторы R1-R4 ограничивают ток через светодиоды.

Принцип работы

Работает схема индикатора заряда аккумулятора на светодиодах следующим образом. Застабилизированное с помощью резистора R7 и стабилитрона VD2 напряжение 6,2 вольт поступает на резистивный делитель, собранный из R8-R12. Как видно из схемы между каждой парой этих резисторов формируются опорные напряжения разного уровня, которые поступают на прямые входы компараторов. В свою очередь, инверсные входы объединены между собой и через резисторы R5 и R6 подключены к клеммам аккумуляторной батарее (АКБ).

В процессе заряда (разряда) аккумулятора постепенно изменяется напряжение на инверсных входах, что приводит к поочередному переключению компараторов. Рассмотрим работу операционного усилителя OP1, который отвечает за индикацию максимального уровня заряда АКБ. Зададим условие, если заряженный аккумулятор имеет напряжение 13,5 В, то последний светодиод начинает гореть. Пороговое напряжение на его прямом входе, при котором засветится этот светодиод, рассчитаем по формуле:UOP1+ = UСТ VD2 – UR8,UСТ VD2 =UR8+ UR9+ UR10+ UR11+ UR12 = I*(R8+R9+R10+R11+R12)I= UСТ VD2 /(R8+R9+R10+R11+R12) = 6,2/(5100+1000+1000+1000+10000) = 0,34 мА,UR8 = I*R8=0,34 мА*5,1 кОм=1,7 ВUOP1+ = 6,2-1,7 = 4,5 В

Это означает, что при достижении на инверсном входе потенциала величиной более 4,5 вольт компаратор OP1 переключится и на его выходе появится низкий уровень напряжения, а светодиод засветится. По указанным формулам можно рассчитать потенциал на прямых входах каждого операционного усилителя. Потенциал на инверсных входах находят из равенства: UOP1- = I*R5 = UБАТ – I*R6.

Печатная плата и детали сборки

Печатная плата изготавливается из одностороннего фольгированного текстолита размером 40 на 37 мм, которую можно скачать здесь. Она предназначена для монтажа DIP элементов следующего типа:

  • резисторы МЛТ-0,125 Вт с точностью не менее 5% (ряд Е24)R1, R2, R3, R4, R7, R9, R10, R11– 1 кОм,R5, R8 – 5,1 кОм,R6, R12 – 10 кОм;
  • диод VD1 любой маломощный с обратным напряжением не ниже 30 В, например, 1N4148;
  • стабилитрон VD2 маломощный с напряжением стабилизации 6,2 В. Например, КС162А, BZX55C6V2;
  • светодиоды LED1-LED5 – индикаторные типа АЛ307 любого цвета свечения.

Данную схему можно использовать не только для контроля напряжения на 12 вольтовых аккумуляторах. Пересчитав номиналы резисторов, расположенных во входных цепях, получаем светодиодный индикатор на любое желаемое напряжение. Для этого следует задаться пороговыми напряжениями, при которых будут включаться светодиоды, а затем воспользоваться формулами для пересчёта сопротивлений, приведенные выше.

Читайте так же

ledjournal.info

Схемы индикаторов разряда li-ion аккумуляторов для определения уровня заряда литиевой батареи (например, 18650)

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить нагрузку либо использовать контроллеры разряда.

Вариант №1

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный — чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом — переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:
Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше — тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко — между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации — 3 мА, при выключенном светодиоде — 0.3 мА.

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 — разрешено, 0 — запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector»ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD, TCM809TENB713, MCP103T-315E/TT, CAT809TTBI-G;
  • на 2.93V: MCP102T-300E/TT, TPS3809K33DBVRG4, TPS3825-33DBVT, CAT811STBI-T3;
  • серия MN1380 (или 1381, 1382 — они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы — MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Также можно взять советский аналог — КР1171СПхх:

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Неоспоримые достоинства схем на мониторах напряжения — чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую «моргалку» на двух биполярных транзисторах.

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза — коротка вспышка — опять пауза). Это позволяет снизить потребляемый ток до смешных значений — в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом — всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы — инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 — 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914:

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на «землю», можно перевести ее в режим «точка». В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения, т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339.

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке.

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют контроллерами заряда-разряда), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Внимание!!! Попадаются платы, включающие защиту от переразряда при недопустимо низком напряжении (2.5В и ниже). Поэтому из всех имеющихся у вас плат необходимо отобрать только те экземпляры, которые срабатывают при правильном напряжении (3.0-3.2V).

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 — это два миллиомных полевика, собранных в одном корпусе.

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Пожалуйста, учитывайте тот факт, что схемы индикаторов разряда сами потребляют энергию аккумулятора! Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, предотвращающие глубокий разряд.

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот — в качестве индикатора заряда.

electro-shema.ru

Индикатор для проверки и контроля уровня зарядки АКБ

Каким образом можно сделать не сложный индикатор напряжения для АКБ на 12V, который эксплуатируют в автомобилях, скутерах, а также прочей технике. Поняв принцип действия схемы индикатора и назначение его деталей, схему можно будет подстроить практически под любой вид заряжаемых батарей, меняя номиналы у соответствующих электронных компонентов.

Не секрет что необходимо контролировать разряд аккумуляторов, поскольку у них существует пороговое напряжение. При разрядке ниже порогового напряжения в аккумуляторе произойдет потеря значительной части его емкости, в результате он не сможет выдать заявленный ток, а покупка нового — удовольствие не из дешевых.

Принципиальная схема с номиналами, что в ней указаны, даст приблизительную информацию о напряжении на выводах АКБ с помощью трех светодиодов. Светодиоды могут быть любых цветов, но рекомендовано использовать такие, как показаны на фото, они дадут более четкое ассоциированное представление о состоянии аккумулятора (фото 3).

Если горит светодиод зеленого цвета — напряжение аккумулятора в приделах нормы (от 11,6 до 13 Вольт). Горит белый – напряжение 13 Вольт и более. Когда горит красный светодиод – необходимо отключать нагрузку, АКБ нуждается в подзарядке током в 0,1А., поскольку напряжение аккумулятора ниже 11,5 В., батарея разряжена более чем на 80%.

Внимание, указаны приблизительные значения, могут быть отличия, все зависит от характеристик компонентов используемых в схеме.

У светодиодов, используемых в схеме, потребляемый ток очень мал, менее15(mA). Те, кого это не устраивает, могут поставить в разрыв тактовую кнопку, в этом случае проверка АКБ будет произведена путем включения кнопки, и аналитики цвета загоревшегося светодиода.Плату необходимо защитить от воды и укрепить на аккумуляторной батарее. Получился примитивный вольтметр с постоянным источником энергии, состояние АКБ можно проверить в любой момент.

Плата очень маленьких размеров — 2,2 см. Использована микросхема Im358 в DIP-8 корпусе, точность прецизионных резисторов 1 %, за исключением ограничителей силы тока. Можно устанавливать любые светодиоды (3 mm, 5 mm) с силой тока 20 mA.

Контроль был произведен при помощи блока питания лабораторного на стабилизаторе линейном LM 317, срабатывание устройства четкое, возможно свечение двух светодиодов одновременно. Для точной настройки рекомендовано применять резисторы для подстройки (фото 2), с их помощью максимально точно можно отрегулировать напряжения, при которых загорятся светодиоды.Работа индикаторной схемы уровня зарядки аккумуляторной батареи. Главная деталь микросхема LM393 либо LM358 (аналоги КР1401СА3 / КФ1401СА3), в которой два компаратора (фото 5).

Как видим из (фото 5) есть восемь ножек, четыре и восемь – питание, остальные – входы и выходы компаратора. Разберем принцип работы одного из них, выводов три, входов два (прямой (не инвертирующий) «+» и инвертирующий «-») выход один. Напряжение опорное поступает на инвертирующий «+» (с ним сравнивается подаваемое на инвертирующий «-» вход).Если на прямом больше напряжение, чем на входе инвертирующем, (-) питания будет на выходе, в том случае когда наоборот (напряжения на инвертирующем большее, чем на прямом) на выходе (+) питания.

В цепь стабилитрон включен наоборот (анод к (-) катод к (+)), у него есть как говорят ток рабочий, при нем он будет хорошо стабилизировать, смотрим на графике (фото 7).

В зависимости от напряжения и мощности стабилитронов отличается ток, в документации указан ток минимума (Iz) и ток максимума (Izm) стабилизации. Необходимо выбрать нужный в указанном промежутке, хотя будет достаточно и минимального, резистор дает возможность достичь необходимого значения тока.

Ознакомимся с расчетом: полное напряжение равно 10 В., стабилитрон рассчитан на 5,6 В. , имеем 10-5,6=4,4 В. Согласно документации min Iст=5 mA. В результате имеем R= 4,4 В. / 0,005 А. = 880 Ом. Возможны не большие отклонения в сопротивлении резистора, это не существенно, основным условием является ток не менее Iz.

Разделитель напряжения включает в себя три резистора 100 кОм, 10 кОм,82 кОм. Определенное напряжение «оседает» на данных пассивных компонентах, далее оно подается на вход инвертирующий.

От уровня зарядки АКБ зависит напряжение. Схема работает следующим образом, ZD1 5V6 стабилитрон который подает напряжение в 5,6 В. к прямым входам (напряжение опорное сравнивается с напряжением на входах не прямых).

В случае сильного разряда батареи, к не прямому входу первого компаратора будет подано напряжение меньше, чем на вход прямой. К входу компаратора второго тоже будет подаваться напряжение большее.

В итоге первый даст «-» на выходе, второй же «+», загорится светодиод красного цвета.

Светодиод зеленый будет светить, в случае если первый компаратор выдаст «+», а второй «-». Белый светодиод зажжется, если два компаратора подадут на выходе «+», по этой же причине возможно одновременное свечение зеленого и белого светодиодов.

Индикатор заряда аккумулятора своими руками на двух светодиодах — правильно обслуживаемые аккумуляторы будут работать у вас хорошо и долю. Обслуживание подразумевает, в частности, регулярный контроль напряжения аккумулятора. Изображенная на Рисунке 1 схема подходит для большинства типов аккумуляторов. Она содержит опорный светодиод LED REF , работающий при постоянном токе 1 мА и обеспечивающий эталонный световой поток постоянной интенсивности, не зависящей от напряжения аккумулятора.

Это постоянство обеспечивается резистором R1 включенным последовательно со светодиодом. Поэтому, даже если напряжение полностью заряженного аккумулятора упадет до полного разряда, ток через него изменится всего на 10%. Таким образом, можно считать, что интенсивность излучения остается постоянной в диапазоне напряжений аккумулятора, соответствующем переходу от состояния полного заряда до полного разряда.

Световой поток измерительного светодиода LED VAR меняется в соответствии с изменениями напряжения аккумулятора. Расположив светодиоды поблизости друг от друга, вы получите возможность легко сравнивать яркость их свечения, и, таким образом, определять статус аккумулятора. Используйте светодиоды с диффузно-рассеивающей линзой, поскольку приборы с прозрачной линзой раздражают ваши глаза. Обеспечьте достаточную оптическую изоляцию светодиодов, чтобы свет одного светодиода не попадал на линзу другого.

Работа измерительного светодиода

Измерительный светодиод работает при токе, меняющемся от 10 мА при полностью заряженном аккумуляторе до значений менее 1 мА при полном разряде. Стабилитрон D z с последовательным резистором R 2 необходимы для того, чтобы ток имел резкую зависимость от напряжения батареи. Сумма напряжения стабилитрона и падения напряжения на светодиоде должна быть чуть меньше, чем самое низкое напряжение аккумулятора. Это напряжение падает на резисторе R 2 . Изменения напряжения батареи вызывают большие изменения тока резистора R 2 . Если напряжение равно примерно 1 В, через светодиод LED VAR течет ток 10 мА, и он светится намного ярче, чем LED REF . Если напряжение ниже 0.1 В, интенсивность свечения LED VAR var будет меньше, чем у LED REF . показывая, что аккумулятор разряжен.

Индикатор заряда аккумулятора своими руками — непосредственно после окончания зарядки аккумулятора напряжение на нем превышает 13 В. Для схемы это безопасно, поскольку ток ограничен значением 10 мА. Если светодиоды горят ярко, быстро отпустите кнопку S 1 1(чтобы не допустить их повреждения (Рисунок 2). Хотя в примере на Рисунке 2 индикатор заряда подключен к 12-вольтовой свинцово-кислотной аккумуляторной батарее, вы без труда можете адаптировать эту схему к другим типам аккумуляторов. Кроме того, вы можете использовать ее для контроля напряжения.

Два зеленых светодиода индуцируют состояние, когда заряд батареи превышает 60%. Набор красных светодиодов показывает, что заряд аккумулятора упал ниже 20%. Светодиоды LED REFG и LED REFR подключены через резисторы R 1 и R 2 сопротивлением 10 кОм. Последовательное измерительными светодиодами, яркость свечения которых изменяется, включены стабилитроны и резисторы R 3 и R 4 сопротивлением 100 Ом. Диоды D 1 , D 2 и D 3 задают требуемое напряжение ограничения. Зависимость яркости свечения светодиодов от состояния аккумулятора показана в Табпице1.

Для расчета интенсивности свечения зеленого измерительного светодиода можно использовать следующее выражение:

V BATT = 10 G x 100 +V D1 +V D2 +V LEDG +V DZ1

V BATT =10 3 x 100+0.6+0.6+1.85+9.1=1225B.

Падение напряжения на используемых светодиодах при прямом токе 1 мА равно 1.85 В. Если характеристики светодиодов отличаются, сопротивления резисторов необходимо пересчитать. При этом напряжении светодиоды светятся одинаково, что соответствует заряду аккумулятора на 60%. Описание свинцово-кислотных аккумуляторов можно найти в. Для расчета интенсивности свечения красного измерительного светодиода можно использовать следующее выражение:

V BATT = I R x IOO+V D3 +V LEDR +V ZD2

При токе зеленого светодиода 1 мА

V BATT =10 -3 x 100 +0. 6 + 1.85 + 9.1 =11.65 В.

Поскольку при таком напряжении оба красных светодиода светятся одинаково, это означает, что аккумулятор заряжен на 20%. Светодиод LED VARG varg не горит. Рисунок 3 показывает, что оба измерительных светодиода светятся ярче опорных, сообщая о том, что аккумулятор заряжен на 100%

С помощью двух резисторов можно установить напряжение пробоя в диапазоне от 2,5 В до 36 В.

Приведу две схемы применения TL431 в качестве индикатора заряда/разряда аккумулятора. Первая схема предназначена для индикатора разрядки, а вторая для индикатора уровня заряда.

Единственная разница — это добавление n-p-n транзистора, который будет включать какой-либо сигнализатор, например, светодиод или зуммер. Ниже приведу способ вычисления сопротивления R1 и примеры на некоторые напряжения.

Стабилитрон работает таким образом, что начинает проводить ток при превышении на нем определенного напряжения, порог которого мы можем установить с помощью R1 и R2. В случае индикатора разряда, светодиодный индикатор должен гореть, когда напряжение батареи меньше, чем необходимо. Поэтому в схему добавлен n-p-n транзистор.

Как можно видеть регулируемый стабилитрон регулирует отрицательный потенциал, поэтому в схему добавлен резистор R3, задачей которого является включение транзистора, когда TL431 выключен. Резистор этот на 11k, подобранный методом проб и ошибок. Резистор R4 служит для ограничения тока на светодиоде, его можно вычислить с помощью .

Конечно, можно обойтись и без транзистора, но тогда светодиод будет гаснуть, когда напряжение упадет ниже выставленного уровня — схема ниже. Безусловно, такая схема не будет работать при низких напряжениях из-за отсутствия достаточного напряжения и/или тока для питания светодиода. Данная схема имеет один минус, который заключается в постоянном потреблении тока, в районе 10 мА.

В данном случае индикатор заряда будет гореть постоянно, когда напряжение больше, чем то, которые мы определили с помощью R1 и R2. Резистор R3 служит для ограничения тока на диод.

Пришло время для того, что всем нравится больше всего — математики

Я уже говорил в начале, что напряжение пробоя может изменяться от 2,5В до 36В посредством входа «Ref». И поэтому, давайте попытаемся кое-что подсчитать. Предположим, что индикатор должен загореться при снижении напряжении аккумулятора ниже 12 вольт.

Сопротивление резистора R2 может быть любого номинала. Однако лучше всего использовать круглые числа (для облегчения подсчета), например 1к (1000 Ом), 10к (10 000 Ом).

Резистор R1 рассчитаем по следующей формуле:

R1=R2*(Vo/2,5В — 1)

Предположим, что наш резистор R2 имеет сопротивление 1к (1000 Ом).

Vo — напряжение, при котором должен произойти пробой (в нашем случае 12В).

R1=1000*((12/2,5) — 1)= 1000(4,8 — 1)= 1000*3,8=3,8к (3800 Ом).

Т. е. сопротивление резисторов для 12В выглядят следующим образом:

А здесь небольшой список для ленивых. Для резистора R2=1к, сопротивление R1 составит:

  • 5В – 1к
  • 7,2В – 1,88к
  • 9В – 2,6к
  • 12В – 3,8к
  • 15В — 5к
  • 18В – 6,2к
  • 20В – 7к
  • 24В – 8,6к

Для низкого напряжения, например, 3,6В резистор R2 должен иметь бОльшее сопротивление, например, 10к поскольку ток потребления схемы при этом будет меньше.

Успешный пуск автомобильного двигателя во многом зависит от состояния заряда аккумулятора. Регулярно проверять напряжение на клеммах с помощью мультиметра – неудобно. Гораздо практичнее воспользоваться цифровым или аналоговым индикатором, расположенным рядом с приборной панелью. Простейший индикатор заряда аккумулятора можно сделать своими руками, в котором пять светодиодов помогают отслеживать постепенный разряд либо заряд батареи.

Принципиальная схема

Рассматриваемая принципиальная схема индикатора уровня заряда представляет собой простейшее устройство, отображающее уровень заряда аккумулятора (АКБ) на 12 вольт. Её ключевым элементом является микросхема LM339, в корпусе которой собрано 4 однотипных операционных усилителя (компаратора). Общий вид LM339 и назначение выводов показан на рисунке. Прямые и инверсные входы компараторов подключены через резистивные делители. В качестве нагрузки используются индикаторные светодиоды 5 мм.

Диод VD1 служит защитой микросхемы от случайной смены полярности. Стабилитрон VD2 задаёт опорное напряжение, которое является эталоном для будущих измерений. Резисторы R1-R4 ограничивают ток через светодиоды.

Принцип работы

Работает схема индикатора заряда аккумулятора на светодиодах следующим образом. Застабилизированное с помощью резистора R7 и стабилитрона VD2 напряжение 6,2 вольт поступает на резистивный делитель, собранный из R8-R12. Как видно из схемы между каждой парой этих резисторов формируются опорные напряжения разного уровня, которые поступают на прямые входы компараторов. В свою очередь, инверсные входы объединены между собой и через резисторы R5 и R6 подключены к клеммам аккумуляторной батарее (АКБ).

В процессе заряда (разряда) аккумулятора постепенно изменяется напряжение на инверсных входах, что приводит к поочередному переключению компараторов. Рассмотрим работу операционного усилителя OP1, который отвечает за индикацию максимального уровня заряда АКБ. Зададим условие, если заряженный аккумулятор имеет напряжение 13,5 В, то последний светодиод начинает гореть. Пороговое напряжение на его прямом входе, при котором засветится этот светодиод, рассчитаем по формуле:
U OP1+ = U СТ VD2 – U R8 ,
U СТ VD2 =U R8 + U R9 + U R10 + U R11 + U R12 = I*(R8+R9+R10+R11+R12)
I= U СТ VD2 /(R8+R9+R10+R11+R12) = 6,2/(5100+1000+1000+1000+10000) = 0,34 мА,
U R8 = I*R8=0,34 мА*5,1 кОм=1,7 В
U OP1+ = 6,2-1,7 = 4,5 В

Это означает, что при достижении на инверсном входе потенциала величиной более 4,5 вольт компаратор OP1 переключится и на его выходе появится низкий уровень напряжения, а светодиод засветится. По указанным формулам можно рассчитать потенциал на прямых входах каждого операционного усилителя. Потенциал на инверсных входах находят из равенства: U OP1- = I*R5 = U БАТ – I*R6.

Печатная плата и детали сборки

Печатная плата изготавливается из одностороннего фольгированного текстолита размером 40 на 37 мм, которую можно скачать . Она предназначена для монтажа DIP элементов следующего типа:

  • резисторы МЛТ-0,125 Вт с точностью не менее 5% (ряд Е24)
    R1, R2, R3, R4, R7, R9, R10, R11– 1 кОм,
    R5, R8 – 5,1 кОм,
    R6, R12 – 10 кОм;
  • диод VD1 любой маломощный с обратным напряжением не ниже 30 В, например, 1N4148;
  • стабилитрон VD2 маломощный с напряжением стабилизации 6,2 В. Например, КС162А, BZX55C6V2;
  • светодиоды LED1-LED5 – индикаторные типа

Поделись статьей:

Похожие статьи

Контроль заряда аккумулятора своими руками. Схема индикатора заряда аккумулятора на светодиодах

Индикатор заряда аккумулятора – нужная штука в хозяйстве любого автомобилиста. Актуальность такого устройства возрастает многократно, когда холодным зимним утром автомобиль, почему-то, отказывается заводиться. В этой ситуации стоит определиться, то ли звонить другу, что бы тот приехал и помог завестись от своей батареи, либо аккумулятор приказал долго жить, разрядившись ниже критического уровня.

Зачем следить за состоянием аккумулятора?

Автомобильный аккумулятор состоит из шести последовательно соединённых аккумуляторных батарей с напряжением питания 2,1 — 2,16В. В норме АКБ должен выдавать 13 — 13,5В. Нельзя допускать значительного разряда аккумуляторной батареи, поскольку при этом падает плотность и, соответственно, повышается температура промерзания электролита.

Чем выше износ аккумулятора, тем меньшее время он удерживает заряд. В тёплое время года это не критично, а вот зимой забытые во включённом состоянии габаритные огни к моменту возвращения способны полностью «убить» аккумулятор, превратив содержимое в кусок льда.

В таблице можно увидеть температуру промерзания электролита, в зависимости от степени заряженности агрегата.

Зависимость температуры промерзания электролита от степени заряда аккумулятора
Плотность электролита, мг/см. куб. Напряжение, В (без нагрузки) Напряжение, В (с нагрузкой 100 А) Степень заряда АКБ, % Температура замерзания электролита, гр. Цельсия
1110 11,7 8,4 0,0 -7
1130 11,8 8,7 10,0 -9
1140 11,9 8,8 20,0 -11
1150 11,9 9,0 25,0 -13
1160 12,0 9,1 30,0 -14
1180 12,1 9,5 45,0 -18
1190 12,2 9,6 50,0 -24
1210 12,3 9,9 60,0 -32
1220 12,4 10,1 70,0 -37
1230 12,4 10,2 75,0 -42
1240 12,5 10,3 80,0 -46
1270 12,7 10,8 100,0 -60

Критическим считается падение уровня заряда ниже 70%. Все автомобильные электроприборы потребляют не напряжение, а ток. Без нагрузки даже сильно разряженный аккумулятор может показывать нормальное напряжение. Но при низком уровне, во время запуска двигателя, будет отмечаться сильная «просадка» напряжения, что является тревожным сигналом.

Своевременно заметить приближающуюся катастрофу возможно лишь в том случае, когда непосредственно в салоне установлен индикатор. Если во время работы автомобиля он постоянно сигнализирует о разрядке – пора ехать на СТО.

Какие существуют индикаторы

Многие АКБ, особенно необслуживаемые, имеют встроенный датчик (гигрометр), принцип работы которого основан на измерении плотности электролита.

Этот датчик контролирует состояние электролит и ценность его показателей относительна. Не очень удобно по несколько раз залазить под капот автомобиля, что бы проконтролировать состояние электролита в разных режимах работы.

Для контроля состояния АКБ значительно удобнее электронные приборы.

Виды индикаторов заряда аккумуляторной батареи

В автомагазинах продаётся множество таких устройств, различающихся дизайном и функционалом. Фабричные приборы условно делятся на нескольких типов.

По способу подключения:

  • к разъёму прикуривателя;
  • к бортовой сети.

По способу отображения сигнала:

  • аналоговые;
  • цифровые.

Принцип работы у них одинаков, определение уровня заряда АКБ и отображение информации в наглядном виде.


