Межвитковое замыкание трансформатора как определить: Межвитковое замыкание. Как проверить различные замыкание витков

Содержание

Межвитковое замыкание. Как проверить различные замыкание витков

Электродвигатели часто выходят из строя, и основной причиной для этого является межвитковое замыкание. Оно составляет около 40% всех поломок моторов. От чего возникает замыкание между витками? Для этого есть несколько причин.

Основная причина – излишняя нагрузка на электродвигатель, которая выше установленной нормы. Статорные обмотки нагреваются, разрушают изоляцию, происходит замыкание между витками обмоток. Неправильно эксплуатируя электрическую машину, работник создает чрезмерную нагрузку на электродвигатель.

Нормальную нагрузку можно узнать из паспорта на оборудование, либо на табличке мотора. Лишняя нагрузка может возникнуть из-за поломки механической части электромотора. Подшипники качения могут послужить этой причиной. Они могут заклинить от износа или отсутствия смазки, в результате этого возникнет замыкание витков катушки якоря.

Замыкание витков возникает и в процессе ремонта или изготовления двигателя, в результате брака, если двигатель изготавливали или ремонтировали в неприспособленной мастерской.

Хранить и эксплуатировать электромотор необходимо по определенным правилам, иначе внутрь мотора может проникнуть влага, обмотки отсыреют, как следствие возникнет витковое замыкание.

С витковым замыканием электродвигатель работает неполноценно и недолго. Если вовремя не выявить межвитковое замыкание, то скоро придется покупать новый электродвигатель или полностью новую электрическую машину, например, электродрель.

При замыкании витков обмотки двигателя повышается ток возбуждения, обмотка перегревается, разрушает изоляцию, происходит замыкание других витков обмотки. Вследствие повышения тока может послужить причиной выхода из строя регулятора напряжения. Витковое замыкание выясняется сравнением обмоточного сопротивления с нормой по техусловиям. Если оно снизилось, обмотка подлежит перемотке, замене.

Как найти межвитковое замыкание

Замыкание витков легко определить, для этого есть несколько методов. Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора.

Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.

Обмотки проверяют мультиметром путем прозвонки. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнуты оказались всего 2-3 витка, то разница будет незаметна, замыкание не выявится. С помощью мегомметра можно прозвонить электромотор, выявив наличие замыкания на корпус. Один контакт прибора соединяем с корпусом мотора, второй к выводам каждой обмотки.

Если нет уверенности в исправности двигателя, то необходимо произвести разборку мотора. При разборе нужно осмотреть обмотки ротора, статора, наверняка будет видно место замыкания.

Наиболее точным методом проверки замыкания между витками обмоток является проверка понижающим трансформатором на трех фазах с шариком подшипника. Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.

Можно вместо шарика применить пластинку от сердечника трансформатора. Ее также проводим внутри статора. В месте замыкания витков, она будет дребезжать, а где замыкания нет, она просто притянется к железу. При таких проверках нельзя забывать про заземление корпуса двигателя, трансформатор должен быть низковольтным. Опыты с пластинкой и шариком при 380 вольт запрещаются, это опасно для жизни.

Самодельный прибор для определения виткового замыкания

Сделаем дроссель своими руками для проверки межвиткового замыкания в обмотке двигателя. Нам понадобится П-образное трансформаторное железо. Его можно взять, например, от старого вибрационного насоса «Ручеек», «Малыш». Разбираем его нижнюю часть, хорошо нагреваем ее. Там имеются катушки, залитые эпоксидной смолой.


Эпоксидку разогреваем и выбиваем катушки с сердечником. С помощью наждака или болгарки срезаем губки сердечника.


Намотаны эти катушки как раз на П-образном трансформаторном железе.

Не нужно соблюдать углы. Нужно сделать место, в которое легко ляжет маленький и большой якорь.

При обработке необходимо учесть, что железо слоеное. Нельзя обрабатывать его так, чтобы камень его задирал. Нужно обрабатывать в таком направлении, чтобы слои лежали друг к другу, чтобы не было задиров. После обработки снимите все фаски и заусенцы, так как придется работать с эмалированным проводом, нежелательно его поцарапать.

Теперь нам надо сделать две катушки для этого сердечника, которые разместим с обеих сторон. Замеряем толщину и ширину сердечника в самых широких местах, по заклепкам. Берем плотный картон, размечаем его по размерам сердечника. Учитываем размер паза в сердечнике между катушками. Проводим неострым краем ножниц по местам сгиба, чтобы удобнее было сгибать картон. Вырезаем заготовку для каркаса катушек. Сгибаем по линиям сгиба. Получается каркас катушки.

Теперь делаем четыре крышки для каждой стороны катушек. Получаем два картонных каркаса для катушек.

Рассчитываем количество витков катушек по формуле для трансформаторов.

13200 делим на сечение сердечника в см2. Сечение нашего сердечника:

3,6 см х 2,1 см = 7,56 см2.

13200 : 7,56 = 1746 витков на две катушки. Это число не обязательное, отклонение 10% в обе стороны никакой роли не сыграет. Округляем в большую сторону, 1800 : 2 = 900 витков нужно намотать на каждую катушку. У нас есть провод 0,16 мм, он вполне подойдет для наших катушек. Наматывать можно как угодно. По 900 витков можно намотать и вручную. Если ошибетесь на 20-30 витков, то ничего страшного не будет. Лучше намотать больше. Перед намоткой шилом делаем отверстия по краям каркаса для вывода провода катушек.

На конец провода надеваем термоусадочный кембрик. Конец провода вставляем в отверстие, загибаем, и начинаем намотку катушки.

Заполнение получилось малым, поэтому можно мотать и проводом толще. На второй конец припаиваем проводок с кембриком и вставляем в отверстие. Не заматываем катушку, пока не провели испытание.

Обе катушки намотаны. Надеваем их на сердечник таким образом, чтобы провода шли вниз и были с одной стороны. Катушки абсолютно одинаково намотаны, направление витков в одну сторону, концы выведены одинаково. Теперь необходимо один конец с одной катушки и один с другой соединить, а на оставшиеся два конца подать напряжение 220 вольт. Главное не запутаться и соединить правильные провода. Чтобы понять порядок соединения, нужно мысленно разогнуть наш П-образный сердечник в одну линию, чтобы витки в катушках располагались в одном направлении, переходили от одной катушки во вторую. Соединяем два начала катушек. На два конца подаем напряжение.

Сравним дроссель фабричный и самодельный.

Проверяем заводской дроссель металлической пластинкой на вибрацию места витковых замыканий якоря двигателя и отмечаем их маркером. Теперь то же самое делаем на нашем самодельном дросселе. Результаты получились идентичные. Наш новый дроссель работает нормально.

Снимаем наши катушки с сердечника, обмотки фиксируем изолентой. Пайку также изолируем лентой. Одеваем готовые катушки на сердечник, припаиваем к концам проводов питание 220 В. Дроссель готов к эксплуатации.

Межвитковое замыкание якоря

Для проверки якоря воспользуемся специальным прибором, который представляет трансформатор с вырезанным сердечником. Когда мы кладем якорь в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. При этом, если на якоре имеется межвитковое замыкание, от местного перенасыщения железом металлическая пластинка, которая будет находиться сверху якоря, будет вибрировать, либо примагничиваться к корпусу якоря.

Включаем прибор. Для наглядности мы специально замкнули две ламели на коллекторе, чтобы показать каким образом производится диагностика. Помещаем пластинку на якорь и сразу видим результат. Наша пластинка примагнитилась и начала вибрировать. Поворачиваем якорь, витки смещаются, и пластинка перестает вибрировать.

Теперь удалим замыкание ламелей для проверки. Повторяем проверку и видим, что обмотка якоря исправна, пластинка не вибрирует ни в каких местах.

Способ №2 проверки якоря на витковое замыкание

Этот способ подходит для тех, кто не занимается профессиональным ремонтом электроинструмента. Для точной диагностики межвиткового замыкания требуется скоба с катушкой.

Мультиметром можно выяснить лишь обрыв катушки якоря. Лучше для этой цели применять аналоговый тестер. Между каждыми двумя ламелями замеряем сопротивление.

Сопротивление должно быть везде одинаковое. Бывают случаи, когда обмотки не сгорели, коллектор нормальный. Тогда замыкание витков определяют только с помощью прибора со скобой от трансформатора.

Теперь устанавливаем мультиметр на 200 кОм, один щуп замыкаем на массу, а другим касаемся каждой ламели коллектора, при условии, что нет обрыва катушек.

Если якорь не прозванивается на массу, то он исправный, либо может быть межвитковое замыкание.

Межвитковое замыкание трансформатора

У трансформаторов есть распространенная неисправность – замыкание витков между собой. Мультиметром не всегда можно выявить этот дефект. Необходимо внимательно осмотреть трансформатор. Провод обмоток имеет лаковую изоляцию, при ее пробое между витками обмотки есть сопротивление, которое не равно нулю. Оно и приводит к разогреву обмотки.

При осмотре трансформатора на нем не должно быть гари, обуглившейся бумаги, вздутия заливки, почернений. Если известен тип и марка трансформатора, можно узнать, какое должно быть сопротивление обмоток. Мультиметр переключают в режим сопротивления. Сравнивают измеренное сопротивление со справочными данными. Если отличие составляет больше 50%, то обмотки неисправны.

Если данные сопротивления не удалось найти в справочнике, то наверняка известно количество витков, тип и сечение провода, можно вычислить сопротивление по формулам.

Чтобы проверить трансформатор блока питания с выходом низкого напряжения, подключаем к первичной обмотке напряжение 220 В. Если появился дым, запах, то сразу отключаем, обмотка неисправна. Если таких признаков нет, то измеряем напряжение тестером на вторичной обмотке. При заниженном на 20% напряжении есть риск выхода из строя вторичной обмотки.

Если есть второй исправный трансформатор, то путем сравнения сопротивлений выясняют исправность обмоток. Чтобы проверить более подробно, применяют осциллограф и генератор.

Межвитковое замыкание статора

Часто на неисправном двигателе имеется межвитковое замыкание. Сначала проверяют обмотку статора на сопротивление. Это ненадежный метод, так как мультиметр не всегда может точно показать результат замера. Это зависит и от технологии перемотки двигателя, от старости железа.

Клещами тоже можно измерить сопротивление и ток. Иногда проверяют по звуку работающего мотора, при условии, что подшипники исправны, смазаны, редуктор привода исправен. Еще проверяют межвитковое замыкание осциллографом, но они имеют большую стоимость, не у каждого имеется этот прибор.

Внешне осматривают двигатель. Не должно быть следов масла, подтеков, запаха. Измеренный по фазам ток, должен быть одинаковый. Хорошим тестером проверяют обмотки на сопротивление. При разнице в замерах более 10% есть вероятность замыкания витков обмоток.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

Как проверить работу трансформатора мультиметром?

Проверка обмоток трансформатора вызывает панику у новичков: непросто даже разобраться, с чего начать проверку. Один из способов – использовать мультиметр, простой электроизмерительный прибор.

Основы и принцип работы трансформатора

Трансформатор – устройство, преобразующее напряжение и ток, причем оно используется как на крупных предприятиях, так и в быту. Основными причинами поломки становятся:

  • перегоревший провод обмотки;
  • поврежденный сердечник;
  • пробитая изоляция;
  • износ вывода катушек или контактов.

Мультиметр используют и для тестировки классических понижающих трансформаторов, которые установлены в блоках питания техники с напряжением в 220 В и выходным в 5-30 В.

Ряд дефектов можно найти при визуальном осмотре: например, почернения, трещины, вздутие заливки сигнализируют о возникших проблемах. Также о неполадках сигнализируют запах гари, дым и треск.

Проверка мультиметром: особенности

Мультиметром проверяют два дефекта: замыкание и обрыв обмотки. Выполняется это следующим способом:

  • замыкание – один щуп устройства размещается на выводе обмотки, а вторым поочередно проверяются выводы других обмоток и корпуса. Необходимо провести такую процедуру с каждым выводом, короткого замыкания быть не должно. Перед началом проверки нужно очистить места контакта от грязи, лака, краски.
  • обрыв обмотки – мультиметром в режиме омметра перезваниваются поочередно все обмотки, и если одно из измерений – единица, то это сигнализирует о бесконечном сопротивлении, или обрыве. Проверка будет точнее при использовании аналогового прибора, так как цифровой может ошибаться из-за высокой индукции.

Еще одна частая проблема – межвитковое замыкание, но с помощью мультиметра проверить такую неисправность практически невозможно. Зато это проще сделать на глаз: нужно осмотреть прибор на наличие подтеков, вздутий, почернений. После в справочнике к трансформатору найдите сопротивление обмоток и, применяя мультиметр в режиме мегаомметра, сравните показания с указанным в технической литературе: если они расходятся на 50 и более процентов, то обмотка вышла из строя.

Если нужна помощь специалистов – обращайтесь в компанию «Электропрофит»: мы займемся диагностикой неполадок, ремонтом трансформаторных подстанций, проектированием сетей электроснабжения, коммутацией электрических цепей и другими задачами.

Как определить межвитковое замыкание электродвигателя

До 40 процентов случаев проблем с электродвигателем связано с межвитковым замыканием. Как правило, оно возникает в катушке обмотки возбуждения. Основные причины:

  • Перегрузка двигателя из-за неправильной его эксплуатации либо механических повреждений. Вследствие этого происходит перегрев обмоток статора и повреждение или разрушение их изоляционного слоя. В результате уменьшается сопротивление цепи, и контакт витков катушки ведет к замыканию и выходу двигателя из строя.
  • «Сухие» или заклинившие подшипники.
  • Заводской брак обмоток (либо их неудачная перемотка).
  • Попадание влаги внутрь агрегата из-за несоблюдения условий его хранения (например, во влажном месте).

Итак, причины более или менее понятны, теперь мы попытаемся разобраться: как определить межвитковое замыкание электродвигателя?

