Что такое фазировка трансформаторов: Фазировка трансформаторов с обмоткой НН до 380 В

Содержание

Проверка фазировки РУ и их присоединений

ООО «ЭнергоАльянс»

ЭЛЕКТРОЛАБОРАТОРИЯ

 

1. ВВОДНАЯ ЧАСТЬ


1.1.               Настоящий документ устанавливает методику выполнения фазировки РУ и их присоединений.1.2.    Область применения и использования.1.2.1.   Распределительные устройства, электрооборудование.

 

2. МЕТОДЫ ФАЗИРОВКИ

 

2.1.               Фазировка может быть предварительной, выполняемой в процессе монтажа и ремонта оборудования, и при вводе в работу, производимой непосредственно перед первым включением в работу нового или вышедшего из ремонта оборудования, если при ремонте фазы могли быть переставлены местами.

2.2.               Предварительной фазировкой проверяется чередование фаз соединяемых между собой элементов оборудования. Так, например, при ремонте поврежденного кабеля определяют, какие жилы кабеля, находившегося в эксплуатации, и ремонтной вставки должны соединяться между собой, чтобы фазы кабельной линии и сборных шин РУ совпали.

Поэтому перед соединением жил проверяют их фазировку. Предварительная фазировка производится на оборудовании, не находящемся под напряжением. Основные виды оборудования фазируются визуально, «прозвонкой», при помощи мегомметра или импульсного искателя.

2.3.               Независимо от того, проводилась или не проводилась предварительная фазировка оборудования в период его монтажа или ремонта, оно обязательно фазируется при вводе в работу, так как только в этом случае можно быть уверенным в согласованности фаз всех элементов электрической цепи. Фазировка при вводе в работу производится исключительно электрическими методами. Выбор метода зависит от вида фазируемого оборудования (генератор, трансформатор, линия) и класса напряжения, на котором оно должно включаться в работу.

2.4.               Различают прямые и косвенные методы фазировки оборудования при вводе в работу.

2.5.               Прямыми методами называют такие, при которых фазировка производится на вводах оборудования, находящегося непосредственно под рабочим напряжением; эти методы наглядны и их широко применяют в установках до 330 кВ.

2.6.               Косвенными называют такие методы, при которых фазировка производится не на рабочем напряжении установки, а на вторичном напряжении трансформаторов напряжения, присоединенных к фазируемым частям установки.

2.7.               Фазировка состоит из трех операций:

2.7.1 Первая состоит в проверке и сравнении порядка чередования фаз вводимой в работу электроустановки и сети.

2.7.2.            Вторая — в проверке совпадения по фазе одноименных напряжений (отсутствия между ними углового сдвига).

2.7.3.           Третья — в проверке одноименности (расцветки) фаз, соединение которых предполагается выполнить, с целью проверки правильности подсоединения токоведущих частей к коммутационному аппарату.

2.8.                  Для      проверки     совпадения     фаз прямым           методом вэлектроустановках до 1000 В применяются вольтметры переменного тока, подсоединяемые непосредственно к выводам электрического оборудования или к токоведущим частям коммутационных аппаратов.

2.9.                  Диапазон измерения прибора должен быть рассчитан на двойное фазное или двойное линейное напряжение установки в зависимости от метода фазировки и типа фазируемого оборудования.

2.10.              При    фазировке  оборудования   напряжением 6кВ и вышекосвенным методом, вольтметр подсоединяется к вторичным обмоткам измерительных трансформаторов напряжения, установленных стационарно. Использование переносных трансформаторов напряжения не допускается.

2.11.              Для      проверки     совпадения     фаз прямым           методом вэлектроустановках выше 1000 В применяются указатели напряжения. При этом к отключенному коммутационному аппарату с двух сторон подведены фазируемые напряжения. Щупами указателя прикасаются к токоведущим частям аппарата и контролируют свечение лампы указателя.

 

3. СРЕДСТВА ИЗМЕРЕНИЙ,ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА, МАТЕРИАЛЫ

 

3.1.     Мультиметр;

3.2.     Мегаомметр Е6-24, Е6-31;

3. 3.     Электролаборатория передвижная ЭТЛ-35К;

3.4.     Указатель высокого напряжения УВНФ.

 

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ, ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ


4.1.     Фазирование производит персонал, численностью не менее двух человек, один из которых имеет группу по электробезопасности IV, а второй не ниже III, при работах в электроустановках выше 1000 В.

4.2.     Условия безопасности при фазировке индикаторами напряжения. Прежде чем приступить к фазировке, необходимо убедиться в выполнении как общих требований техники безопасности по подготовке рабочего места, так и специальных требований по работе с измерительными штангами на оборудовании, находящемся под напряжением.

4.3.     Электрические аппараты, на выводах которых будет производиться фазировка, еще до подачи на них напряжения должны быть надежно заперты, должны быть также приняты меры, предотвращающие их включение.