Принципиальная схема индикатора

Как сделать индикатор заряда аккумулятора на светодиодах?

Существуют десятки разнообразных схем контроля, но результат они выдают идентичный. Подобное устройство возможно собрать самостоятельно из подручных материалов. Выбор схемы и комплектующих зависит исключительно от ваших возможностей, фантазии и ассортимента ближайшего магазина радиотоваров.

Вот схема для понимания как работает индикатор заряда аккумулятора на светодиодах. Такую портативную модель можно собрать «на коленке» за несколько минут.

Д809 – стабилитрон на 9В ограничивает напряжение на светодиодах, а на трёх резисторах собран сам дифференциатор. Такой светодиодный индикатор срабатывает на силу тока в цепи. При напряжении 14В и выше сила тока достаточно для свечения всех светодиодов, при напряжении 12-13,5В светятся VD2 и VD3 , ниже 12В — VD1 .

Более продвинутый вариант при минимуме деталей можно собрать на бюджетном индикаторе напряжения — микросхеме AN6884 (KA2284) .

Схема led индикатора уровня заряда АКБ на компараторе напряжения

Схема работает по принципу компаратора. VD1 – стабилитрон на 7,6В, он служит в качестве эталонного источника напряжения. R1 – делитель напряжения. При первоначальной настройке он выставляется в такое положение, чтобы при напряжении 14В светились все светодиоды. Напряжение, поступающее на входы 8 и 9, сравнивается через компаратор, а результат дешифруется на 5 уровней, зажигая соответствующие светодиоды.

Контроллер зарядки АКБ

Что бы отслеживать состояние аккума во время работы зарядного устройства, делаем контроллер заряда АКБ. Схема устройства и используемые компоненты максимально доступны, в то же время обеспечивают полный контроль над процессом подзарядки батарей.

Принцип работы контроллера следующий: пока напряжение на аккумуляторе ниже напряжения заряда – горит зелёный светодиод. Как только напряжение сравняется, открывается транзистор, зажигая красный светодиод. Изменение резистора перед базой транзистора меняет уровень напряжения, необходимого для открытия транзистора.

Это универсальная схема контроля, которую можно использовать как для мощных автомобильных аккумуляторов, так и для миниатюрных литиевых батареек-аккумуляторов.

Удивительно, что абсолютное большинство автомобилей не имеет датчика зарядки аккумулятора. Как определить зимой, что АКБ стоит подзарядить за ночь, чтобы утром не идти на работу пешком? Или если машину завести не получается – как не загонять безсмысленно батарею до полного истощения?

Используя эту схему вы сможете легко собрать своими руками датчик зарядки аккумулятора. Притом себестоимость, как видите, будет ниже чем у любого китайского аналога, а качество намного лучше! Запитывать модель имеет смысл от замка зажигания, дабы диод светился только, когда ключ вставлен.

Цвет светодиода будет обозначать степень зарядки. Красный – от 6 Вольт до 11, синий от 11 до 13, зелёный боле 13

В комплект входят следующие детали:

Транзисторы
BC547 – 1шт
BC557 – 1шт
Резисторы
1 кОм – 2шт
220 Ом – 3 шт
2,2 кОм – 1 шт
Диоды (стабилитроны)
10 v – 1шт
9,1 v – 1шт
Светодиоды
RGB светодиод – 2шт

Светодиод проверяем тестером, заодно проверяем какой вывод соответствует каждому цвету:

После примеряем детали к печатной плате и вырезаем нужный нам кусок:

Затем приклеиваем светодиод к плате и начинаем монтаж элементов. Важный момент! Так как этот модуль вы будете использовать в автомобиле, то целесообразно не припаивать светодиод к плате, а вывести его на проводах. Так, чтобы вы могли установить его отдельно на приборной панели. Мы же установим его на плату – для простоты и наглядности.

Схема транзисторов(на всякий случай):

Вот что получилось:

Схема отлично работает, тестировалась полчаса, прогоном напряжения от минимального до максимального. В качестве источника питания использовался блок питания от ноутбука с выходным напряжением 19V. Регулятор напряжения – LM 317 и подстроечный резистор 10 кОм. На видео есть небольшой сбой срабатывания на переходе красный – синий и синий – зеленый, это связано со слишком быстрым падением/приростом напряжения (тестер не успевал фиксировать изменения вольтажа), на аккумуляторе все это будет срабатывать плавнее и точнее.

При разряженном аккумуляторе завести автомобиль довольно проблематично. Чтобы не было такого неприятного «сюрприза», достаточно просто время от времени пользоваться вольтметром. Однако не все автомобилисты и не всегда это делают, ведь гораздо удобнее иметь некое устройство, показывающее, на сколько еще хватит зарядки аккумулятора.

Какие бывают индикаторы

Аккумуляторная батарея (или АКБ) представляет собой шесть связанных между собой элементов, напряжение в каждом в норме должно составлять около 2,15 вольт, т. е. общее напряжение аккумулятора подходит к 13,5 вольтам. Если заряд падает ниже критических значений (примерно 9,5 вольт), это может привести к глубокой разрядке аккумулятора и, как следствие, полному выходу его из строя.

Современные технологии «идут навстречу» автомобилистам и максимально облегчают им жизнь. Например, во многих автомобилях уже имеются бортовые компьютеры, которые также следят и за уровнем заряженности аккумулятора.

Однако, пока такая опция доступна далеко не всем, приходится использовать другие виды индикаторов этого важного показателя. Так, можно встретить отдельные кристаллические дисплеи на приборной панели, бывают индикаторы-гигрометры, также можно (при наличии соответствующих навыков) изготовить индикатор заряда аккумулятора самостоятельно. Многие сигнальные устройства такого типа необходимо подключать в бортовую сеть автомобиля, чтобы они могли отслеживать уровень зарядки АКБ.

Встроенный индикатор заряда

Самый часто встречающийся вариант индикатора на необслуживаемых аккумуляторных батареях – гидрометр. Он состоит из глазка, световода, ножки и поплавка (поэтому его называют поплавковым). Ножка со световодом находятся внутри аккумулятора, на ножке закреплен поплавок, с помощью которого определяется уровень электролита в батарее. На корпусе аккумулятора находится глазок, который показывает три основных состояния АКБ:

  • зеленый шарик-поплавок просвечивает в смотровой глазок, это значит, что батарея заряжена больше, чем наполовину;
  • глазок остается черным (это просвечивает индикационная трубка), это сигнал о том, что поплавок полностью погрузился в электролитическую жидкость, следовательно, плотность ее понижена, а аккумулятор требуется заряжать;

Дополнительная информация. В некоторых моделях гидрометров имеется поплавок красного цвета, который видно в «окошке» при понижении заряда и плотности электролита.

  • если в «глазке» видна только поверхность жидкости внутри аккумулятора, значит, он «хочет пить» – уровень электролита критический, срочно необходимо долить дистиллированной воды (а сделать это довольно сложно, поскольку такие аккумуляторы необслуживаемые).

Обратите внимание! Хотя встроенный индикатор заряда батареи такого типа и позволяет мгновенно определить имеющуюся проблему (или ее отсутствие), но, судя по некоторым отзывам пользователей, показания таких приборов довольно часто бывают ложными, а сами они быстро ломаются.

Как правило, это объясняется следующими причинами:

  • данные поступают только из одного элемента батареи из шести, а ведь уровень жидкости в них может значительно разниться;
  • детали индикатора, выполненные из пластика, не выдерживают температурного режима работы аккумулятора, поэтому данные поступают неверные;
  • индикаторы-поплавки никак не определяют температуру электролитической жидкости, а ведь от нее зависит и плотность, поэтому электролит пониженной температуры покажет нормальный уровень плотности, в то время как она тоже будет низкой.

Заводские индикаторы в виде панелей

В специализированных магазинах можно найти множество разных контролирующих устройств для аккумулятора, дизайн и функции каждый автовладелец может подобрать под себя. Разнятся индикаторы и по способу подключения: к прикуривателю или в бортовую сеть машины. Однако, основная задача у всех устройств одна – определить, насколько заряжен АКБ, и просигнализировать об этом.

Существуют индикаторы, которые надо собрать самостоятельно, как конструктор. Как пример – DC-12 В. Он дает возможность контролировать заряд батареи, а также работу регулирующего реле.

Такое небольшое контрольное устройство работает в диапазоне от 2,5 до 18 вольт, электричества потребляет совсем мало – до 20 миллиампер, размеры индикаторного окошка – 4,3 на 2 см.

Если ставится второй аккумулятор в автомобиль, можно воспользоваться индикатором от ТМС, – это небольшая панель из промышленного алюминия на светодиодах со встроенным вольтметром и переключателем между смежными АКБ.

Из дорогих моделей (причем необоснованно дорогих, по цене нового аккумулятора) можно выделить контроллеры напряжения американской фирмы «Faria Euro Black Style». Цвет корпуса, как правило, черный, диаметр индикационного окошка – 5,3 см, экран подсвечивается белым цветом. Для питания необходимо 12 вольт.

Как собрать индикатор заряда самостоятельно

Если автовладелец дружит с паяльником, он может собрать анализатор своими руками, схем сборки можно найти множество. С помощью одной, самой простой, можно собрать индикатор заряда, напоминающий вышеописанный DC-12 В. Действует он по тем же принципам: включается в бортовую сеть и определяет напряжение АКБ в пределах 6-14 вольт.

Для сборки устройства будут нужны транзисторы, резисторы, стабилитроны, печатная плата и по одному красному, синему и зеленому светодиоду. После сборки, согласно схеме, плата вставляется на приборную панель, а концы светодиодов проводятся в удобное для обзора место. При этом полностью заряженный аккумулятор будет индицироваться зеленым цветом, синий – при нормальном заряде (от 11 до 13 вольт), а если батарея близка к разрядке, загорится красный светодиод.

Неприятно, когда автомобиль не может завестись просто от того, что аккумулятор разрядился в самый неподходящий момент. Индикатор напряжения, купленный в магазине или спаянный самостоятельно, поможет избежать неприятных «сюрпризов» и заранее предупредит о том, что АКБ требует подзарядки.

Видео


nik34 прислал:


Индикатор заряда на основе старой платы защиты от Li-Ion аккумулятора.

Легкое решение для индикации окончания заряда LiIon или LiPo аккумулятора от солнечной батареи можно сделать из… любой дохлой LiIon или LiPo батареи:)

В них используется шестиногий контроллер заряда на специальзированной микрухе DW01 (JW01, JW11, K091, G2J, G3J, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.

Вот последний эффект и можно использовать. Для моих целей вполне подойдет светодиод, который будет загораться при окончании заряда.

Вот типовая схема включения этой микрухи и схема, в которую надо ее переделать. Вся переделка заключается в отпаивании мосфетов и подпайке светодиода.

Светодиод возьмите красный, у него напряжение зажигания меньше, чем у других цветов.

Теперь надо подключить эту схему после традиционного диода, который так же традиционно крадет от 0,2В (шоттки) до 0,6В от солнечной батареи, но зато он не дает аккумулятору разряжаться на солнечную панель после наступления темноты. Так вот, если подключить схему до диода, то получим индикацию недозаряда аккумулятора на 0,6В, что достаточно много.

Таким образом алгоритм работы будет следующий: наша СБ при освещении дает напругу на липольку и до тех пор, пока не сработает родной контроллер заряда на аккумуляторе при напряжении около 4,3В. Как только срабатывает отсечка и аккумулятор отключается, на диоде подскакивает напряжение выше 4,3В и наша схема в свою очередь пытается защитить свою батарею, которой уже нет и отдавая команду так же несуществующему мосфету зажигает светодиод.

Убрав со света СБ напряжение на ней упадет и светодиод отключится, прекратив кушать драгоценные миллиамперы. Это же решение можно использовать и с другими зарядниками, не обязательно зацикливаться на солнечной батарее:)
Оформить можно как угодно, благо платка контролера миниатюрна, не более 3-4 мм шириной, вот пример:



Наша волшебная микруха слева, два мосфета в одном корпусе справа, их надо убрать и запаять на плату в соответствии со схемой светодиод.

Вот и все, пользуйтесь, благо это просто.

С помощью двух резисторов можно установить напряжение пробоя в диапазоне от 2,5 В до 36 В.

Приведу две схемы применения TL431 в качестве индикатора заряда/разряда аккумулятора. Первая схема предназначена для индикатора разрядки, а вторая для индикатора уровня заряда.

Единственная разница — это добавление n-p-n транзистора, который будет включать какой-либо сигнализатор, например, светодиод или зуммер. Ниже приведу способ вычисления сопротивления R1 и примеры на некоторые напряжения.

Стабилитрон работает таким образом, что начинает проводить ток при превышении на нем определенного напряжения, порог которого мы можем установить с помощью R1 и R2. В случае индикатора разряда, светодиодный индикатор должен гореть, когда напряжение батареи меньше, чем необходимо. Поэтому в схему добавлен n-p-n транзистор.

Как можно видеть регулируемый стабилитрон регулирует отрицательный потенциал, поэтому в схему добавлен резистор R3, задачей которого является включение транзистора, когда TL431 выключен. Резистор этот на 11k, подобранный методом проб и ошибок. Резистор R4 служит для ограничения тока на светодиоде, его можно вычислить с помощью .

Конечно, можно обойтись и без транзистора, но тогда светодиод будет гаснуть, когда напряжение упадет ниже выставленного уровня — схема ниже. Безусловно, такая схема не будет работать при низких напряжениях из-за отсутствия достаточного напряжения и/или тока для питания светодиода. Данная схема имеет один минус, который заключается в постоянном потреблении тока, в районе 10 мА.

В данном случае индикатор заряда будет гореть постоянно, когда напряжение больше, чем то, которые мы определили с помощью R1 и R2. Резистор R3 служит для ограничения тока на диод.

Пришло время для того, что всем нравится больше всего — математики

Я уже говорил в начале, что напряжение пробоя может изменяться от 2,5В до 36В посредством входа «Ref». И поэтому, давайте попытаемся кое-что подсчитать. Предположим, что индикатор должен загореться при снижении напряжении аккумулятора ниже 12 вольт.

Сопротивление резистора R2 может быть любого номинала. Однако лучше всего использовать круглые числа (для облегчения подсчета), например 1к (1000 Ом), 10к (10 000 Ом).

Резистор R1 рассчитаем по следующей формуле:

R1=R2*(Vo/2,5В — 1)

Предположим, что наш резистор R2 имеет сопротивление 1к (1000 Ом).

Vo — напряжение, при котором должен произойти пробой (в нашем случае 12В).

R1=1000*((12/2,5) — 1)= 1000(4,8 — 1)= 1000*3,8=3,8к (3800 Ом).

Т. е. сопротивление резисторов для 12В выглядят следующим образом:

А здесь небольшой список для ленивых. Для резистора R2=1к, сопротивление R1 составит:

  • 5В – 1к
  • 7,2В – 1,88к
  • 9В – 2,6к
  • 12В – 3,8к
  • 15В — 5к
  • 18В – 6,2к
  • 20В – 7к
  • 24В – 8,6к

Для низкого напряжения, например, 3,6В резистор R2 должен иметь бОльшее сопротивление, например, 10к поскольку ток потребления схемы при этом будет меньше.

Схема индикатора заряда аккумулятора на светодиодах. Индикатор разряда схема

Индикатор разряда аккумулятора предназначен для получения оперативного предупреждения о разряде аккумуляторной батареи, что поможет защитить вас от многих проблем. Предлагаемая схема достаточно проста, а вся регулировка заключается в выставление порога срабатывания переменным резистором для включения светодиодной индикации.

Чтобы максимально упростить самодельную конструкцию, информация о степени разряда батареи поступает по принципу светодиодного столбика, то есть чем выше напряжение на батареи, тем больше светодиодов загорается. Нижний уровень отмечается красным светодиодом (верхний по схеме), на максимальное напряжение указывает нижний зеленый светодиод. Полное отсутствие свечения говорит о сильной критическом разряде аккумулятора.

В основе конструкции лежат четыре компаратора операционного усилителя LM324, каждый из них контролирует определенный уровень напряжения.

Опорное напряжение в 5 вольт для всех четырех компараторов идет со стабилитрона и сопротивления R6.

Если на прямом входе ОУ потенциал будет меньше потенциала на его инверсном входе, на выходе компаратора присутствует низкий логический уровень и светодиод не горит. Если опорное напряжение превысит потенциал на противоположном входе компаратор переключается, и светодиод загорится. Для каждого компаратора установлен свой персональный уровень, который настраивается сопротивлением делителя на резисторах R1-R5.

Вариант этой конструкции, но уже на операционном усилителе LM 339 подойдет для аккумуляторов с выходным напряжением 6 или 12 вольт.

В арсенале отечественных микросхем имеется серия КР1171, которые специально разработаны для контроля снижения напряжения питания. Вот и используем ее для контроля напряжения в аккумуляторной батареи.


Малый потребляемый ток в режиме «Вык.» позволяет встраивать данную конструкцию в устройства с непрерывным контролем напряжения аккумуляторной батареи. При этом индикатор можно подключить до выключателя питания устройства, напрямую к клеммам аккумуляторной батареи. Для переделки данной схемы индикатора на другое напряжение достаточно использовать соответствующую микросхему серии КР1171 и подобрать резистор R1 для нового напряжения. Исключение составляет только микросхема КР1171СП20, т. к. ее пороговый уровень 2В, а генератор на микросхеме К561ЛА7 не работает.

Для достижения минимальных размеров можно вместо динамика использовать миниатюрный излучатель. C помощью сопротивления R6 можно регулировать громкость звука.


Данная конструкция рассчитана на напряжение аккумуляторной батареи от 6 до 24 вольт.

Схема состоит из делителя напряжения на резисторах R1 R2, первый транзистор реагирует на уменьшение напряжения ниже заданного значения, а электронный ключ на втором транзисторе, через стоковую цепь запускает свepxъяркий светодиод.

При подключении схемы к аккумуляторной батареи, напряжение котopoгo необходимо контролировать, на затворе первого транзистора появляется напряжение положительной полярности, регулируемое резистором R2. Если оно выше порогового — транзистор открыт, сопротивление его канала не выше десятка Ом, поэтому напряжение на стоке второго транзистора VТ2 стремится к нулю и он закрыт, светодиод соответственно не горит, сигнализируя о том, что напряжение аккумуляторной батареи в норме. При снижении напряжения до порогового уровня, при котором напряжение на затворе первого транзистора становится ниже порогового, он закрывается, сопротивление его канала резко возрастает и напряжение на стоке стремится к значению напряжения питания. При этом открывается транзисторный ключ и светодиод загорается, говоря о недопустимой степени разряда аккумуляторной батареи.

На транзисторах VT2, VT3 построен триггер Шмитта, на VT1 — модуль запрета его срабатывания. В коллекторную цепь VT3 включен индикатор HL1, размещенный на приборной панели. В горячем состоянии нить накала индикатора обладает сопротивление в районе 50 Ом. Сопротивление холодной нити индикатора в несколько раз ниже. Поэтому транзистор VT3 выдерживает бросок тока в коллекторной цепи до уровня 2,5 А.

Напряжение бортовой сети за минусом напряжения на стабилитроне VD2 через делитель R5-R6 поступает на базу VT2. Если оно выше 13,5 В, триггер Шмитта переключается и транзистор VT3 закрыт, а HL1 не светится.


nik34 прислал:


Индикатор заряда на основе старой платы защиты от Li-Ion аккумулятора.

Легкое решение для индикации окончания заряда LiIon или LiPo аккумулятора от солнечной батареи можно сделать из… любой дохлой LiIon или LiPo батареи:)

В них используется шестиногий контроллер заряда на специальзированной микрухе DW01 (JW01, JW11, K091, G2J, G3J, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.

Вот последний эффект и можно использовать. Для моих целей вполне подойдет светодиод, который будет загораться при окончании заряда.

Вот типовая схема включения этой микрухи и схема, в которую надо ее переделать. Вся переделка заключается в отпаивании мосфетов и подпайке светодиода.

Светодиод возьмите красный, у него напряжение зажигания меньше, чем у других цветов.

Теперь надо подключить эту схему после традиционного диода, который так же традиционно крадет от 0,2В (шоттки) до 0,6В от солнечной батареи, но зато он не дает аккумулятору разряжаться на солнечную панель после наступления темноты. Так вот, если подключить схему до диода, то получим индикацию недозаряда аккумулятора на 0,6В, что достаточно много.

Таким образом алгоритм работы будет следующий: наша СБ при освещении дает напругу на липольку и до тех пор, пока не сработает родной контроллер заряда на аккумуляторе при напряжении около 4,3В. Как только срабатывает отсечка и аккумулятор отключается, на диоде подскакивает напряжение выше 4,3В и наша схема в свою очередь пытается защитить свою батарею, которой уже нет и отдавая команду так же несуществующему мосфету зажигает светодиод.

Убрав со света СБ напряжение на ней упадет и светодиод отключится, прекратив кушать драгоценные миллиамперы. Это же решение можно использовать и с другими зарядниками, не обязательно зацикливаться на солнечной батарее:)
Оформить можно как угодно, благо платка контролера миниатюрна, не более 3-4 мм шириной, вот пример:




Наша волшебная микруха слева, два мосфета в одном корпусе справа, их надо убрать и запаять на плату в соответствии со схемой светодиод.

Вот и все, пользуйтесь, благо это просто.

В современной практике еще встречаются автомобили, на которых нет ни бортового компьютера, ни табло с индикатором заряда аккумуляторной батареи. Передвижение без индикатора чревато полной остановкой двигателя и невозможностью в дальнейшем запустить его.

Индикатор заряда аккумулятора выполняет две функции: показывает зарядку тока аккумулятора от генератора и информативно величину заряда АКБ. Существует несколько способов устранить эту недоработку у автомобиля. Один из них самый простой, сделать своими руками устройство показывающее зарядку батареи.

В доступных источниках есть много предложений изготовления цифровой цепи тока такого устройства. Оно имеет достаточно простой вид. Для этого нужны навыки по пайке радиодеталей и желание собрать устройство своими руками. Выбрать светодиод, стабилитрон, макетную плату и резисторы. Схема индикатора заряда АКБ приведена на рисунке ниже.

Принцип работы

Светодиодный индикатор благодаря наличию трех цветов светодиодов может показывать различные фазы зарядки тока. Начало зарядки. Рабочую середину. Предупреждение окончания процесса. Это схема дает нам возможность контролировать весь рабочий цикл батареи.

Спаять детали своими руками несложно, но для начала сделай проверку тестером. Если все детали исправны можно сделать сборку по схеме. Прозванием тестером светодиодный выход. Определяем выход низкого напряжения тока от шести до одиннадцати вольт.

Это светодиод красного цвета. От одиннадцати до тринадцати вольт – желтый. Более тринадцати — будет светодиод зеленого цвета. Схема имеет простой набор деталей и работает надежно.

Интересно! АКБ выдает на светодиод определенное напряжение тока. Он загорается. Так мы определяем начало и окончания заряда АКБ.

Если у вас нет каких, либо комплектующих, то нужно посмотреть в интернете аналогичные схемы и своими руками доработать устройство. Схема будет также показывать надежно индикацию заряда тока батареи.

Для автомобиля важно, чтобы схема работала не постоянно, а только когда водитель находился за рулем. Рекомендуется после окончания работы своими руками полученное устройство смонтировать под рулевым колесом и соединить с замком зажигания. В этом случае индикатор будет работать только при включенном зажигании автомобиля.

Мы видим, что после окончания работ, своими руками можно создать удобный и необходимый для надежной эксплуатации автомобиля индикатор заряда батареи. Себестоимость такого изделия будет не высокой.

Важно! Надежность индикатора и удобность его размещения позволяет эффективно устранить не доработку конструкторов – производителей автомобилей.

С одной стороны любое устройство, будь то транспортное средство или простая кухонная утварь, кажется совершенной и доработанной с технической точки зрения. Не требующей вмешательства человеческой мысли и грамотных рук.

С другой, всегда найдутся грамотные «Кулибины», для которых это устройство кажется не совершенным и требует усовершенствования и технической доработки.

На этом и строится прогрессивный технический прогресс. Вроде простая, но при этом жизненно необходимая наглядная индикация процесса зарядки аккумуляторной батареи автомобиля, не спроектированная конструкторами нашла свою простую разработку простыми почитателями мира науки и техники.

Успешный пуск автомобильного двигателя во многом зависит от состояния заряда аккумулятора. Регулярно проверять напряжение на клеммах с помощью мультиметра – неудобно. Гораздо практичнее воспользоваться цифровым или аналоговым индикатором, расположенным рядом с приборной панелью. Простейший индикатор заряда аккумулятора можно сделать своими руками, в котором пять светодиодов помогают отслеживать постепенный разряд (заряд) батареи.