Способы определения межвиткового замыкания двигателя

Если какая-либо часть статора сильно нагревается, стоит прекратить работу и провести диагностику агрегата. Мы предлагаем следующие варианты:

  • Токовые клещи. Измеряется нагрузка на каждую фазу, и, если на какой-либо из них она значительно увеличена, то это признак межвиткового замыкания. Однако чтобы избежать ошибки из-за, например, перекоса фаз на подстанции, стоит также измерить приходящее напряжение вольтметром.
  • Прозвон обмоток тестером. Прозванивается каждая обмотка в отдельности, затем полученные результаты сопротивления сверяются. Но следует учесть, что этот способ может оказаться неэффективным при замыкании 2-3 витков, т.к. в этом случае расхождение будет небольшим.
  • Измерения мегомметром. Чтобы обнаружить замыкание на корпус, один щуп прикладывается к корпусу двигателя, второй – к выходу обмоток в борно.
  • Проверить межвитковое замыкание электродвигателя также можно визуально. Агрегат разбирается и тщательно осматривается на предмет наличия сгоревшей части обмотки.
  • Проверка с помощью понижающего трехфазного трансформатора и шарика от подшипника или пластинки от трансформаторного железа. Этот способ считается самым надежным. Предупреждение: ни в коем случае не используйте данный алгоритм при напряжении в 380 вольт, это опасно для жизни! Последовательность действий такова: три фазы с понижающего трансформатора подаются на статор предварительно разобранного двигателя. Туда кидается шарик. Если он движется внутри статора по кругу – аппарат в рабочем состоянии. Если через несколько оборотов он «залипает» на одном месте – именно там и находится замыкание. Пластинка прикладывается к железу внутри статора. Если она «примагничивается», причин для беспокойства нет, а ее дребезжание указывает на межвитковое замыкание.

Следует также отметить, что все перечисленные выше способы проверки производятся исключительно с заземленным двигателем.

Таким образом, зная, как проверить обмотку электродвигателя на межвитковое замыкание, вы сможете самостоятельно выявить причину неисправности и принять решение о ее своевременном устранении.


Узнаем как проверить трансформатор мультиметром? Инструкция

Часто нужно ознакомиться заранее с вопросом о том, как проверить трансформатор. Ведь при выходе его из строя или нестабильной работе будет сложно искать причину отказа оборудования. Это простое электротехническое устройство можно продиагностировать обычным мультиметром. Рассмотрим, как это сделать.

Что собой представляет оборудование?

Как проверить трансформатор, если не знаем его конструкцию? Рассмотрим принцип действия и разновидности простого оборудования. На магнитный сердечник наносят витки медной проволоки определенного сечения так, чтобы оставались выводы для подающей обмотки и вторичной.

Передача энергии во вторичную обмотку производится бесконтактным способом. Тут уже становится почти ясно, как проверить трансформатор. Аналогично прозванивается обычная индуктивность омметром. Витки образуют сопротивление, которое можно измерить. Однако такой способ применим, когда известна заданная величина. Ведь сопротивление может измениться в большую или меньшую сторону в результате нагрева. Это называется межвитковое замыкание.

Такое устройство уже не будет выдавать эталонное напряжение и ток. Омметр покажет только обрыв в цепи или полное короткое замыкание. Для дополнительной диагностики используют проверку замыкания на корпус тем же омметром. Как проверить трансформатор, не зная выводов обмоток?

Это определяется по толщине выходящих проводов. Если трансформатор понижающий, то выводные проводники будут толще подводящих. И соответственно, наоборот: у повышающего вводные провода толще. Если две обмотки выходные, то толщина может быть одинаковой, про это следует помнить. Самый верный способ посмотреть маркировку и найти технические характеристики оборудования.

Виды

Трансформаторы делятся на следующие группы:

  • Понижающие и повышающие.
  • Силовые чаще служат для уменьшения подводящего напряжения.
  • Трансформаторы тока для подачи потребителю постоянной величины тока и ее удержания в заданном диапазоне.
  • Одно- и многофазные.
  • Сварочного назначения.
  • Импульсные.

В зависимости от назначения оборудования изменяется и принцип подхода к вопросу о том, как проверить обмотки трансформатора. Мультиметром можно прозвонить лишь малогабаритные устройства. Силовые машины уже требуют иного подхода к диагностике неисправностей.

Метод прозвонки

Метод диагностики омметром поможет с вопросом о том, как проверить трансформатор питания. Прозванивать начинают сопротивление между выводами одной обмотки. Так устанавливают целостность проводника. Перед этим проводят осмотр корпуса на отсутствие нагаров, наплывов в результате нагрева оборудования.

Далее замеряют текущие значения в Омах и сравнивают их с паспортными. Если таковых не имеется, то потребуется дополнительная диагностика под напряжением. Прозвонить рекомендуется каждый вывод относительно металлического корпуса устройства, куда подключаются заземление.

Перед проведением замеров следует отключить все концы трансформатора. Отсоединить от цепи их рекомендуется и в целях собственной безопасности. Также проверяют наличие электронной схемы, которая часто присутствует в современных моделях питания. Её также следует выпаять перед проверкой.

Бесконечное сопротивление говорит о целой изоляции. Значения в несколько килоом уже вызывают подозрения о пробое на корпус. Также это может быть за счет скопившейся грязи, пыли или влаги в воздушных зазорах устройства.

Под напряжением

Испытания с поданным питанием проводятся, когда стоит вопрос о том, как проверить трансформатор на межвитковое замыкание. Если мы знаем величину питающего напряжения устройства, для которого предназначен трансформатор, то замеряют вольтметром значение холостого хода. То есть провода выводные находятся в воздухе.

Если значение напряжения отличается от номинального, то делают выводы о межвитковом замыкании в обмотках. Если при работе устройства слышны треск, искрение, то такой трансформатор лучше сразу выключить. Он неисправен. Существуют допустимые отклонения при измерениях:

  • Для напряжения значения могут отличаться на 20%.
  • Для сопротивления нормой является разброс значений в 50% от паспортных.

Замер амперметром

Разберемся, как проверить трансформатор тока. Его включают в цепь: штатную либо собственно изготовленную. Важно, чтобы значение тока было не меньше номинального. Замеры амперметром проводят в первичной цепи и во вторичной.

Ток в первичной цепи сравнивают со вторичными показаниями. Точнее, делят первые значения на замеренные во вторичной обмотке. Коэффициент трансформации следует взять из справочника и сравнить с полученными расчетами. Результаты должны быть одинаковыми.

Трансформатор тока нельзя замерять на холостом ходу. На вторичной обмотке в таком случае может образоваться слишком высокое напряжение, способное повредить изоляцию. Также следует соблюдать полярность подключения, что повлияет на работу всей подключенной схемы.

Типичные неисправности

Перед тем как проверить трансформатор микроволновки, приведем частые разновидности поломок, устраняемых без мультиметра. Часто устройства питания выходят из строя вследствие короткого замыкания. Оно устанавливается путем осмотра монтажных плат, разъемов, соединений. Реже происходит механическое повреждение корпуса трансформатора и его сердечника.

Механический износ соединений выводов трансформатора происходит на движущихся машинах. Большие питающие обмотки требуют постоянного охлаждения. При его отсутствии возможен перегрев и оплавление изоляции.

ТДКС

Разберемся, как проверить импульсный трансформатор. Омметром можно будет установить только целостность обмоток. Работоспособность устройства устанавливается при подключении в схему, где участвует конденсатор, нагрузка и звуковой генератор.

На первичную обмотку пускают импульсный сигнал в диапазоне от 20 до 100 кГц. На вторичной же обмотке делают замеры величины осциллографом. Устанавливают присутствие искажений импульса. Если они отсутствуют, делают выводы об исправном устройстве.

Искажения осциллограммы говорят о подпорченных обмотках. Ремонтировать такие устройства не рекомендуется самостоятельно. Их настраивают в лабораторных условиях. Существуют и другие схемы проверки импульсных трансформаторов, где исследуют присутствие резонанса на обмотках. Его отсутствие свидетельствует о неисправном устройстве.

Также можно сравнивать форму импульсов, поданных на первичную обмотку и вышедших со вторичной. Отклонение по форме также говорит о неисправности трансформатора.

Несколько обмоток

Для замеров сопротивления освобождают концы от электрических соединений. Выбирают любой вывод и замеряют все сопротивления относительно остальных. Рекомендуется записывать значения и маркировать проверенные концы.

Так мы сможем определить тип соединения обмоток: со средними выводами, без них, с общей точкой подключения. Чаще встречаются с отдельным подключением обмоток. Замер получится сделать только с одним из всех проводов.

Если имеется общая точка, то сопротивление замерим между всеми имеющимися проводниками. Две обмотки со средним выводом будут иметь значения только между тремя проводами. Несколько выводов встречается в трансформаторах, рассчитанных на работу в нескольких сетях номиналом 110 или 220 Вольт.

Нюансы диагностики

Гул при работе трансформатора является нормальным, если это специфичные устройства. Только искрение и треск свидетельствуют о неисправности. Часто и нагрев обмоток — это нормальная работа трансформатора. Чаще это наблюдается у понижающих устройств.

Может создаваться резонанс, когда вибрирует корпус трансформатора. Тогда следует его просто закрепить изоляционным материалом. Работа обмоток значительно меняется при неплотно затянутых или загрязненных контактах. Большинство проблем решается зачисткой металла до блеска и новой обтяжкой выводов.

При замерах значений напряжения и тока следует учитывать температуру окружающей среды, величину и характер нагрузки. Контроль подводящего напряжения также необходим. Проверка подключения частоты обязательна. Азиатская и американская техника рассчитана на 60 Гц, что приводит к заниженным выходным значениям.

Неумелое подключение трансформатора может привести к неисправности устройства. Ни в коем случае не подсоединяют к обмоткам постоянное напряжение. Витки быстро оплавятся в противном случае. Аккуратность в замерах и грамотное подключение помогут не только найти причину поломки, но и, возможно, устранить ее безболезненным способом.

Как определить межвитковое замыкание. Как проверить межвитковое замыкание

В электрических двигателях, в процессе эксплуатации, могут возникнуть различные неисправности. Довольно часто, многие сталкиваются с таким явлением, как межвитковое замыкание обмотки статора. Для того, чтобы точно определить наличие данного дефекта, прежде всего, проверяется сопротивление обмотки.

Определение межвиткового замыкания

Междувитковое замыкание определяется проверкой сопротивления. Данная величина измеряется с помощью дефектоскопа или . Полученные показания сравниваются с сопротивлением, присутствующим в исправной обмотке.

Если в проверяемой обмотке ниже, чем в образцовой, то это свидетельствует о наличии в ней межвиткового замыкания. При необходимости, данная неисправность может определяться с помощью индукционного метода. Для этого, витки проверяемой электрообмотки находятся в переменном магнитном поле, после чего происходит индуцирование электродвижущей силы.

Когда в обмотке имеются замкнутые витки, то под воздействием наведенных токов она начинает нагреваться. При замыкании даже одного или двух витков, нагревание происходит в течение от 3-х до 5-ти минут.


Межвитковое замыкание обмотки статора может определяться дефектоскопом, без выемки из пазов. В состав дефектоскопа входят индукционный и сигнальный аппараты, расположенные друг за другом в общем корпусе. Сердечники обоих аппаратов одновременно накладываются на зубцы пазов или по длине проводников проверяемой обмотки. Обмотка индукционного аппарата находится включенной в сеть с напряжением до 18-ти вольт. Возникает магнитное поле, вызывающее наведение электродвижущей силы.

При витковом замыкании, по обмотке начинает течь ток, а вокруг проводников появляется собственное магнитное поле. В результате, в обмотке сигнального аппарата также появляется электродвижущая сила, после чего загорается лампочка сигнала.

Устранение неисправностей

В отдельных случаях, возможно достаточно быстрое устранение неисправностей собственными силами. Все места, имеющие дефекты, легко определяются визуально и по запаху подгоревшей изоляции. Если дефект носит незначительный локальный характер, то поврежденный участок провода заменяется, места соединений зачищаются и протравливаются раствором хлорида цинка. После этого, производится лужение, скручивание и окончательное припаивание.

Запаянные места обматываются х/б лентой, пропитываются лаком и просушиваются. В случае серьезных повреждений электрообмотки, может понадобиться ее полная перемотка.

Межвитковые замыкания, ухудшение контакта в местах паек, обрывы могут быть обнаружены по измерению напряжения на катушке при пропускании через нее тока.
Межвитковое замыкание обнаруживают путем измерения ее сопротивления аналогично катушкам генераторов постоянного тока.
Межвитковые замыкания могут быть в одной или нескольких секциях якоря или между секциями вследствие замыкания смежных пластин коллектора. При замыкании между концами секции или между пластинами коллектора, а также при соединении между собой отдельных витков секции в обмотке якоря образуются замкнутые контуры.
Схема соединений обмоток полюсов и якоря тягового электродвигателя. Межвитковое замыкание у катушек полюсов определяют приборами, работающими по принципу трансформатора. Схема одного из приборов показана на рис. 267, а. Несъемную катушку 1 подключают к источнику переменного тока.
Межвитковые замыкания в обмотках возникают при нарушении целостности изоляции. Размотка бандажей (обычно на тяговых электродвигателях) часто связана с превышением максимально допустимой частоты вращения при боксовании; устраняется при ремонте якоря.
Межвитковые замыкания в обмотках возникают при нарушении целости изоляции. Размотка бандажей (обычно на тяговых электродвигателях), часто связана с превышением максимально допустимой частоты вращения при боксовании. Устраняется при ремонте якоря.
Межвитковые замыкания в обмотках якоря или полюсов и пробой изоляции появляются при попадании влаги в изоляцию, а также из-за механических повреждений якоря при сборке или вследствие ослабления секций в пазах якоря или катушек на полюсах. Обрыв витков секций якоря и межкатушечных соединений возникает из-за недостаточной их механической прочности или надрывов при монтаже, а также вследствие выплавления припоя в петушках коллектора в результате перегревов при перегрузках. Возможно также возникновение механических повреждений в машинах: ослабление вентиляторов на валах, размотка проволочных бандажей, разрушение роликовых подшипников.
Межвитковое замыкание или пробой обмотки на сердечник может произойти при работе без нагрузки. Поэтому при ремонтных работах следует быть внимательным. Обнаружить короткозамкнутыо витки с помощью тестера удается не всегда.
Межвитковое замыкание в катушках главных, дополнительных полюсов и компенсационной обмотке, чаще всего обнаруживаемое при плановых ремонтах, когда катушки проверяются на межвитковое замыкание. Причиной неисправности может быть ослабление изоляции из-за старения, а также дефекты, допущенные при намотке катушек. Устраняется повреждение при заводском или деповском ремонте заменой катушек.
Межвитковое замыкание в обмотке ротора приводит к уменьшению ее сопротивления и увеличению тока возбуждения. Это в свою очередь вызывает повышенный нагрев обмотки, разрушение изоляции и расширение зоны замыкания.
Схема для проверки отсутствия короткозамкнутых витков в обмотках постоянного тока. Межвитковые замыкания определяют путем анализа вольт-амперных характеристик на переменном токе отдельно для каждой обмотки. Анализ проводится путем сравнения стандартной и полученной характеристик.
Обычно межвитковое замыкание быстро вызывает пробой изоляции секции проводников якоря на сердечник вследствие ее сильного обугливания из-за нагрева большим током.