4.4.      Индикаторы напряжения перед началом работы под напряжением должны быть подвергнуты тщательному наружному осмотру, при этом обращается внимание на то, чтобы лаковый покров трубок и изоляции соединительного провода не имели видимых повреждений и царапин.

Срок годности индикатора проверяется по штампу периодических испытаний. Не допускается применять индикаторы, срок годности которых истек.

4.5.      При работах с индикатором напряжения обязательно применение диэлектрических перчаток. В ходе фазировки не рекомендуется приближать соединительный провод к заземленным частям. Располагать рабочие и изолирующие части индикатора следует так, чтобы не возникла опасность перекрытия по их поверхности между фазами или на землю.

4.6.    Фазировку индикатором напряжения нельзя производить во время дождя, снегопада, при тумане, так как изолирующие части его могут увлажниться, что приведет к их перекрытию.

 

5. ПРЯМЫЕ МЕТОДЫ ФАЗИРОВКИ


5.1.             Фазировка трансформаторов, имеющих обмотки НН до 380В, без установки перемычки между зажимами.

5.1.1.      Этим методом фазируют силовые трансформаторы, вторичные обмотки которых соединены в звезду с выведенной нулевой точкой, а также измерительные трансформаторы напряжения, имеющие вторичные обмотки с заземленной нейтралью.

5.1.2.      Фазировку производят с помощью вольтметра со стороны обмотки НН. Вольтметр должен быть рассчитан на двойное фазное напряжение, так как появление такого напряжения между зажимами фазируемых трансформаторов не исключено.

5.1.3.      Фазируемые трансформаторы включают по схеме, представленной на рис. 1. Нулевые точки вторичных обмоток при этом должны быть надежно заземлены или присоединены к общему нулевому проводу, что следует проверить перед началом фазировки. Объединение нулевых точек необходимо для создания между фазируемыми трансформаторами электрической связи, образующей замкнутый контур для прохождения тока через прибор.

5.1.4.      Прежде чем приступить к фазировке, проверяют симметричность напряжений трансформаторов. Для этого вольтметр поочередно подключают к зажимам al-bl, bl-cl, cl-al, а2-Ь2, Ь2-с2, с2-а2. Если и значения измеренных напряжений сильно отличаются друг от друга, проверяют положение переключателей ответвлений обоих трансформаторов.

5.1.5.      Переключением ответвлений уменьшают разницу напряжений. Фазировка допускается, если разность напряжений не превышает 10%.

 

Рис. 1. Схема фазировки двух трансформаторов, имеющих заземленные нулевые точки вторичных обмоток (штриховой линией показан путь прохождения тока через прибор при несовпадении фаз)

5.1.6.        После проведения перечисленных операций приступают к фазировке. Сущность ее заключается в отыскании выводов, между которыми разность напряжений практически близка к нулю.

5.1.7.    Для этого провод от вольтметра присоединяют к одному выводу первого трансформатора, а другим проводом поочередно касаются трех выводов второго трансформатора (например, измеряют напряжения между выводами а

1-а2; a— b2; a— c2).

5.1.8.    Дальнейший ход фазировки зависит от полученных результатов. Если при одном измерении (допустим, между выводами а12) показание вольтметра было близким к нулю, то эти выводы замечают, а вольтметр присоединяют ко второму выводу (например, b1) первого трансформатора и измеряют напряжение между выводами b1-b2; b1-c2.  Если опять одно из показаний вольтметра (например, между выводами b1-b2) окажется близким к нулю, то фазировку считают законченной (рис. 2, а). Однако для подтверждения полученных результатов о совпадении фаз все же производят измерение между с12

5.1.9.    Выводы, между которыми не было разности напряжений, соединяют при включении трансформаторов на параллельную работу. У каждого полюса коммутационного аппарата такие выводы должны находиться непосредственно друг против друга

 


 


Рис. 2. Векторные диаграммы напряжений обмоток НН фазируемых
трансформаторов при совпадении фаз (а) и при сдвиге векторов на 180°,
например, при группах соединений ∆YH-11 и ∆/YH-5(б)


5.1.10.     Если после измерения (a1-a2; a1-b2; a1-c2; b1-a2; b1-b2; b1-c2 ни одно из показаний вольтметра не было близким к нулю, то это говорит о том, что фазируемые трансформаторы принадлежат к разным группам соединений и их включение на параллельную работу недопустимо.

5.1.11.     Фазировку на этом прекращают. На основании измерений строят векторные диаграммы и по ним судят, можно ли включать трансформаторы параллельно и какие пересоединения надо для этого выполнить.

5.1.12.     Техника построения векторных диаграмм на основании результатов измерений линейных напряжений показана на рис. 2, б. Треугольник линейных напряжений первого трансформатора строят произвольно, а точки вершин второго треугольника находят путем засечек, радиусы которых численно равны напряжениям между зажимами a1-a2; b1-a2; а1-b2; b1-b2.5.2.    Фазировка кабельных и воздушных линий 6-110 кВ.