Схема

Рассматриваемая принципиальная схема представляет собой простейшее устройство, отображающее уровень заряда аккумулятора на 12 вольт. Её ключевым элементом является микросхема LM339, в корпусе которой собрано 4 однотипных операционных усилителя (компаратора). Общий вид LM339 и назначение выводов показан на рисунке.

Прямые и инверсные входы компараторов подключены через резистивные делители. В качестве нагрузки используются индикаторные светодиоды 5 мм.

Диод VD1 служит защитой микросхемы от случайной смены полярности. Стабилитрон VD2 задаёт опорное напряжение, которое является эталоном для будущих измерений. Резисторы R1-R4 ограничивают ток через светодиоды.

Принцип работы

Работает схема индикатора заряда аккумулятора на светодиодах следующим образом. Застабилизированное с помощью резистора R7 и стабилитрона VD2 напряжение 6,2 вольт поступает на резистивный делитель, собранный из R8-R12. Как видно из схемы между каждой парой этих резисторов формируются опорные напряжения разного уровня, которые поступают на прямые входы компараторов. В свою очередь инверсные входы объединены между собой и через резисторы R5 и R6 подключены к клеммам аккумуляторной батарее (АКБ).

В процессе заряда (разряда) аккумулятора постепенно изменяется напряжение на инверсных входах, что приводит к поочередному переключению компараторов. Рассмотрим работу операционного усилителя OP1, который отвечает за индикацию максимального уровня заряда. Зададим условие, если заряженный аккумулятор имеет напряжение 13,5В, то последний светодиод начинает гореть. Пороговое напряжение на его прямом входе, при котором засветится этот светодиод, рассчитаем по формуле:

U OP1+ =U СТ VD2 – U R8 ,

U СТ VD2 =U R8 + U R9 + U R10 + U R11 + U R12 =I*(R8+R9+R10+R11+R12)

I= U СТ VD2 /(R8+R9+R10+R11+R12)=6,2/(5100+1000+1000+1000+10000)=0,34 мА,

U R8 =I*R8=0,34 мА*5,1 кОм=1,7В

U OP1+ =6,2-1,7=4,5В

Это означает, что при достижении на инверсном входе потенциала величиной более 4,5 вольт компаратор OP1 переключится и на его выходе появится низкий уровень напряжения, а светодиод засветится. По указанным формулам можно рассчитать потенциал на прямых входах каждого операционного усилителя. Потенциал на инверсных входах находят из равенства: U OP1- = I*R5= U БАТ – I*R6.

Печатная плата и детали сборки

Печатная плата изготавливается из одностороннего фольгированного текстолита размером 40 на 37 мм, которую можно скачать . Она предназначена для монтажа DIP элементов следующего типа:

  • резисторы МЛТ-0,125Вт с точностью не менее 5% (ряд Е24)
    R1, R2, R3, R4, R7, R9, R10, R11– 1 кОм,
    R5, R8 – 5,1 кОм,
    R6, R12 – 10 кОм;
  • диод VD1 любой маломощный с обратным напряжением не ниже 30В, например 1N4148;
  • стабилитрон VD2 маломощный с напряжением стабилизации 6,2В. Например, КС162А, BZX55C6V2;
  • светодиоды LED1-LED5 – индикаторные типа АЛ307 любого цвета свечения.

Данную схему можно использовать не только для контроля напряжения на 12 вольтовых аккумуляторах. Пересчитав номиналы резисторов, расположенных во входных цепях, получаем светодиодный индикатор на любое желаемое напряжение. Для этого следует задаться пороговыми напряжениями, при которых будут включаться светодиоды, а затем воспользоваться формулами для пересчёта сопротивлений, приведенные выше.

Читайте так же

Как зарядить аккумулятор автомобиля в домашних условиях. Индикатор заряда аккумулятора

Далеко не во всех автомобилях есть индикатор, отображающий уровень зарядки аккумулятора. Автолюбитель должен самостоятельно отслеживать этот показатель, периодически проверяя его с помощью вольтметра, предварительно отключив батарею от электросети машины. Однако простой электронный прибор позволит получить примерные показатели, не выходя из салона.

Выбор схемы и комплектующих

Готовая конструкция

Конструктивно самодельный индикатор контроля заряда аккумулятора состоит из электронного блока, на корпусе которого располагается три светодиода: красный, синий и зеленый. Выбор цвета может быть другой – важно, чтобы при активации одного из них полученная информация была правильно истолкована.

Из-за небольших размеров устройства можно использовать обыкновенную макетную плату. Предварительно выбирается оптимальная схема устройства. Можно найти несколько моделей, но самый распространенный и, следовательно, работоспособный вариант индикатора заряда аккумулятора показан на рисунке.

Схема платы и ее компонентов

Перед установкой комплектующих необходимо согласно схеме расположить их на печатной плате. Только после этого можно обрезать ее до нужных размеров. Важно, чтобы индикатор имел минимальные габариты. Если планируется его монтаж в корпус – следует учитывать его внутренние размеры.

Данная схема рассчитана для контроля работы аккумулятора автомобиля с напряжением сети от 6 до 14 В. Для других значений этого параметра следует изменить характеристики комплектующих. Их перечень указан в таблице.

Аккумулятор вместе с генератором являются устройствами, обеспечивающими автомобиль электропитанием. От степени зарядки батареи зависит успешный старт машины и работа приборов, входящих в электрическую сеть при выключенном двигателе. Поэтому важно следить за ее зарядкой. Для контроля зарядки предназначен контроллер заряда автомобильной АКБ. В статье описывается принцип действия устройства, дается инструкция по изготовлению своими руками.

Если не контролировать зарядку, то недозаряд аккумулятора грозит тем, что в один прекрасный момент может не завестись двигатель, особенно в зимний период. Проверить напряжение на клеммах устройства можно с помощью мультиметра. Если говорит контрольная лампа заряда аккумуляторной батареи на приборной панели, это говорит о том, что у батареи низкая зарядка. Но горение лампочки малоинформативно.

[ Скрыть ]

Встроенный контроллер

Благодаря техническому прогрессу повышается комфорт обслуживания и поездки на машине. Многие современные автомобили оснащены бортовыми компьютерами. Одна из его функций – показывать напряжение АКБ. Но такая роскошь доступна не всем водителям. На старых моделях порой установлен аналоговый вольтметр, но по его показаниям трудно судить о состоянии зарядки. Поэтому стали производить специальные аккумуляторных батарей. Они выпускаются как встроенными в аккумулятор, так и в виде отдельных устройств, которые подключаются к бортовому компьютеру.

Встроенными индикаторами обычно оснащаются батареи. Они представляют собой поплавковые индикаторы, которые часто называют гидрометрами. По их цвету можно определить степень заряженности АКБ и уровень электролита. Для контроля состояния аккумулятора достаточно индикации одной ячейки. Перед тем, как воспользоваться индикатором, следует слегка постучать по нему. Это необходимо для того, чтобы вышли пузырьки воздуха, которые могут помешать вести наблюдения. Таким образом, можно будет четко видеть цвет индикатора.

При анализе следует учесть то, что когда батарея начинает заряжаться, то плотность электролита увеличивается ближе к электродам. Над электродами повышение плотности происходит за счет диффузии. Индикатор находится над электродами, соответственно будет реагировать на плотность в этой части батареи. Это может стать причиной неточных результатов.

Даже при полной зарядке индикатор может оставаться черного цвета. Объясняется такая ситуация тем, что не успели перемешаться слои электролита большей плотности со слоями меньшей плотности. Процесс диффузии может длиться несколько дней.

Точную зарядку можно определить с помощью тестера.

Конструкция

Схема встроенного индикатора выглядит следующим образом:

Принцип действия

У большинства гидрометров одинаковый принцип действия, он основывается на трех положениях индикатора. Когда заряжается батарея, увеличивается плотность электролита. Благодаря этому зеленый шарик, выполняющий роль поплавка, всплывает по трубке и появляется в глазке индикатора. Обычно поплавок виден, если заряженность батареи превышает 65 %.


Если поплавок тонет в электролите, это означает, что плотность не отвечает норме и АКБ недостаточно заряжена. При этом глазок индикатора будет черного цвета. Такая ситуация говорит о том, что необходима подзарядка.


Существуют модели, в которых кроме зеленого шарика есть красный, поднимающийся по трубке при низкой плотности. В этом случае в глазке будет виден красный шарик.

Последним вариантом является низкий уровень электролита. В этом случае в глазок индикатора будет видна поверхность электролита. Это значит, что необходимо долить электролит или дистиллированную воду. Правда, в случае с необслуживаемым устройством, сделать это сложно.


Заводские контроллеры

Существуют промышленные устройства для контроля уровня . Рассмотрим некоторые из них.

Контроллер уровня зарядки DC-12 В представляет собой конструктор. Он подойдет тем, кто имеет знания по электротехнике. Устройство позволяет контролировать заряженность батареи и выполнять функцию реле-регулятора. Продается в виде набора деталей и собирается самостоятельно. Диапазон напряжений составляет от 2,5 до 18 В. Потребляемый ток – 20 мА. Размеры печатной платы: 43х20 мм (автор видео — DeXter Show).

Панель с индикатором от TMC пригодится автолюбителям, которые установили в свой автомобиль второй аккумулятор. Устройство состоит из алюминиевой панели, вольтметра и тумблера. С помощью тумблера осуществляется переключение между батареями.

Можно приобрести устройства контроля уровня заряда аккумулятора от фирмы Faria Euro Black Style, но у них очень высокая стоимость.

Инструкция по изготовлению

Если есть желание, знания по электронике и время, можно изготовить контроллер . Конструктивно устройство будет состоять из электронного блока, на корпусе которого будут расположены три диода красного, зеленого и синего цвета. Цвета диодов можно выбрать любые, главное, правильно оценивать полученные результаты.

Назначение данного устройства – контролировать работу автомобильного аккумулятора с напряжение электросети от 6 до 14 В. Этот прибор схож с тем, что продается в магазине. Речь идет о наборе DC-12 В, о котором упоминалось выше. Принцип действия обоих устройств одинаков.

Для изготовления контроллера понадобятся следующие детали:

  • для размещения компонент печатная плата;
  • транзисторы: ВС547 и ВС557;
  • резисторы: сопротивлением 1 кОм – 2, 220 Ом – 3, 2,2 кОм – 1;
  • диоды (стабилизаторы) на 9,1 и 10 В;
  • набор светодиодов RGB (красный, зеленый, синий).

Перед сборкой следует проверить, чтобы контакты соответствовали цвету светодиодов. Проверку можно выполнить с помощью тестера. Это можно сделать с помощью тестера. Монтируя компоненты, желательно светодиоды вывести на проводах длиной 5-20 см, а не припаивать их к плате. Такую конструкцию легче расположить на приборной панели автомобиля.

Сборка устройства осуществляется по следующей схеме:


При сборке следует размещать комплектующие на печатной плате как можно более компактно, чтобы он не занимали много места. После подключения к бортовой электросети контроллер будет показывать текущий уровень зарядки аккумулятора.

При этом он будет лишь сигнализировать об определенном уровне, не показывая конкретных значений:

  • если загорается светодиод красного цвета, это означает, что напряжение находится в пределах от 6 до 10 В — это критичный уровень;
  • если горит синий светодиод, то заряд составляет 11-13 В – это оптимальное значение, которое соответствует нормальной работе аккумуляторной батареи;
  • если аккумулятор полностью заряженный, загорается светодиод зеленого цвета.

Собранную панель рекомендуется устанавливать и подключать к бортовой сети на обратной стороне панели приборов, а на лицевую сторону вывести светодиоды на проводах. Если выполнять все работы аккуратно, то это не отразится на внешнем виде приборной доски.

Установка контроллера позволяет контролировать заряженность аккумуляторной батареи, что дает возможность вовремя подзаряжать АКБ и не даст попасть в ситуацию, когда не заводится двигатель из-за разряженной батареи.

Самое удивительное то, что схема индикатора уровня заряда аккумуляторной батареи не содержит ни транзисторов, ни микросхем, ни стабилитронов. Только светодиоды и резисторы, включенные таким образом, что обеспечивается индикация уровня подведенного напряжения.

Схема индикатора

Работа устройства основывается на начальном напряжении включения светодиода. Любой светодиод — это полупроводниковый прибор, который имеет граничную точку напряжения, только превысив которую он начинает работать (светить). В отличии от лампы накаливания, которая имеет почти линейные вольтамперные характеристики, светодиоду очень близка характеристика стабилитрона, с резкой крутизной тока при увеличении напряжения.
Если включить светодиоды в цепь последовательно с резисторами, то каждый светодиод начнет включаться только после того, как напряжение превысит сумму светодиодов в цепи для каждого отрезка цепи в отдельности.
Порог напряжения открытия или начала загорания светодиода может колебаться от 1,8 В до 2,6 В. Все зависит от конкретной марки.
В итоге, каждый светодиод загорается только после того, как загорелся предыдущий.


Схему я собрал на универсальной монтажной плате, спаяв вывода элементов между собой. Для лучшего восприятия я взял светодиоды разных цветов.
Такой индикатор можно сделать не только на шесть светодиодов, а к примеру, на четыре.
Использовать индикатор можно не только для аккумулятора, но для создания индикации уровня на музыкальных колонках. Подключив устройство к выходу усилителя мощности, параллельно колонке. Тем самым можно отслеживать критические уровни для акустической системы.
Возможно найти и другие применения этой, по истине, очень простой схемы.

Описание контроллера заряда АКБ, детальное руководство по изготовлению

Аккумулятор вместе с генератором являются устройствами, обеспечивающими автомобиль электропитанием. От степени зарядки батареи зависит успешный старт машины и работа приборов, входящих в электрическую сеть при выключенном двигателе. Поэтому важно следить за ее зарядкой. Для контроля зарядки предназначен контроллер заряда автомобильной АКБ. В статье описывается принцип действия устройства, дается инструкция по изготовлению своими руками.

Если не контролировать зарядку, то недозаряд аккумулятора грозит тем, что в один прекрасный момент может не завестись двигатель, особенно в зимний период. Проверить напряжение на клеммах устройства можно с помощью мультиметра. Если говорит контрольная лампа заряда аккумуляторной батареи на приборной панели, это говорит о том, что у батареи низкая зарядка. Но горение лампочки малоинформативно.

[ Раскрыть]

Встроенный контроллер

Благодаря техническому прогрессу повышается комфорт обслуживания и поездки на машине. Многие современные автомобили оснащены бортовыми компьютерами. Одна из его функций – показывать напряжение АКБ. Но такая роскошь доступна не всем водителям. На старых моделях порой установлен аналоговый вольтметр, но по его показаниям трудно судить о состоянии зарядки. Поэтому стали производить специальные индикаторы заряда аккумуляторных батарей. Они выпускаются как встроенными в аккумулятор, так и в виде отдельных устройств, которые подключаются к бортовому компьютеру.

Встроенными индикаторами обычно оснащаются необслуживаемые аккумуляторные батареи. Они представляют собой поплавковые индикаторы, которые часто называют гидрометрами. По их цвету можно определить степень заряженности АКБ и уровень электролита. Для контроля состояния аккумулятора достаточно индикации одной ячейки. Перед тем, как воспользоваться индикатором, следует слегка постучать по нему. Это необходимо для того, чтобы вышли пузырьки воздуха, которые могут помешать вести наблюдения. Таким образом, можно будет четко видеть цвет индикатора.

При анализе следует учесть то, что когда батарея начинает заряжаться, то плотность электролита увеличивается ближе к электродам. Над электродами повышение плотности происходит за счет диффузии. Индикатор находится над электродами, соответственно будет реагировать на плотность в этой части батареи. Это может стать причиной неточных результатов.

Даже при полной зарядке индикатор может оставаться черного цвета. Объясняется такая ситуация тем, что не успели перемешаться слои электролита большей плотности со слоями меньшей плотности. Процесс диффузии может длиться несколько дней.

Точную зарядку можно определить с помощью тестера.

Конструкция

Схема встроенного индикатора выглядит следующим образом:


Принцип действия

У большинства гидрометров одинаковый принцип действия, он основывается на трех положениях индикатора. Когда заряжается батарея, увеличивается плотность электролита. Благодаря этому зеленый шарик, выполняющий роль поплавка, всплывает по трубке и появляется в глазке индикатора. Обычно поплавок виден, если заряженность батареи превышает 65 %.


Если поплавок тонет в электролите, это означает, что плотность не отвечает норме и АКБ недостаточно заряжена. При этом глазок индикатора будет черного цвета. Такая ситуация говорит о том, что необходима подзарядка.


Существуют модели, в которых кроме зеленого шарика есть красный, поднимающийся по трубке при низкой плотности. В этом случае в глазке будет виден красный шарик.

Последним вариантом является низкий уровень электролита. В этом случае в глазок индикатора будет видна поверхность электролита. Это значит, что необходимо долить электролит или дистиллированную воду. Правда, в случае с необслуживаемым устройством, сделать это сложно.


Заводские контроллеры

Существуют промышленные устройства для контроля уровня зарядки АКБ. Рассмотрим некоторые из них.

Контроллер уровня зарядки DC-12 В представляет собой конструктор. Он подойдет тем, кто имеет знания по электротехнике. Устройство позволяет контролировать заряженность батареи и выполнять функцию реле-регулятора. Продается в виде набора деталей и собирается самостоятельно. Диапазон напряжений составляет от 2,5 до 18 В. Потребляемый ток – 20 мА. Размеры печатной платы: 43х20 мм (автор видео — DeXter Show).

Панель с индикатором от TMC пригодится автолюбителям, которые установили в свой автомобиль второй аккумулятор. Устройство состоит из алюминиевой панели, вольтметра и тумблера. С помощью тумблера осуществляется переключение между батареями.

Можно приобрести устройства контроля уровня заряда аккумулятора от фирмы Faria Euro Black Style, но у них очень высокая стоимость.

Инструкция по изготовлению

Если есть желание, знания по электронике и время, можно изготовить контроллер зарядки аккумулятора своими руками. Конструктивно устройство будет состоять из электронного блока, на корпусе которого будут расположены три диода красного, зеленого и синего цвета. Цвета диодов можно выбрать любые, главное, правильно оценивать полученные результаты.

Назначение данного устройства – контролировать работу автомобильного аккумулятора с напряжение электросети от 6 до 14 В. Этот прибор схож с тем, что продается в магазине. Речь идет о наборе DC-12 В, о котором упоминалось выше. Принцип действия обоих устройств одинаков.

Для изготовления контроллера понадобятся следующие детали:

  • для размещения компонент печатная плата;
  • транзисторы: ВС547 и ВС557;
  • резисторы: сопротивлением 1 кОм – 2, 220 Ом – 3, 2,2 кОм – 1;
  • диоды (стабилизаторы) на 9,1 и 10 В;
  • набор светодиодов RGB (красный, зеленый, синий).

Перед сборкой следует проверить, чтобы контакты соответствовали цвету светодиодов. Проверку можно выполнить с помощью тестера. Это можно сделать с помощью тестера. Монтируя компоненты, желательно светодиоды вывести на проводах длиной 5-20 см, а не припаивать их к плате. Такую конструкцию легче расположить на приборной панели автомобиля.

Сборка устройства осуществляется по следующей схеме:


При сборке следует размещать комплектующие на печатной плате как можно более компактно, чтобы он не занимали много места. После подключения к бортовой электросети контроллер будет показывать текущий уровень зарядки аккумулятора.

При этом он будет лишь сигнализировать об определенном уровне, не показывая конкретных значений:

  • если загорается светодиод красного цвета, это означает, что напряжение находится в пределах от 6 до 10 В — это критичный уровень;
  • если горит синий светодиод, то заряд составляет 11-13 В – это оптимальное значение, которое соответствует нормальной работе аккумуляторной батареи;
  • если аккумулятор полностью заряженный, загорается светодиод зеленого цвета.

Собранную панель рекомендуется устанавливать и подключать к бортовой сети на обратной стороне панели приборов, а на лицевую сторону вывести светодиоды на проводах. Если выполнять все работы аккуратно, то это не отразится на внешнем виде приборной доски.

Установка контроллера позволяет контролировать заряженность аккумуляторной батареи, что дает возможность вовремя подзаряжать АКБ и не даст попасть в ситуацию, когда не заводится двигатель из-за разряженной батареи.

Видео «Индикатор разряда аккумулятора»

В этом видео демонстрируется, как собрать простое устройство для проверки заряженности батареи (автор ролика — Паяльник TV).

avtozam.com

Индикатор окончания заряда аккумулятора на светодиодах

Индикатор заряда аккумулятора – нужная штука в хозяйстве любого автомобилиста. Актуальность такого устройства возрастает многократно, когда холодным зимним утром автомобиль, почему-то, отказывается заводиться. В этой ситуации стоит определиться, то ли звонить другу, что бы тот приехал и помог завестись от своей батареи, либо аккумулятор приказал долго жить, разрядившись ниже критического уровня.

Зачем следить за состоянием аккумулятора?

Автомобильный аккумулятор состоит из шести последовательно соединённых аккумуляторных батарей с напряжением питания 2,1 — 2,16В. В норме АКБ должен выдавать 13 — 13,5В. Нельзя допускать значительного разряда аккумуляторной батареи, поскольку при этом падает плотность и, соответственно, повышается температура промерзания электролита.

Чем выше износ аккумулятора, тем меньшее время он удерживает заряд. В тёплое время года это не критично, а вот зимой забытые во включённом состоянии габаритные огни к моменту возвращения способны полностью «убить» аккумулятор, превратив содержимое в кусок льда.

В таблице можно увидеть температуру промерзания электролита, в зависимости от степени заряженности агрегата.

Зависимость температуры промерзания электролита от степени заряда аккумулятора
Плотность электролита, мг/см. куб. Напряжение, В (без нагрузки) Напряжение, В (с нагрузкой 100 А) Степень заряда АКБ, % Температура замерзания электролита, гр. Цельсия
1110 11,7 8,4 0,0 -7
1130 11,8 8,7 10,0 -9
1140 11,9 8,8 20,0 -11
1150 11,9 9,0 25,0 -13
1160 12,0 9,1 30,0 -14
1180 12,1 9,5 45,0 -18
1190 12,2 9,6 50,0 -24
1210 12,3 9,9 60,0 -32
1220 12,4 10,1 70,0 -37
1230 12,4 10,2 75,0 -42
1240 12,5 10,3 80,0 -46
1270 12,7 10,8 100,0 -60

Критическим считается падение уровня заряда ниже 70%. Все автомобильные электроприборы потребляют не напряжение, а ток. Без нагрузки даже сильно разряженный аккумулятор может показывать нормальное напряжение. Но при низком уровне, во время запуска двигателя, будет отмечаться сильная «просадка» напряжения, что является тревожным сигналом.

Своевременно заметить приближающуюся катастрофу возможно лишь в том случае, когда непосредственно в салоне установлен индикатор. Если во время работы автомобиля он постоянно сигнализирует о разрядке – пора ехать на СТО.

Какие существуют индикаторы

Многие АКБ, особенно необслуживаемые, имеют встроенный датчик (гигрометр), принцип работы которого основан на измерении плотности электролита.

Этот датчик контролирует состояние электролит и ценность его показателей относительна. Не очень удобно по несколько раз залазить под капот автомобиля, что бы проконтролировать состояние электролита в разных режимах работы.

Для контроля состояния АКБ значительно удобнее электронные приборы.

Виды индикаторов заряда аккумуляторной батареи

В автомагазинах продаётся множество таких устройств, различающихся дизайном и функционалом. Фабричные приборы условно делятся на нескольких типов.

По способу подключения:

  • к разъёму прикуривателя;
  • к бортовой сети.

По способу отображения сигнала:

  • аналоговые;
  • цифровые.

Принцип работы у них одинаков, определение уровня заряда АКБ и отображение информации в наглядном виде.


Принципиальная схема индикатора

Как сделать индикатор заряда аккумулятора на светодиодах?

Существуют десятки разнообразных схем контроля, но результат они выдают идентичный. Подобное устройство возможно собрать самостоятельно из подручных материалов. Выбор схемы и комплектующих зависит исключительно от ваших возможностей, фантазии и ассортимента ближайшего магазина радиотоваров.

Вот схема для понимания как работает индикатор заряда аккумулятора на светодиодах. Такую портативную модель можно собрать «на коленке» за несколько минут.