Межвитковое замыкание двигателя Двигатель гудит и перегревается.
Межвитковое замыкание обмотки статора обнаруживают по срабатыванию теплового реле, неравномерному нагреву корпуса двигателя и повышенному гудению. При обрыве одной из фаз цепи двигатель не запускается — сильно гудит, начинает греться и срабатывает тепловая защита (ТРТ), отключая контактор. В случае небольшого повреждения подшипников ротор испытывает одностороннее притяжение, прилипает, а будучи выведенным из этого состояния, самостоятельно разворачивается и электрическая машина продолжает нормально работать.
Шаблон для выгибания катушек обмотки возбуждения генератора постоянного тока.| Пресс-отвертка для отворачивания винтов полюсных сердечников генератора постоянного тока. Межвитковое замыкание катушек обмотки возбуждения можно обнаружить с помощью омметра, измеряя сопротивление обмотки.
Отсутствие межвитковых замыканий и замыканий обмотки на шихтованный сердечник якоря проверяют на приборе Э-236 или контрольной лампой. Контрольная лампа не должна гореть при подсоединении ее выводов к любой пластине коллектора и непосредственно к сердечнику якоря. При обнаружении замыканий якорь заменяют. Короткое замыкание на массу катушек обмоток возбуждения также проверяют на приборе Э-236 или контрольной лампой.
Прорезка миканита между пластинами коллектора якоря. При межвитковом замыкании или обрыве провода внутри обмотки ее заменяют новой. Замена обмотки якоря — операция довольно сложная, здесь требуются определенное знание, навыки и специальное оборудование, поэтому, как правило, перемотку якорей выполняют на специализированных предприятиях. Обрывы обмотки в местах припайки к коллекторным пластинам или замыкание в этом месте устраняют без перемотки.
При межвитковых замыканиях в обмотках трансформатора уровень гудения повышается.
Определение замыкания между обмотками разных фаз. При межвитковых замыканиях в обмотках образуются замкнутые контуры, в которых переменное магнитное поле индуктирует значительные электродвижущие силы и токи короткого замыкания. Эти токи нагревают обмотку, поэтому внешним признаком межвитковых замыканий являются местные нагревания. Если местные перегревы не обнаруживаются, межвитковые замыкания можно определить способом измерения тока во всех трех фазах. Для этого к обмоткам статора подводят номинальное напряжение трехфазного тока через амперметры в каждой фазе. Фазовый ротор должен быть при этом разомкнут, а корот-козамкнутый заторможен. Если при этом срабатывает защита, то напряжение понижают до 25 — 30 % номинального.
Определение выводных концов асинхронного электродвигателя индукционным способом. При межвитковых замыканиях образуются контуры, в которых индуктируется противоэлектродвижущая сила, ослабляющая основное поле.
Проверку на межвитковое замыкание производят на специальном стенде (фиг.
Чтобы обнаружить межвитковое замыкание, фазовый ротор затормаживают и к нему подводят 30 — 50 % от того напряжения, которое индуктируется в заторможенном роторе номинальным напряжением. В рассечку подводящих проводов включают по амперметру; наибольший ток покажет амперметр поврежденной фазы.
Обрыв и межвитковое замыкание обмоток возбуждения проверяют замером сопротивления обмоток, которое должно быть в пределах ТУ.

Для обнаружения межвиткового замыкания, кроме стальной пластинки, может применяться также неоновый указа. Концы обмотки включаются на неоновую лампочку.
Нелинейность растра по горизонтали. При наличии межвиткового замыкания в одной из строчных катушек растр примет вид, показанный на рис. 39 жирной линией.
В случае межвиткового замыкания в дросселе фильтра сильно нагревается его обмотка вплоть до потемнения и обугливания ее изоляции. Однако межвитковое замыкание небольшого количества витков при помощи омметра обнаружить нельзя, поэтому дроссель целесообразно проверить заменой на новый.
Защита от внутренних межвитковых замыканий осуществляется с помощью дифференциальной защиты, которая применяется в установках гидромеханизации редко и поэтому в настоящей книге не рассматривается.
У синхронных машин межвитковые замыкания 1 в катушках возбуждения могут быть обнаружены возбуждением статор а переменным током пониженного напряжения по сравнению с номинальным три неподвижном индукторе.
Более сложно опеределить межвитковое замыкание в одной или нескольких фазах.
Испытание катушки на межвитковое замыкание и контроль производятся так же и на том же оборудовании, что и описанных выше полюсных катушек, с последующим внешним контролем размеров.
Обмотки возбуждения с межвитковым замыканием и внутренними обрывами не ремонтируют, а заменяют новыми.
Наблюдения показывают, что межвитковые замыкания в секциях из эмалированных проводов имеют место обычно после их пропитки, причем чем ниже стойкость эмалевых пленок против воздействия пропитывающих лаков и их растворителей, тем больше количество межвитковых замыканий.
При разрушении изоляции и межвитковых замыканий наматываются новые катушки. Изоляцию катушки лаком и сушку производят аналогично изоляции обмоток якоря. Высушенные катушки устанавливают на полюсные башмаки и привертывают к корпусу.
Обмотки возбуждения. При разрушении изоляции и межвитковых замыканиях наматываются новые катушки.
Наиболее частой неисправностью ТВК является межвитковое замыкание его первичной обмотки, которое, как правило, при помощи омметра определить нельзя. Первичная обмотка ТВК имеет большое количество витков, поэтому перематывать ТВК вручную нельзя. В случае обрыва одной из обмоток омметр, подйлючен-ный к обмотке с обрывом, покажет бесконечно большое сопротивление при включении его на любую шкалу.

Ротор в сборе может иметь межвитковое замыкание или обрыв в катушке возбуждения. Наличие этого дефекта проверяется измерением сопротивления катушки омметром. Сопротивление должно быть 3 5 — 3 9 Ом. Негодная катушка возбуждения подлежит замене. Проверка замыкания катушки на корпус производится переменным током напряжением 550 В в течение 1 мин. При износе рабочей поверхности контактных колец они подлежат обработке до выведения неровностей. После ремонта ротор в сборе должен быть пропитан лаком ГФ-92 и динамически сбалансирован.
Несимметричный нагрев иногда происходит из-за межвитковых замыканий в обмотке возбуждения, наличие которых в бпределен — ных небольших пределах не приводит машину к аварийному состоянию.
Технические характеристики сварочных трансформаторов для ручной дуговой сварки. Гудение может быть вызвано также межвитковым замыканием, которое устраняют, раздвинув замкнувшиеся БИТКИ и забив между ними клин из сухого дерева твердой породы.
Это явление возможно как при межвитковых замыканиях в обмотке статора, так и при замыканиях в обмотках фазного ротора.
Если же одна из секций имеет межвитковое замыкание, то звук в телефоне заметно усиливается.
Трансформаторы питания неисправны чаще всего из-за межвитковых замыканий и обрывов обмоток, пробоя обмоток на корпус (шасси) и из-за обрывов цепей питания кенотрона (выпрямителя), переключателя напряжения сети и предохранителя.
Вид поверхности свечи. Катушку зажигания с поврежденной крышкой и межвитковым замыканием необходимо заменить. Неисправный добавочный резистор катушки зажигания следует отремонтировать или заменить.
Катушки с поврежденной внутренней изоляцией и межвитковым замыканием заменяют новыми. Для намотки новой катушки применяют несложные приспособления.
Катушку зажигания с поврежденной крышкой и межвитковым замыканием необходимо заменить. Неисправный добавочный резистор катушки зажигания следует отремонтировать или заменить.
Катушки лагометра заменяют при обрывах, межвитковом замыкании, обгорании изоляции. Исправные катушки пропитывают бакелитовым лаком с последующей сушкой на воздухе. При необходимости произвсь дится балансировка подвижной системы указателя. Работу эту выполняют под током перемещением балансировочных грузиков при вертикальном и горизонтальном положениях стрелки. При правильной балансировке стрелка в указанных положениях не должна отклоняться от нулевой отметки. Грузики после балансировки закрепляют шеллачным лаком.
Для асинхронных двигателей малой и средней мощностей межвитковое замыкание до разборки машины наиболее просто обнаружить по нагреву лобовой части замкнутой катушки при холостом ходе или подключении статора к напряжению при разомкнутом роторе. При этом в поврежденной фазе протекает большой ток.
Необходимо следить за индуктором — при обнаружении межвиткового замыкания (проявляющегося искрением в месте замыкания) необходимо немедленно отключить печь, выяснить причину замыкания и устранить ее. В частности, если межвитковое замыкание вызвано запотеванием индуктора, необходимо просушить его, обдувая снаружи сжатым воздухом.
Проверка обмотки якоря на обрыв и короткое замыкание (а, короткое замыкание секции (б и схема проверки обмотки якоря на приборе ППЯ (в.
Обмотку якоря проверяют на отсутствие обрыва и короткого межвиткового замыкания (рис. 245, а) на приборе Э236 или другом индукционном приборе для проверки якоря ППЯ.
Обмотки рамок заменяют, если в них имеются межвитковые замыкания, обрывы, обугливание изоляции от перегрузки током, нарушения формы рамки, а также если прибор необходимо переделать на другие пределы измерения. Рамки бывают каркасные и бескаркасные. Бескаркасные рамки применяют в тех приборах, где необходимо максимально уменьшить вес подвижной системы, и там, где по системе прибора нельзя иметь металлический каркас, представляющий собой короткозамкнутый виток.

Межвитковые замыкания, ухудшение контакта в местах паек, обрывы могут быть обнаружены по измерению напряжения на катушке при пропускании через нее тока.  

Межвитковое замыкание обнаруживают путем измерения ее сопротивления аналогично катушкам генераторов постоянного тока.  

Межвитковые замыкания могут быть в одной или нескольких секциях якоря или между секциями вследствие замыкания смежных пластин коллектора. При замыкании между концами секции или между пластинами коллектора, а также при соединении между собой отдельных витков секции в обмотке якоря образуются замкнутые контуры.  

Межвитковое замыкание у катушек полюсов определяют приборами, работающими по принципу трансформатора. Схема одного из приборов показана на рис. 267, а. Несъемную катушку 1 подключают к источнику переменного тока.  

Межвитковые замыкания в обмотках возникают при нарушении целостности изоляции. Размотка бандажей (обычно на тяговых электродвигателях) часто связана с превышением максимально допустимой частоты вращения при боксовании; устраняется при ремонте якоря.  

Межвитковые замыкания в обмотках возникают при нарушении целости изоляции. Размотка бандажей (обычно на тяговых электродвигателях), часто связана с превышением максимально допустимой частоты вращения при боксовании. Устраняется при ремонте якоря.  

Межвитковые замыкания в обмотках якоря или полюсов и пробой изоляции появляются при попадании влаги в изоляцию, а также из-за механических повреждений якоря при сборке или вследствие ослабления секций в пазах якоря или катушек на полюсах. Обрыв витков секций якоря и межкатушечных соединений возникает из-за недостаточной их механической прочности или надрывов при монтаже, а также вследствие выплавления припоя в петушках коллектора в результате перегревов при перегрузках. Возможно также возникновение механических повреждений в машинах: ослабление вентиляторов на валах, размотка проволочных бандажей, разрушение роликовых подшипников.  

Межвитковое замыкание или пробой обмотки на сердечник может произойти при работе без нагрузки. Поэтому при ремонтных работах следует быть внимательным. Обнаружить короткозамкнутыо витки с помощью тестера удается не всегда.  

Межвитковое замыкание в катушках главных, дополнительных полюсов и компенсационной обмотке, чаще всего обнаруживаемое при плановых ремонтах, когда катушки проверяются на межвитковое замыкание. Причиной неисправности может быть ослабление изоляции из-за старения, а также дефекты, допущенные при намотке катушек. Устраняется повреждение при заводском или деповском ремонте заменой катушек.

Межвитковое замыкание в обмотке ротора приводит к уменьшению ее сопротивления и увеличению тока возбуждения. Это в свою очередь вызывает повышенный нагрев обмотки, разрушение изоляции и расширение зоны замыкания.  

Люди, разбирающиеся в технике, не понаслышке знают о таком понятии, как межвитковое замыкание. Для проверки понадобится специальный прибор, который достаточно прост в применении.

Чтобы быстро приобрести устройство для определения дефектов, можно перейти на сайт эгир.рф/pribor/indikator-defektov-idvi-03.html. Прибор отличается качественностью и приемлемой стоимостью.

Основные причины

Межвитковое замыкание может произойти по нескольким основным причинам:

  • нарушения в изоляции приборов;
  • соприкосновение элементов;
  • проблемы в статоре или роторе.

Когда происходит перегрев в области двигателя, в большинстве случаев возникает межвитковое замыкание. В этом процессе разрушается лак, который покрывает обмотку. В результате такого перегревания, происходит контакт витков. Этот процесс и провоцирует замыкание, после которого двигатель может и вовсе выйти из строя.

Даже при появлении одной такой точки, система теряет функциональные возможности. Поэтому необходимо как можно быстрее выявить дефект с помощью специальных приборов.

Перед тем, как приступать к устранению дефекта, необходимо выявить и исключить нагрузку на двигатель. Такие процессы наблюдаются при засорении системы или же при возникновении проблем в механической зоне. Чтобы определить замыкание, нужно внимательно присмотреться к работе двигателя. В таком случае происходит искрение, при чем оно отличается высокой интенсивностью.


Еще одним характерным признаком, по которому можно выявить проблему, является наличие неприятного запаха горелого. Межвитковое замыкание может наблюдаться в катушках, и иногда даже опытному мастеру тяжело определить подобный дефект. Основной причиной этой проблемы является повреждение области обмотки, что провоцирует усиление силы тока.