5.2.1.    При фазировке линий напряжением 6-10 кВ пользуются индикаторами, например, типа УВН-80, УВНФ и др. Фазировка выполняется в следующей последовательности.

5.2.2.      На выводы разъединителей или выключателя подают фазируемые напряжения (рис. 3). Проверяют исправность индикатора. Для этого щупом трубки, содержащей резистор, касаются заземления, а щуп другой трубки подносят к одному из зажимов аппарата, находящегося под напряжением (рис. 3, а), при этом неоновая лампа должна загореться.

5.2.3.      Затем щупами обеих трубок касаются одной токопроводящей части (рис. 3, б). Лампа индикатора при этом не должна гореть.

5.2.4.      Проверяют напряжение на всех шести выводах коммутационного аппарата, как показано на рис. 3, в.

5.2.5.      Проверка производится для того, чтобы исключить ошибку в случае фазировки линии, имеющей обрыв (например, вследствие неисправности предохранителя). Абсолютные значения напряжения между фазой и землей здесь не играют роли, так как при фазировке присоединение индикатора будет производиться или на линейное напряжение (несовпадение фаз), или на незначительную разность напряжений между одноименными фазами (совпадение фаз). Поэтому о наличии напряжения на каждой фазе судят просто по свечению лампы индикатора.

Рис. 3. Последовательность операций при фазировке линий 10 кВ индикатором типа УВНФ: а — проверка исправности индикатора при встречном включении; б — то же при согласованном; в — проверка наличия напряжения на выводах; г — фазировка


 

5.2.6.       Процесс собственно фазировки состоит в том, что щупом одной трубки индикатора касаются любого крайнего вывода аппарата, например фазы С, а щупом другой трубки — поочередно трех выводов со стороны фазируемой линии (рис. 3, г). В двух случаях касаний (С –А1 и C-B2) лампа будет ярко загораться, в третьем (C-C1) гореть не будет, что укажет на одноименность фаз.

5.2.7.       После определения первой пары одноименных выводов щупами поочередно касаются других пар выводов, например, А-А1 и A-BОтсутствие свечения лампы индикатора в одном касании укажет на одноименность следующей пары выводов. Совпадение фаз третьей пары выводов В-В1 проверяют только в целях контроля — фазы должны совпасть.

5.2.8.       Одноименные фазы соединяют на параллельную работу. Если одноименные фазы у разъединителей или выключателя не находятся друг против друга, то с установки снимают напряжение и пересоединяют шины в том порядке, который необходим для совпадения фаз.

5.3.       Фазировка воздушных и кабельных линий прямым методом на напряжении 35 и 110 кВ.

5.3.1.       Для этой цели используют индикатор типа УВНФ-35-110, конструкция которого аналогична индикатору УВНФ на 10 кВ. От последнего его отличает наличие в схеме полистирольных конденсаторов вместо резистора.

5.3.2.       Фазировка производится на отключенных разъединителях (или отделителях), выводы которых находятся под напряжением: с одной стороны от шин РУ, с другой от фазируемой линии.

5.3.3.       Сначала на всех фазах разъединителей проверяют наличие напряжения прикосновением щупов указателя к фазе и к заземленной конструкции, затем на крайних фазах разъединителей проверяют совпадение напряжений по фазе (рис. 4). На средней фазе проверку не производят.

5.3.4.       Если лампа индикатора не загорается при фазировке на крайних фазах, то фазировку считают законченной — фазы совпадают.5.3.5.     При свечении лампы индикатора на обеих крайних фазах или только на одной фазировку прекращают — фазы не совпадают.

 

 


Рис. 4. Подключение индикатора к выводам разъединителей при фазировке линий 35-110 кВ

 

6. КОСВЕННЫЕ МЕТОДЫ ФАЗИРОВКИ


6.1.    Фазировка трансформаторов и линий при двойной системе шин.

6.1.1.     Этим методом фазируют трансформаторы и линии всех классов напряжения. В РУ, где обе системы шин находятся в работе, для выполнения фазировки освобождают одну систему шин, т.е. выводят ее в резерв.

6.1.2.     При включенном шиносоединительном выключателе вольтметром проверяют совпадение фаз вторичных напряжений трансформаторов напряжений рабочей и резервной систем шин.

6.1.3.    Затем отключают шиносоединительный выключатель и снимают с его привода оперативный ток. На резервную систему шин включают цепь, фазировку которой следует произвести (рис. 5).

6.1.4.     По фазируемой цепи с противоположного конца подают напряжение и производят фазировку на выводах вторичных цепей трансформаторов напряжения рабочей и резервной систем шин. Для этого вольтметром производят шесть измерений в такой последовательности: a1-a2; a1-b2; а1— с2; b12; b1-b2; b1-c2. При совпадении фаз a1 и а2, b1 и b2, с1 и с2 (нулевые показания вольтметра) фазировку заканчивают и включением шиносоединительного выключателя, защиты на котором должны находиться в положении «Отключение», сфазированную цепь включают на параллельную работу.