Д809 – стабилитрон на 9В ограничивает напряжение на светодиодах, а на трёх резисторах собран сам дифференциатор. Такой светодиодный индикатор срабатывает на силу тока в цепи. При напряжении 14В и выше сила тока достаточно для свечения всех светодиодов, при напряжении 12-13,5В светятся VD2 и VD3, ниже 12В — VD1.

Более продвинутый вариант при минимуме деталей можно собрать на бюджетном индикаторе напряжения — микросхеме AN6884 (KA2284).

Схема led индикатора уровня заряда АКБ на компараторе напряжения

Схема работает по принципу компаратора. VD1 – стабилитрон на 7,6В, он служит в качестве эталонного источника напряжения. R1 – делитель напряжения. При первоначальной настройке он выставляется в такое положение, чтобы при напряжении 14В светились все светодиоды. Напряжение, поступающее на входы 8 и 9, сравнивается через компаратор, а результат дешифруется на 5 уровней, зажигая соответствующие светодиоды.

Контроллер зарядки АКБ

Что бы отслеживать состояние аккума во время работы зарядного устройства, делаем контроллер заряда АКБ. Схема устройства и используемые компоненты максимально доступны, в то же время обеспечивают полный контроль над процессом подзарядки батарей.

Принцип работы контроллера следующий: пока напряжение на аккумуляторе ниже напряжения заряда – горит зелёный светодиод. Как только напряжение сравняется, открывается транзистор, зажигая красный светодиод. Изменение резистора перед базой транзистора меняет уровень напряжения, необходимого для открытия транзистора.

Это универсальная схема контроля, которую можно использовать как для мощных автомобильных аккумуляторов, так и для миниатюрных литиевых батареек-аккумуляторов.

svetodiodinfo.ru

Схемы индикаторов разряда li-ion аккумуляторов для определения уровня заряда литиевой батареи (например, 18650)

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить нагрузку либо использовать контроллеры разряда.

Вариант №1

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный — чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом — переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:
Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше — тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко — между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации — 3 мА, при выключенном светодиоде — 0.3 мА.

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 — разрешено, 0 — запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector»ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD, TCM809TENB713, MCP103T-315E/TT, CAT809TTBI-G;
  • на 2.93V: MCP102T-300E/TT, TPS3809K33DBVRG4, TPS3825-33DBVT, CAT811STBI-T3;
  • серия MN1380 (или 1381, 1382 — они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы — MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Также можно взять советский аналог — КР1171СПхх:

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Неоспоримые достоинства схем на мониторах напряжения — чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую «моргалку» на двух биполярных транзисторах.

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза — коротка вспышка — опять пауза). Это позволяет снизить потребляемый ток до смешных значений — в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом — всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы — инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 — 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914:

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на «землю», можно перевести ее в режим «точка». В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения, т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339.

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке.

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют контроллерами заряда-разряда), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Внимание!!! Попадаются платы, включающие защиту от переразряда при недопустимо низком напряжении (2.5В и ниже). Поэтому из всех имеющихся у вас плат необходимо отобрать только те экземпляры, которые срабатывают при правильном напряжении (3.0-3.2V).

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 — это два миллиомных полевика, собранных в одном корпусе.

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Пожалуйста, учитывайте тот факт, что схемы индикаторов разряда сами потребляют энергию аккумулятора! Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, предотвращающие глубокий разряд.

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот — в качестве индикатора заряда.

electro-shema.ru

О восстановлении заряда автомобильной АКБ

Необходимость проверки АКБ после зарядки очень важное условие при эксплуатации современного автомобиля. Ведь он настолько напичкан разнообразной электроникой, что без аккумуляторной батареи невозможно не то чтобы запустить двигатель, но и просто двигаться или проникнуть в салон обычным способом.Поэтому обслуживание АКБ и регулярная проверка заряда должны производиться на наивысшем уровне.

Причины истощения аккумуляторной батареи

Заряд АКБ может значительно уменьшиться в таких случаях:

  1. Длительное пользование электроприборами автомобиля при выключенном двигателе.
  2. Пребывание автомобиля без запущенного двигателя на большом морозе длительное время (1-2 недели).
  3. Длительное или многократное использование стартера без успешного запуска двигателя.
  4. Электролит, влага, другие жидкости, грязь на поверхности аккумулятора.
  5. Использование аккумулятора с превышенным сроком эксплуатации.
  6. Хранение и эксплуатация АКБ не в горизонтальном положении.
  7. Недостаточный уровень или плотность электролита.
  8. Механическое воздействие на аккумулятор (удары, толчки и т.д.).
  9. Длительное хранение аккумулятора в бездействии.

Все эти факторы приводят либо к быстрой или неконтролированной утечке заряда, либо к механическому и химическому повреждению пластин.

Способы контроля уровня заряда аккумуляторной батареи

Видео по теме:

Проверка АКБ на уровень заряда может осуществляться различными способами. Всё зависит от модели аккумулятора и возможностей автомобиля:

1. С помощью приборов, установленных в автомобиль и передающих информацию на панель приборов.2. С помощью специальных индикаторов, которые вмонтированы в саму батарею.3. С помощью специальных переносных индикаторов.4. С помощью вольтметра. Этим прибором можно измерить напряжение всей АКБ (норма, U = 12 В) или каждой банки в отдельности (норма, U = 2 В). Это самый верный способ проверки. Ведь отдельно взятая банка может иметь или повышенный заряд, или пониженный и регулировать нужно будет не сумму всех составляющих, а только её одну.

ЭТО ВАЖНО! При подключении вольтметра напрямую к АКБ (непосредственно к клеммам аккумулятора), прибор должен указать на 5% большее напряжение (около 12,6 – 12,8 В). Если производить измерения на контактах потребителя (например, на 12-вольтовой лампочке), подключённого к клеммам, то нормальным значением будет именно 12 В. Только при таких условиях измерений и значениях напряжения, можно говорить о нормальной зарядке аккумуляторной батареи.

5. Косвенным способом с помощью ареометра. Этот прибор укажет, какую плотность имеет электролит. И отталкиваясь от этих показаний, можно прийти к некоторым выводам. Низкая плотность электролита (ρ = 1, 23 г/см³) указывает на то, что аккумулятор разряжен. Но с уверенностью об этом можно говорить только в случае, если в банки не доливалась вода или раствор кислоты неправильной концентрации.

Если после проверки оказалось, что батарея не даёт нормального напряжения, U = 12 В, то перед процессом зарядки не лишним было бы:

  1. Проверить, какой уровень имеет электролит (если это возможно, ведь конструкция не каждого аккумулятора даёт доступ к пробкам и контактам банок). Каждая банка должна иметь его столько, чтобы покрывать свинцовые пластины, но не превышать специальной отметки.
  2. Если количество раствора в норме, то надобно проверить, какую плотность имеет электролит. Норма – это ρ = 1, 23 г/см³.
  3. Если электролит имеет нормальную плотность и уровень, а напряжение низкое, то батарея нуждается зарядке.

Способы зарядки автомобильной аккумуляторной батареи

Процесс зарядки аккумулятора лучше всего осуществлять, после снятия с него клемм. Но в некоторых случаях отключение АКБ может привести к сбою в настройках электроники. Поэтому процесс зарядки приходится производить, не снимая батареи с автомобиля и выполнив некоторые меры предосторожности:

  1. Место зарядки должно иметь температуру воздуха выше нуля (желательно 20°С).
  2. Аккумулятор и автомобиль должны прогреться естественным путём, находясь в данном помещении некоторое время.
  3. Отключить или перевести в режим «сна» все электроприборы автомобиля.
  4. Процесс зарядки «неснятого» аккумулятора не будет отличаться от зарядки «снятого».

Видео по теме:

Только после выполнения всех мер предосторожности можно начинать процесс зарядки АКБ.Существует несколько способов восстановления заряда в автомобильном аккумуляторе:

  1. Постоянным током. Этот способ предусматривает подачу постоянного тока регулирующим устройством на клеммы. Необходимое время — от 3 до 8 часов. Первоначальная величина тока равняется 10% от числового значения ёмкости аккумулятора (например, батарея «6ст190», означает ёмкость в 190 Ah). Значит, на клеммы нужно подавать ток из расчёта: 190 / 10 = 19 А. Увидев, что электролит «кипит» (в банках начинается бурление жидкости), силу тока уменьшают в два раза. И так до следующего бурления. Недостатком этого способа является необходимость постоянного визуального контроля процессов («кипит» или нет раствор кислоты) и параметров зарядки (плотность электролита и напряжение). Для того, чтобы наблюдать «кипит» жидкость или нет, надобно вывинтить пробки. Если такое невозможно, то контроль уровня зарядки осуществляется по увеличению напряжения, которое способна давать одна банка.
  2. Ускоренный метод. Очень экстремальный способ, позволяющий сэкономить драгоценное время. Применяется в срочных случаях. Для его осуществления необходимо подавать силу тока, превышающую 10% числового значения ёмкости аккумулятора. Недостатком является сильный износ пластин и сокращение срока службы аккумулятора. При таком способе постоянно нужно наблюдать, не «кипит» ли электролит. Этот способ не позволит зарядить батарею на 100 %, поэтому после него нужно применять другие методы пополнения заряда.
  3. Постоянным напряжением. На клеммы подаётся постоянное напряжение. Процесс длительный. Необходимое время для заряда — около суток, но нет необходимости наблюдать, «кипит» ли электролит или нет. А также не нужно измерять плотность раствора кислоты и величину напряжения. Этим способом невозможно полностью зарядить батарею, поэтому после такой зарядки нужно применять другие методы.
  4. Импульсным током. Периодически меняется подаваемое на клеммы напряжение и сила тока. Существует два вида заряда: пульсирующий (меняется только величина тока и напряжения) и ассиметричный (меняется величина и направление тока). Большое преимущество такого способа зарядки – это восстановление засульфатированных пластин.
  5. Контрольно-тренировочный. Происходит цикл зарядов-разрядов батареи. Этот способ немного улучшает показатели аккумулятора и позволяет оценить его возможности, но уменьшает ресурс батареи.
  6. Способ Вудбриджа. Согласно ему ток зарядки не должен превышать цифрового значения недостающей ёмкости.

Какой бы способ заряда АКБ ни был выбран автолюбителем, всегда нужно придерживаться правил техники безопасности и экономить время при этом не стоит. Ведь дело приходится иметь с кислотой, входящей в состав электролита, и водородом, выделяющимся при любом способе заряда.После того, как ёмкость батареи будет восстановлена, необходимо измерить напряжение каждой банки и плотность электролита в каждом отсеке. Ведь именно они напрямую определяют срок службы аккумуляторной батареи.

Немного о маркировке автомобильных аккумуляторов

Для того, чтобы выбрать оптимальный для своего автомобиля аккумулятор, нужно уметь расшифровывать условные обозначения.Как правило, маркировка начинается на «6Ст». Здесь 6 – означает количество банок и соответственно можно узнать напряжение, умножив его на 2 (каждая банка даёт напряжение 2 В), значит батарея 12-вольтовая. Ст – это стартерная. Поэтому для обычного автолюбителя подойдёт аккумулятор только с маркировкой начинающейся на «6Ст».Следующие цифры указывают на ёмкость батареи в Ампер×часах. Чем они больше, тем лучше. Все остальные обозначения не имеют принципиального значения. Они могут обозначать конструкцию крышки, материал корпуса, сепараторов и т.д.Также на батарее должны быть и другие обозначения, по которым можно определить силу пускового тока, полярность клемм, массу аккумуляторов, даты изготовления и т.п.

pro-zamenu.ru


Зарядка автомобильного аккумулятора производится с использованием специальных зарядных устройств. Чтобы правильно осуществить данный процесс необходимо знать тип автомобильного аккумулятора, его характеристики, а так же правильно подобрать тип зарядного устройства.

Устройство автомобильного аккумулятора

В большинстве автомобилей установлены кислотно-свинцовые аккумуляторные батареи. Конструкция представляет собой шесть баночек, которые помещены в изолирующий корпус, изготовленный из материала. Для корпуса выбирается специальный пластик, устойчивый к воздействию серной кислоты. Баночки соединены последовательно. В них находятся положительные и отрицательные электроды, представляющие по конструкции свинцовые решётки, покрытые активной массой. Электроды помещены в электролит. Со временем, в процессе эксплуатации пластины выходят со строя, что приводит к уменьшению ёмкости аккумулятора. Чем меньше ёмкость, тем быстрее происходит разрядка АКБ.

Типы аккумуляторных батарей

Выделяют два типа аккумуляторов:

  1. Обслуживаемые.
  2. Необслуживаемые.

В обслуживаемых аккумуляторах на баночках есть крышки, которые можно самостоятельно открутить. В таких батареях есть возможность проверить уровень электролита, его качество и, в случае необходимости, есть возможность его долить. Но самостоятельно, не имея опыта данной процедуры, этого делать не рекомендуется. Все операции по проверке качества электролита, его уровня и доливки следует доверить специалисту. Эта работа по цене не дорогая, но в некоторых случаях способна оживить аккумулятор.

В необслуживаемых аккумуляторных батареях нет крышечек, он полностью цельный. Его ремонт и реанимация не возможны.

Так же, часто автомобилисты добавляют в АКБ дистиллированную воду, этим самым разбавляя электролит. Это делать можно, но только в случае необходимости. Если открутить крышечки на баночках, будет виден уровень электролита, если он ниже электродов, то нужна доливка. Уровень должен быть во всех шести баночках одинаковым.

Не доливайте в аккумулятор воду или же электролит самостоятельно. Прежде чем это делать, следует специальным прибором померить качество электролита. Но если вы всё же решили добавит воду, то доливайте только дистиллированную и небольшими порциями.

Типы зарядных устройств

По типу заряда устройства делятся на:

  1. Зарядное с неизменным напряжением. В этих зарядных устройствах напряжение заряда постоянное, а силу тока можно регулировать с помощью регулятора.
  2. Зарядное с неизменным током. В таких устройствах сила тока постоянная, а напряжение меняется регулятором. С помощью такой зарядки можно зарядить аккумулятор полностью, однако нужно внимательно следить за процессом. При длительном использовании электролит может закипеть, а это может стать причиной замыкания аккумулятора и даже его возгорания.
  3. Автоматические (комбинированные). Эти современные зарядные устройства сначала заряжают аккумулятор неизменным постоянным током при меняющемся напряжении, но потом, с постепенной зарядкой аккумулятора, напряжение фиксируется, а ток плавно уменьшается. При достижении полного заряда аккумулятора устройство автоматически выключается.

Проверить состояние аккумуляторной батареи можно несколькими способами:

  1. С помощью обычного тестера. Тестер ставиться в режим вольтметра и при выключенном автомобиле замеряется напряжение. Если эту процедуру сделать при включенном двигателе, вы узнаете идёт ли заряд с генератора. Напряжение при выключенном автомобиле должно быть близким к 12 В.
  2. Нагрузочной катушкой. По конструкции она представляет собой сопротивление 0,018 – 0,020 Ом с вольтметром, подсоединенным параллельно. Этот агрегат подсоединяется на 5 – 7 секунд и затем снимаются показания с вольтметра.
  3. По индикатору на батарее. На некоторых типах аккумуляторов установлен гидрометрический индикатор, который представляет собой маленький глазок. В этом глазке меняются цвета индикатора. Если цвет зелёный, то аккумулятор заряжен. Если белый, требуется зарядка аккумулятора, а если тёмный, заряд на минимуме и возможно требуется доливка электролита.

Когда необходима зарядка АКБ?

Так как автомобильный генератор не способен полностью зарядить батарею, а лишь на 60%, заряжать аккумуляторную батарею рекомендуется хотя бы раз в сезон, перед холодами. Так же следует следить за показаниями гидрометрического индикатора, если он есть.

Первым признаком того, что АКБ нуждается в зарядке, является пуск автомобиля. Если стартер крутится быстро, то всё в норме. Если же медленно и скорость вращения идёт как бы на затухание, это свидетельствует о малом заряде.

На что следует обратить внимание и меры предосторожности

Поскольку в АКБ используется серная кислота, нужно быть аккуратным и соблюдать технику безопасности. Зарядку следует производить в проветриваемом нежилом помещении при температуре окружающей среды от +10 градусов Цельсия. Часто задают вопрос, можно ли заряжать аккумулятор не снимая? Да, можно. Но при плюсовой температуре. Если заряжать при минусовой, КПД зарядки уменьшается. Кроме того, когда АКБ долгое время находится на морозе, электролит может подмерзать. Именно поэтому аккумулятор следует заносить в тёплое помещение, где он «разморозиться» и только тогда начинать зарядку.

Подготовка АКБ к зарядке, снятие с автомобиля

Перед зарядкой желательно протереть АКБ содовым раствором, это даст возможность убрать остатки кислоты с поверхности. Раствор приготовить прост: одна столовая ложка соды на стакан воды. Если при протирании раствор начнёт шипеть, значит остатки кислоты присутствуют.

После снятия с автомобиля аккумулятора, нужно открутить крышечки с баночек и положить их сверху. Это даст возможность электролиту испарятся при нагревании и не выплескиваться из баночек. Так же следует проверить уровень электролита. Его можно определить на глаз. Если все пластины полностью погружены в электролит на 0,5 см, значит уровень в норме. Так же стоит обращать внимание на уровни в соседних баночках, они должны быть везде одинаковыми. Если уровень меньше нужного, можно долить дистиллированной воды.

Если же АКБ необслуживаемый (то есть, нет крышечек), эту процедуру игнорируем.

Подключение зарядного устройства

При подключении зарядного устройства соблюдайте полярность. На плюсовую клемму («+») на АКБ нужно подсоединять плюсовую клемму зарядного устройства. К минусовой («-») подсоединяем именно минусовую зарядного устройства. Если перепутать полярность, это приведёт к короткому замыканию и выходу из строя зарядного устройства и аккумулятора. Поэтому стоит быть внимательными. Клеммы промаркированы и на АКБ, и на зарядном устройстве.

На большинстве зарядных плюсовая клемма окрашивается в красный цвет, а минусовая в чёрный.

Продолжительность зарядки, контроль за процессом

Заряжать АКБ рекомендуется малыми токами, это даст возможность всем пластинам равномерно распределить заряд, а электролиту не перегреться. Использовать силу тока следует не более 1/10 ёмкости батареи. Она указана на корпусе и обозначается «А/час».

Если зарядное устройство автоматическое и не имеет регуляторных рычагов, значит свои настройки внести невозможно. Обычно такие приборы оснащены индикаторными лампами, обозначающими на каком этапе зарядка АКБ. И при полном заряде загорается зелёная лампочка.

Если в зарядное устройство встроен амперметр, то зарядка будет считается выполненной, когда стрелка прибора установится на нуле.

Время напрямую зависит от силы тока зарядки. Если аккумулятор нужно зарядить срочно, можно осуществить процесс, используя высокие токи, но это уменьшает запас работы батареи. Если спешки нет, то заряжайте малыми токами. При такой зарядке, обычно, процесс не занимает более 8 часов.

Следите за электролитом, если он начал закипать уменьшите силу тока.

Окончание зарядки, установка АКБ на автомобиль

По окончании зарядки отсоедините зарядные провода, закрутите крышечки на баночках и протрите АКБ содовым раствором снова. При зарядке капельки электролита испаряются из баночек и оседают на корпусе. Если не убрать электролит с поверхности, может произойти утечка тока по корпусу и аккумулятор быстро разрядится. Эта проблема очень распространенная, так как 80 % автолюбителей этого попросту не знают. Электролит на корпусе особо не видно, он лежит тонкой плёнкой, но этого достаточно чтобы ток проходил по корпусу устройства.

При подключении обратите внимание на состояние клемм и их плотное прижатие к клеммам АКБ. Они не должны быть окисленными и должны плотно прилегать.

Как зарядить автомобильный АКБ при отсутствии зарядки?

Если зарядное устройство отсутствует, а зарядить срочно требуется, можно воспользоваться следующими способами:

  1. Использование переносного пуско-зарядного устройства. Оно напоминает небольшой аккумулятор, заряда которого хватает на пуск двигателя.
  2. Собрать самодельное зарядное устройство, если есть под рукой нужные элементы. Для этого требуется диодный мост, резистор, мультиметр и лампочка, а так же некоторые познания в электротехнике и навык работы с паяльником.
  3. Если на морозе АКБ не показывает признаков жизни, следует его снять и занести в тёплое помещение на 30 минут. Электролит нагреется, и вы сможете завести автомобиль.
  4. Использовать устройство для зарядки ноутбука. На выходе она выдаёт 18 В. В схему последовательно нужно вставить лампочку от фары, она будет играть роль резистора. Тогда ток не будет превышать 2 А, но для полного заряда АКБ таким способом потребуется около 20 часов.

Заключение

При зарядке АКБ используйте все те советы, которые были даны выше и не забывайте про технику безопасности. Берегите глаза от попадания туда кислоты с аккумуляторной батареи, тщательно мойте руки после контакта с крышечками и баночками на АКБ. Заряжать следует в тёплом помещении с хорошей вентиляцией, в отсутствие детей. Выбирайте зарядное устройство только проверенных брендов, исходя из характеристик вашего аккумулятора, и тогда он верно прослужит вам долгое время.

Оценка статьи:

motorsguide.ru

Способы проверки уровня заряда аккумулятора на автомобиле

Аккумулятор – устройство, без которого система пуска двигателя автомобиля не будет работать. Завести машину без аккумулятора можно, но только в экстренной ситуации, тогда как для ежедневных поездок требуется, чтобы источник питания системы пуска был исправен. Аккумулятор позволяет при старте двигателя раскрутить стартер, который приводит в работу остальные агрегаты. Заряд аккумулятора должен находиться на высоком уровне, чтобы батарея могла безукоризненно справляться с возложенными на нее задачами. Проверить состояние аккумулятора может любой автомобилист, который имеет в своем распоряжении мультиметр или нагрузочную вилку.

Принципы проверки аккумулятора нагрузочной вилкой и мультиметром

Для многих водителей нагрузочная вилка является экзотикой, и бывают автомобилисты со стажем, которые ни разу не слышали о столь простом диагностическом устройстве. По сути, нагрузочная вилка представляет собою вольтметр, который имеет диагностические выводы и содержит в себе мощный нагрузочный резистор. Более сложные модели нагрузочных вилок дополнительно оснащаются амперметрами, что позволяет диагностировать сразу несколько параметров электрической цепи автомобиля, но для определения уровня заряда аккумулятора вполне будет достаточно модели с вольтметром.

Большую распространенность получил такой прибор как мультиметр, который имеется практически у каждого автомобилиста или электрика. Он позволяет с легкостью снимать информацию о напряжении между заданными точками, что полезно при проведении ремонтных и диагностических работ. Мультиметр стоит дороже нагрузочной вилки, но и подходит он для выполнения большего количества задач. В частности, проверить заряд с помощью мультиметра можно на 12-вольтовых и 24-вольтовых аккумуляторах, тогда как нагрузочная вилка подходит только для стандартного автомобильного источника питания на 12 Вольт.

Сам уровень заряда аккумуляторной батареи, обозначенные выше приборы, показать владельцу автомобиля не могут. Они используются для определения напряжения между клеммами аккумулятора, на основании которого можно сделать вывод об уровне заряда источника питания. Если при проведенных замерах аккумулятор показывает напряжение в 12,6 Вольт, можно отметить, что он полностью заряжен. Значение в 12,2 Вольта является допустимым, но водителю рекомендуется подобный аккумулятор зарядить. Все, что ниже 12 Вольт, требует срочной зарядки. Более подробно зависимость уровня заряда аккумулятора от напряжения между клеммами представлена в таблице.

Диагностировать уровень заряда аккумулятора при помощи мультиметра довольно просто, и для этого не требуется наличие специальных знаний. Перед тем как приступить к диагностике, рекомендуется снять аккумулятор с автомобиля или, как минимум, отключить от него клеммы. Проверка аккумулятора мультиметром заключается в следующем:

  1. Первым делом настраивается мультиметр, и если на нем предусмотрена возможность выбора диапазона измерения, необходимо установить его в пределах от 0 до 24 Вольт;
  2. Далее убедитесь, что аккумулятор отключен от клемм автомобиля и прикоснитесь красным щупом диагностического прибора к положительной клемме батареи, а черным к отрицательной;
  3. Если мультиметр подключен верно, на его дисплее отобразится информация о напряжении между клеммами.

Полученные в результате измерения данные необходимо сравнить с таблицей, представленной выше, чтобы определить уровень заряда аккумулятора на автомобиле.