Температура доходит до максимального уровня, что приводит к межвитковому замыканию. Во избежание дальнейшей проблемы, дефект нужно выявить как можно раньше.

Для определения замыкания необходимо подготовить несколько инструментов, после чего выполнить такие действия:

  • используйте измерительный прибор (амперметр) для снятия показаний;
  • произведите устранение неисправности;
  • измерьте силу тока (для выявления дефектов в катушке).

Для измерения показателей и обнаружения проблем в обмотках, необходимо использовать дефектоскоп. Это портативное устройство, которое позволяет за короткий период определить дефект.

Испытание катушки на межвитковые замыкания.  

Межвитковое замыкание электродвигателя

 

Межвитковое замыкание электродвигателя

 

Причины  межвиткового замыкания

Если вы читали предыдущие статьи,  то знаете что межвитковое замыкание электродвигателя составляет 40%  неисправностей электродвигателей.   Причин для межвиткового замыкания может быть несколько.

 Перегруз электродвигателя —  нагрузка на электроустановку превышает норму  вследствие чего обмотки статора нагреваются и изоляция обмоток разрушается что приводит к межвитковому замыканию.  Нагрузка может возникнуть из за неправильной эксплуатации оборудования. Номинальную нагрузку можно определить по паспорту электроустановки или прочитать на табличке электродвигателя.  Также перегруз может возникнуть из за механических повреждений самого электродвигателя.  Заклинившие или сухие подшипники тоже могут стать причиной межвиткового «коротыша».

Не исключена возможность  заводского брака обмоток, и если электродвигатель перематывался в кустарной мастерской, то большая вероятность что «межвитняк» уже стучится в ваши двери.

Также неправильная эксплуатация  и хранение электродвигателя может стать причиной попадания влаги внутрь двигателя  отсыревшие обмотки тоже весьма распространенная  причина межвиткового замыкания.

Как правило с таким замыканием электродвигатель уже не жилец, и работать будет весьма непродолжительное время.   Я думаю хватит разбирать причины давайте перейдем к вопросу « как определить межвитковое  замыкание».

 

 

Поиск межвиткового замыкания.

 

Определить межвитковое замыкание не слишком сложно, и для это есть несколько подручных способов.

Если при работе  электромотора  какая то  часть статора нагрелась больше чем весь двигатель, то вам стоит подумать  об остановке и точной диагностике.

Также помогут определить замыкание обыкновенные токовые клещи, меряем по очереди нагрузку на каждую фазу и если на одной из них она больше чем на других то это признак того что возможно есть межвитняк обмотки.  Но следует учитывать что может быть перекос фаз на подстанции для того что бы убедится мереям вольтметром приходящие напряжение.

 

 

Можно прозвонить обмотки тестером.   Для этого  прозваниваем каждую обмотку в отдельности и сверяем полученные результаты сопротивления. Этот способ может и не сработать если замыкают всего пару витков, то расхождение будет минимальным.

Не будет лишним брякнуть электродвигатель мегомметром  в поиске замыкания на корпус, один щуп прикладываем к корпусу электродвигателя,  а второй к  по очереди к выходу обмоток в борно.

 

Если у вас остались еще сомнения, то вам придется разобрать электромотор.  Сняв крышки и ротор,  визуально рассматриваем обмотки. Вполне вероятно, что вы увидите сгоревшую часть. 

Ну и самый точный способ  проверки межвиткового замыкания это проверка при помощи трехфазного понижающего трансформатора (36-42 вольта) и шарика от подшипника.

 

 

На стартер разобранного электродвигателя подаем  три фазы с понижающего трансформатора.  С маленьким разгоном кидаем  туда шарик, если шарик начинает бегать по кругу внутри статора то все в порядке. Если он, сделав пару оборотов  прилип к одному месту, то значит там межвитковое замыкание.

Вместо шарика можно использовать пластинку от трансформаторного железа, прикладываем  внутри статора к железу и в том месте где межвитковое она начнет дребезжать, а там где все в порядке пластина будет примагничиваться.

 

Обязательно используйте все выше перечисленные способы с заземленным  электродвигателем и строго при помощи понижающего трансформатора.

Проверка  шариком и пластинкой  при напряжении в 380 вольт  запрещена и очень опасна для  вашей жизни.

 

 

 

< Немного об электродвигателях Центровка электродвигателей >
< Предыдущая   Следующая >

Межвитковое замыкание якоря, статора, трансформатора.

Как определить замыкание между витками. | Электронщик

Электродвигатели часто выходят из строя, и основной причиной для этого является межвитковое замыкание. Оно составляет около 40% всех поломок моторов. От чего возникает замыкание между витками? Для этого есть несколько причин.

Основная причина – излишняя нагрузка на электродвигатель, которая выше установленной нормы. Статорные обмотки нагреваются, разрушают изоляцию, происходит замыкание между витками обмоток. Неправильно эксплуатируя электрическую машину, работник создает чрезмерную нагрузку на электродвигатель.

Нормальную нагрузку можно узнать из паспорта на оборудование, либо на табличке мотора. Лишняя нагрузка может возникнуть из-за поломки механической части электромотора. Подшипники качения могут послужить этой причиной. Они могут заклинить от износа или отсутствия смазки, в результате этого возникнет замыкание витков катушки якоря.

Замыкание витков возникает и в процессе ремонта или изготовления двигателя, в результате брака, если двигатель изготавливали или ремонтировали в неприспособленной мастерской. Хранить и эксплуатировать электромотор необходимо по определенным правилам, иначе внутрь мотора может проникнуть влага, обмотки отсыреют, как следствие возникнет витковое замыкание.

С витковым замыканием электродвигатель работает неполноценно и недолго. Если вовремя не выявить межвитковое замыкание, то скоро придется покупать новый электродвигатель или полностью новую электрическую машину, например, электродрель.

При замыкании витков обмотки двигателя повышается ток возбуждения, обмотка перегревается, разрушает изоляцию, происходит замыкание других витков обмотки. Вследствие повышения тока может послужить причиной выхода из строя регулятора напряжения. Витковое замыкание выясняется сравнением обмоточного сопротивления с нормой по техусловиям. Если оно снизилось, обмотка подлежит перемотке, замене.

Как найти межвитковое замыкание

Замыкание витков легко определить, для этого есть несколько методов. Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора.

Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.

Обмотки проверяют мультиметром путем прозвонки. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнуты оказались всего 2-3 витка, то разница будет незаметна, замыкание не выявится. С помощью мегомметра можно прозвонить электромотор, выявив наличие замыкания на корпус. Один контакт прибора соединяем с корпусом мотора, второй к выводам каждой обмотки.

Если нет уверенности в исправности двигателя, то необходимо произвести разборку мотора. При разборе нужно осмотреть обмотки ротора, статора, наверняка будет видно место замыкания.

Наиболее точным методом проверки замыкания между витками обмоток является проверка понижающим трансформатором на трех фазах с шариком подшипника. Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.

Можно вместо шарика применить пластинку от сердечника трансформатора. Ее также проводим внутри статора. В месте замыкания витков, она будет дребезжать, а где замыкания нет, она просто притянется к железу. При таких проверках нельзя забывать про заземление корпуса двигателя, трансформатор должен быть низковольтным. Опыты с пластинкой и шариком при 380 вольт запрещаются, это опасно для жизни.

Самодельный прибор для определения виткового замыкания

Сделаем дроссель своими руками для проверки межвиткового замыкания в обмотке двигателя. Нам понадобится П-образное трансформаторное железо. Его можно взять, например, от старого вибрационного насоса «Ручеек», «Малыш». Разбираем его нижнюю часть, хорошо нагреваем ее. Там имеются катушки, залитые эпоксидной смолой.

Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками.

Эпоксидку разогреваем и выбиваем катушки с сердечником. С помощью наждака или болгарки срезаем губки сердечника.

Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками.

Намотаны эти катушки как раз на П-образном трансформаторном железе.

Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками.

Не нужно соблюдать углы. Нужно сделать место, в которое легко ляжет маленький и большой якорь.

Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками.

При обработке необходимо учесть, что железо слоеное. Нельзя обрабатывать его так, чтобы камень его задирал. Нужно обрабатывать в таком направлении, чтобы слои лежали друг к другу, чтобы не было задиров. После обработки снимите все фаски и заусенцы, так как придется работать с эмалированным проводом, нежелательно его поцарапать.

Теперь нам надо сделать две катушки для этого сердечника, которые разместим с обеих сторон. Замеряем толщину и ширину сердечника в самых широких местах, по заклепкам. Берем плотный картон, размечаем его по размерам сердечника. Учитываем размер паза в сердечнике между катушками. Проводим неострым краем ножниц по местам сгиба, чтобы удобнее было сгибать картон. Вырезаем заготовку для каркаса катушек. Сгибаем по линиям сгиба. Получается каркас катушки.

Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками.

Теперь делаем четыре крышки для каждой стороны катушек. Получаем два картонных каркаса для катушек.

Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками.

Рассчитываем количество витков катушек по формуле для трансформаторов.

13200 делим на сечение сердечника в см2. Сечение нашего сердечника:

3,6 см х 2,1 см = 7,56 см2.

13200 : 7,56 = 1746 витков на две катушки. Это число не обязательное, отклонение 10% в обе стороны никакой роли не сыграет. Округляем в большую сторону, 1800 : 2 = 900 витков нужно намотать на каждую катушку. У нас есть провод 0,16 мм, он вполне подойдет для наших катушек. Наматывать можно как угодно. По 900 витков можно намотать и вручную. Если ошибетесь на 20-30 витков, то ничего страшного не будет. Лучше намотать больше. Перед намоткой шилом делаем отверстия по краям каркаса для вывода провода катушек.

Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками.

На конец провода надеваем термоусадочный кембрик. Конец провода вставляем в отверстие, загибаем, и начинаем намотку катушки.

Заполнение получилось малым, поэтому можно мотать и проводом толще. На второй конец припаиваем проводок с кембриком и вставляем в отверстие. Не заматываем катушку, пока не провели испытание.

Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками.

Обе катушки намотаны. Надеваем их на сердечник таким образом, чтобы провода шли вниз и были с одной стороны. Катушки абсолютно одинаково намотаны, направление витков в одну сторону, концы выведены одинаково. Теперь необходимо один конец с одной катушки и один с другой соединить, а на оставшиеся два конца подать напряжение 220 вольт. Главное не запутаться и соединить правильные провода. Чтобы понять порядок соединения, нужно мысленно разогнуть наш П-образный сердечник в одну линию, чтобы витки в катушках располагались в одном направлении, переходили от одной катушки во вторую. Соединяем два начала катушек. На два конца подаем напряжение.

Сравним дроссель фабричный и самодельный.

Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками.

Проверяем заводской дроссель металлической пластинкой на вибрацию места витковых замыканий якоря двигателя и отмечаем их маркером. Теперь то же самое делаем на нашем самодельном дросселе. Результаты получились идентичные. Наш новый дроссель работает нормально.

Снимаем наши катушки с сердечника, обмотки фиксируем изолентой. Пайку также изолируем лентой. Одеваем готовые катушки на сердечник, припаиваем к концам проводов питание 220 В. Дроссель готов к эксплуатации.

Межвитковое замыкание якоря

Для проверки якоря воспользуемся специальным прибором, который представляет трансформатор с вырезанным сердечником. Когда мы кладем якорь в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. При этом, если на якоре имеется межвитковое замыкание, от местного перенасыщения железом металлическая пластинка, которая будет находиться сверху якоря, будет вибрировать, либо примагничиваться к корпусу якоря.

Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками.

Включаем прибор. Для наглядности мы специально замкнули две ламели на коллекторе, чтобы показать каким образом производится диагностика. Помещаем пластинку на якорь и сразу видим результат. Наша пластинка примагнитилась и начала вибрировать. Поворачиваем якорь, витки смещаются, и пластинка перестает вибрировать.

Теперь удалим замыкание ламелей для проверки. Повторяем проверку и видим, что обмотка якоря исправна, пластинка не вибрирует ни в каких местах.

Способ №2 проверки якоря на витковое замыкание

Этот способ подходит для тех, кто не занимается профессиональным ремонтом электроинструмента. Для точной диагностики межвиткового замыкания требуется скоба с катушкой.

Мультиметром можно выяснить лишь обрыв катушки якоря. Лучше для этой цели применять аналоговый тестер. Между каждыми двумя ламелями замеряем сопротивление.

Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками.

Сопротивление должно быть везде одинаковое. Бывают случаи, когда обмотки не сгорели, коллектор нормальный. Тогда замыкание витков определяют только с помощью прибора со скобой от трансформатора. Теперь устанавливаем мультиметр на 200 кОм, один щуп замыкаем на массу, а другим касаемся каждой ламели коллектора, при условии, что нет обрыва катушек.

Если якорь не прозванивается на массу, то он исправный, либо может быть межвитковое замыкание.

Межвитковое замыкание трансформатора

У трансформаторов есть распространенная неисправность – замыкание витков между собой. Мультиметром не всегда можно выявить этот дефект. Необходимо внимательно осмотреть трансформатор. Провод обмоток имеет лаковую изоляцию, при ее пробое между витками обмотки есть сопротивление, которое не равно нулю. Оно и приводит к разогреву обмотки.

При осмотре трансформатора на нем не должно быть гари, обуглившейся бумаги, вздутия заливки, почернений. Если известен тип и марка трансформатора, можно узнать, какое должно быть сопротивление обмоток. Мультиметр переключают в режим сопротивления. Сравнивают измеренное сопротивление со справочными данными. Если отличие составляет больше 50%, то обмотки неисправны. Если данные сопротивления не удалось найти в справочнике, то наверняка известно количество витков, тип и сечение провода, можно вычислить сопротивление по формулам.

Чтобы проверить трансформатор блока питания с выходом низкого напряжения, подключаем к первичной обмотке напряжение 220 В. Если появился дым, запах, то сразу отключаем, обмотка неисправна. Если таких признаков нет, то измеряем напряжение тестером на вторичной обмотке. При заниженном на 20% напряжении есть риск выхода из строя вторичной обмотки.

Если есть второй исправный трансформатор, то путем сравнения сопротивлений выясняют исправность обмоток. Чтобы проверить более подробно, применяют осциллограф и генератор.