6.1.5.     Если при измерении напряжения между одноименными выводами будут получены не нулевые, а иные результаты, то измерения прекращают, фазируемую цепь отключают и производят пересоединение токопроводящих частей, добиваясь совпадения фаз.

6.1.6.     После этого фазировку производят заново.

6.2.    Фазировка трехобмоточных трансформаторов.

6.2.1.     Фазировку выполняют в два приема: со стороны обмотки НН и состороны СН.

6.2.2.      Сначала трансформатор включают на резервную систему шин НН и подают на него напряжение со стороны ВН. Фазировку выполняют на зажимах трансформаторов напряжения, принадлежащих шинам НН. При совпадении фаз трансформатор отключают со стороны НН, включают на резервную систему шин СН и выполняют фазировку на этом напряжении. После получения положительных результатов в обоих случаях фазировки трансформатор считают сфазированным и его включают в работу.

6.2.3.      при фазировке электрических цепей косвенным методом очень важно, чтобы предварительно были правильно сфазированы шинные трансформаторы напряжения.

 


 


Рис. 5. Схема фазировки косвенным методом на выводах вторичных обмоток
шинных трансформаторов напряжения

 

6. 2.4.              При фазировке шинных трансформаторов напряжения следует считаться со схемой заземления вторичных обмоток трансформаторов напряжения, так как заземленной может быть как нейтраль, так и одна фаза.

6.2.5.           В первом случае для фазировки возможно применение вольтметра со шкалой на двойное фазное напряжение, во втором двойное линейное. Кроме того, фазировку трансформаторов напряжения, у которых заземлена фаза вторичных обмоток (например, фаза b) часто выполняют при помощи фазоуказателя. Это считается допустимым, так как фазы В фазируемых напряжений жестко соединены и требуется установить лишь совпадение напряжений одноименных фаз а, а также фаз с. Если они не совпадают, диск фазоуказателя при подаче на его выводы напряжения от первого трансформатора напряжения будет вращаться в одном направлении, а при подаче напряжения от второго трансформатора напряжения — в другом.

6.2.6.      Ни в каких других случаях фазировки трехфазных цепей пользоваться только фазоуказателем нельзя, так как при одном и том же направлении вращения диска фазоуказателя между одноименными фазами напряжений может быть сдвиг по углу даже при одном и том же порядке следования фаз.

6.2.7.      Трансформаторы напряжения одного класса напряжения следует фазировать при питании от одного источника. Например, если необходимо проверить совпадение фаз двух шинных трансформаторов напряжения, включенных со стороны ВН на разные системы шин (или секции), то для этого шины соединяют между собой включением шиносоединительного (или секционного) выключателя и затем производят фазировку этих трансформаторов напряжения со стороны их вторичных обмоток.

 

7. НЕСОВПАДЕНИЕ ПОРЯДКА ЧЕРЕДОВАНИЯ И ОБОЗНАЧЕНИЯ ФАЗ ЭЛЕКТРОУСТАНОВОК ПРИ ИХ ФАЗИРОВКЕ


7.1.      В начале, что фазировкой устанавливают совпадение: порядков следования фаз фазируемых между собой электроустановок, векторов одноименных напряжений по фазе (отсутствие между ними сдвига по углу), порядков чередования фаз на выводах коммутационного аппарата, включением которого установка должна включаться в работу, обозначений фаз (их расцветка).

7.2.      Выполнение перечисленных условий является обязательным при включении электроустановок в работу.

7.3.      Для того чтобы порядки следования фаз электроустановок совпали, например обратный порядок следования фаз одной электроустановки по отношению к другой стал прямым, на линии электропередачи изменяют порядок чередования фаз. Практически это осуществляется перемещением на линии проводов фаз на одной опоре, т. е. изменением их чередования в пространстве.

7.4.      Таким образом, изменением порядка чередования фаз на линии изменяется порядок следования фаз векторов напряжений одной электроустановки относительно другой, хотя абсолютные порядки следования фаз векторов напряжений электроустановок остаются прежними (прямым и обратным). В этом проявляется взаимозависимость понятий порядка следования и чередования фаз.

 

 


Рис. 6. Изменение порядка чередования фаз на линии при включении на параллельную работу двух электроустановок, имеющих прямой и обратный порядок следования фаз

 

7.5. На рис. 6 показана эта взаимозависимость и приведена совмещенная векторная диаграмма напряжений обоих порядков следования фаз. Из диаграммы видно, что векторы напряжения UA1 и UA2 совпадают по фазе и что никаких перемещений провода фазы А производить не требуется, а провода фаз В и С необходимо поменять местами.