Нагрузочная вилка является диагностическим прибором, который можно купить практически в любом автомобильном магазине. Ее следует использовать для проверки уровня заряда аккумулятора только в том случае, если батарея не работала в течение последних 7 часов. Данный показатель является важным, и при его несоблюдении диагност рискует получить неверные значения во время измерений.

Проверка напряжения на аккумуляторе при помощи нагрузочной вилки проводится следующим образом:

  1. Необходимо убедиться, что клеммы сняты с аккумулятора;
  2. Далее положительный вывод нагрузочной вилки (красный кабель или единственный некоторых моделях) подключается к положительному выводу аккумулятора;
  3. Следом отрицательный вывод подключается к отрицательному выводу аккумулятора. Здесь следует обратить внимание, что некоторые нагрузочные вилки не имеют отрицательного (черного) вывода в виде клеммы, а вместо него на обратной стороне прибора расположен специальный штырь. В таком случае прислоняться к минусовому выводу следует штырем.

Измеренные результаты напряжения сравниваются с таблицей, приведенной выше, после чего можно сделать выводы о состоянии аккумуляторной батареи.

Проверку уровня заряда аккумулятора на автомобиле рекомендуется проводить раз в два месяца. В случае если заряд низкий, нужно скорее исправить ситуацию и зарядить батарею, к тому же, сделать это можно не снимая клеммы.

okeydrive.ru

Схема контроля заряда батареи — Меандр — занимательная электроника

В том случае, если электронные устройства питаются от гальванических источников тока, на­пример батарей, то всегда крайне желательно иметь информацию о степени их заряженности. Это позволит оперативно судить о возможности их дальнейшего использования.

Даже простейший индикатор напряжения ба­тареи под нагрузкой может оказать неоценимую услугу. В последние годы широко используются схемы контроля напряжения химических источ­ников питания, где в качестве индикатора ис­пользуется один или несколько светодиодов. При этом редкое мигание зеленого светодиода контрольного устройства свидетельствует о том, что напряжение на батарее в норме, а мигание красного светодиода свидетельствует о разряде батареи ниже допустимого напряжения.

Одна из таких схем, предназначенная для кон­троля батареи с напряжением 9 В, была опубли­кована в чешском радиолюбительском журнале PE-AR . Первоначально она вызвала интерес простотой схемы и доступностью своих радио­компонентов, но при ее повторении оказалось, что ряд номиналов требует корректировки.

В отличие от многих простейших схем контро­ля напряжения источника питания схема рис.1 обладает достаточно высокой стабильностью ра­боты. Во многом этому способствовало исполь­зование интегрального таймера серии 7555. Это КМОП-аналог импортного таймера 555 или оте­чественного КР1006ВИ1. Использование этой микросхемы, по мнению автора публикации , позволяет предельно уменьшить потребление тока схемой контроля, что осо­бенно важно для устройств, пита­емых от химических источников тока (батарей).

Микросхема IC1 в схеме рис. 1 включена как мультивибратор. Заряд конденсатора С1 происхо­дит через резистор R1 и диод D1. Разряд этого конденсатора про­исходит через резистор R2 и от­крытый разрядный транзистор микросхемы IC1 через вывод 7.


Различие номиналов резисто­ров R1 и R2 в десять раз обеспе­чивает большую скважность вы­ходных импульсов таймера IC1, что энергетически очень целесо­образно.

Схема была задумана ее авто­ром так, чтобы при уменьшении напряжения контролируемой батареи ниже опре­деленного предела потребитель получал инфор­мацию об этом. Для этого вывод 4 IC1 питается падением напряжения на резисторе R4. В свою очередь, этот резистор подключен к контролиру­емому источнику напряжения (батарее) через стабилитрон D3. Напряжение стабилизации ста­билитрона D5 для этой схемы (при работе с бата­реей, имеющей номинальное напряжение 9 В) определено автором статьи как 5.6 В. Таким образом, минимально допустимое напряжение на батарее задано 5.8 В.

Если напряжение на батарее в норме, то изред­ка (при формировании на выходе ИМС ICI корот­кого положительного импульса) будет вспыхивать оба светодиода G и R светодиодной сборки D4, и сборка будет светиться желтым цветом. По мере понижения напряжения на батарее до примерно 7 В тиристор VD1 перестанет отпираться, и будет вспыхивать только красный светодиод сборки D3. Это свидетельствует о том, что батарею надо ставить на зарядку. Когда напряжение на батарее станет ниже 5.9 В, светодиоды перестанут вспы­хивать — батарея полностью разряжена.

Для «разрешения» работы таймера IC1 в ре­жиме мультивибратора необходимо, чтобы напря­жение на выводе 4 этой микросхемы превышало примерно 0.6 В. При меньших напряжениях рабо­та таймера блокируется, и на выходе (вывод 3) присутствует низкий потенциал.

Как это часто бывает, при повторении схем не всегда удается приобрести рекомендуемые радиокомпоненты. Так, вместо стабилитрона D3 типа BZX83V005.6 (5.6 В, 0.5 Вт) был применен импортный стабилитрон с маркировкой PH C 5V6 (5.6 В, 1 Вт). При этом оказалось, что номинал резистора R4 пришлось уменьшать с 330 кОм до 33 кОм.

Во время заряда батареи с подключенным к ней контрольным устройством, при напряжении контролируемой батареи больше примерно 5.8…5,9 В зажигается и начинает мигать красный светодиод R матрицы D4.

В исходной схеме последовательно с крас­ным кристаллом матрицы D4 включался допол­нительный светодиод красного цвета свечения D5. На этом светодиоде при его свечении проис­ходит падение напряжения около 1.25…1,3 В. Однако для визуальной индикации работы схемы вполне достаточно двухцветной светодиодной матрицы D4, поэтому вместо «красного единич­ного» светодиода D5 были использованы два ма­ломощных диода D5 и D6 типа 1N4148.

Резистивный делитель напряжения R5R6 опре­деляет порог включения маломощного тиристора VD1 типа MCR100-8 (рис.1). Известно, что тирис­торы имеют достаточно большой разброс тока уп­равления, при котором они включаются. В данной схеме этот порог задается, в частности, соотноше­нием резисторов R5 и R6 при конкретном выход­ном напряжении таймера. Для того чтобы зажигал­ся зеленый светодиод G светодиодной сборки D4, при рекомендованном в статье напряжении 7 В и использованном в схеме экземпляре тиристора типа MCR100-8, пришлось уменьшить номинал ре­зистора R5 до 22 кОм, при номинале R6 22 кОм.

Для того чтобы это устройство могло работать с аккумуляторами, имеющими другое номиналь­ное напряжение (в пределах от 6 до 18 В), необхо­димо установить стабилитрон D3 с напряжением стабилизации равным минимально допустимому напряжению на данной батарее. Затем необходи­мо будет произвести подбор номиналов резисто­ров R5 и R6 для настройки порога включения ти­ристора VD1 при том напряжении, при котором данную батарею уже надо ставить на зарядку.

Литература

  1. Obvod kontroly 9 V baterie PE-AR — 2015. — №3. — S.39-40.!

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D | Лучшие самоделки

Микросхема HT3786D – это контроллер заряда Li-ion аккумуляторов, интересен он тем, что его можно ещё использовать как индикатор уровня заряда аккумулятора, подключив к нему несколько светодиодов напрямую к выводам мы имеем возможность наблюдать уровень заряда в процентном соотношении. Данная микросхема довольно популярна и используется в таких универсальных зарядных устройствах для зарядки аккумуляторов телефонов, называемых как «лягушка» или «жабка», те, что с ЖК дисплеем.

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D

Детали для ЗУ:

  • Микросхема HT3786D – http://alii.pub/5v4467;
  • 3 мм светодиоды – 4 шт.;
  • Держатель аккумулятора 18650;
  • БП от телефона.

Стандартная схема зарядного устройства на основе микросхемы HT3786D от фирмы HOTCHIP приведена ниже, к выводам микросхемы подключен специализированный LCD (ЖК) дисплей с делениями на проценты заряда.

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D

Но вместо ЖК дисплея к контроллеру заряда HT3786D можно подключить также светодиоды и можно схему немного при этом упростить, что позволит собрать зарядное устройство навесным монтажом.

Так как данная микросхема была разработана для использования для заряда аккумуляторов от телефонов то максимальный зарядный ток у неё составляет 400 мА, так что она больше подойдёт для заряда небольших по ёмкости аккумуляторов, максимум до 1250 мАч, можно конечное и больше но ждать окончания заряда придётся долго. Но большим плюсом данной микросхемы является наглядная индикация уровня заряда аккумулятора, что для некоторых самоделок очень полезно.

Анимация заряда при разных напряжениях аккумулятора во время заряда выглядит следующим образом:

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D

В конце заряда микросхема плавно доводит напряжение на аккумуляторе до 4,25В и дальше полностью отключает заряд.

Процесс создания зарядного устройства на HT3786D, пошаговая инструкция:

Собирать устройство заряда Li-ion аккумуляторов 18650 и др. мы будем по этой схеме, как видите всё предельно просто и сделать его сможет любой.

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D

Для начала спаяем красные 3 мм светодиоды в линейку, катодами вместе и аноды располагаются отдельно.

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D

Далее спаяем вместе первую и вторую ноги микросхемы, а к последующим 2-5 припаяем аноды светодиодов, как это видно с картинки, а катоды всех светодиодов к 6-му выводу.

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D

Теперь к 8-й ноге припаяем плюсовой вывод держателя аккумулятора 18650, а к 10-му минусовой.

Далее к 9-й ножке припаиваем плюсовой контакт от блока питания, а к 7-й ноге соответственно минусовой. БП должен выдавать напряжение от 5 до 8 вольт, лучше если это будет выше 6 В, подойдёт практически любой от мобильного телефона.

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D

Вставив аккумулятор в держатель, контроллер заряда сразу показал, что аккумулятор разряжен, светится только один светодиод, даже при отключенном БП.

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D

Дальше подключаем БП и заряжаем аккумулятор пока все 4 светодиода не станут постоянно светиться и анимация заряда остановится.

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D

Как видите по окончанию заряда на нашем самодельном зарядном устройстве на контроллере HT3786D на заряженном аккумуляторе мультиметр показывает 4,21 В, что соответствует напряжению полностью заряженного аккумулятора.

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D

Зарядное устройство для Li-ion аккумуляторов на контроллере заряда HT3786D

Заряд li-ion батареи шуруповерта от 220 вольт с индикацией своими руками


Недавно, по цене патрона от дрели, мне достался в неизвестном состоянии шуруповерт. Изначально, я планировал его разобрать, извлекая рабочие комплектующие для других проектов. Но после теста, оказалось, что он в исправном состоянии, за исключением батареи. От нее остался только корпус. Батарею решил сделать сразу на Li-ion аккумуляторах. Пришлось также и зарядное устройство, с индикацией окончания процесса зарядки сделать своими руками.

Источником аккумуляторов стала батарея от ноутука, которая более семи лет пролежала в гараже. На удивление, учитывая режим хранения его срок и срок службы батареи, li-ion аккумуляторы сохранили в себе неплохой запас емкости. После проверки тестером аккумуляторов, отобрал 3 пары аккумуляторов, для создания li-ion батареи для шуруповерта своими руками. Подключение производил параллельно последовательно, не распаровывая заводские сборки аккумуляторов.

В качестве зарядного устройства использовал обыкновенную китайскую зарядку от мобильного телефона, заменив в ней стабилитрон (подобранный тестером стабилитронов), отвечающий за уровень напряжения. Теперь вместо 7 вольт, на выходе получил, чуть более, 14 вольт.  Т.к. мощность выдаваемая зарядкой будет использоваться «на полную», увеличил входную и выходную емкости. Во время заряда шуруповерта имеет место нагрев трансформатора, но не более 40-45 градусов, что логично и приемлемо. Если зарядное устройство сделать присоединяемым, то диод D2 можно не ставить. Он предназначен для предотвращения разряда батареи через зарядное устройство, когда отключена сеть. Плата 3S20A контроллера заряда батареи рассчитана на 12 вольт, 20 ампер.

Li-ion аккумуляторы, зарядное устройство и индикаторы, легко размещаются в отсеке от старой батареи шуруповерта. Теперь нет необходимости носить с собой зарядное устройство для шуруповерта. Достаточно отсоединить li-ion аккумулятор от шуруповерта, вставить его в сеть 220 вольт, дождаться заряда, и можно дальше использовать.
Цепь индикатора разряда батареи

, использующая только два транзистора

В следующем посте описывается простая схема индикатора разряда батареи, использующая всего два недорогих NPN-транзистора. Главная особенность этой схемы — очень низкое энергопотребление в режиме ожидания.

Принципиальная схема

До сих пор мы видели, как создать схемы индикатора низкого заряда батареи с использованием микросхем 741 IC и 555, которые, несомненно, обладают выдающимися способностями по обнаружению и индикации пороговых значений низкого напряжения батареи.

Однако следующий пост относится к еще одной подобной схеме, которая намного дешевле и использует всего пару NPN-транзисторов для получения необходимых индикаторов низкого заряда батареи.

Преимущество транзистора перед IC

Основным преимуществом предлагаемой схемы индикатора низкого заряда батареи с двумя транзисторами является очень низкое потребление тока по сравнению с аналогами IC, которые потребляют относительно более высокие токи.

IC 555 будет потреблять около 5 мА, IC741 — около 3 мА, в то время как нынешняя схема будет потреблять около 1.Ток 5 мА.

Таким образом, настоящая схема становится более эффективной, особенно в тех случаях, когда потребление тока в режиме ожидания становится проблемой, например, предположим, в устройствах, которые зависят от источников питания от слаботочных батарей, таких как батарея PP3 на 9 В.

Схема может работать при напряжении 1,5 В

Еще одним преимуществом этой схемы является ее способность работать даже при напряжении около 1,5 В, что дает ей явное преимущество перед схемами на основе ИС.

Как показано на следующей принципиальной схеме, два транзистора сконфигурированы как датчик напряжения и инвертор.

Первый транзистор слева определяет уровень порогового напряжения в соответствии с настройкой предустановки 47K. Пока этот транзистор является проводящим, второй транзистор справа остается выключенным, при этом светодиод остается выключенным.

Как только напряжение батареи упадет ниже установленного порогового уровня, левый транзистор больше не сможет проводить.

Эта ситуация мгновенно запускает правый транзистор, включая светодиод.

Светодиод включается и обеспечивает необходимую индикацию предупреждения о низком заряде батареи.

Принципиальная схема

Видео демонстрация:

Вышеупомянутая схема была успешно построена и установлена ​​г-ном Алланом в его блоке детектора паранормального истощения. На следующем видео представлены результаты реализации:

Модернизация вышеуказанной транзисторной схемы разряда батареи в схему отключения разряда батареи

Ссылаясь на приведенную выше диаграмму, индикатор разряда батареи образован двумя транзисторами NPN, в то время как дополнительные BC557 и реле используются для отключения батареи от нагрузки, когда она достигает нижнего порога, в этом состоянии реле подключает батарею к доступному входу зарядки.

Однако, когда батарея находится в нормальном состоянии, реле соединяет батарею с нагрузкой и позволяет нагрузке работать от батареи.

Добавление гистерезиса

Одним из недостатков вышеупомянутой конструкции может быть дребезг реле при пороговых уровнях напряжения из-за падения напряжения батареи сразу во время процесса переключения реле.

Этого можно избежать, добавив 100 мкФ к основанию среднего BC547. Тем не менее, это все равно не помешает реле постоянно включаться / выключаться при низком пороге переключения батареи.

Чтобы исправить это, необходимо ввести эффект гистерезиса, который может быть реализован с помощью резистора обратной связи между коллектором BC557 и средним транзистором BC547.

Модифицированный дизайн для реализации вышеуказанного условия можно увидеть на следующей диаграмме:

Два резистора, один на базе BC547, а другой на коллекторе BC557, определяют другой порог переключения реле, что означает полное порог отсечки заряда АКБ.Здесь значения выбираются произвольно, для получения точных результатов эти значения необходимо будет оптимизировать методом проб и ошибок.

Индикатор разряда батареи с использованием PUT

Эта схема индикатора разряда батареи используется с программируемым однопереходным транзистором (PUT), поскольку пороговые характеристики UJT могут быть эффективно определены и могут быть разработаны для мигания подключенного светодиодного индикатора.

PUT (Q1) сконфигурирован как схема генератора релаксации. Когда контролируемое напряжение питания (V mon ) начинает падать, напряжение затвора PUT (V g ) также начинает падать, в то время как его анодное напряжение (V a ) в основном остается постоянным.

PUT начинает колебаться только тогда, когда напряжение затвора падает ниже V a на 0,6 вольт. По мере того, как V mon опускается дальше, V g также падает соответственно, и эта ситуация запускается на PUT. Следовательно, период цикла становится меньше, и это вызывает увеличение частоты мигания, указывая на то, что батарея стала слишком низкой и ее необходимо заменить.

Список запчастей

Уход и обслуживание аккумуляторов — Century Batteries


Правильный уход за аккумулятором продлит срок его службы.Чтобы узнать, как поддерживать аккумулятор в отличном состоянии, перейдите по ссылкам ниже.

Регулярный осмотр и техническое обслуживание

Регулярное тестирование и осмотр помогут продлить срок службы батареи. Для поддержания оптимальной производительности рекомендуется регулярный осмотр не реже одного раза в месяц.
При проверке аккумулятора используйте следующие рекомендации:
  1. Проверьте уровень заряда аккумулятора. У большинства аккумуляторов есть индикатор состояния заряда на верхней части аккумулятора, который дает вам возможность на месте диагностировать состояние аккумулятора.Однако более надежным способом проверки является вольтметр для определения стабилизированного напряжения или, если вентиляционные колпачки снимаются, ареометр для определения удельного веса (SG) электролита. Заряженная батарея Century будет иметь стабилизированное напряжение выше 12,5 вольт и показатель удельного веса выше 1,240.

  2. Убедитесь, что верхняя часть аккумулятора чистая, сухая, без грязи и сажи. Грязная батарея может разрядиться через грязь на верхней части корпуса батареи.

  3. Осмотрите клеммы, винты, зажимы и кабели на предмет обрыва, повреждений или ослабленных соединений.Они должны быть чистыми, герметичными и не иметь следов коррозии.

  4. Нанесите тонкий слой высокотемпературной смазки на стойки и кабельные соединения для дополнительной защиты.

  5. Осмотрите аккумуляторный отсек на предмет явных признаков физического повреждения или деформации. Обычно это указывает на перегрев или перезарядку аккумулятора.

  6. Если у вас есть обслуживаемая батарея, важно проверить, достаточно ли в ней электролита, покрывающего пластины батареи.Если требуется доливка, не переполняйте ее, так как уровень жидкости поднимется, когда аккумулятор полностью заряжен, и может переполниться. Доливайте дистиллированную или деминерализованную воду и никогда не заливайте серной кислотой.

  7. При обслуживании герметичной необслуживаемой батареи (SMF) проверяйте индикатор состояния заряда. Это дает вам моментальный снимок состояния аккумулятора и того, нужно ли его зарядить или заменить. Автомобиль все еще может запустить двигатель, хотя индикатор указывает на необходимость замены аккумулятора.Если индикатор состояния заряда сообщает «Замените батарею», важно, чтобы батарея была заменена, так как уровень электролита может быть ниже пластин, что может привести к внутреннему взрыву.

  8. Для батарей, используемых в сезонных применениях и хранящихся в течение длительного времени, полностью зарядите батарею перед хранением. Регулярно проверяйте уровень заряда или напряжения. Если напряжение упадет ниже 12,5 В, зарядите аккумулятор. Важно полностью проверить аккумулятор перед повторным подключением к электрическим устройствам.

Если вы не уверены в состоянии или уровне заряда аккумулятора, отнесите его местному дилеру Century. Они могут осмотреть и протестировать вашу батарею, а также предоставить вам профессиональный совет и помощь.

Здоровье и безопасность аккумуляторных батарей

Аккумуляторная кислота

Кислота аккумулятора может вызвать ожоги. Необходимо использовать соответствующие средства защиты рук, глаз и лица и защитную одежду.

Первая помощь

Для получения консультации немедленно обратитесь в информационный центр по ядам (телефон 13 11 26 в Австралии) или к врачу.При попадании в глаза, держите веки врозь и постоянно промывайте глаза проточной водой.

Продолжайте промывание до тех пор, пока не будет рекомендовано остановиться в центре информации о ядах или у врача, или не менее 15 минут. В случае контакта с кожей или волосами снимите загрязненную одежду и промойте кожу или волосы проточной водой.

Ликвидация разлива кислоты

Оберните и нейтрализуйте разливы кальцинированной содой или другой подходящей щелочью. Утилизируйте остатки как химические отходы или в соответствии с местными требованиями.

При проглатывании электролита

НЕ вызывать рвоту — дать стакан воды. Немедленно обратитесь за медицинской помощью.

Взрывающаяся батарея

Аккумуляторы выделяют взрывоопасные газы во время работы автомобиля и при отдельной зарядке. Пламя, искры, горящие сигареты и другие источники воспламенения должны быть всегда подальше. Соблюдайте осторожность при работе с металлическими инструментами или проводниками, чтобы не допустить короткого замыкания и искр.

Всегда используйте защиту для глаз, когда

Работа рядом с батареями

При зарядке аккумуляторов работайте в хорошо проветриваемом помещении, а не в закрытом помещении.Всегда выключайте зарядное устройство или зажигание * перед отсоединением аккумулятора.

# Как извлечено и истолковано производителем продукта из Международного руководства по обслуживанию батарей, глава 2, тринадцатое издание.
* В некоторых транспортных средствах может потребоваться переключение зажигания в режим дополнительных устройств при наличии электронного устройства памяти.

Тестирование батарей

Тестирование аккумуляторной батареи следует рассматривать как неотъемлемую часть любого регулярного технического обслуживания транспортного средства и проводить независимо от того, возникла проблема с запуском или нет.Из-за повышенных требований к электричеству аккумуляторной батареи перед отказом выдается мало предупреждений. Превентивная замена батареи может помочь устранить многие расходы и проблемы, связанные с разряженной батареей или батареей с истекшим сроком службы.

Перед тестированием батареи важно, чтобы она была полностью заряжена. Даже слегка разряженная батарея может дать ложные показания и счесть батарею неисправной, когда все, что требуется, — это подзарядить.

Доступно много различных типов испытательного оборудования.Цифровой тестер батареи является предпочтительным вариантом, поскольку он безопасен, прост в использовании и предлагает быструю диагностику состояния батареи. Также можно использовать фиксированные и регулируемые нагрузочные тестеры, вольтметры, ареометры и измерители разряда, однако перед использованием любого из этих тестеров требуется правильное обучение, чтобы предотвратить травмы или повреждение автомобиля.

Ареометр
Состояние заряда свинцово-кислотной батареи можно определить по удельному весу (SG) электролита (его плотности по сравнению с эталоном, например, водой).SG может быть измерен непосредственно ареометром или косвенно по стабилизированному напряжению с помощью вольтметра. Обратите внимание, на результат влияет температура кислоты.

Цифровые тестеры батарей
Цифровые тестеры аккумуляторов с микропроцессорным управлением просты в использовании, очень безопасны и могут помочь определить ранний отказ аккумуляторов. Тестер работает, передавая небольшой сигнал через батарею, который использует измерения проводимости или сопротивления (импеданса) для индикации состояния батареи.

В большинстве моделей предусмотрены тесты аккумулятора, запуска и зарядки. Опции принтера позволяют передавать результаты заказчику.

Измерители регулируемой нагрузки

Измерители регулируемой нагрузки — это надежный метод определения пусковой емкости аккумулятора, поскольку при испытании применяется реальная нагрузка, аналогичная той, которая возникает при проворачивании двигателя. Однако эта нагрузка создает риск искры, если провода подключены к корродированным или незакрепленным клеммам.

Стандартный тест заключается в загрузке батареи до 50% от ее номинального значения CCA (ампер холодного пуска) в течение 15 секунд.Если напряжение превышает 9,6 В, аккумулятор в порядке. Например, аккумулятор с рейтингом CCA 600 следует тестировать при 300CCA в течение 15 секунд.

Стандартная интерпретация результата заключается в том, что если в конце 15-секундного теста показание напряжения под нагрузкой составляет от 9,6 В до 10,6 В, тогда батарея считается исправной. Если результат ниже 9,6 В, аккумулятор неисправен и может не запускать двигатель. Всегда рекомендуется проверять спецификации отдельных производителей.