Межвитковое замыкание статора

Часто на неисправном двигателе имеется межвитковое замыкание. Сначала проверяют обмотку статора на сопротивление. Это ненадежный метод, так как мультиметр не всегда может точно показать результат замера. Это зависит и от технологии перемотки двигателя, от старости железа.

Клещами тоже можно измерить сопротивление и ток. Иногда проверяют по звуку работающего мотора, при условии, что подшипники исправны, смазаны, редуктор привода исправен. Еще проверяют межвитковое замыкание осциллографом, но они имеют большую стоимость, не у каждого имеется этот прибор.

Внешне осматривают двигатель. Не должно быть следов масла, подтеков, запаха. Измеренный по фазам ток, должен быть одинаковый. Хорошим тестером проверяют обмотки на сопротивление. При разнице в замерах более 10% есть вероятность замыкания витков обмоток.

Загляните на карту сайта Электронщик, буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала

Коэффициент трансформации трансформатора (TTR) объяснение

Когда на первичную обмотку трансформатора подается переменный ток (AC), переменные магнитные силовые линии, называемые «потоком», циркулируют по сердечнику, создавая магнитное поле. Фотография: « Quora

».

Трансформаторы эффективно передают электрическую энергию из одной цепи в другую за счет магнитной индукции. Каждая фаза трансформатора состоит из двух отдельных обмоток катушки, намотанных на общий сердечник.

Первичная обмотка трансформатора получает электрическую энергию от источника питания.Когда на первичную обмотку подается переменный ток (AC), переменные магнитные силовые линии, называемые «потоком», циркулируют по сердечнику, создавая магнитное поле.

Когда вторая обмотка намотана вокруг того же сердечника, магнитное поле индуцирует напряжение. Эта обмотка называется вторичной обмоткой. Величина напряжения, индуцируемого в каждом витке вторичной обмотки, будет такой же, как напряжение на каждом витке первичной обмотки; это называется коэффициентом трансформации трансформатора.

Если у вторичной обмотки меньше витков, чем у первичной, во вторичной будет индуцировано более низкое напряжение. Этот тип трансформатора называется понижающим трансформатором.

Вторичная катушка с вдвое большим количеством витков, чем первичная, будет разрезана в два раза больше магнитным потоком, и во вторичной обмотке будет индуцировано удвоенное первичное напряжение. Этот трансформатор известен как повышающий трансформатор.

Примечание: первичный всегда подключен к источнику питания , а вторичный всегда подключен к нагрузке .Обмотка высокого или низкого напряжения может быть первичной или вторичной.


Как рассчитывается TTR

Общее индуцированное напряжение в каждой обмотке пропорционально количеству витков в этой обмотке, а ток обратно пропорционален как напряжению, так и количеству витков.

E1 / E2 = N1 / N2 = I2 / I1

E1 — это первичное напряжение, I1 — первичный ток, E2 — вторичное напряжение и I2 — вторичный ток, N1 — первичные витки, а N2 — вторичные витки.Если напряжение повышается, ток необходимо понижать, и наоборот. Число витков остается постоянным, если нет переключателя ответвлений.

Пример 1

Если первичное напряжение трансформатора составляет 110 вольт (В), первичная обмотка имеет 100 витков, а вторичная обмотка — 400 витков, каким будет вторичное напряжение?

E1 / E2 = N1 / N2
110 / E2 = 100/400
100 E2 = 44,000
E2 = 440 Вольт

Пример 2

Если первичный ток составляет 20 ампер, каким будет вторичный ток?

E2 x I2 = El x I1
440 x I2 = 110 x 20 = 2200
I2 = 5 ампер

Поскольку отношение витков первичной и вторичной цепей составляет 1: 4, должно быть соотношение 1: 4 между первичным и вторичным напряжением и соотношение 4: 1 между первичным и вторичным током.

При повышении напряжения ток понижается, при этом вольт, умноженные на ампер, остается постоянным. Это называется «вольт-ампер».

Рассчитайте отношение напряжения каждой трехфазной обмотки к линейному и нейтральному напряжению звездообразной обмотки. Разделите линейное напряжение обмотки на 1,732, чтобы получить правильное линейное напряжение.

Пример: 13200-480Y / 277 будет 13200/277 = 47,653

Проверьте положение устройства РПН, чтобы убедиться, что оно установлено в соответствии с напряжением, указанным на паспортной табличке.В противном случае информацию об испытании передаточного числа невозможно будет сравнить с паспортной табличкой.


Как измеряется TTR

Испытание отношения витков позволяет обнаруживать закороченные витки в обмотке, которые указывают на нарушение изоляции, определяя, существует ли правильное соотношение витков. Короткое замыкание витков может быть результатом короткого замыкания или нарушения диэлектрической проницаемости.

Измерения проводятся путем подачи известного низкого напряжения на одну обмотку и измерения наведенного напряжения на соответствующей обмотке.Низкое напряжение обычно подается на обмотку высокого напряжения, поэтому индуцированное напряжение ниже, что снижает опасность при выполнении испытания.

Посмотрите на векторную диаграмму паспортной таблички, чтобы узнать, какая обмотка на первичной обмотке соответствует обмотке на вторичной обмотке. Фотография: « Quora

».

Коэффициент напряжения, полученный при испытании, сравнивается с коэффициентом напряжения, указанным на паспортной табличке. Посмотрите на векторную диаграмму паспортной таблички, чтобы узнать, какая обмотка на первичной обмотке соответствует обмотке на вторичной обмотке.

Коэффициент, полученный в ходе полевых испытаний, должен находиться в пределах 0,5% или в зависимости от того, что указывает производитель.

Новые трансформаторы хорошего качества обычно соответствуют заводской табличке с точностью до 0,1%. Для трансформаторов с трехфазным соединением треугольником или звездой / треугольником необходимо провести испытание на эквивалентность трех фаз. Испытание проводится и рассчитывается для соответствующих одиночных обмоток.


Список литературы

Комментарии

5 комментариев

Все комментарии (5) Войдите или зарегистрируйтесь, чтобы оставить комментарий.

Как определить неизвестные параметры трансформаторов Расширенный

В этом примере для простоты каждое значение следует читать как среднеквадратичное значение, даже если это пиковое значение. Обычно применяется правило [1.41] [0.707] !!! Во-первых, хочу отметить, что очень часто я нахожу трансформатор вообще без указания его параметров. Вот шаги, которые я использую для определения параметров трансформатора. 1. Непосредственно подавать 220 В на неизвестный трансформатор нецелесообразно, потому что вы можете не знать, какая первичная, а какая вторичная.Более того, это может быть аудиопреобразователь, который может его сжечь. Итак, сначала вы берете известный трансформатор и понижаете напряжение сети до более контролируемого уровня. Скажем, 16Vrms. 2. Вы измеряете активное сопротивление постоянному току катушек неизвестного трансформатора с помощью омметра. То, что имеет более высокое сопротивление, является первичным (это не всегда применимо, но в случае понижающих трансформаторов) 3. Вы подключаете первичную обмотку неизвестного трансформатора к стороне 16 В среднеквадратического значения известного трансформатора и измеряете напряжение на вторичной обмотке неизвестного трансформатора.В нашем случае это 297мВ. ⚠ Будьте осторожны, потому что если вы поменяете местами первичную обмотку с вторичной, вы можете в конечном итоге повысить напряжение до уровня даже выше сетевого, что является летальным исходом. Примите меры предосторожности на этом этапе. 4. Теперь, когда мы знаем напряжения на обеих сторонах неизвестного трансформатора, мы можем рассчитать коэффициент его намотки. Вы просто делите первичное напряжение на вторичное. 16 В / 0,297 В = 54. Следовательно, передаточное число намотки составляет 54: 1. Несмотря на то, что трансформатор здесь говорит 50:10, когда активное сопротивление снижает напряжение, соотношение становится 54: 1. 5.2) = 316 Ом. Таким образом, реактивное сопротивление первичной обмотки неизвестного трансформатора составляет 316 Ом на 50 Гц. Теперь, когда мы это знаем, мы должны использовать формулу реактивного сопротивления Xl = 2xПxfxL и заменить ее, чтобы найти L = Xl / 2пf L = 340 / 6,28 * 50 = 1,08H. Как видите, это действительно близко к истинной индуктивности в примере, но это то, что вы получаете при округлении чисел.

(PDF) Электромагнитная модель межвитковых коротких замыканий в трансформаторах

собственная конечность (все они считаются неповрежденными) должна быть добавлена ​​к традиционной модели трансформатора

.Полученная модель настолько легко упрощается, что

может быть легко разработана при необходимости, и четко показывает причины, по которым некоторые неисправности

сильнее других, в зависимости от местоположения витка и его изолированного потока утечки

. Модель является быстрой по сравнению с обычным моделированием конечных элементов

и может быть интегрирована с помощью любого программного обеспечения численного интегрирования

, как, например, SIMULINK из MATLAB. Результаты, полученные при моделировании

, показывают, что либо при броске тока, либо во время возникновения неисправности модель

соответствует хорошей точности, что обещает значительное улучшение скорости вычислений

для исследования межвитковых неисправностей.

Ссылки

Бастард П., Бертран П. и Менье М. (1994), «Модель трансформатора для выявления неисправности обмотки

исследований», IEEE Transactions on Power Delivery, Vol. 9 No. 2, pp. 690-9.

Bo, Z.Q., Weller, G.C. и Ломас, Т. (2000), «Новый метод защиты трансформатора, основанный на

на обнаружении переходных процессов», IEEE Transactions on Power Delivery, Vol. 15 No. 3, pp. 870-5.

Каннистра

`

, Г., Ковитти, А. и Силос Лабини, М.(1998), «Простая и быстрая программа 2D-конечных элементов

для исследования полей в трехфазных трансформаторах», COMPEL, Vol. 17 № 1–3,

с. 342–6.

De Leo

´

n, F. and Semlyen, A. (1992), «Модель сокращенного порядка для переходных процессов трансформатора», IEEE

Transactions on Power Delivery, Vol. 7 No. 1, pp. 361-9.

Кезунович М. и Го Ю. (2000), «Моделирование и моделирование неисправностей силового трансформатора и поведения защитного реле, связанного с

», IEEE Transactions on Power Delivery, Vol.15 № 1,

с. 44-50.

Ли, К. и Юнг, Х.К. (2000), «Нелинейный анализ трехфазного трансформатора с учетом анизотропии

с источником напряжения», IEEE Transactions on Magnetics, Vol. 36 № 1,

с. 123-32.

Orille-Ferna

´

ndez, A.L., Ghonaim, N.K.I. и Валенсия, J.A. (2001), «FIRANN как дифференциальное реле

для защиты трехфазного трансформатора», IEEE Transactions on Power Delivery,

Vol.16 No. 2, pp. 215-8.

Палмер-Бакл, П., Батлер, К.Л. и Сарма, Н. (1999), «Характеристики трансформатора

параметров при внутренних повреждениях обмотки на основе экспериментальных измерений»,

Труды конференции по передаче и распределению IEEE, Новый Орлеан,

стр. 882-7.

Ван Х. и Батлер К.Л. (2001), «Конечноэлементный анализ внутренних неисправностей обмоток распределительных трансформаторов

», IEEE Transactions on Power Delivery, Vol.16 No. 3, pp. 422-7.

Электромагнитный

модель

571

Передаточное число — доступные типы испытаний

1, Введение в коэффициент трансформации

Трансформаторы

используются в широком спектре электрических или электронных приложений, обеспечивая функции, которые варьируются от изоляции и повышения или понижения напряжения и тока до подавления шума, измерения сигналов, регулирования и множества функций, характерных для конкретных приложений.

Чтобы проверить соответствие трансформатора своей проектной спецификации, необходимо проверить ряд функций, и одним из наиболее часто используемых тестов является коэффициент трансформации.

В этой технической записке будет кратко рассмотрена основная теория коэффициента трансформации, а затем представлены некоторые дополнительные вопросы, которые следует учитывать при проверке этой критической характеристики трансформатора.

2, Основная теория

Коэффициент трансформации трансформатора определяется как количество витков на его вторичной обмотке, деленное на количество витков на его первичной обмотке.

Соотношение напряжений идеального трансформатора напрямую связано с соотношением витков:

Коэффициент тока идеального трансформатора обратно пропорционален коэффициенту оборотов:

Где Vs = вторичное напряжение, Is = вторичный ток, Vp = первичное напряжение, Ip = первичный ток, Ns = количество витков во вторичной обмотке и Np = количество витков в первичной обмотке.

Соотношение витков трансформатора, таким образом, определяет трансформатор как повышающий или понижающий.
Повышающий трансформатор — это трансформатор, вторичное напряжение которого выше первичного, а повышающий трансформатор понижает ток.
Понижающий трансформатор — это трансформатор, вторичное напряжение которого ниже, чем его первичное напряжение, а трансформатор, понижающий напряжение, будет повышать ток.

Определения соотношения витков напряжения и тока

3, Факторы, влияющие на измерения передаточного числа

В теоретическом «идеальном» трансформаторе соотношение физических витков на любой обмотке можно было бы установить, просто измерив среднеквадратичное выходное напряжение на одной обмотке и приложив известное среднеквадратичное значение входного напряжения соответствующей частоты к другой обмотке.

В этих условиях отношение входного напряжения к выходному будет равно физическому отношению витков этих обмоток.
К сожалению, «настоящие» трансформаторы обладают рядом электрических свойств, которые приводят к соотношению напряжения или тока, которое может не совпадать с коэффициентом физического числа витков.
Следующая схематическая диаграмма иллюстрирует электрические свойства реального трансформатора с идеальным компонентом трансформатора, показанным в центре, плюс электрические компоненты, которые представляют различные дополнительные свойства трансформатора.

  • L1, L2 и L3 представляют индуктивность рассеяния первичной и вторичной обмоток, вызванную неполной магнитной связью между обмотками.
  • R1, R2 и R3 представляют сопротивление (или потери в меди) первичной и вторичной обмоток.
  • C1, C2 и C3 представляют собой межобмоточную емкость.
  • Lp представляет собой потери в сердечнике индуктивности намагничивания.
  • Rp представляет собой потери в сердечнике, на которые вносят вклад три области: потери на вихревые токи (увеличиваются с частотой), гистерезисные потери (увеличиваются с увеличением плотности потока) и остаточные потери (частично из-за резонанса).