7.6.       После перемещения проводов на линии электроустановки можно фазировать и синхронизировать на параллельную работу. Обозначения фаз и их расцветка в каждом сечении линии (штрихпунктирная линия /-/ на рис. 6) и на зажимах коммутационного аппарата не будут совпадать и изменить их никак нельзя. Об этих особенностях линии, соединяющей электроустановки, должен знать обслуживающий их персонал, чтобы избежать ошибок при эксплуатации и ремонте.

7.7.       Аналогичным образом поступают и при фазировке электроустановок, работающих со смещением векторов одноименных напряжений на 120 и 240°. Необходимое изменение порядка чередования фаз на линии устанавливают при этом путем построения и совмещения векторных диаграмм напряжений обеих фазируемых электроустановок

 

8.  ОБРАБОТКА И КОНТРОЛЬ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

 

8.1.       Руководитель бригады при производстве фазировки должен проверять точность считывания с индикаторов прибора оператором.

 

9. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ФАЗИРОВКИ


9.1.       Оформление протокола фазировки осуществляет один из членов бригадыпо указанию руководителя, который проверяет полноту и точность оформления результатов измерений (протокола испытаний).

9.2.       Проверив оформление результатов фазировки руководитель бригады измерений разрешает операторам, проводившим измерения, подписать протокол (и программу испытаний).

9.3.       Руководитель бригады подписывает протокол и заверяет подписи печатью ЭТЛ и регистрирует эти документы установленным порядком.

 

Электролаборатория Краснодар. Электролаборатория Краснодарский край

%d0%a4%d0%b0%d0%b7%d0%b8%d1%80%d0%be%d0%b2%d0%ba%d0%b0%20%d1%82%d1%80%d0%b0%d0%bd%d1%81%d1%84%d0%be%d1%80%d0%bc%d0%b0%d1%82%d0%be%d1%80%d0%be%d0%b2.

— с русского на все языки

Все языкиАбхазскийАдыгейскийАфрикаансАйнский языкАканАлтайскийАрагонскийАрабскийАстурийскийАймараАзербайджанскийБашкирскийБагобоБелорусскийБолгарскийТибетскийБурятскийКаталанскийЧеченскийШорскийЧерокиШайенскогоКриЧешскийКрымскотатарскийЦерковнославянский (Старославянский)ЧувашскийВаллийскийДатскийНемецкийДолганскийГреческийАнглийскийЭсперантоИспанскийЭстонскийБаскскийЭвенкийскийПерсидскийФинскийФарерскийФранцузскийИрландскийГэльскийГуараниКлингонскийЭльзасскийИвритХиндиХорватскийВерхнелужицкийГаитянскийВенгерскийАрмянскийИндонезийскийИнупиакИнгушскийИсландскийИтальянскийЯпонскийГрузинскийКарачаевскийЧеркесскийКазахскийКхмерскийКорейскийКумыкскийКурдскийКомиКиргизскийЛатинскийЛюксембургскийСефардскийЛингалаЛитовскийЛатышскийМаньчжурскийМикенскийМокшанскийМаориМарийскийМакедонскийКомиМонгольскийМалайскийМайяЭрзянскийНидерландскийНорвежскийНауатльОрокскийНогайскийОсетинскийОсманскийПенджабскийПалиПольскийПапьяментоДревнерусский языкПортугальскийКечуаКвеньяРумынский, МолдавскийАрумынскийРусскийСанскритСеверносаамскийЯкутскийСловацкийСловенскийАлбанскийСербскийШведскийСуахилиШумерскийСилезскийТофаларскийТаджикскийТайскийТуркменскийТагальскийТурецкийТатарскийТувинскийТвиУдмурдскийУйгурскийУкраинскийУрдуУрумскийУзбекскийВьетнамскийВепсскийВарайскийЮпийскийИдишЙорубаКитайский

 

Все языкиАнглийскийНемецкийНорвежскийКитайскийИвритФранцузскийУкраинскийИтальянскийПортугальскийВенгерскийТурецкийПольскийДатскийЛатинскийИспанскийСловенскийГреческийЛатышскийФинскийПерсидскийНидерландскийШведскийЯпонскийЭстонскийТаджикскийАрабскийКазахскийТатарскийЧеченскийКарачаевскийСловацкийБелорусскийЧешскийАрмянскийАзербайджанскийУзбекскийШорскийРусскийЭсперантоКрымскотатарскийСуахилиЛитовскийТайскийОсетинскийАдыгейскийЯкутскийАйнский языкЦерковнославянский (Старославянский)ИсландскийИндонезийскийАварскийМонгольскийИдишИнгушскийЭрзянскийКорейскийИжорскийМарийскийМокшанскийУдмурдскийВодскийВепсскийАлтайскийЧувашскийКумыкскийТуркменскийУйгурскийУрумскийЭвенкийскийБашкирскийБаскский

4.