Тестеры разряда с постоянной скоростью
Тестеры разряда

— это простой метод проверки емкости аккумулятора, который обычно применяется для аккумуляторов глубокого цикла.

Тестер работает, разряжая аккумулятор заданным током (А) до тех пор, пока он не упадет до заданного напряжения отключения. Самая большая проблема с тестерами этого типа — время, необходимое для выполнения теста.

В качестве примера, если вы тестировали батарею 100 Ач (ампер-час) при 5 А, на выполнение теста может потребоваться до 20 часов.

Зарядка аккумулятора

Зарядка свинцово-кислотных аккумуляторов — это процесс замены энергии, отводимой во время разряда, плюс ДОПОЛНИТЕЛЬНАЯ зарядка для компенсации неэффективности зарядки. Количество энергии, необходимое для полной перезарядки, зависит от глубины разряда, скорости перезарядки и температуры. Обычно 110% — 150% разряженных ампер-часов в зависимости от типа батареи необходимо возвращать в батарею для достижения полной зарядки.

Безопасность прежде всего

Прежде чем пытаться зарядить аккумулятор с помощью внешнего зарядного устройства, важно знать меры предосторожности при зарядке аккумуляторов и следовать инструкциям производителя зарядного устройства.

  1. Выключите зарядное устройство перед присоединением, раскачиванием или снятием клеммных зажимов.
  2. Не допускайте попадания открытого огня и искр вблизи аккумуляторной батареи.
  3. Не закрывайте вентиляционные колпачки.
  4. Заряжайте в хорошо вентилируемом месте.
  5. Следуйте инструкциям производителя зарядного устройства, чтобы избежать перегрева.

В процессе зарядки образуются опасные взрывоопасные газы, которые могут воспламениться от различных источников, включая искры, открытый огонь и статическое электричество.Настоятельно рекомендуется носить СИЗ (средства индивидуальной защиты), включая защитные очки, химически стойкие перчатки и спецодежду.

Выбор правильного зарядного устройства

Свинцово-кислотные аккумуляторы следует заряжать в 3 этапа; постоянный ток (ускорение), постоянное напряжение (поглощение) и плавающий заряд.

При выборе зарядного устройства важно выбрать зарядное устройство, обеспечивающее указанное зарядное напряжение и ток в соответствии с типом аккумулятора.Типы аккумуляторов с затопленным, абсорбированным стеклянным матом (AGM) и гелевым аккумулятором требуют различных характеристик зарядки для обеспечения оптимальной производительности и срока службы.

Напряжение зарядки (для ручных зарядных устройств)

Мониторинг напряжения аккумулятора во время зарядки чрезвычайно важен для снижения риска перезарядки и для проверки состояния аккумулятора во время зарядки. Всегда соблюдайте параметры, указанные в таблице ниже. Несоблюдение этого правила может привести к необратимому повреждению аккумулятора.

Напряжение вспомогательной зарядки от типа батареи
Тип Абсорбционная зарядка Плавающая зарядка
Затопленный (ремонтопригодный / SMF) от 14,4 до 14,8 В от 13,2 до 13,5 В *
AGM (Абсорбированный стеклянный мат) от 14,6 до 14,8 В от 13,6 до 13,8 В
Гель-электролит 14.От 2 до 14,4 В от 13,6 до 13,8 В


Рекомендуемая температура во время зарядки — 25 ° C. Если температура аккумулятора достигает 50 ° C, необходимо приостановить зарядку.
Вышеуказанные характеристики относятся к свинцово-кислотным аккумуляторным батареям на 12 В. При зарядке 6-вольтовых аккумуляторов напряжение вдвое меньше указанного в спецификации.

Помимо соблюдения рекомендаций по напряжению зарядки аккумулятора, выбор правильного зарядного тока (А) в соответствии с размером аккумулятора имеет решающее значение для обеспечения производительности и срока службы.

* Мы не рекомендуем заряжать затопленные герметичные (кальциевые) батареи, не требующие обслуживания, из-за риска высыхания электролита.

Зарядный ток (для ручных зарядных устройств)

Рекомендуемый безопасный ток зарядки составляет 10% от 20-часового (Ач) номинала аккумулятора. Например, если вы хотите зарядить батарею на 100 Ач, рекомендуемый ток зарядного устройства для этой батареи будет 10 Ампер. Медленная зарядка — лучший способ перезарядить свинцово-кислотный аккумулятор. Быстрая зарядка свинцово-кислотного аккумулятора за счет увеличения рекомендованного тока может вызвать чрезмерную нагрузку и сократить срок службы аккумулятора.

Метод зарядки постоянным током (амперы x часы)
Вспомогательный
Зарядка
График
Продукт Номинальная мощность
Rc (минуты) <65 65-80 81-105 106-120 121-150 151-170 171-185
Ач @ 20 ч 31-40 41-50 51-60 61-70 71-80 81-90 91-100
OCV
SOC%
Зарядный ток

(10% Ач)
4A
5A
6A
7A
8A
9A
10A
12.42 ~ 12,54 70 ~ 75% Время зарядки 3 часа
12,36 ~ 12,48 60 ~ 70% 5 часов
12,24 ~ 12,36 50 ~ 60% 6 часов
12,12 ~ 12,24 40 ~ 50% 8 часов
12,00 ~ 12,12 30 ~ 40% 9 часов
Ниже 11.99 <30% 12 часов
  • Из соображений эффективности сумма заряда должна быть больше, чем разряженная сумма. Этот коэффициент может составлять от 110% до 150%.
  • Чем глубже разряд, тем выше коэффициент.

Примечание: зарядка должна быть приостановлена, когда температура поднимается выше 50 ° C

Время зарядки
Типичное время зарядки в зависимости отУровень заряда 80% и 100%


Чтобы зарядить свинцово-кислотную батарею до 80%, потребуется около 60% от общего времени зарядки, а оставшиеся 40% времени потребуется для того, чтобы вернуть в батарею последние 20% заряда.

Продолжительность зарядки трудно определить из-за таких переменных, как:

  • Глубина разгрузки
  • Температура
  • Размер и эффективность зарядного устройства
  • Возраст и состояние аккумулятора
  • Для руководства см. Таблицу метода зарядки постоянным током
Подключение аккумуляторов — параллельное соединение
  • При параллельном подключении нескольких 12-вольтных батарей вы увеличиваете емкость батарейного блока, сохраняя при этом напряжение.Например. 3 батареи по 12 вольт 60 Ач при параллельном подключении образуют батарею на 12 вольт 180 Ач.
  • При подключении к зарядному устройству зарядный ток делится между всеми батареями в банке. Например. Зарядное устройство на 15 ампер, подключенное к 3 батареям, обеспечит ток до 5 ампер в каждую батарею.
Подключение аккумуляторов — последовательное соединение
  • При последовательном подключении 12-вольтных батарей вы увеличиваете напряжение батарейного блока, сохраняя при этом ток.Например. 3 батареи по 12 вольт 60 Ач при последовательном соединении образуют банк 36 вольт 60 Ач.
  • При последовательной зарядке аккумуляторов у вас должно быть зарядное устройство с напряжением, подходящим для количества аккумуляторов в банке. Например. Если у вас последовательно соединены 3 батареи по 12 В, необходимо использовать зарядное устройство на 36 В.

ВАЖНОЕ ПРИМЕЧАНИЕ: Избегайте быстрой зарядки, так как это заряжает только поверхность пластин аккумулятора и может увеличить вероятность перегрева, что приведет к необратимому повреждению аккумулятора.

Факторы, влияющие на срок службы батареи

По мере старения батареи они постепенно теряют свою емкость по мере выполнения своей функции. Постоянная зарядка и разрядка в конечном итоге приводит к выходу из строя. Компоненты со временем подвергаются коррозии, возникают короткие замыкания, а вибрация вызывает повреждения; все в конечном итоге приводит к отказу. Перезаряд или недозаряд аккумулятора также влияет на срок его службы.

Проверка аккумулятора

Проверьте уровень электролита — жидкость под верхними частями сепараторов указывает на перезарядку или плохое обслуживание.Состояние перезаряда может быть вызвано неправильной настройкой напряжения, низким напряжением, вызванным нагревом или внутренними дефектами, или старением.

  • Есть ли электролит на верхней части аккумулятора? Это может указывать на перезарядку или переполнение.

  • Аккумулятор не закреплен в держателе? Это может вызвать отказ из-за вибрации.

  • Есть ли на аккумуляторе признаки повреждения или неправильного обращения? Это также может вызвать сбой.

Разряженные (разряженные) батареи

Разряженную батарею следует проверять ареометром. Низкое значение удельного веса 1,220 или меньше во всех элементах указывает на разряженную батарею, и ее необходимо зарядить перед дальнейшим исследованием и испытанием. Состояние разряда может быть связано с проблемой в электрической системе (проскальзывание ремня генератора, неисправный регулятор или генератор, высокое сопротивление из-за коррозии). Внутреннее короткое замыкание также может быть вызвано производственными дефектами или коротким замыканием в результате процесса старения или повреждения из-за вибрации.

Знаки раннего предупреждения

Батареи часто выходят из строя, когда меньше всего ожидают. Обычное предупреждение — это более медленная, чем обычно, способность батареи запускать двигатель. Другие менее заметные факторы, такие как изменение режима вождения и более холодная / жаркая погода, будут влиять на срок службы батареи. Поощряйте своих клиентов запрашивать «БЕСПЛАТНЫЙ тест батареи». Это хороший пиар, и если аккумулятор близок к отказу, это поможет избежать неприятностей, связанных с поломкой на дороге.

Технические советы

Вибрация может сократить срок службы батареи. Всегда используйте одобренный аккумуляторный зажим для ограничения вибрации. Аккумуляторы Century имеют прочную конструкцию, в них используются прочные внутренние компоненты, которые противостоят повреждениям от истирания и проколов в результате вибрации автомобиля.

  • Многие предполагаемые «мертвые батареи» — это просто разряженные батареи. Водители просто оставляют свет включенным или могут иметь неисправные регуляторы напряжения.
  • Перед заменой батареи убедитесь, что ваша батарея должным образом протестирована.
    Невозможно точно узнать, когда батарея может выйти из строя. Иногда признаком является медленный запуск двигателя.

  • Старые батареи могут вызвать проблемы в холодную погоду.

  • Точно так же, если двигатель перегревается в очень жаркую погоду, а аккумуляторная батарея испытывает нагрузку от кондиционеров, она может выйти из строя. Всегда рекомендуется регулярно проверять аккумулятор.

Почему выходят из строя батареи?

Батареи имеют ограниченный срок службы, который зависит от области применения и условий эксплуатации.Неисправность батареи может быть объяснена различными факторами, однако причины отказа делятся на две отдельные категории: производственные и непроизводственные неисправности.

Производственные ошибки

Обычно возникают в течение первых 3 месяцев.

Короткие замыкания / мертвые клетки

Где одна ячейка покажет значительно более низкое значение удельного веса (SG), чем другие ячейки.

Внутренний перерыв

Обычно возникает в результате физического повреждения аккумулятора во время транспортировки.Строгие процессы обеспечения качества и инспекции Century, требуемые ведущими производителями автомобилей, гарантируют, что подлинные производственные дефекты в батареях Century незначительны.

Непроизводственные неисправности

Они не подпадают под строгие системы контроля качества Century, и вероятность их возникновения увеличивается по мере того, как батарея находится в эксплуатации. Их часто связывают с проблемами в электрической системе автомобиля, ее работой или аккумулятором.

Износ

По мере старения батареи металлическая сетка подвергается коррозии, и активный материал теряется с пластины.Со временем это приводит к тому, что аккумулятор больше не может заводить автомобиль. Высокая температура ускоряет скорость разложения.

Физический урон

Неправильная установка, обращение и хранение часто приводят к внешнему повреждению и последующему выходу аккумулятора из строя.

Неверное приложение

Установка менее мощной батареи меньшего размера или батареи, предназначенной для другого применения, может привести к преждевременному выходу из строя.

Халатность

Несоблюдение уровня жидкости обнажает внутренние компоненты и ускоряет выход батареи из строя.

Сульфатирование

Происходит, когда аккумуляторная батарея находится в разряженном состоянии в течение длительного периода времени.

Чрезмерная зарядка

Часто возникает из-за неправильной настройки генератора или отказа управления напряжением генератора.

Недозаряд

Короткие поездки, прекращение движения или неисправные генераторы не могут полностью зарядить аккумулятор.

Разряд

Светильники или другие аксессуары, оставленные включенными на длительное время.

Энерджайзер битвы за патент на батарею

Сегодня в Tedium: Мир неизмеримо изменился за годы, прошедшие после войн батарей 1980-х и 1990-х годов — времени, когда, казалось, каждый гаджет нуждался в невероятно ценных, но несколько расточительных щелочных батареях. В наши дни, конечно, батареи все еще с нами, но они, как правило, перезаряжаемые и, возможно, встроены в наши устройства, поэтому мы не выбрасываем батареи каждый раз, когда используем устройство в течение нескольких часов.Но ближе к концу 20 века нашей потребности в батареях не было предела. Была только одна проблема, и эта проблема заключалась в том, что … средний человек понятия не имел, будет работать батарея или нет, если она была просто в ящике — до тех пор, пока однажды в середине 1990-х годов два крупнейших производителя батарей не решили выпустить измерительную систему, которая жила внутри батареи. Это было похоже на волшебство, даже если это была действительно простая электроника. И, несмотря на то, что в то же время была объявлена ​​технология, это было очень похоже на , а не на в тандеме.Сегодняшний Tedium рассказывает о простой новизне измерителей мощности, работающих от батареи, и о судебной битве, которую вдохновили конкурирующие варианты. — Эрни @ Tedium

Спасибо Нику Димичино за то, что вдохновил меня написать об этом.

1924

Год, когда группа представителей в федеральном правительстве США, отрасли производства аккумуляторов и крупных пользователей аккумуляторов собралась вместе, чтобы принять решение о стандартизированной мере для размеров аккумуляторов.В конечном итоге система алфавита вступила в силу, хотя многие размеры батарей, выбранные в то время, не вошли в широкое употребление — особенно батареи A и B — отчасти потому, что технология батарей улучшалась семимильными шагами, оставляя место для альтернатив, таких как как AA, AAA и (совсем недавно) AAAA. Несмотря на то, что одни размеры ушли на пенсию, другие сохраняют необычную точку опоры в современном мире.

Energizer: прибор для измерения заряда батареи. (через YouTube)

Как вообще работает измеритель мощности на батарее?

Это может быть самое гениальное, но неожиданное изобретение конца 20-го века: батарея со встроенным счетчиком, показывающим покупателям батареи, сколько заряда было у устройства.

Вы можете достать батарею из ящика для мусора, измерить ее количество и затем решить, что вы можете продолжить свою игру Game Gear — после того, как вы, конечно же, найдете еще пять рабочих батарей. Это избавит вас от необходимости вставлять батарейки, скажем, в фонарик, и подтверждать, что они хорошо работают.

Это был мир, который обещали нам Duracell и Energizer, когда они выпустили свои тестеры для батарей в конце 1990-х. Вам может быть интересно, , как они это сделали, ?!?

Краткая версия: потратив немного энергии на разумное использование термочувствительных чернил.

А теперь давайте разберемся с этим немного.

Ключевым элементом измерителя является то, что вы, по сути, изгоняете немного энергии каждый раз, когда используете его, чтобы выделить уровень заряда. Если бы он работал постоянно, он эффективно разряжал бы батарею так же быстро, как если бы он был включен во время выполнения чего-то полезного.

Но, выталкивая батарею короткими очередями, он предлагает полезный способ для пользователя батареи отслеживать, какую емкость она может высвободить. Чем больше емкость, тем дольше время использования.

Еще один ключевой элемент этого процесса, как подчеркивается на канале YouTube «xofunkox-Scientific Experiment», включает термохромизм, или процесс, при котором объект меняет цвет благодаря добавлению тепла. (Если вы когда-либо использовали кольцо настроения, такая же концепция.) Канал смог воссоздать эффект Duracell PowerCheck, покрасив кусок латунной фольги термохромными чернилами.

Теперь сравните это с процессом, который Duracell PowerCheck прошел во время зарядки.По мере прохождения через фольгу большего количества энергии краска на фольге меняет цвет, как и счетчик на батарее.

По сути, это аналоговый способ подтверждения того, что в аккумуляторе достаточно заряда. Существуют и другие, более подробные способы отслеживания уровня заряда внутри батареи путем измерения способности батареи выдерживать заряд с помощью такого устройства, как мультиметр.

Но для обычного человека этот подход был слишком сложным. Отличный способ подумать об этом — с точки зрения беспроводного соединения.Если вы настроили соединение Wi-Fi в своем доме, вы можете узнать о нем все, используя подходящее приложение. Но обычный человек просто хочет знать пароль, чтобы выйти в Интернет. У них нет времени беспокоиться о таких вещах, как мощность сигнала … даже если эти проблемы могут повлиять на них. Черт возьми, даже люди, которые заботятся о , могут просто захотеть убрать проблему со своего пути.

Таким образом, просто сказать, что уровень заряда аккумулятора «хороший», как это сделали аккумуляторы Energizer, было отличным способом упростить задачу для обычного человека, в то же время позволяя стойким приверженцам аккумуляторов получить дополнительные технические знания другими способами.

Вот как работает счетчик заряда батареи. Но есть история о том, как она воплотилась в жизнь, и заслуживает обсуждения — куча патентов, которые конкурировали друг с другом, чтобы продать одну и ту же идею одной и той же впечатленной публике в одно и то же время.

«Если аккумулятор кажется достаточно чистым, приклейте его к языку. Вы почувствуете легкий толчок и металлический привкус. Вам, вероятно, потребуется откалибровать свой язык, проверив новую батарею и разряженную батарею, чтобы понять, чего ожидать.”

— Аманда Гассаи, инженер и исследователь, в руководстве для Instructables , в котором описывается, как измерить уровень заряда девятивольтовой батареи, прижав ее к языку. Поскольку у таких батарей оба разъема находятся на одной стороне, вы можете почувствовать как положительные, так и отрицательные эффекты, объединяющиеся одновременно.

Рисунки из патента, поданного Джеймсом Р. Берроузом и Аланом Н. О’Кейном, поясняющие технологию тестирования батарей.(Патенты Google)

Сложная патентная битва, которая привела к спорам об использовании измерителей мощности

Что-то странное произошло 14 декабря 1995 года: оба основных национальных бренда аккумуляторов, Duracell и Energizer, объявили о добавлении этой инновационной технологии тестирования мощности в свои линейки аккумуляторов. В случае обеих компаний это было существенное обновление — в то время как у Duracell был полезный тестер внутри пластикового корпуса, а производитель Energizer Eveready продавал свою модель отдельно.

Но с объявлением была только одна проблема: только одна из компаний имела законную лицензию на технологию, которая сделала это нововведение возможным. Что случилось?

Оба работали над выпуском технологии: Energizer объявил первым, и, как только Duracell узнал об этом, он выпустил собственный пресс-релиз, по сути, чтобы показать Eveready, что у нее тоже есть товары.

Но , почему товар был у обеих компаний? По сути, Бюро по патентам и товарным знакам США одобрило патенты на две отдельные технологии зарядки аккумуляторов примерно за один и тот же период.И, невольно, USPTO выдвинул историю Давида против Голиафа о патентной битве.

В одном углу был Eastman Kodak, в то время еще гигант инноваций с огромным бизнесом по производству камер, который поддерживал себя; в другом — независимая команда изобретателей, которая пришла в голову во время охоты, когда загорелся фонарик. И в центре — патентная система, которая в последние годы столкнулась с возрастающими сложностями и дважды случайно одобрила одну и ту же общую идею.

Это был бой не в пользу изобретателя, работающего в одиночку.Несмотря на то, что упомянутый изобретатель, Джеймс Р. Берроуз, первым подал заявление своему деловому партнеру Алану Н. О’Кейну, они были гораздо меньшими из двух организаций — по сути, пара предпринимателей, взявших на себя как легендарную компанию по производству фотоаппаратов, так и компанию легендарная компания по производству аккумуляторов — а это означало, что потенциально было бы легко измучить подателей патентов судебным иском.

В патентной заявке Берроуза и О’Кейна довольно ясно указано, что устройство было явно вдохновлено личным разочарованием при тестировании аккумуляторов вручную:

Большинство людей проверяют свои батареи, включая устройство, в котором они установлены.Если устройство работает, человек обычно удовлетворен работоспособностью батарей. Некоторые люди проверяют аккумуляторы с помощью тестера аккумуляторов, чтобы определить состояние аккумуляторов. Некоторые люди даже проверяют аккумуляторы как под нагрузкой, так и без нагрузки, чтобы измерить падение напряжения. Хотя проверить батареи несложно, разобрать устройство, извлечь батареи, проверить батареи и, если они прошли тест, переустановить батареи в устройстве занимает много времени.Обычно невозможно проверить новые батареи во время покупки из-за их защитной упаковки.

Соответственно, целью настоящего изобретения является создание улучшенной батареи, имеющей встроенный индикатор заряда батареи, который позволяет сразу определять мощность или состояние батареи. Таким образом, с улучшенной батареей по настоящему изобретению пользователь может быстро и без усилий определить силу или состояние батареи. Когда аккумулятор легко проверяется, как аккумулятор настоящего изобретения, пользователь аккумулятора с большей вероятностью будет регулярно проверять состояние аккумулятора.

(Тем не менее, они также рассмотрели проблему с другой стороны, создав фонарик, который добавил более надежные возможности тестирования батарей.)

Рисунок из патента Kodak для измерителя мощности от батареи. (через Google Patents)

Патент Kodak, который был первоначально подан примерно через год после того, как Берроуз и О’Кейн подали свою заявку, и выдан через шесть месяцев после патента Берроуза, имеет дизайн, очень похожий на то, что в итоге попало в Duracell PowerCheck.(Что имеет смысл, потому что это версия, которую лицензирует Duracell.)

Тем временем было отмечено, что многие внешние тестеры батарей уже присутствуют на рынке, но по своей природе неудобны, в том числе в случае встроенных в комплект тестеров того типа, которым была известна компания Duracell:

Эти тестеры обычно включают проводящий слой, находящийся в тепловом контакте со слоем цветного индикатора, чувствительного к температуре. Когда концы проводящего слоя контактируют с выводами батареи, течет электрический ток, создавая тепло в проводящем слое.Тепло вызывает изменение индикаторного слоя.

Полезность вышеупомянутых устройств крайне ограничена. Им также неудобно пользоваться. Тестер необходимо носить отдельно. Это усугубляется в случае тестеров, включенных в пакет, поскольку весь пакет должен перевозиться отдельно.

ВПТЗ США приняло оба патента, несмотря на очевидное совпадение — частично, согласно статье 1996 года, первоначально опубликованной в The Wall Street Journal , из-за внутренней сложности внутри патентного ведомства, которая гарантировала, что патентные эксперты в разных частях ведомства не знаю, что делал другой.

«Они признали, что это два выданных патента, раскрывающих одно и то же изобретение», — сказал в статье Питер У. Петерсон, юрист компании Strategic Energy, фирмы, созданной для управления изобретением Берроузом и О’Кейном.

Судебная тяжба была явно нацелена на то, чтобы утомить мелких игроков: юристы Kodak пытались проделать бреши в языке, использованном в другом патенте, но к началу 1998 года Kodak проиграла свое первоначальное дело в апелляционной комиссии по патентам и в ведомстве. критикуя «придирчивость» юристов Kodak.Более мелкие изобретатели ожидали большего количества судебных исков.

«У меня давно было ощущение, что крупные компании утопят нас в юридических счетах», — сказал Берроуз в интервью The Wall Street Journal .

О’Кляйн добавил, что только гонорары от Eveready позволяли более мелким игрокам оставаться в игре. «Если бы у нас этого не было, мы были бы раздавлены», — сказал он.

Компания Duracell, принадлежащая Gillette, продолжала настаивать на судебных исках, но ВПТЗ США в конечном итоге поддержало мелких изобретателей в деле, полном судебной рутины.Но в конечном итоге судебная тяжба свелась к простому факту: ребята, вероятно, первыми придумали свой подход к технологии тестирования батарей. Как отмечает Rochester Democrat and Chronicle , компании Kodak будет сложно обойти эту проблему.

Судебная сага, вероятно, пробила брешь на рынке счетчиков мощности на батарейках. В результате сегодня это нововведение, несмотря на то, что оно, возможно, весьма полезно для большинства потребителей, относительно редко встречается в батареях, которые вы покупаете сегодня.Duracell по-прежнему предлагает их на некоторых своих моделях батарей высшего класса, но это уже не функция по умолчанию, как это было в середине 1990-х годов.