4, Типы испытаний на коэффициент трансформации

При рассмотрении ряда элементов, показанных на схеме трансформатора, а также с учетом меняющихся требований различных применений трансформатора, можно увидеть, что ни один метод измерения не может полностью удовлетворить все вопросы о соотношении витков.
По этой причине тестеры трансформаторов Voltech серии AT предлагают пять различных методов измерения коэффициента трансформации, которые можно выбрать индивидуально в соответствии с конкретными потребностями.

TR (коэффициент трансформации)
В ходе этого теста на любую выбранную обмотку подается питание с заданным напряжением и измеряется наведенное напряжение на любой другой обмотке.
Затем результаты представлены в виде соотношения (например, 2: 1, 5: 1 и т. Д.) Тестеры Voltech AT делают это путем деления одного напряжения на другое при компенсации сопротивления обмотки.
Фаза также измеряется: «синфазно» (положительная полярность) и «противофазна» (отрицательная полярность).

TRL (коэффициент трансформации в зависимости от индуктивности)
В ходе этого испытания отдельно возбуждается питание двух выбранных обмоток и измеряется значение индуктивности каждой обмотки.
Затем результаты представлены в виде отношения оборотов (например,грамм. 2: 1, 5: 1 и т. Д.) Вычисляется из квадратного корня из значений индуктивности.
Также измеряется фаза: «синфазная» (положительная полярность) и «противофаза» (отрицательная полярность).

LVOC (низковольтная разомкнутая цепь)
В ходе этого испытания на первичную обмотку подается напряжение, считывается напряжение, индуцированное во вторичной обмотке, и результаты представляются как вторичное напряжение (например, 2,545 В).
Также измеряется фаза: «синфазная» (положительная полярность) и «противофаза» (отрицательная полярность).

VOC (разомкнутая цепь напряжения — только AT5600 + AT3600)
Этот тест использует тот же принцип, что и LVOC, но с использованием генератора большой мощности, способного запитать обмотку напряжением до 270 В.
Испытание подходит для испытания силовых трансформаторов низкой частоты.
Также измеряется фаза: «синфазная» (положительная полярность) и «противофаза» (отрицательная полярность).

VOCX (разомкнутая цепь напряжения с внешним источником — только AT5600 + AT3600)
Этот тест, который используется вместе с приспособлением Voltech AC Interface Fixture.
Управляет внешним источником переменного тока или повышающим трансформатором для тестирования трансформаторов большей мощности и напряжения до 600 В и 10 А.
Фаза также измеряется: «синфазно» (положительная полярность) и «противофазна» (отрицательная полярность).

5, Выбор правильного передаточного числа Тест

Чтобы определить, какой тип проверки коэффициента трансформации наиболее подходит для конкретного трансформатора, следует рассмотреть ряд вопросов.
В таблице ниже показан каждый тест с описанием, соответствующими спецификациями и кратким описанием преимуществ, предоставляемых этим тестом.

Тест
Описание / Спецификация
Использование или выгода
TR

Отношение входного напряжения к выходному

Диапазон измерений: от 1:30 до 30: 1 Диапазон напряжения: 1 мВ — 5 В Диапазон частот: 20 Гц — 3 МГц Точность: 0,1%

Показывает истинное электрическое соотношение, ожидаемое при работе при подаче питания на первичную обмотку.

Соотношение, измеренное с помощью этого теста, поэтому включает потери, обычно обнаруживаемые в трансформаторе, что приведет к коэффициенту, большему, чем коэффициент физических витков, но отражает реальное соотношение напряжений, ожидаемое проектировщиком.

TRL

Соотношение витков, рассчитанное по индуктивности

Диапазон измерений: от 1:30 до 30: 1 Диапазон напряжения: 1 мВ — 5 В Диапазон частот: 20 Гц — 3 МГц Точность: 0,1%

Уменьшает влияние потерь в трансформаторе на измеренное отношение витков, обеспечивая более точное приближение к физическому коэффициенту витков.

Это особенно полезно в тех случаях, когда интерес представляют фактические витки, но трансформатор имеет большую долю индуктивности рассеяния, которая может существенно влиять на соотношение напряжений.

LVOC

Выходное напряжение, измеренное при низковольтном входе

Диапазон измерений: от 100 мкВ до 650 В (от 100 мкВ до 5 В ATi) Диапазон напряжения: 1 мВ — 5 В Диапазон частот: 20 Гц — 3 МГц Точность: 0,1%

Аналогично TR, но представляет фактическое выходное напряжение, а не соотношение напряжений.

Это упрощает ввод пределов испытаний, если технические характеристики трансформатора были получены на основе измерений вольтметра.

ЛОС

Выходное напряжение, измеренное с помощью внешнего высоковольтного входа

Диапазон измерений: от 100 мкВ до 650 В Диапазон напряжения: 5 В — 600 В Диапазон частот: 20 Гц — 1 МГц Точность: 0,1%

Обеспечивает возможность тестирования силовых трансформаторов, мощность которых превышает допустимую для испытаний на летучие органические соединения.

Управляя внешним источником питания с помощью устройства Voltech AC Interface Fixture, тест VOCX обеспечивает полностью автоматическое тестирование мощных трансформаторов при их заданном рабочем напряжении.

VOCX

Выходное напряжение, измеренное с помощью внешнего высоковольтного входа

Диапазон измерений: от 100 мкВ до 650 В
Диапазон напряжения: 5–600 В
Диапазон частот: 20 Гц — 1 МГц
Точность: 0,1%

Обеспечивает возможность тестирования силовых трансформаторов, мощность которых превышает допустимую для испытаний на летучие органические соединения.

Управляя внешним источником питания с помощью устройства Voltech AC Interface Fixture, тест VOCX обеспечивает полностью автоматическое тестирование мощных трансформаторов при их заданном рабочем напряжении.

6, Заключение по испытаниям на передаточное число

Хотя коэффициент трансформации может быть хорошо известной и очень фундаментальной функцией трансформатора, можно видеть, что эффективное тестирование этой функции требует рассмотрения многих вопросов.

Предоставляя гибкий диапазон вариантов проверки коэффициента трансформации, тестеры серии AT Voltech предоставляют разработчикам и производителям возможность выбрать наиболее подходящие тесты для любой конструкции трансформатора и, таким образом, оптимизировать качество и эффективность процесса тестирования.

Если у вас возникнут вопросы по другим функциям тестирования, доступным для тестеров трансформаторов серии AT Voltech, не стесняйтесь обращаться к нам.

Руководство по принципам электрооборудования: однофазные трансформаторы




ЦЕЛЕЙ:

• обсудить различные типы трансформаторов.

• рассчитать значения напряжения, тока и оборотов для однофазных трансформаторов. с помощью формул.

• рассчитать значения напряжения, тока и оборотов для однофазных трансформаторов. используя коэффициент трансформации.

• подключите трансформатор и проверьте выходное напряжение различных обмоток.

• Обсудите обозначения полярности на принципиальной схеме.

• проверьте трансформатор, чтобы определить правильную маркировку полярности.

ГЛОССАРИЙ ТЕРМИНОВ ОДНОФАЗНЫХ ТРАНСФОРМАТОРОВ

  • автотрансформатор — трансформатор, который использует только одну обмотку для обеих первичный и вторичный
  • Управляющий трансформатор
  • — распространенный тип трансформатора, используемый в управлении двигателем. схемы для снижения номинального сетевого напряжения до величины, необходимой для работы Компоненты управления
  • Распределительный трансформатор
  • — трансформатор, который обычно используется для снизить линейное напряжение электросети до значения, необходимого для дома или промышленные предприятия
  • ток возбуждения — величина тока, протекающего в первичной обмотке. обмотка трансформатора при отсутствии нагрузки на вторичную обмотку
  • утечка потока — количество линий магнитного потока, излучаемых в воздух
  • пусковой ток — величина тока, протекающего при включении питания. сначала применяется к трансформатору
  • Изолирующие трансформаторы
  • — трансформаторы, имеющие первичную и первичную обмотки. вторичные обмотки электрически отделены друг от друга
  • ламинированный — процесс складывания тонких листов металла вместе для формирования материала сердечника трансформатора
  • нейтральный проводник — проводник, как правило, заземлен и является обычным подключение к другим частям цепи
  • первичная обмотка — обмотка трансформатора, к которому подключено питание
  • вторичная обмотка обмотка трансформатора, на которую подается нагрузка. подключен
  • Понижающий трансформатор
  • — трансформатор, вырабатывающий нижнюю вторичную напряжение, чем первичное напряжение
  • Повышающий трансформатор
  • — трансформатор, вырабатывающий высшую вторичную обмотку. напряжение, чем первичное напряжение
  • сердечник с ленточной обмоткой — вид сердечника трансформатора, изготовленный путем намотки длинной сплошной металлический лист круглой или прямоугольной формы с закругленными углами
  • toroid core — сердечник трансформатора, имеющий форму тороида, который обычно круглая с отверстием в центре, как у бублика
  • Трансформатор
  • — электрическая машина для изменения значений напряжения, ток и сопротивление
  • соотношение витков — отношение числа витков провода в первичной обмотке. обмотка по сравнению с числом витков вторичной обмотки
  • Коэффициент передачи
  • вольт на виток — метод определения значений напряжения в трансформатор путем деления количества витков провода в первичной обмотке по приложенному напряжению

Трансформаторы являются одними из самых распространенных устройств в электрической поле.Их размер варьируется от менее одного кубического дюйма до размера железнодорожные вагоны. Их номинальные значения могут варьироваться от мВА (милливольт-ампер) до GVA (гигавольт-ампер). Крайне важно, чтобы каждый, кто работает в области электричества, понимал типов и подключений трансформаторов. В этом разделе будут представлены трансформаторы. предназначен для использования в однофазных установках. Два основных типа напряжения трансформаторы, разделительные трансформаторы и автотрансформаторы.

ОДНОФАЗНЫЕ ТРАНСФОРМАТОРЫ

Трансформатор — это машина с магнитным приводом, которая может изменять значения напряжения, тока и импеданса без изменения частоты.Трансформеры являются самыми эффективными из известных машин.

Их КПД обычно составляет от 90% до 99% при полной нагрузке. Трансформеры можно разделить на три классификации:

  1. Изолирующий трансформатор.
  2. Автотрансформатор.
  3. Трансформатор тока.

Все значения трансформатора пропорциональны его коэффициенту вращения. Этот не означает, что точное количество витков провода на каждой обмотке должно быть известно, чтобы определять различные значения напряжения и тока для трансформатора.Что необходимо знать, так это соотношение витков. Например, предположим, что трансформатор имеет две обмотки. Одна обмотка, первичная, имеет 1000 витков провода, и другой, вторичный, имеет 250 витков провода (рис. 1). Соотношение витков этого трансформатора составляет 4 к 1 или 4: 1 (1000/250 = 4), потому что есть четыре витка провода на первичной обмотке на каждый виток провода на вторичной обмотке.

ТРАНСФОРМАТОР ФОРМУЛ

Для определения значений напряжения и тока можно использовать разные формулы. для трансформатора.Ниже приводится список стандартных формул, где

NP = количество витков в первичной обмотке NS = количество витков во вторичной обмотке EP = напряжение первичной обмотки ES = напряжение вторичной обмотки IP = ток в первичной IS = ток во вторичной

EP ES

= НП NS EP ES

= IS IP NP NS

= IS IP или EP _ NS = ES _ NP EP _ IP = ES _ IS NP _ IP = NS _ IS

Первичная обмотка трансформатора является обмоткой ввода мощности.Его обмотка, подключенная к входящему источнику питания. Вторичный обмотка — это обмотка нагрузки или выходная обмотка. Это сторона трансформатора который подключен к управляемой нагрузке (фиг. 2).

ОСНОВНАЯ 1000 ОБОРОТОВ; ВТОРИЧНЫЙ 250 ОБОРОТОВ


РИС. 1 Все значения трансформатора пропорциональны его коэффициенту вращения.

НАГРУЗКА ВТОРИЧНАЯ ПЕРВИЧНАЯ


РИС. 2 Разделительный трансформатор имеет первичную и вторичную обмотки. электрически отделены друг от друга.

ИЗОЛЯЦИОННЫЕ ТРАНСФОРМАТОРЫ

Трансформаторы, показанные на рисунках 1 и 2, являются изолирующими трансформаторами. Это означает, что вторичная обмотка физически и электрически изолирована. от первичной обмотки, поэтому нет электрического соединения между первичная и вторичная обмотки. Трансформатор имеет магнитную связь, электрически не связаны. Эта изоляция линии часто очень желательна. характерная черта. Поскольку нет электрического соединения между нагрузкой и источник питания, трансформатор становится фильтром между ними.

Изолирующий трансформатор значительно снижает любые скачки напряжения, которые происходят на стороне питания, прежде чем они будут переданы на сторону нагрузки. Некоторые изолирующие трансформаторы имеют коэффициент трансформации 1: 1. Трансформатор этого типа будет иметь одинаковое входное и выходное напряжение и используется для только изоляция.

Изолирующий трансформатор может значительно снизить любые скачки напряжения перед они достигают вторичной обмотки из-за времени нарастания тока через индуктор.Напомним из раздела 10, что ток в катушке индуктивности увеличивается. с экспоненциальной скоростью (фиг. 3). По мере увеличения значения тока расширяющееся магнитное поле прорезает проводники катушки и индуцирует напряжение, противоположное приложенному напряжению. Количество наведенных напряжение пропорционально скорости изменения тока.

Это просто означает, что чем быстрее ток пытается увеличиться, тем большее сопротивление этому увеличению будет.Пиковые напряжения и токи обычно очень непродолжительны, что означает, что они увеличиваются в значение очень быстро (фиг. 4).

ЭКСПОНЕНЦИАЛЬНАЯ КРИВАЯ ВРЕМЯ ТОК ПИЛЬСКОЕ НАПРЯЖЕНИЕ СИНУС-ВОЛНА НАПРЯЖЕНИЕ ПРОДОЛЖИТЕЛЬНОСТЬ ВЫСОКОГО НАПРЯЖЕНИЯ


(слева) РИС. 3 Ток через катушку индуктивности нарастает экспоненциально. (Правильно) ИНЖИР. 4 Скачки напряжения обычно очень непродолжительны.

Это быстрое изменение стоимости приводит к увеличению сопротивления изменению. так же быстро.К тому времени, когда спайк был передан на вторичный обмотка трансформатора устранена или значительно уменьшена ( ИНЖИР. 5).