Фазировка в трансформаторах | 9. Трансформаторы | Часть2

4. Фазировка в трансформаторах

Фазировка в трансформаторах

Поскольку трансформаторы являются, по существу, устройствами переменного тока, нам необходимо знать фазовые соотношения между первичной и вторичной цепями. Используя SPICE пример из предыдущей статьи, мы можем построить графики напряжений для первичной и вторичной цепей и увидеть их фазовые соотношения:

 

spice transient analysis file for use with nutmeg:

transformer
v1 1 0 sin(0 15 60 0 0)
rbogus1 1 2 1e-12
v2 5 0 dc 250
l1 2 0 10000
l2 3 5 100
k l1 l2 0.999
vi1 3 4 ac 0
rload 4 5 1k
.tran 0.5m 17m
.end
 
nutmeg commands:
setplot tran1
plot v(2) v(3,5)

 

Вторичное напряжение U(3,5) синфазно с первичным напряжением U(2) и уменьшено в десять раз.

При переходе от первичного U(2) ко вторичному U(3,5), напряжение уменьшилось в десять раз (рис. выше), а ток,соответственно, увеличился в 10 раз (рис. ниже). И ток (рис. ниже) и напряжение (рис. выше) при переходе от первичной обмотки к вторичной, находятся в одной фазе.

 

nutmeg commands:
setplot tran1
plot I(L1#branch) I(L2#branch)

 

Первичный и вторичный токи синфазны. Вторичный ток увеличивается в десять раз.

 

Похоже, что напряжения и токи в двух обмотках трансформатора синфазны друг с другом, по крайней мере, для нашей резистивной нагрузки. Все это достаточно просто, но было бы неплохо узнать, каким образом мы должны подключить трансформатор, чтобы обеспечить правильные фазовые соотношения. В конце концов, трансформатор представляет собой не что иное, как набор магнитно-связанных катушек индуктивности, а катушки, как правило, не имеют каких-либо обозначений полярности. Если мы посмотрим на немаркированный трансформатор, то не сможем визуально определить способ его подключения к цепи, чтобы получить синфазные (или сдвинутые на 180o) напряжения и токи:

 

На практике полярность трансформатора может быть неоднозначной.

 

Поскольку это является практической проблемой, производители трансформаторов придумали своего рода стандарт маркировки полярности для обозначения фазовых соотношений. Данный стандарт представляет собой не что иное, как точку, расположенную рядом с каждой обмоткой трансформатора:

 

Пара точек указывает на полярность.

 

На трансформатор иногда наносится схема, обозначающая провода первичной и вторичной обмоток. На этой же схеме присутствует пара точек, похожих на те, что показаны на рисунке выше. Иногда точки на схему трансформатора не наносятся. В этих случаях полярность обмотки представляют номера индексов, следующих за символами, обозначающими провода обмоток трансформатора «H» и «X». Провод «1» (h2 и X1) представляет собой место, где обычно размещаются точки маркировки полярности.

Подобное размещение точек рядом с верхними концами первичной и вторичной обмотки говорит нам о том, что любая мгновенная полярность напряжения в первичной обмотке, будет такой же, как и во вторичной обмотке. Другими словами, сдвиг фазы от первичной обмотки к вторичной будет равен нулю.

И наоборот, если точки будут располагаться на противоположных концах обмоток, то фазовый сдвиг между первичной и вторичной обмотками будет составлять 180o:

 

Фазировка Трансформатора :: Электротехническое оборудование

Фазировка Трансформатора

Фазировка трансформаторов проводится для включения их на параллельную работу.

Условия параллельной работы трансформаторов:

1. – группы соединений обмоток трансформаторов должны быть одинаковы;

2. – равенство коэффициентов трансформации линейных напряжений на холостом ходу;

3. – равенство напряжений короткого замыкания. Фазировка трансформаторов это проверка совпадения фаз вторичных напряжений у двух трансформаторов, включаемых на параллельную работу.

Как выполнить фазировку трансформаторов

Как правило фазировка выполняется на низшем напряжении трансформаторов. На обмотках напряжением до 1000 В фазировка проводится вольтметром на соответствующее напряжение.

Для получения замкнутого электрического контура при выполнении измерений, фазируемые обмотки следует предварительно соединить в одной точке, у обмоток с заземленной нейтралью такой точкой является соединение нейтралей через землю.

У обмоток с изолированной нейтралью перефазировкой соединяют любые два вывода фазируемых обмоток.

При фазировке трансформаторов с заземленными нейтралями, смотрите рисунок а – измеряют напряжение между выводом а1 и тремя выводами а2, в2, с2, затем между выводом в1 и этими же тремя выводами, и наконец между с1 и всё теми же тремя выводами.

Схемы фазировки трансформаторов для включения их на параллельную работу

При фазировке трансформаторов без заземленных нейтралей, смотрите рисунок б, последовательно ставят перемычку сначала между выводами а2 – а1 и измеряют напряжение между выводами b2 – b1 и c2 – c1, затем ставят перемычку между выводами b2 – b1 и замеряют напряжение между выводами а2 – а1 и с2 – с1, и наконец ставят перемычку между выводами с2 – с1 и замеряют напряжение между выводами а2 – а1 и b2 – b1.