Многие из нас, вероятно, все еще полагаются на подход фонарика.

6%

Рост продаж аккумуляторов в течение 1996 года, год, когда тестер аккумуляторов впервые появился на прилавках, согласно исследованию, опубликованному в то время Supermarket News . Несмотря на полезность этой функции, согласно отраслевому изданию, ни Duracell, ни Energizer не могли конкурировать с преимуществом, которое имеют их конкуренты-генерики на полках магазинов — ценой.Юридическая битва также не смогла встряхнуть позиции на рынке, и Duracell осталась лидером по доле рынка. «У нас всегда был сильный рынок аккумуляторов, но я не заметил особого роста продаж из-за внедрения тестеров, работающих от аккумуляторов», — сказал изданию один менеджер продуктового магазина.

Как я уже сказал, одна вещь, которая хороша в этой странной временной шкале , в которой мы живем, — это то, что съемные щелочные батарейки начали в некоторой степени исчезать из разговора в пользу батарей с более длительным сроком службы, хотя это было бы неплохо. если бы пользователям было легко заменить эти батареи.

Конечно, менее расточительно, если одна батарея разрядится после четырех лет перезарядки, чем выбрасывать потенциально сотни батарей, использованных в данном устройстве в течение нескольких лет. Ни один из них не особенно хорош на свалках, но по пути он производит немного меньше физических отходов.

Разряженные батареи все еще проблема. (PublicDomainPictures / Pixabay)

Так почему же вышел из строя измеритель мощности на батарее? Я думаю, это потому, что, несмотря на новаторский характер размещения измерителя внутри батареи, в конечном итоге это была мостовая технология, что-то, что помогало поддерживать щелочную батарею на некоторое время дольше, но в конечном итоге будет устаревшим из-за постепенного перехода к большему количеству современные аккумуляторные технологии, такие как литий-ионные или даже аккумуляторные.Раньше я писал о мостовых технологиях — отличным примером является почтовое устройство, которое позволяет писать сообщения без компьютера.

Тестер батарей был классной особенностью, яркой, но по-своему указывал на слабость работы щелочных батарей. Появятся и другие технологии, которые лучше справятся с решением реальной проблемы.

Считаете это интересным чтением? Поделись с другом!

Используйте этот простой «тест на падение», чтобы проверить, не разряжены ли ваши батареи

Несмотря на то, что в наши дни в большинстве корпусов фотоаппаратов используется какой-то литий-ионный аккумулятор, есть вероятность, что в вашей сумке еще есть какое-то оборудование, которое все еще работает от щелочных батарей.Если вы когда-либо нуждались в проверке заряда этих батарей, но случайно оставляли вольтметр дома (я знаю… о чем вы думали !?), вот небольшой лайфхак, который даст вам информацию ваша потребность.

Этот тест был предоставлен нам лайфхакером и парнем Кипкаем с практическими рекомендациями. Все, что вам нужно, чтобы выполнить тест и проверить, не заряжены ли ваши щелочные батарейки, — это твердая поверхность.

Бросьте каждую батарею (плоской отрицательной стороной вниз) на пару дюймов вверх.Если аккумулятор заряжен, он должен сильно стукнуть и, скорее всего, останется стоять. Однако, если батарея разряжена, она сразу же подпрыгнет и упадет.

К сожалению, это работает только с щелочными батареями, поэтому не роняйте литий-ионные аккумуляторы. Причина, по которой это работает, заключается в том, что по мере разряда щелочных батарей химический состав внутри изменяется и образует водород, создавая давление и облегчая отскок и падение батареи.

Скорее всего, вы уже знакомы с этим «выделением газа», как его называют. Это та же самая сила, которая часто заставляет изолирующие уплотнения и / или аккумуляторную батарею треснуть и протечь.

Если хотите узнать больше о лайфхаках, не забудьте заплатить за посещение веб-сайта Кипкая и / или канала YouTube.

(через Gizmodo)


Обновление : вот второе видео от bajarider1000, демонстрирующее точно такой же трюк:


Обновление : похоже, что различия в тестах на падение, показанные в видео выше, могут быть больше связано с маркой аккумулятора, а не с уровнем заряда аккумулятора.Считайте этот тест «вероятно, подделкой».

Почему бытовой аккумулятор на 12 вольт безвреден, но удар от автомобильного аккумулятора на 12 вольт убьет вас?

Категория: Физика Опубликовано: 1 ноября 2013 г.

Удар автомобильного аккумулятора не причинит вам вреда. Public Domain Image, источник: Кристофер С. Бэрд.

Удар автомобильного аккумулятора вас не убьет. Фактически, в нормальных условиях автомобильный аккумулятор на 12 В обычно даже не шокирует вас.Однако автомобильные аккумуляторы не безвредны. Есть много способов получить травму от автомобильных аккумуляторов:

  • Кислота автомобильного аккумулятора может вытечь из аккумулятора и обжечь кожу.
  • Если пламя или искра поднести слишком близко к автомобильному аккумулятору при неправильной вентиляции, газообразный водород из аккумулятора может взорваться, разбрызгивая осколки аккумулятора и кислоту по всей коже.
  • Искры (искры) между клеммой автомобильного аккумулятора и другими металлическими частями могут вызвать нагрев металла настолько, чтобы вас обжечь.
  • Если автомобильный аккумулятор закорочен кабелем, кабель может нагреться до возгорания.

Существует достаточно опасностей, поэтому рекомендуется быть осторожными с автомобильными аккумуляторами и следовать инструкциям по обслуживанию, приведенным в руководстве по эксплуатации автомобиля, даже если поражение электрическим током от автомобильного аккумулятора не произойдет.

Кроме того, этот вопрос неявно содержит распространенное заблуждение о том, что высокое напряжение независимо друг от друга опасно. Способность электричества повреждать биологические ткани зависит как от текущего напряжения , так и от напряжения .Источник очень высокого напряжения, обеспечивающий очень низкий ток, не несет достаточно энергии, чтобы навредить вам. Например, настольный генератор Ван де Граафа (те заряженные металлические шары, которые вы видите в музее науки) может генерировать напряжение до 100 000 вольт. И все же дети регулярно получают удовольствие от потрясений и волнений от этих генераторов, не причиняя им вреда. Напротив, большой ток (даже при относительном низком напряжении) содержит достаточно энергии, чтобы причинить вам вред. Таким образом, лучшим индикатором опасности источника электричества является то, какой ток он проходит через ваше тело, что частично зависит от напряжения, но также зависит от сопротивления и силы тока, которую может обеспечить источник.

Напряжение — это мера разности электрических потенциалов между двумя точками, аналогичная величине, которую река падает, когда течет из точки A в точку B. В отличие от напряжения, ток измеряет общий заряд, протекающий через точку на своем пути за второй. Течение аналогично тому, сколько воды в реке проходит через определенную точку реки за секунду. Несколько капель воды, стекающей с крутого холма, несут гораздо меньше энергии, чем могучая река, текущая по пологому склону.В действительности, значение имеют как напряжение , так и ток . Могучая река, спускающаяся с обрыва, несет больше энергии, чем могучая река, спускающаяся по пологому склону.

Давайте теперь применим эти концепции к автомобильному аккумулятору, который немного сложнее, чем кажется на первый взгляд. Автомобильные аккумуляторы могут обеспечивать большие токи. И все же они не будут бить вас электрическим током. Ключ к этому любопытству заключается в том, что повреждение вызывает ток , протекающий через ваше тело, , а не максимальный ток, который может обеспечить батарея.Они разные. Сколько тока фактически проходит через объект, зависит от трех факторов: 1) электрического сопротивления объекта, 2) приложенного напряжения и 3) силы тока, которую может обеспечить источник. У человека, касающегося автомобильного аккумулятора, кожа имеет очень высокое сопротивление, что приводит к низкому току; и батарея имеет низкое напряжение, что приводит к низкому току. Несмотря на то, что автомобильный аккумулятор при правильном подключении может обеспечивать высокий ток, ваше тело не потребляет такой высокий ток.Напряжение играет роль в том, что помогает ограничить общий ток в вашем теле (наряду с сопротивлением вашего тела).

В справочнике «Автоэлектроэнергия, электроника, компьютеры» говорится, что «напряжение аккумулятора или системы зарядки обычно не создает достаточного тока, чтобы вызвать серьезное поражение электрическим током».

Темы: автомобиль, автомобильные аккумуляторы, автомобильный аккумулятор, ток, электричество, поражение электрическим током, электромагнетизм, напряжение

Makita U.S.A | Аккумуляторные и сетевые электроинструменты, силовое оборудование, пневматика, аксессуары

Makita U.S.A | Аккумуляторные и проводные электроинструменты, силовое оборудование, пневматика, аксессуары

0 — Результатов найдено

Общий

Введите номер модели вашего инструмента в «Поле поиска» в правом верхнем углу страницы.Вы попадете на страницу сведений о продукте введенной модели. Если вы не можете найти нужную информацию, обратитесь в национальный информационный центр Makita U.S.A., Inc., расположенный в Буфорде, штат Джорджия, с 8:00 до 18:00. EST по телефону (800) 462-5482.

Обратитесь в национальный информационный центр Makita U.S.A., Inc., расположенный в Буфорде, штат Джорджия, с 8 до 8 часов утра.м. и 18:00. EST по телефону (800) 462-5482. Вы также можете найти местного дилера в вашем районе, нажав кнопку «Купить в местном масштабе» в верхней части веб-страницы Makita или «Купить в Интернете», чтобы найти ссылку на наших онлайн-дилеров.

Найдите ближайшего к вам дилера, нажав кнопку «Купить на месте» в верхней части веб-страницы Makita или на любой странице с описанием продукта. Введите свой почтовый индекс, чтобы найти дистрибьютора в вашем районе.Вы также можете щелкнуть вкладку «Купить в Интернете», чтобы перейти к нашим онлайн-дилерам.

Найдите ближайший к вам FSC или ASC, выбрав вкладку «Сервис» вверху страницы и затем щелкнув Сервисные центры. Вы можете ввести свой почтовый индекс, чтобы найти ASC в вашем регионе, или установить флажок «Заводской сервисный центр», чтобы просмотреть все FSC по штатам.

Чтобы узнать больше о нашей гарантии, щелкните здесь.

Введите номер модели вашего инструмента в «Поле поиска» в правом верхнем углу страницы. Вы попадете на страницу сведений о продукте введенной модели.Перейдите в раздел «Ресурсы и медиа» в нижней части страницы. PDF-файлы руководства по эксплуатации или описания деталей можно скачать здесь. Если руководство по эксплуатации или детализация отсутствуют в списке, обратитесь в национальный информационный центр, расположенный в Буфорде, штат Джорджия, по телефону (800) 462-5482.

Беспроводной

№Компания Makita разработала все аспекты линейки литий-ионных инструментов 18 В LXT ® и компактных литий-ионных инструментов 18 В, чтобы выполнить четыре обещания для профессиональных пользователей: больше мощности, меньше веса, лучше подходят и больше работы. Инструменты LXT ® и Compact — это не просто существующие инструменты с новой литий-ионной батареей; они полностью переработаны и оснащены самой современной литий-ионной аккумуляторной батареей и системой зарядки, доступной на рынке. Makita спроектировала и построила платформу для инструментов LXT ® с нуля, чтобы дополнить легкую платформу LXT ® и компактную аккумуляторную платформу.

Скорее всего, в этом сценарии проблема будет в батарее. Вы можете посетить сайт www.makitatools.com, чтобы найти ближайший к вам сервисный центр. Вы также можете обратиться в информационный центр Makita, расположенный в Буфорде, штат Джорджия, по телефону (800) 4-MAKITA для получения дополнительной помощи.

Да.Как только вы заметите снижение производительности инструмента (то есть он начинает замедляться и становится бесполезным), прекратите использование инструмента и зарядите аккумулятор. Продолжение разряда аккумулятора ниже уровня, при котором он не будет приводить в действие инструмент, может привести к повреждению аккумулятора и сокращению времени работы и срока службы.

Нет. Makita рекомендует просто полностью зарядить новый аккумулятор перед использованием.

Нет, зарядные устройства Makita сконструированы таким образом, что они не будут перезаряжать литий-ионную батарею. Например, зарядное устройство Makita Rapid Optimum Charger (DC18RC) взаимодействует с литий-ионными аккумуляторами Makita 18 В для определения уровня заряда. По достижении полной зарядки зарядное устройство переходит в режим обслуживания и активно контролирует уровень заряда аккумулятора, чтобы поддерживать его полностью заряженным

На каждый литий-ионный электроинструмент, аккумулятор и зарядное устройство Makita распространяется гарантия на отсутствие дефектов изготовления и материалов в течение ТРИ ГОДА с даты первоначальной покупки.Для получения дополнительной информации о гарантиях на инструменты Makita перейдите по ссылке ГАРАНТИЯ на сайте makitatools.com или обратитесь в информационный центр Makita, расположенный в Буфорде, штат Джорджия, по телефону (800) 4-MAKITA.

Нет, использование преобразователя или инвертора питания может привести к повреждению зарядного устройства и аннулированию гарантии.

№Ни одна из радиостанций Makita на стройплощадке не оборудована для зарядки аккумуляторов. Радиостанции на стройплощадке включают в себя адаптер переменного тока и также могут работать от батарей Makita в стиле стручка или слайдера с напряжением от 9,6 В до 18 В.

№. Для литий-ионных аккумуляторов Makita 7,2 В, макс. 12 В и 36 В требуются разные зарядные устройства. Чтобы ознакомиться с полным ассортиментом зарядных устройств для литий-ионных аккумуляторов Makita, перейдите по ссылке «АКСЕССУАРЫ» на сайте makitatools.com

Да. Размер оправки пилы для резки металла Makita 18V LXT (включая модели BCS550 и XSC01 с лезвием 5-3 / 8 дюймов и XSC02 с лезвием 5-7 / 8 дюймов) составляет 5/8 дюйма. Makita производит несколько сменных лезвий которые подходят для резки металла.Для получения дополнительной информации обратитесь в информационный центр Makita, расположенный в Буфорде, штат Джорджия, по телефону (800) 4-MAKITA.

Нет — используйте только оригинальные аккумуляторы и зарядные устройства Makita. Литий-ионные батареи Makita производятся в соответствии со строгими стандартами и имеют внутреннюю электронную схему для контроля состояния батареи при использовании с инструментами и зарядными устройствами Makita. При использовании неоригинальной «подделки» батареи Makita или батареек, которые были изменены, сложная электронная система связи между батареей и зарядным устройством, а также между батареей и инструментом может быть нарушена.Это приведет к:
— аннулированию гарантии Makita на инструмент и зарядное устройство Makita
— аннулированию утверждения стандартов UL / CSA для инструмента

При использовании неоригинальных аккумуляторов Makita также существует риск:
— аккумулятор взрыв, который может привести к травмам и / или повреждению имущества
— Возможное повреждение инструмента, аккумулятора и / или зарядного устройства в результате пожара
— Работа инструмента неизвестна

Makita не несет ответственности за несчастные случаи, травмы персонала или материальный ущерб (или ущерб к аккумуляторам, инструментам или зарядным устройствам), которое происходит в результате использования «подделок» аккумуляторов или аккумуляторов, которые были отремонтированы или изменены каким-либо образом.Всегда используйте подлинный Makita.

Аккумулятор

Вы можете утилизировать аккумулятор в любом из наших заводских сервисных центров, на местных предприятиях по переработке или использовать Call2Recycle® (call2recycle.org или 800.822.8837).

Нет, зарядные устройства Makita сконструированы таким образом, что они не будут перезаряжать литий-ионную батарею.Например, зарядное устройство Makita Rapid Optimum Charger (DC18RC) взаимодействует с литий-ионными аккумуляторами Makita 18 В для определения уровня заряда. По достижении полной зарядки зарядное устройство переходит в режим обслуживания и активно контролирует уровень заряда аккумулятора, чтобы поддерживать его полностью заряженным.

Описание можно найти в руководстве пользователя DC18RC.
Мигающий зеленый свет — Готовность к зарядке
Горит красным светом — Зарядка (батарея заряжена ниже 80%)
Постоянно светится красным и зеленым светом — Зарядка (батарея заряжена более 80%)
Постоянно горит зеленым светом — Зарядка завершена
Мигает красный свет — Задержка зарядки (Аккумулятор охлаждается или аккумулятор слишком холодный для зарядки)
Мигающий красный и зеленый свет — Неисправный аккумулятор
Мигающий желтый свет — Неправильное охлаждение
Горит желтым светом свет — Кондиционирование

Аккумулятор LXT ® 18 В совместим со всеми нашими решениями LXT ® , имеющими Star Protection Comuter Controls ™. Эта линейка включает более 150 решений.

На каждый литий-ионный электроинструмент, аккумулятор и зарядное устройство Makita распространяется гарантия на отсутствие дефектов изготовления и материалов в течение ТРИ ГОДА с даты первоначальной покупки. Для получения дополнительной информации о гарантиях на Makita Tools перейдите по ссылке СЕРВИС на сайте makitatools.com или обратитесь в информационный центр Makita, расположенный в Буфорде, штат Джорджия, по телефону (800) 4-MAKITA.

На каждый литий-ионный электроинструмент, аккумулятор и зарядное устройство Makita распространяется гарантия на отсутствие дефектов изготовления и материалов в течение ТРИ ГОДА с даты первоначальной покупки. Для получения дополнительной информации о гарантиях на Makita Tools перейдите по ссылке СЕРВИС на сайте makitatools.com или обратитесь в информационный центр Makita, расположенный в Буфорде, штат Джорджия, по телефону (800) 4-MAKITA.

Мы предлагаем ряд вариантов, включая: 1.5, 2.0, 3.0, 4.0, 5.0 и 6.0 ач.

Makita рекомендует просто полностью зарядить новый аккумулятор перед использованием. Время зарядки аккумуляторов составляет:
1.5 часов = 15 минут, 2 часа = 20 минут, 3 часа = 30 минут, 4 часа = 40 минут, 5 часов = 45 минут, 6 часов = 60 минут.

Нет, не разбирайте аккумуляторный блок.

BL1815 и BL1820B — 0,85 фунта
BL1830B-BL1860B — 1.35 фунтов

Да, требуется подтверждение покупки.

В настоящее время можно зарегистрировать только инструменты.

Настольный

Обычная торцовочная пила диаметром 12 дюймов обеспечивает большую режущую способность как по высоте поперечного, так и по вертикальному пропилу по сравнению с торцовочной пилой с диагональю 10 дюймов.10-дюймовая пила с меньшим размером полотна обычно имеет меньший биение и отклонение полотна, часто более точна и идеальна для выполнения специальных пропилов.

Торцовочные пилы с скользящим шлицем обычно обеспечивают большую производительность торцовки по сравнению с аналогичными торцовочными пилами без скользящего соединения.

Конкретный

Двухтактные резаки Makita требуют смеси 50: 1 с синтетическим маслом (номера деталей T-00739 6.4 унции или T-00745 2,6 унции). Пожалуйста, обратитесь к руководству по эксплуатации, чтобы подтвердить надлежащий сорт масла.

Электрорезы Makita

поставляются с пятиступенчатой ​​системой фильтрации с усовершенствованным направленным воздушным потоком для повышения производительности и простоты обслуживания. Пенный фильтр предварительной очистки следует проверять и чистить ежедневно или не реже, чем каждые четыре часа работы при резке с большим количеством пыли.При влажной резке или резке стали необходимо очищать поролоновый предварительный фильтр еженедельно или каждые 25 часов работы (никогда не используйте сжатый воздух для очистки фильтров). Внутренний фильтр меньшего размера можно промыть теплой мыльной водой с обычным средством для мытья посуды или очистителем фильтров Makita и дать ему высохнуть на воздухе. Бумажный вкладыш воздушного фильтра можно слегка открыть и постучать по чистой поверхности, но ни в коем случае нельзя мыть. Чтобы узнать номера деталей для конкретных запасных частей фильтра, перейдите на страницу конкретного продукта на веб-сайте Makita.

Ударное воздействие на перфораторы обеспечивается за счет ударов двух кулачков друг о друга. Перфоратор является электропневматическим, он получает энергию удара от давления воздуха. Перфораторы лучше всего использовать для установки небольших анкеров в неармированном бетоне, а также в штукатурке, кирпичной кладке и блочных стенах. Перфораторы разработаны для использования как на железобетоне, так и на неармированном бетоне, а также на штукатурке, кирпичной кладке и блочных стенах.

Некоторые перфораторы могут выполнять легкие работы по сносу, например скалывание плитки. Но для тяжелых или продолжительных работ по сносу отбойный молоток — лучший инструмент.

AVT ® (Anti-Vibration Technology) — это эксклюзивная противовесная система Makita, которая снижает вибрацию до 3 раз меньше, чем у конкурирующих моделей.При использовании AVT ® энергия удара сосредоточена на рабочей поверхности, и меньшая вибрация направляется на инструмент и пользователя инструмента.

Стрелка на поршне должна указывать в сторону глушителя. Для обслуживания вашей пилы Makita вы можете найти ближайший к вам Makita FSC или ASC, выбрав вкладку «Сервис» в верхней части веб-страницы, а затем щелкнув «Авторизованные и заводские сервисные центры».«Вы можете ввести свой почтовый индекс, чтобы найти ASC в вашем районе, или щелкнуть ссылку« Factory Service Center List », чтобы просмотреть все FSC по штатам.

Сверление и крепление

Makita производит ряд отверток для гипсокартона с различными функциями для различных областей применения.Как правило, более низкая установка числа оборотов обеспечивает более высокий крутящий момент, который часто лучше всего подходит для крепления шурупов к деревянным шпилькам. Однако в конечном итоге все сводится к предпочтениям пользователя.

Ударные драйверы разработаны для обеспечения большей скорости и большего крутящего момента в меньшем корпусе. Сочетание скорости и крутящего момента — идеальное сочетание для всех крепежных изделий, включая длинные винты для сборки настила.Другой вариант — шуруповерт с высоким крутящим моментом, скорость вращения 2500 об / мин лучше всего подходит для шурупов. Makita предлагает широкий выбор ударных отверток и отверток.

Нет, его можно использовать только с DA4000LR и 6304LR.

Металлообработка

Чтобы использовать отрезной круг, шлифовальный станок Makita должен быть оборудован защитным кожухом отрезного круга, одобренным для данной шлифовальной машины.Обратитесь к руководству по эксплуатации кофемолки, чтобы определить подходящую защиту. Кроме того, принадлежности шлифовального станка должны быть рассчитаны на скорость, по крайней мере, рекомендованную на этикетке с предупреждением об инструменте.

Шлифовальные машины

Select Makita можно использовать как дисковую шлифовальную машину. Обратитесь к руководству по эксплуатации инструмента для подтверждения правильности принадлежностей и их использования.

Шлифовальные круги со ступичными ступицами изготавливаются с установленными на круге внутренним фланцем и стопорной гайкой.На колесе с вдавленным центром внутренний фланец и стопорная гайка не прикреплены к колесу и должны быть закреплены отдельно с помощью гаечного ключа во время установки. Обратитесь к руководству по эксплуатации кофемолки для подтверждения правильности принадлежностей и их использования.

Makita предлагает один из самых больших ассортиментов угловых шлифовальных машин размером от 4 до 9 дюймов.Лучшая модель кофемолки зависит от нескольких факторов в зависимости от области применения. В результате Makita производит угловые шлифовальные машины разных размеров с разными типами рукояток, конфигурациями переключателей, а также числом оборотов в минуту, чтобы наилучшим образом справиться с вашим применением.

SJS ® (Super Joint System) — это инновационная разработка компании Makita, в которой якорь двигателя и спирально-конический редуктор соединены винтовой пружиной.Если шлифовальный круг заедает или заедает, винтовая пружина расслабляется и отсоединяет шестерни от двигателя. Когда шлифовальный круг останавливается, шестерни и двигатель защищены. Щелкните видео (справа), чтобы просмотреть видео с описанием этой инновационной технологии.

Энергетическое оборудование

Трижды потяните трос стартера при открытом декомпрессионном клапане.

Компрессия должна составлять от 130 до 150 фунтов на квадратный дюйм.

Makita предлагает масло для 2-тактных двигателей для использования в своих продуктах, оснащенных 2-тактными двигателями. Но любое масло для 2-тактных двигателей класса TC3 разработано для использования в этих продуктах.Пожалуйста, обратитесь к руководству по эксплуатации, чтобы узнать, какой сорт масла подходит для вашей конкретной модели.