Основная конструкция изолирующего трансформатора показана на фиг. 6. Металлический сердечник используется для обеспечения хорошей магнитной связи между двумя обмотки. Сердцевина обычно состоит из слоистых пластин, уложенных друг на друга. Ламинирование сердечник помогает снизить потери мощности, вызванные индукцией вихревых токов.

ОСНОВНЫЕ ПРИНЦИПЫ РАБОТЫ

На ФИГ.7 подключена одна обмотка изолирующего трансформатора к источнику переменного тока, а другая обмотка была подключена к нагрузке. Когда ток увеличивается от нуля до максимальной положительной точки, a магнитное поле расширяется наружу вокруг катушки. Когда ток уменьшается от его максимальной положительной точки к нулю магнитное поле схлопывается. Когда ток увеличивается к своему отрицательному пику, магнитное поле снова расширяется, но с противоположной полярностью.

Поле снова схлопывается, когда ток уменьшается с отрицательного значения. пик к нулю.

Это непрерывно расширяющееся и сжимающееся магнитное поле разрезает обмотки. первичной обмотки и индуцирует в ней напряжение. Это индуцированное напряжение противодействует приложенное напряжение и ограничивает ток первичной обмотки. Когда катушка индуцирует в себе напряжение, это называется самоиндукцией.

ТОК ВОЗБУЖДЕНИЯ

В первичной обмотке любого трансформатор напряжения, независимо от типа или размера, даже при отсутствии нагрузки подключен к вторичному.Этот ток называется возбуждением. ток трансформатора.

Ток возбуждения — это величина тока, необходимая для намагничивания сердечник трансформатора.

Ток возбуждения остается постоянным от холостого хода до полной нагрузки. В качестве по общему правилу ток возбуждения — это такая малая часть полного ток нагрузки, который часто не учитывается при расчетах.

ВЗАИМНАЯ ИНДУКЦИЯ

Поскольку вторичные обмотки изолирующего трансформатора намотаны тот же сердечник, что и первичный, магнитное поле, создаваемое первичным обмотка также разрезает обмотки вторичной обмотки (РИС.8). Это постоянно изменение магнитного поля индуцирует напряжение во вторичной обмотке.

Способность одной катушки индуцировать напряжение в другой катушке называется взаимная индукция. Величина напряжения, индуцированного во вторичной обмотке, определяется отношением количества витков провода во вторичной обмотке к числу витков во вторичной обмотке. Главная.

Например, предположим, что первичная обмотка имеет 240 витков провода и подключена до 120 В переменного тока. Это дает трансформатору отношение вольт на виток, равное 0.5 (120 В / 240 витков = 0,5 вольт на виток). Теперь предположим, что вторичная обмотка содержит 100 витков провода.

Поскольку трансформатор имеет отношение вольт на виток 0,5, вторичная обмотка напряжение будет 50 В (100 _ 0,5 = 50).


РИС. 5 Изолирующий трансформатор значительно снижает скачки напряжения. НАЧАЛЬНЫЙ ВТОРИЧНАЯ НАГРУЗКА


РИС. 6 Базовая конструкция изолирующего трансформатора. ОБМОТКА СЕРДЕЧНИКОВ ОБМОТКА


РИС.7 Магнитное поле, создаваемое переменным током. МАГНИТНОЕ ПОЛЕ


РИС. 8 Магнитное поле первичной обмотки индуцирует напряжение во вторичной обмотке.

РАСЧЕТ ТРАНСФОРМАТОРА

В следующих примерах значения напряжения, тока и оборотов для будут рассчитаны различные трансформаторы.

Предположим, что развязывающий трансформатор, показанный на фиг. 2 имеет 240 витков провод на первичной и 60 витков провода на вторичной.Это соотношение из 4: 1 (240/60 = 4). Теперь предположим, что 120 В подключено к первичной обмотке. обмотка. Какое напряжение вторичной обмотки?

EP ES

= NP NS 120 ES

= 240 60240 ES = 7200 ES = 30 В

Трансформатор в этом примере известен как понижающий трансформатор, потому что он имеет более низкое вторичное напряжение, чем первичное.

Теперь предположим, что нагрузка, подключенная к вторичной обмотке, имеет полное сопротивление. 5 Ом.Следующая задача — вычислить текущий расход во вторичной обмотке. и первичные обмотки. Текущий поток вторичной обмотки можно вычислить используя закон Ома, так как напряжение и импеданс известны.

I = E Z I = 30 5 I = 6A

Теперь, когда величина тока во вторичной обмотке известно, первичный ток можно рассчитать по формуле EP ES

= IS IP 120 30

= 60 IP 120 IP = 180 IP = 1: 5A

Обратите внимание, что первичное напряжение выше чем вторичное напряжение, но первичный ток намного меньше, чем вторичный ток.Хорошее правило для любого типа трансформатора: мощность на входе должна равняться мощности на выходе. Если первичное напряжение и ток умножаются вместе, продукт должен быть равен произведению напряжения и тока. вторичного.

Первичный Вторичный 120 _ 1: 5 = 180 ВА 30 _ 6 = 180 ВА

В этом примере Предположим, что первичная обмотка содержит 240 витков провода, а вторичная содержит 1200 витков провода. Это соотношение витков 1: 5 (1200/240 = 5).Теперь предположим, что к первичной обмотке подключено 120 В. Вычислить напряжение на выходе вторичной обмотки.

EP ES

= NP NS 120 ES

= 240 1200240 ES = 144000 ES = 600 В

Обратите внимание, что вторичное напряжение этого трансформатора выше, чем первичное напряжение. Это известно как повышающий трансформатор.

Теперь предположим, что нагрузка, подключенная к вторичной обмотке, имеет полное сопротивление 2400 О.Найдите величину тока, протекающего в первичной и вторичной обмотках. Ток во вторичной обмотке можно рассчитать по закону Ома.

I = E Z I = 600 2400 I = 0:25 A

Теперь, когда величина текущего тока в вторичный известен, первичный ток может быть вычислен с использованием формула EP ES

= IS IP 120 600 = 0:25 IP 120 IP = 150 IP = 1:25 A

Обратите внимание, что количество потребляемой мощности равно количеству выходной мощности.

Начальное Среднее

120 _ 1:25 = 150 ВА 600 _ 0:25 = 150 ВА

РАСЧЕТ ЗНАЧЕНИЙ ИЗОЛЯЦИОННОГО ТРАНСФОРМАТОРА ПО ОТНОШЕНИЮ ОБОРОТОВ

Как показано в предыдущих примерах, трансформаторные значения напряжения, ток, а обороты можно вычислить по формулам. Также возможно вычислить эти значения, используя коэффициент поворотов. Сделать расчеты с использованием коэффициент поворота, устанавливается коэффициент, сравнивающий некоторое число с 1, или 1 к некоторому числу.Например, предположим, что трансформатор имеет номинальную первичную обмотку. при 240 В и вторичной обмотки 96 В (РИС. 9). Соотношение витков может быть вычисляется путем деления более высокого напряжения на более низкое напряжение.

Коэффициент

= 240 96

Соотношение = 2: 5: 1


РИС. 9 Расчет значений трансформатора с использованием коэффициента трансформации.


РИС. 10 Расчет номиналов трансформатора.

Это соотношение указывает на то, что в первичной обмотке 2,5 витка провода. на каждый 1 виток провода во вторичной обмотке.Сторона трансформатора с самым низким напряжением всегда будет иметь наименьшее число (1) отношения.

Теперь предположим, что к вторичной обмотке подключено сопротивление 24 Ом. Величину вторичного тока можно найти с помощью закона Ома.

IS = 96 24 IS = 4A

Первичный ток можно определить с помощью коэффициента трансформации. Напомним, что вольт-амперы первичной обмотки должны равняться вольт-амперам вторичной обмотки.

Поскольку первичное напряжение больше, первичный ток должен быть меньше вторичного тока.

IP = Передаточное число оборотов IS IP = 4 2: 5 IP = 1: 6A

Чтобы проверить ответ, найдите вольт-амперы первичной и вторичной обмоток.

Первичная Вторичная 240 _ 1: 6 = 384 ВА 96 _ 4 = 384 ВА

Теперь предположим, что вторичная обмотка содержит 150 витков провода. В витки первичной обмотки также можно найти, используя коэффициент трансформации. Поскольку первичный напряжение выше, чем вторичное напряжение, первичное должно иметь больше витки проволоки.

NP = NS _ передаточное число NP = 150 _ 2: 5 NP = 375 витков

В следующем примере предположим, что изолирующий трансформатор имеет первичное напряжение 120 В и вторичное напряжение 500 В.Вторичная обмотка имеет сопротивление нагрузки 1200 Ом. Вторичная обмотка содержит 800 витков провода (РИС. 10).

Соотношение витков можно найти, разделив более высокое напряжение на более низкое. Напряжение.

Соотношение = 500120 Соотношение = 1: 4: 17

Вторичный ток можно найти с помощью Закон Ома.

IS = 500 1200 IS = 0: 417 A

В этом примере первичное напряжение ниже вторичного. Следовательно, первичный ток должен быть выше.

IP = IS _ коэффициент оборотов IP = 0: 417 _ 4:17 IP = 1: 74A

Чтобы проверить этот ответ, вычислите вольт-амперы обеих обмоток.

Начальное Среднее

120_1: 74 = 208: 8 ВА 500_0: 417 = 208: 5 ВА

Небольшая разница в ответах вызвана округлением значений.

Поскольку первичное напряжение меньше вторичного, повороты провода в первичной обмотке также будет меньше.

NP = Передаточное число витков NS NP = 800 4:17 NP = 192 витка РИС.11 показывает трансформатор со всеми завершенными значениями.


РИС. 11 Трансформатор с законченными значениями.


РИС. 13 Вторичная обмотка трансформатора с несколькими ответвлениями.


РИС. 12 Трансформатор с многоотводной первичной обмоткой.


РИС. 14 Трансформатор с несколькими вторичными обмотками.

МНОЖЕСТВЕННЫЕ ОБМОТКИ

Изолирующие трансформаторы часто имеют обмотки. которые имеют более одного набора выводных проводов, подключенных к первичной или вторичной обмотке.

Они называются многоотводными обмотками. Трансформатор, показанный на фиг. 12 содержит вторичную обмотку на 24 В. Первичная обмотка содержит однако несколько нажатий. Один из основных выводных проводов обозначен буквой C и общее для других отведений.

Остальные выводы имеют маркировку 120, 208 и 240. Конструкция этого трансформатора так что его можно подключать к разным первичным напряжениям без изменения значение вторичного напряжения.В этом примере предполагается, что вторичная обмотка имеет всего 120 витков провода. Для поддержания При правильном соотношении витков первичная обмотка будет иметь 600 витков провода между C и 120,1040 оборотов между C и 208, и 1200 оборотов между C и 240.

Разделительный трансформатор, показанный на фиг. 13 содержит одну первичную обмотку. Однако вторичная обмотка была отключена в нескольких точках. Один вторичных выводных проводов обозначен буквой C и является общим для другого вывода. провода.При подаче номинального напряжения на первичную обмотку напряжения 12, 24, и 48 В можно получить на вторичной обмотке. Следует также отметить, что такое расположение отводов позволяет использовать трансформатор в качестве отводов с центральным отводом. трансформатор на два напряжения.

Если нагрузка приложена к выводным проводам, обозначенным C и 24, выводной провод с надписью 12 становится центральным краном. Если нагрузка размещена поперек C и 48 проводов, 24-проводной провод становится центральным отводом.

В этом примере предполагается, что первичная обмотка имеет 300 витков провод. Для получения правильного соотношения витков потребуется 30 витков провода. между C и 12, 60 витков провода между C и 24 и 120 витков провода от С до 48.

Разделительный трансформатор, показанный на фиг. 14 похож на трансформатор на фиг. 13. Показанный на фиг. 14, однако, имеет несколько вторичных обмоток. вместо одной вторичной обмотки с несколькими отводами.Преимущество заключается в том, что вторичные обмотки электрически изолированы друг от друга. Эти вторичные обмотки могут быть повышающими или понижающими в зависимости от применение трансформатора.

РАСЧЕТ ЗНАЧЕНИЙ ДЛЯ ИЗОЛЯЦИОННЫХ ТРАНСФОРМАТОРОВ С НЕСКОЛЬКИМИ ВТОРИЧНЫМИ УСТРОЙСТВАМИ

При вычислении значений изолирующего трансформатора с несколькими вторичными обмоток, каждая вторичная обмотка должна рассматриваться как отдельный трансформатор.

Например, трансформатор на фиг.15 содержит одну первичную обмотку и три вторичные обмотки. Первичный подключен к 120 В переменного тока и имеет 300 витков провода. Одна вторичная обмотка имеет выходное напряжение 560 В и нагрузку сопротивление 1000 Ом. Выходное напряжение второй вторичной обмотки составляет 208 Ом. V и сопротивление нагрузки 400 Ом, а третья вторичная обмотка имеет выход напряжение 24 В и сопротивление нагрузки 6 Ом. Ток, витки провода, и коэффициент для каждой вторичной обмотки, и будет найден ток первичной обмотки.

Первым шагом будет вычисление коэффициента поворотов первой вторичной обмотки. Это можно сделать, разделив меньшее напряжение на большее.

Коэффициент

= ES1 Коэффициент EP = 560120 Коэффициент = 1: 4: 67

Ток в первой вторичной обмотке можно вычислить с помощью закона Ома.

IS1 = 560 1000 IS1 = 0:56 A Количество витков провода в первой вторичной обмотке обмотка будет найдена с использованием отношения витков.

Поскольку эта вторичная обмотка имеет более высокое напряжение, чем первичная, она должна иметь больше витков провода.

NS1 = NP / отношение оборотов

NS1 = 300 _ 4:67

NS1 = 1401 виток

Величина первичного тока, необходимая для питания этой вторичной обмотки. можно также найти, используя коэффициент трансформации. Поскольку первичная обмотка имеет меньшее напряжение, для этого потребуется больше тока.

IP (ПЕРВЫЙ ВТОРИЧНЫЙ) = IS1 _ коэффициент оборотов IP (ПЕРВЫЙ ВТОРИЧНЫЙ) = 0:56 _ 4:67 IP (ПЕРВЫЙ ВТОРИЧНЫЙ) = 2:61 A

Передаточное число второй вторичной обмотки обмотка будет найдена путем деления более высокого напряжения на более низкое.