Источник: electricalschool.info

Фазирование трансформатора

: точечная нотация и точечное соглашение

Фазирование трансформатора: точечное обозначение и точечное соглашение

Точечное обозначение

Обычно, когда мы изучаем трансформаторы, мы предполагаем, что первичные и вторичные напряжения и токи находятся в фаза. Но так бывает не всегда. В трансформаторе соотношение фаз между первичным и вторичным токами и напряжениями зависит от того, как каждая обмотка намотана вокруг сердечника.

Обратитесь к рис. (1) и (2), вы можете увидеть, что первичные стороны обоих трансформаторов идентичны i.е. первичные обмотки обоих трансформаторов намотаны вокруг сердечника в одном направлении.

Но на рис. (2) вы можете заметить, что вторичная обмотка намотана вокруг сердечника в направлении, противоположном направлению вторичной обмотки на рис. (1).

Следовательно, напряжение, индуцированное во вторичной обмотке на рис. (2), сдвинуто по фазе на 180 ° по сравнению с наведенным напряжением во вторичной обмотке на рис. (1), а направление вторичного тока (I S ) противоположно первичный ток (I P )

Итак, мы видим, что

  1. Первичное и вторичное напряжение и ток синфазны на рис. (1)
  2. Первичное и вторичное напряжение и ток сдвинуты по фазе на 180 ° на рис. (2)

Точечное соглашение

Чтобы избежать путаницы в соотношении фаз между первичным и вторичным напряжением и током, для принципиальных схем трансформаторов принято точечное обозначение.Точки помещены наверху первичных и вторичных выводов, как показано на рис. (3) и (4).

На рис. (3) мы видим, что точки расположены вверху как на первичных, так и на вторичных выводах. Он показывает, что первичный и вторичный ток и напряжения совпадают по фазе. Более того, первичные и вторичные напряжения (V P и V S ) имеют одинаковую синусоидальную волну, а также первичный и вторичный токи (I P и I S ) одинаковы по направлению.

На рис. (4) все наоборот.Мы видим, что одна точка расположена вверху первичного терминала, а другая (точка) — внизу вторичного терминала. Он показывает, что первичный и вторичный ток и напряжения сдвинуты по фазе на 180 °. Кроме того, синусоидальные волны первичного и вторичного напряжений (V P и V S ) противоположны друг другу. Также первичный и вторичный токи (I P и I S ) противоположны по направлению.

Фазирование трансформатора: точечная запись и условное обозначение…

Точечная запись

В целом, когда мы изучаем Трансформеры, мы предполагаем, что первичные и вторичное напряжение и токи совпадают по фазе. Но так бывает не всегда кейс. В трансформаторе: соотношение фаз между первичной и вторичной обмотками. токи и напряжения зависят от того, как каждая обмотка намотана на основной.

Ссылаться на рис. (1) и (2), вы можете увидеть, что первичные стороны обоих трансформаторы идентичны, т. е. первичные обмотки обоих трансформаторов обернуты в том же направлении вокруг сердечника.

Но на рис. (2) вы можете заметить, что вторичная обмотка намотана вокруг сердечник в противоположном направлении от вторичной обмотки на рис. (1).

Как следствие, напряжение, индуцированное во Вторичной обмотке на рис. (2), составляет 180 ° от фазы по сравнению с наведенным напряжением во вторичной обмотке на рис. (1) и направление вторичного тока (I S ) противоположно первичному току (I P )

Итак, мы видим, что

  1. Первичное и вторичное напряжение и ток совпадают по фазе на рис. (1)
  2. Первичное и вторичное напряжение и ток сдвинуты по фазе на 180 ° на рис. (2)

Точечная конвенция

К устраните любую путаницу в соотношении фаз между первичной и вторичное напряжение и ток, для принципиальные схемы трансформатора.Точки ставятся в верхней части основного и вторичные клеммы, как показано на рис. (3) и (4)

В рис (3), мы видим, что точки расположены вверху как в основном, так и в вторичные клеммы. Он показывает, что первичный и вторичный ток и напряжения совпадают по фазе. Более того, первичные и вторичные напряжения (V P и V S ) имеют одинаковую синусоидальную волну, а также первичный и вторичный токи (I P и I S ) одинаковы по направлению.

В На рис. (4) история противоположна.Мы видим, что одна точка расположена на верхняя часть первичного терминала, а другая (точка) расположена внизу вторичного терминала. Он показывает, что первичный и вторичный ток и напряжения сдвинуты по фазе на 180 °. Кроме того, первичный и вторичные напряжения (V P и V S ) синусоидальные волны противоположны друг другу. Также первичный и вторичный токи (I P и I S ) противоположны по направлению.

Параллельные трансформаторы

— Руководство для электрика по однофазным трансформаторам

Может наступить время, когда ваш трансформатор приблизится к полной нагрузке.На данный момент у вас есть два варианта.