Никогда не используйте моторное масло вместо масла для цепной шины, потому что большинство моторных масел содержат детергенты.

Модели, заканчивающиеся на букву «R», представляют собой бесщеточное самовозбуждающее двухполюсное однофазное вращающееся поле.В моделях, которые заканчиваются на букву «L», в двигателе установлены щетки.

Да, каждая модель имеет отдельный номер детали для двигателя.

4-тактное оборудование спроектировано для лучшей экономии топлива и до 60% более эффективно, чем 2-тактное оборудование.Кроме того, четырехтактное оборудование снижает выбросы выхлопных газов по сравнению с двухтактным оборудованием. Кроме того, в 4-тактном двигателе используется неэтилированное топливо и не требуется топливно-масляная смесь.

Да. Для 4-тактного оборудования Makita не требуется топливно-масляная смесь, но для этого требуется небольшое количество моторного масла в двигателе (SAE 10W-30 по классификации API, класс SF или выше).Пожалуйста, обратитесь к Руководству по эксплуатации для получения рекомендуемого графика технического обслуживания.

Пилы

Makita предлагает ряд полотен для сабельной пилы, предназначенных для использования в жилых, коммерческих и промышленных помещениях. Наиболее распространенные возвратные полотна совместимы с сабельными пилами Makita, но перед использованием проверьте руководство по эксплуатации вашего инструмента.

Гипоидные шестерни

, такие как шестерни Makita 5377MG 7-1 / 4 ”, гипоидные циркулярные пилы для магния, спроектированы с термообработанными гипоидными стальными шестернями, рассчитанными на более длительный срок службы и предотвращающие преждевременный износ, часто встречающийся в традиционных червячных передачах из бронзового сплава. Гипоидные шестерни также имеют больший контакт с поверхностью и обеспечивают большую мощность.

Makita JR3070CT оснащен антивибрационной технологией (AVT), эксклюзивной системой противовеса Makita, которая снижает вибрацию до 3 раз меньше, чем у конкурирующих моделей.С меньшей вибрацией JR3070CT режет более эффективно, повышая производительность резки. AVT от Makita также доступен в некоторых перфораторах и отбойных молотках Makita.

Деревообработка

При правильном применении оба типа шлифовальных машин могут быть эффективны в своих конкретных областях применения.Шлифовальные машины с произвольной орбитой обычно удаляют больше материала за меньшее время, так как шлифовальная основа движется по орбите и вращается случайным образом. Обратитесь к руководству по эксплуатации для получения информации о правильном использовании и применении для вашей конкретной шлифовальной машины.

Да. Все ремни Makita имеют маркировку в виде стрелки, которая видна изнутри и снаружи, чтобы следить за правильной установкой ремня.Следуйте процедуре установки, описанной в Руководстве по эксплуатации.

Да. Makita предлагает прокладку PSA (деталь 743056-7), которая позволит вам использовать бумагу PSA.

Проверьте наждачную бумагу и убедитесь, что пробитые вами отверстия совпадают с перфорированной пластиной, прилагаемой к инструменту.

Нет. Для получения информации о правильном использовании и принадлежностях для строгального станка Makita см. Руководство по эксплуатации.

Нет необходимости использовать прямую направляющую на фрезере при использовании пилотного долота на шарикоподшипниках, поскольку опора на фрезы действует как направляющая.Для правильного использования всегда обращайтесь к инструкции по эксплуатации.

Да, маршрутизаторы Makita RD1101 / RF1101, RP1800 и RP2301FC можно оборудовать для использования шаблонных направляющих Porter Cable ® с помощью совместимого адаптера направляющих.

Porter-Cable® является зарегистрированным товарным знаком Porter-Cable Corporation ® .
Этот товарный знак используется без разрешения владельцев товарных знаков только в информационных целях.

Sync Lock ™

Sync Lock ™ Введение

Sync Lock ™ — это программируемая система для батарей, состоящая из клеммы батареи и батареи, которая позволяет пользователю устанавливать дату и интервалы времени, чтобы отключить батарею и предотвратить несанкционированное использование продукты с батарейным питанием.Для получения дополнительной информации см. Нашу страницу с описанием продукта.

Если вы используете аккумуляторные инструменты Makita, и батареи составляют основную часть вашего бюджета на инструмент — и вы беспокоитесь о краже батареи — тогда Sync Lock ™ для вас. Sync Lock ™ — это система защиты от кражи, которая побуждает ваших рабочих не выносить аккумуляторы с рабочего места.

После первоначальных вложений в оборудование нет никаких затрат.Просто купите терминал и установите программное обеспечение (входит в комплект) на компьютере или ноутбуке — это все, что вам нужно, чтобы начать использовать Sync Lock ™. Стоит отметить, что батареи Makita, совместимые с Sync Lock ™, не требуют дополнительных затрат. В отличие от некоторых конкурирующих систем защиты от кражи (для которых требуется новый аккумулятор с поддержкой Bluetooth, который стоит дороже или требуется адаптер для существующих аккумуляторов), все аккумуляторы Makita в полевых условиях с L.E.D. индикаторы уровня заряда готовы к использованию с Sync Lock ™.

Sync Lock ™ работает с литий-ионным аккумулятором Makita 18 В 2.Батареи 0Ah, 3.0Ah, 4.0Ah, 5.0Ah и 6.0Ah, оснащенные L.E.D. индикаторы уровня заряда. Совместимы следующие номера моделей аккумуляторов: BL1802B, BL1830B, BL1840B, BL1850B, BL1860B.

Нет, Sync Lock ™ не требует мобильного приложения для установки или работы. Это согласуется с нашим исследованием сайтов вакансий, которое показывает, что использование мобильных приложений на сайтах вакансий не является общепринятым.Фактически, многие сайты вакансий считают использование мобильных устройств отвлечением и создают правила, ограничивающие их использование в рабочее время. Sync Lock ™ обеспечивает надежную защиту от кражи без использования мобильных устройств.

Исследования показывают, что средний подрядчик-пользователь Makita имеет до 4 аккумуляторов на каждый аккумуляторный инструмент Makita. Исследования также показывают, что вложения в аккумуляторные батареи соответствуют и превышают вложения в инструменты.Makita Sync Lock ™ обеспечивает надежную защиту от кражи для любого подрядчика, вложившего средства в систему Makita LXT.

Начиная

Вам потребуется компьютер или ноутбук с USB-портом, работающий под управлением операционной системы Windows 7 или 8 серии.Комплект терминала Sync Lock ™ имеет все остальное, что вам может понадобиться, включая терминал Sync Lock ™, операционное программное обеспечение и кабель micro-USB. Обратите внимание, что операционная программа Sync Lock ™ находится на флэш-накопителе, но ее также можно загрузить здесь.

Нет. В настоящее время Sync Lock ™ можно использовать только с компьютером или ноутбуком с операционной системой Windows 7 или 8 серии.

Нет. Вам потребуется подключение к Интернету только в том случае, если вы решите загрузить операционное программное обеспечение Sync Lock ™ с сайта www.makitatools.com. Обратите внимание, что операционная программа Sync Lock ™ находится на флэш-накопителе внутри комплекта.

№Подключение к Интернету не требуется для использования Sync Lock ™ на вашем рабочем месте.

Настраивать

См. Руководство по быстрому запуску, которое находится внутри коробки. Его также можно найти в формате PDF на установочной флешке и на сайте makitatools.com / синхронизация блокировки. Краткое руководство содержит четкие пошаговые инструкции по установке и настройке, чтобы вы могли использовать Sync Lock ™ на своем рабочем месте.

Убедитесь, что на вашем компьютере или ноутбуке установлена ​​операционная система (ОС) Windows 7, 8 или 8.1. При загрузке убедитесь, что шнур правильно подключен между Терминалом и компьютером или ноутбуком.Обратите внимание, что программное обеспечение Sync Lock ™ несовместимо с компьютерами Macintosh. Также обратите внимание, что программное обеспечение не будет работать на планшетах или мобильных устройствах любого типа. Для получения дополнительной информации обратитесь в информационный центр Makita по телефону (800) 4-MAKITA.

При подключении терминала (подключив его к портативному компьютеру или компьютеру с помощью соединительного кабеля USB) убедитесь, что боковой переключатель терминала находится в среднем положении: режим связи.Убедитесь, что ваше программное обеспечение открыто на вашем рабочем столе. В окне Sync Lock ™ на экране убедитесь, что значок USB в правом верхнем углу горит (см. Изображение справа). Для получения дополнительной информации обратитесь в информационный центр Makita по телефону (800) 4-MAKITA.

Убедитесь, что шнур правильно подключен между Терминалом и вашим компьютером или ноутбуком. Также убедитесь, что боковой переключатель терминала находится в среднем положении: режим связи.Для получения дополнительной информации обратитесь в информационный центр Makita по телефону (800) 4-MAKITA.

Да. Каждый терминал включает уже установленную 3-вольтовую литиевую батарею типа «таблетка» CR2450. Рекомендуется держать под рукой дополнительные аккумуляторные элементы, так как вы не сможете разблокировать аккумуляторы на Терминале, если аккумулятор разряжен. Обратите внимание, что ваш Терминал будет показывать предупреждающий свет, когда батарея разряжена (изображение справа).Также рекомендуется держать на стройплощадке дополнительный терминал в качестве резерва на случай разряда батареи — эта мера предосторожности поможет предотвратить простои при замене батареи.

На вашем терминале Sync Lock ™ есть три световых индикатора:
1. Регистрация: Когда он горит и боковой переключатель установлен в положение «Регистрация», ваш терминал позволит вам установить новые ПИН-коды для ваших батарей и / или Терминал.
2. Таймер: Когда он горит и боковой переключатель установлен в режим таймера, вы можете назначить расписания блокировки для ваших батарей. Обратите внимание, что PIN-код должен быть назначен каждой батарее, прежде чем вы сможете установить график блокировки.
3. Предупреждение: Предупреждающий световой сигнал указывает на то, что PIN-код клеммы и аккумулятора не совпадают. Предупреждающий световой сигнал также сигнализирует о низком уровне заряда батареи — это ваш сигнал к замене батареи на новую литиевую батарею типа «таблетка» CR2450 3V. Обратите внимание, что с разряженной батареей вы не сможете разблокировать свои батареи, поэтому рекомендуется держать под рукой дополнительные батареи, а также держать один дополнительный терминал с батареей в качестве резервного.

При подключении к компьютеру или ноутбуку с помощью соединительного кабеля настройки бокового переключателя (изображение справа) позволяют выполнять ряд функций:
1. Регистрация: Установите новые PIN-коды для ваших батарей и / или терминала. .
2. Таймер: Назначьте расписания блокировки для ваших батарей. Обратите внимание, что PIN-код должен быть назначен каждой батарее, прежде чем вы сможете установить график блокировки.

Установка

После того, как Терминал был назначен PIN-кодом при подключении к вашему компьютеру или ноутбуку, Терминал готов к программированию ваших батарей. Когда Терминал подключен или не подключен к вашему компьютеру или ноутбуку — и с боковым переключателем на Регистрации — просто вставьте незапрограммированную батарею в Терминал.Когда раздается звуковой сигнал и мигает индикатор регистрации, это означает, что этому аккумулятору назначен PIN-код. Оттуда, если таймер уже установлен на Терминал, вы можете переключить настройку в режим Таймера, который также установит время блокировки.

Имя пользователя может дополнительно идентифицировать Терминал для конкретного человека или проекта.

Всегда нажимайте «ОК».PIN-код регистрационных данных, который вы только что ввели до появления этого сообщения, должен совпадать с PIN-кодом Timer Cross при установке времени блокировки аккумулятора. Обратите внимание, что если для ПИН-кода регистрации по-прежнему установлено значение по умолчанию, равное четырем нулям (0 0 0 0), это гарантирует, что вы сможете программировать новые батареи, просто вставив их в Терминал (примечание: необходимо установить боковой переключатель. при регистрации).

Подключив Терминал к компьютеру или портативному компьютеру с программным обеспечением Sync Lock ™, перейдите в раздел «Настройка регистрации», чтобы настроить новый PIN-код для настройки регистрационных данных и имя пользователя.Дополнительную информацию см. В Кратком руководстве.

Если вы изменили регистрационный перекрестный PIN-код с настройки по умолчанию, состоящей из четырех нулей (0 0 0 0), вам нужно будет изменить его обратно на PIN-код по умолчанию. Подключив Терминал к компьютеру или ноутбуку, измените ПИН-код регистрационного перекрестного кода на четыре нуля (0 0 0 0) и нажмите «Передать». Дождитесь сигнала, затем отключите Терминал.Теперь, когда боковой переключатель установлен в положение «Регистрация», вставьте батарею в Терминал, дождитесь звукового сигнала и мигания индикатора «Регистрация». Батарея запрограммирована и может быть удалена. При предыдущей настройке подключите Терминал к компьютеру или ноутбуку и измените свой перекрестный PIN-код регистрации. Как уже упоминалось, мы рекомендуем оставить для перекрестного PIN-кода регистрации значение по умолчанию, равное четырем нулям, для простоты использования.

Лучшие практики

Оставьте для ПИН-кода перекрестной регистрации значение по умолчанию, равное четырем нулям (0 0 0 0).Ваш Терминал прибудет с этой настройкой.

Держите дополнительный терминал на стройплощадке в качестве резерва на случай разряда батареи — эта мера предосторожности поможет предотвратить простои при замене батареи.

Имейте под рукой запасные аккумуляторные батареи на рабочем месте или на рабочем месте. Вы не сможете разблокировать свои аккумуляторы на Терминале, если аккумулятор разряжен. Обратите внимание, что ваш Терминал будет показывать предупреждающий свет, когда батарея разряжена. Эта мера предосторожности поможет предотвратить простои при замене батареи.

На стройплощадке держите терминал (ы) в режиме таймера. Это наиболее распространенная настройка для повседневного использования. Если не установлен режим таймера, Терминал не будет считывать данные о ваших батареях.

Если у вас большая строительная площадка, рекомендуется иметь несколько терминалов (пример: один терминал на этаж). Это обеспечивает более быструю обработку нескольких батарей.

Для отмены программирования батареи лучше всего иметь под рукой Sync Lock ™, установленную в настройке Timer-Cancel, чтобы быстро очистить батареи.Может быть удобно, если в вашем диспетчере инструментария есть терминал с этой настройкой, чтобы можно было быстро удалить батареи, чтобы удалить текущие настройки времени.

Возврат и гарантия

Не забудьте сначала декомпрограммировать все ваши батареи, установив перекрестный вывод таймера на значение по умолчанию, равное четырем нулям (0 0 0 0), и проведя пальцем по всем батареям.Вы можете вернуть Sync Lock ™ своему дилеру.

На

Sync Lock ™ (и все литий-ионные инструменты, аккумуляторы и зарядные устройства Makita) предоставляется ограниченная 3-летняя гарантия.

Makita U.S.A., Inc. базируется в Ла-Мирада, штат Калифорния, с производственным, дистрибьюторским и учебным центром в Буфорде, штат Джорджия, дистрибьюторским и учебным центром в городе Уилмер, штат Техас, и дистрибьюторским центром в Mt.Проспект, Иллинойс. Если вы не нашли нужную информацию в разделе часто задаваемых вопросов, обратитесь в нашу службу поддержки клиентов, базирующуюся в Буфорде, штат Джорджия, по телефону: (800) 4-MAKITA для получения дополнительной помощи.

La página que selecciono por el momento no está disponible en español.

Le gustaría:

Проблема с временем автономной работы Apple AirPod указывает на необходимость принятия законов о праве на ремонт

Apple AirPods второго поколения с индикатором беспроводной зарядки

Тодд Хазелтон | CNBC

Когда AirPods были впервые выпущены в 2016 году, они были чудом миниатюризации.

Чтобы отказаться от проводов и перейти на беспроводную связь, Apple вложила в каждый наушник несколько микросхем, микрофонов и динамиков, которые весят около 4 граммов. Без шнура наушники получают питание от крошечной цилиндрической батареи, емкость которой составляет около 1% от емкости батареи iPhone.

Но литий-ионные батареи, подобные тем, которые используются в AirPods, изнашиваются по мере их использования.

Некоторые владельцы заметили, что через несколько лет использованные AirPods в конечном итоге прослужат всего час или около того, прежде чем потребуется их подзарядка — большой спад по сравнению с четырех-пятичасовым временем автономной работы, которое они имеют в новом состоянии.Поскольку каждый AirPod настолько мал и так плотно упакован в корпус, заменить старую батарею на новую практически невозможно. Большинство людей сдаются и просто покупают новую пару.

Ограниченный срок службы AirPods — это именно та проблема, которую движение за право на ремонт хочет решить. Ремонтные мастерские и лоббисты, поддерживающие реформу ремонта, хотят, чтобы законодатели внедрили ряд правил, включая расширенный доступ к руководствам и официальным запчастям, а также защиту потребителей в отношении гарантий.

Но одна из их самых важных просьб к компаниям — разрабатывать продукты с учетом ремонта, а не упаковывать гаджеты с немаркированными частями и склеивать их клеем, заставляя пользователей использовать нож, чтобы разбирать их.

Это желание ставит сторонников ремонта в противоречие с такими производителями оборудования, как Apple, чьи бизнес-модели зависят от того, что клиенты обновляются до последней модели каждые несколько лет. Когда несколько лет назад Apple предложила дешевый ремонт аккумуляторов iPhone, это повредило продажам, так как потребители смогли дольше держаться за свои старые телефоны, вместо того, чтобы обновляться.Apple также взимает с клиентов плату за ремонт и продление гарантии.

«Мы разрабатываем наши продукты с учетом их долговечности, чтобы свести к минимуму необходимость ремонта», — написала Apple в экологическом отчете ранее в этом году. «Но в случае, если необходим ремонт, мы считаем, что наши клиенты должны иметь удобный доступ к безопасным и надежным услугам по ремонту, чтобы как можно быстрее восстановить работоспособность своего продукта».

Движение за право на ремонт набирает обороты

В последние годы директивные органы начали более тесно взаимодействовать с защитниками права на ремонт.Законопроекты на уровне штата были введены в большинстве штатов, но компании-производители электроники лоббировали их, и ни один из них не был принят.

В мае Федеральная торговая комиссия выпустила 56-страничный отчет об ограничениях на ремонт, в котором был сделан вывод о том, что ограничения на ремонт «вынудили потребителей обращаться к производственным сетям ремонта или заменять продукты до истечения срока их полезного использования» — именно эту проблему представляют пользователи. столкнулись с их AirPods.

Администрация Байдена в пятницу приказала Федеральной торговой комиссии написать новые правила, направленные на ограничение возможностей производителей препятствовать самостоятельному ремонту или ремонту своими руками в рамках всеобъемлющего исполнительного распоряжения.Новые правила ремонта еще не составлены.

«Технические и другие компании вводят ограничения на самостоятельный ремонт и ремонт сторонних организаций, делая ремонт более дорогостоящим и трудоемким, например, ограничивая распространение запчастей, диагностических и ремонтных инструментов», — написал Белый дом в информационном бюллетене. о заказе в пятницу, ссылка на рассказ о ремонте продуктов Apple. Apple отказалась комментировать распоряжение Белого дома.

FTC не сообщила, что планирует делать, но сторонники ремонта хотят внести несколько ключевых изменений в политику, как подробно описано в ее майском отчете.Они хотят, чтобы компании были обязаны предоставлять официальные запасные части. Им нужен доступ к инструментам, которые могли бы облегчить ремонт без обратного проектирования самих инструментов или деталей. И в конечном итоге они хотят, чтобы продукты создавались с более длительным сроком службы.

Apple — не единственная компания, на которую может повлиять эта политика. В последнее время большая часть давления оказывается на компании, производящие медицинское оборудование, и производителей тракторов. Но, учитывая повсеместное распространение Apple, она стала образцом для ремонта, особенно потому, что продвигает свои усилия по защите окружающей среды как корпоративную ценность.

Apple запустила программу, которую она называет «Программа независимого ремонта», которая дает ремонтным мастерским возможность вступить в процесс сертификации и заключить договор с Apple, чтобы получить доступ к подлинным деталям, инструментам и руководствам Apple.

Apple также снизила цену на замену батареи для iPhone, а последние модели были разработаны, чтобы упростить замену батареи или треснувшего экрана, согласно iFixit. Кроме того, по сравнению с другими компаниями, производящими бытовую электронику, Apple имеет разветвленную сеть магазинов и авторизованных ремонтных мастерских.

Тем не менее, многие продукты Apple по-прежнему сложно ремонтировать дома или в офисе без каких-либо контактов с Apple.

Единственная компания по замене аккумуляторов AirPods

Компания iFixit, предоставляющая инструкции по разборке и продающая запасные части для гаджетов, дает моделям AirPods нулевую оценку из 10 за ремонтопригодность. Согласно iFixit, ремонт этих наушников включает в себя пайку, термофен и разрезание клея — то есть даже при наличии запасных частей для батареек.В конце концов, потенциальному мастеру по ремонту дома пришлось бы снова собирать четырехграммовый компьютер.

Apple предоставляет «обслуживание аккумулятора» для AirPods по цене 49 долларов за наушник. Но функционально Apple просто дает вам замену, а старые наушники утилизируются. Это не ремонт, это замена. И это дорого. Первоначально AirPods стоили 159 долларов, поэтому обслуживание аккумулятора стоит более половины стоимости новой пары.

Apple продала около 72,8 миллиона единиц AirPods в 2020 году, согласно оценке исследования CounterPoint, поэтому десятки миллионов потребителей столкнутся с таким же отсутствием выбора в ближайшие годы.

Замена AirPods от PodSwap

CNBC

PodSwap — компания, основанная в Майами Эммой Стритцингер и Эмили Альперт, которая стремится не допустить попадания AirPods на свалки. Они не связаны с Apple.

Они считают, что являются единственной компанией, производящей замену батарей AirPod, хотя другие компании «ремонтируют» старые AirPods, сообщили CNBC основатели. Компания была образована после того, как основатели сами испытали смерть AirPods и посчитали, что их модернизация или замена будет расточительной и непрактичной.

Недавно я заменил пару AirPods, которые держали заряд всего 45 минут — слишком мало для телефонного звонка. Я заплатил 59 долларов на сайте Shopify PodSwap и через несколько дней получил замену пары AirPods с новыми батареями. Это были не мои старые AirPods, это был еще один комплект, в котором были заменены батареи.

Наряду с этими новыми капсулами PodSwap включает коробку и этикетку возврата. Он хочет вернуть ваши старые AirPods. Затем он очищает и дезинфицирует старую пару, вставляет новые батареи и отправляет их следующему человеку, который хочет заменить батарею в своих старых AirPods.

Но PodSwap сталкивается с множеством проблем, которые показывают, почему сторонники ремонта хотят новых правил. Альперт сказал, что дизайн AirPod затрудняет ремонтным мастерским или компаниям, подобным их, выполнение большого количества замен батарей. По словам основателей, в процессе PodSwap используются как робототехника, так и ручной труд.

«Процесс был разработан методом проб и ошибок, и большое количество единиц было« принесено в жертву »и в конечном итоге переработано. Одной из основных проблем, с которыми мы столкнулись, было преодоление уникальности этого продукта.«Каждый AirPod собран с небольшими отличиями, что усложняет разборку», — сказал Альперт.

PodSwap включает коробку для отправки старых AirPods.

CNBC

PodSwap планирует вскоре предложить обслуживание для AirPods Pro, более новой модели. которые стоят 249 долларов и, что удивительно, питаются от плоской батарейки стандартного размера.

Но у AirPods Pro есть многие из тех же проблем, что и у первой модели — жесткие допуски, потенциальное повреждение при разборке, отсутствие запасных частей, и дизайн, который предполагает, что продукт всегда был рассчитан на ограниченное время.

«Мы обнаружили, что батареи AirPods Pro сложнее заменить», — сказал Альперт. «Эргономичный дизайн и жесткие жесткие допуски делают чрезвычайно сложную замену батарей многократно с высокой степенью эффективности».

PodSwap не был для меня абсолютно безупречным — мне прислали комбинацию AirPods «первого поколения» и «второго поколения». Они заставили мой iPhone отправлять сообщения об ошибках, но я отправил электронное письмо в PodSwap, и через день или два я получил второй набор для замены, который сработал.

После этого я отправил свой первый набор для замены и свои старые AirPods обратно. Полученные мной AirPods выглядят и работают как новые.

Добавить комментарий

Ваш адрес email не будет опубликован.