  1. Замените трансформатор на более мощный.

  2. Параллель в новом трансформаторе.

Иногда практичнее подключать новый трансформатор параллельно, так как время простоя минимально.

Три правила и правда (для параллельного анализа)

Перед параллельным подключением трансформаторов необходимо выполнить три условия.

1. Трансформаторы должны иметь одинаковое номинальное первичное и вторичное напряжение.

Если номинальные напряжения трансформаторов не совпадают, большие циркулирующие токи будут течь как в первичной, так и во вторичной обмотках. Циркуляционные токи — это токи, которые протекают между двумя трансформаторами, но не через нагрузки. Меньший трансформатор будет действовать как нагрузка на больший трансформатор. Из-за низкого сопротивления обмотки трансформатора циркулирующие токи могут оказаться довольно большими и опасными.

Даже несмотря на то, что во вторичных обмотках трансформаторов индуцируются напряжения переменного тока, одинаковые циркулирующие токи протекают во всех вторичных обмотках. Любой ток, протекающий во вторичной обмотке трансформатора, должен согласовываться с током в первичной обмотке, чтобы в первичных обмотках создавалась надлежащая CEMF. Ток в первичной обмотке равен вторичному току, деленному на отношение витков. Это означает, что циркулирующие токи, пропорциональные токам во вторичных обмотках, также будут протекать в первичных обмотках.

2. При подключении необходимо соблюдать полярность клемм трансформаторов.

Это по-прежнему позволяет вам соединять трансформатор с вычитающей полярностью параллельно с трансформатором с аддитивной полярностью, если вы убедитесь, что соединительные клеммы имеют одинаковую мгновенную полярность.

Рисунок 10. Циркуляционные токи
  • Можно заменить вторичные обмотки трансформатора батареями, чтобы проанализировать, что произойдет, если не будет соблюдена правильная полярность. На рисунке 11 показаны две батареи с одинаковым напряжением, подключенные неправильно параллельно. Батареи действуют так, как будто они соединены последовательно друг с другом, и только сопротивление самих обмоток ограничивает ток.

  • Этот ток будет довольно большим и, скорее всего, превысит номинальные значения обмоток и приведет к сгоранию трансформатора.

Опять же, любой ток, протекающий во вторичной обмотке трансформатора, должен согласовываться с током в первичной обмотке, чтобы в первичных обмотках создавалась правильная CEMF. Ток в первичной обмотке равен вторичному току, деленному на отношение витков.

Вы должны убедиться, что мгновенные полярности всех соединенных вместе клемм всегда одинаковы.

3. Все трансформаторы должны иметь одинаковый импеданс в процентах.

Это то, о чем мы поговорим позже. Использование одинакового процентного импеданса важно для обеспечения того, чтобы трансформаторы распределяли нагрузку в соответствии со своими возможностями. Например, при одинаковом процентном сопротивлении трансформаторы 100 кВА и 25 кВА могут быть соединены параллельно, так что трансформатор 100 кВА всегда несет в четыре раза большую нагрузку, чем трансформатор 25 кВА.

Когда трансформатор нагружен, его напряжение на клеммах изменяется из-за падения IZ (линейных потерь) в обмотках.Процентное сопротивление — это просто выражение полного сопротивления трансформатора в процентах от номинального полного сопротивления нагрузки трансформатора при полной нагрузке. Если трансформаторы имеют одинаковый процент импедансов, то их напряжения на клеммах равны, если трансформаторы несут равный процент от их токов полной нагрузки. Это гарантирует, что трансформаторы распределяют нагрузку в соответствии со своими индивидуальными возможностями.

Рассмотрим трансформаторы 100 кВА и 25 кВА, упомянутые ранее. Если эти два трансформатора имеют одинаковый процент импеданса, то вместе они могут обеспечивать нагрузку 125 кВА без превышения номинальных значений любого трансформатора.

Однако, если два трансформатора имеют разные процентные сопротивления, трансформатор с меньшим процентным сопротивлением будет перегружен, прежде чем они достигнут 125 кВА.

Рисунок 11. Полярность линии

Соблюдение полярности при параллельном подключении трансформаторов

Возможно параллельное подключение трансформаторов разной полярности. Вы должны помнить, что вы подбираете полярности. Ранее мы узнали, что h2 и X1 всегда имеют одинаковую полярность, поэтому важно уделять очень пристальное внимание полярности трансформаторов.

При разработке чертежей трансформатора необходимо соблюдать последовательность:

  1. Вы определяете полярность питающей линии.
  2. Полярность питающей линии определяет первичную полярность трансформатора.
  3. Первичная полярность определяет вторичную полярность трансформатора.
  4. При подключении убедитесь, что отрицательные стороны соединены вместе, а положительные — соединены вместе.

Видео оповещение!

На видео ниже показано, как правильно соединить параллельные обмотки.