Соотношение

= 208120 Соотношение = 1: 1: 73

Величина текущего потока в этой вторичной обмотке. можно определить с помощью закона Ома.

IS2 = 208400 IS2 = 0:52 A

Поскольку напряжение этой вторичной обмотки больше чем первичный, у него будет больше витков провода, чем у первичного. В витки этой вторичной обмотки будут найдены с использованием отношения витков.

NS2 = NP _ передаточное число витков NS2 = 300 _ 1:73 NS2 = 519 витков


РИС.15 Расчет значений для трансформатора с несколькими вторичными обмотками.

Напряжение первичной обмотки ниже, чем на этой вторичной обмотке. Первичная воля, следовательно, требуется большее количество тока. Количество требуемого тока для работы этой вторичной обмотки будет рассчитываться с использованием коэффициента трансформации.

IP (ВТОРОЙ ВТОРИЧНЫЙ) = IS2 _ коэффициент оборотов IP (ВТОРОЙ ВТОРИЧНЫЙ) = 0:52 _ 1: 732 IP (ВТОРОЙ ВТОРИЧНЫЙ) = 0: 9A

Коэффициент трансформации третьей вторичной обмотки обмотка будет рассчитана так же, как и два других.

Большее напряжение будет разделено на меньшее.

Коэффициент = 120 24 Коэффициент = 5: 1 Первичный ток будет найден с помощью Ом закон.

IS3 = 24 6 IS3 = 4A

Выходное напряжение третьей вторичной обмотки меньше чем первичный. Таким образом, количество витков провода будет меньше. чем первичные витки.

NS3 = Передаточное число витков NP NS3 = 300 5 NS3 = 60 витков

Первичная имеет высшее напряжение, чем эта вторичная.Следовательно, первичный ток будет меньше на величину передаточного числа.

IP (ТРЕТИЙ ВТОРИЧНЫЙ) = IS3 / отношение оборотов

IP (ТРЕТИЙ ВТОРИЧНЫЙ) = 4/5

IP (ТРЕТИЙ ВТОРИЧНЫЙ) = 0: 8A

Первичная обмотка должна подавать ток на каждую из трех вторичных обмоток. Следовательно, общая величина первичного тока будет суммой токов требуется для питания каждой вторичной обмотки.

IP (ИТОГО) = IP1) IP2) IP3 IP (ИТОГО) = 2:61) 0: 9) 0: 8 IP (ИТОГО ) = 4:31 A

Преобразователь со всеми вычисленными значениями показан на фиг.16.

СН


РИС. 16 Преобразователь со всеми вычисленными значениями.


РИС. 17 Распределительный трансформатор.


РИС. 18 Напряжение от любой линии к нейтрали составляет 120 В. Напряжение по всей вторичной обмотке 240 В.


РИС. 19 Напряжения на вторичной обмотке синфазны.


РИС. 20 нагрузок 240 В подключаются напрямую через вторичную обмотку.

ТРАНСФОРМАТОРЫ РАСПРЕДЕЛИТЕЛЬНЫЕ

Распространенным типом изолирующего трансформатора является распределительный трансформатор, ИНЖИР.17. Этот трансформатор изменяет высокое напряжение в распределительной сети энергокомпании. линии к общему 240/120 В, который обеспечивает питание большинства домов и многих предприятия. В этом примере предполагается, что первичный подключен на линию 7200 В. Вторичная обмотка — 240 В с центральным отводом. Центр отвод заземляется и становится нейтральным проводом или общим проводом. Если напряжение измеряется на всей вторичной обмотке, напряжение 240 В будет видно. Если напряжение измеряется от любой линии до центрального ответвителя, будет видна половина вторичного напряжения, или 120 В (РИС.18). Этот происходит потому, что заземленный нейтральный проводник становится центральной точкой двух синфазных напряжений. Векторная диаграмма, изображающая это состояние, показывает, что заземленный нулевой провод подключен к центральной точке двух синфазных напряжений (фиг. 19). Нагрузки, предназначенные для работы на 240 В, например, водонагреватели, электрические резистивные нагреватели и центральные кондиционеры подключаются напрямую через линии вторичный (ФИГ.20).

Нагрузки, предназначенные для работы от напряжения 120 В, подключаются от центрального ответвителя, или нейтральный, к одной из второстепенных линий. Функция нейтрального должен переносить разницу в токе между двумя вторичными линиями и поддерживать сбалансированное напряжение.

На ФИГ. 21, одна из вторичных линий имеет ток 30 А и другой имеет ток 24 А. Нейтраль проводит сумму несбалансированная нагрузка. В этом примере ток нейтрали будет 6 А (30 _ 24 = 6).


РИС. 21 Нейтраль несет сумму неуравновешенной нагрузки.


РИС. 23 Управляющий трансформатор подключен для работы на 240 В.


РИС. 22 Управляющий трансформатор с предохранителем, добавленным к вторичной обмотке. обмотка.


РИС. 24 Управляющий трансформатор подключен для работы на 480 В.

ТРАНСФОРМАТОРЫ УПРАВЛЕНИЯ

Другой распространенный тип изолирующего трансформатора, встречающийся в промышленности. — управляющий трансформатор (РИС.22). Трансформатор управления снижает линейное напряжение до значения, необходимого для работы цепей управления. Большинство трансформатор управления общего типа содержит две первичные обмотки и одну вторичный. Первичные обмотки обычно рассчитаны на 240 В каждая, и вторичный на 120 В.

Такое расположение обеспечивает соотношение витков 2: 1 между каждой первичной обмоткой. обмотки и вторичные. Например, предположим, что каждый из основных обмотка содержит 200 витков провода.Вторичный будет содержать 100 витков проволоки.

Одна из первичных обмоток на фиг. 23 обозначен как h2 и h3. Другой обозначается h4 и h5.

Вторичная обмотка имеет маркировку X1 и X2. Если первичная обмотка трансформатора должен быть подключен к 240 В, две первичные обмотки будут подключены параллельно, соединив h2 и h4 вместе, а h3 и h5 вместе. Когда первичные обмотки соединены параллельно, приложено одинаковое напряжение через обе обмотки.Эффект такой же, как и при использовании одной первичной обмотки. всего 200 витков провода. Поддерживается передаточное число 2: 1, а вторичное напряжение 120 В.

Если трансформатор должен быть подключен к напряжению 480 В, две первичные обмотки будут соединены последовательно путем соединения h3 и h4 вместе (фиг. 24). Входящая мощность подключена к h2 и h5.

Последовательное соединение первичных обмоток увеличивает количество витков в первичный до 400.Таким образом получается передаточное число 4: 1. При подключении 480 В к первичному, вторичное напряжение остается на уровне 120.

Первичные выводы управляющего трансформатора обычно перекрестно соединены, как показано на фиг. 25, поэтому можно использовать металлические перемычки для подключения первичного для работы на 240 или 480 В. Если первичная обмотка должна быть подключена на 240 В При работе металлические звенья соединяются под винтами, как показано на РИС. 26.

Обратите внимание, что выводы h2 и h4 соединены вместе, а выводы h3 и h5 связаны вместе.

Сравните это соединение с соединением, показанным на РИС. 23.

Если трансформатор должен быть подключен для работы на 480 В, клеммы h3 и h4 соединены, как показано на фиг. 27. Сравните эту связь с соединение, показанное на фиг. 24.


РИС. 25 Перекрещены первичные обмотки управляющего трансформатора.


РИС. 26 Металлические перемычки соединяют трансформатор для работы на 240 В.


РИС. 27 Управляющий трансформатор подключен для работы на 480 В.


РИС. 28 Ядро трехфазного трансформатора
мощностью 600 МВА. В Houston Lighting and Power.


РИС. 29 Трансформатор с сердечником.


РИС. 32 Тороидальный трансформатор.


РИС. 30 Трансформатор корпусного типа.


РИС. 31 Трансформатор с сердечником типа Н.

ТИПЫ СЕРДЕЧНИКОВ ТРАНСФОРМАТОРА

В конструкции используются сердечники нескольких типов. трансформаторов.Большинство сердечников изготовлено из тонких стальных пробивок, ламинированных вместе, чтобы сформировать прочную металлическую основу. Ядро на 600 МВА (мега-ампер) трехфазный трансформатор показан на фиг. 28. Ламинированные сердечники предпочтительны. потому что на поверхности каждой пластинки образуется тонкий слой оксида и действует как изолятор, уменьшая образование вихревых токов внутри основной материал. Количество основного материала, необходимого для конкретного трансформатор определяется номинальной мощностью трансформатора, но он должно быть достаточным для предотвращения насыщения при полной нагрузке.

Тип и форма сердечника обычно определяют количество магнитных связь между обмотками и в некоторой степени эффективность трансформатор.

Трансформатор, показанный на фиг. 29 известен как трансформатор с сердечником. Обмотки размещены вокруг каждого конца материала сердечника.

Трансформатор корпусного типа сконструирован аналогично сердечнику. тип, за исключением того, что тип оболочки имеет металлический сердечник через середину окна (РИС.30). Первичная и вторичная обмотки намотаны вокруг центральной части сердечника с ближайшей к ней обмоткой низкого напряжения к металлической сердцевине. Такое расположение позволяет окружать трансформатор. сердечником и обеспечивает отличную магнитную связь. Когда трансформатор находится в рабочем состоянии, весь магнитный поток должен проходить через центральный сердечник кусок. Затем он разделяется на две части внешнего сердечника.

Сердечник H-типа, показанный на фиг. 31 аналогичен сердечнику оболочечного типа в что у него есть железный сердечник через его центр, вокруг которого первичная и вторичные обмотки намотаны.Однако сердечник H окружает обмотки. с четырех сторон вместо двух. Этот дополнительный металл помогает уменьшить случайную утечку поток и повысить эффективность трансформатора.

Сердечник типа H часто используется в высоковольтных распределительных трансформаторах.

Сердечник с ленточной намоткой или сердечник тороида (РИС. 32) сконструирован плотно наматывание одной длинной непрерывной ленты из кремнистой стали в спираль. Кассета могут или не могут быть размещены в пластиковом контейнере, в зависимости от области применения.Этот тип сердечника не требует стальных перфораций, соединенных вместе. Поскольку сердечник представляет собой одну непрерывную металлическую часть, утечка потока сохраняется. до минимума. Рассеивание потока — это линии магнитного потока, которые не следуют металлический сердечник и теряются для окружающего воздуха. Ленточный сердечник является одним из наиболее эффективных доступных дизайнов сердечников.


РИС. 32

ПУСКОВОЙ ТОК ТРАНСФОРМАТОРА

Реактор — это дроссель, используемый для добавления индуктивности в цепь.Несмотря на то что трансформаторы и реакторы являются индуктивными устройствами, есть отличное разница в их эксплуатационных характеристиках. Реакторы часто подключаются последовательно с нагрузкой с низким сопротивлением для предотвращения пускового тока (величина тока, протекающего при первоначальном подаче питания на схему) от становится чрезмерным (РИС. 33). Трансформаторы, однако, могут производить чрезвычайно высокие пусковые токи при первом подаче питания на первичную обмотку. Тип сердечника, используемого при создании катушек индуктивности и трансформаторов, в первую очередь отвечает за эту разницу в характеристиках.


РИС. 33 Реакторы помогают предотвратить чрезмерный пусковой ток при первом включении питания.


РИС. 34 Автотрансформатор имеет только одну обмотку, которая используется для обеих первичный и вторичный.

АВТОТРАНСФОРМАТОРЫ

Автотрансформаторы — это однообмоточные трансформаторы.

Они используют одну и ту же обмотку для первичной и вторичной обмоток. Главная обмотка на фиг. 34 находится между точками B и N и имеет напряжение 120 В. применяется к нему.Между точками B и N 120 витков провода. Теперь Предположим, что селекторный переключатель установлен в положение D. Теперь нагрузка подключена. между точками D и N. Вторичная обмотка этого трансформатора содержит 40 витков проволоки. Если необходимо вычислить величину напряжения, приложенного к нагрузке, можно использовать следующую формулу.

EP ES

= NP NS 120 ES

= 120 40120 ES = 4800 ES = 40 В

Предположим, что нагрузка, подключенная к вторичной обмотке, имеет импеданс 10 Ом.Величину тока во вторичном контуре можно вычислить. по формуле

I = E Z I = 40 10 I = 4A

Первичный ток можно вычислить по той же формуле, которая использовалась для вычисления первичного тока для изоляционного трансформатора.

EP ES

= IS IP 120 40

= 4 IP 120 IP = 160 IP = 1: 333 A

Количество потребляемой и выходной мощности автотрансформатора должно быть равным так же, как и в изолирующем трансформаторе.

Начальное Среднее

120 _ 1: 333 = 160 ВА 40 _ 4 = 160 ВА Теперь предположим, что поворотный переключатель подключен к точке А. Теперь нагрузка подключена к 160 виткам провода. Напряжение, приложенное к нагрузке, можно рассчитать по

.

EP ES

= NP NS 120 ES

= 120160120 ES = 19200 ES = 160 В

===

ДЕРЖАТЕЛЬ ЩЕТКИ ВАЛА УГЛЕРОДНАЯ ЩЕТКА POWERKOTE COIL CORE ПОДШИПНИКИ ОСНОВНОГО ВАЛА КОНЦЕВЫЕ ФОРМЫ РАДИАТОРА ПОЗОЛОЧЕННАЯ ПЛАТА КОММУТАТОРА


РИС.35 Powerstat в разрезе.

===

Обратите внимание, что автотрансформатор, как и изолирующий трансформатор, может быть либо повышающий, либо понижающий трансформатор.

Если поворотный переключатель, показанный на РИС. 34 были удалены и заменены скользящий ответвитель, который контактировал непосредственно с обмоткой трансформатора, соотношение оборотов можно регулировать непрерывно.

Этот тип трансформатора обычно называют Variac или Powerstat, в зависимости от производителя.Вид в разрезе переменного автотрансформатора показан на фиг. 35. Обмотки намотаны на ленточный тороид. ядро внутри пластикового корпуса. Вершины обмоток плоско фрезерованы. для обеспечения коммутатора. Угольная щетка контактирует с обмотками.

Автотрансформаторы

часто используются энергетическими компаниями для обеспечения малых увеличивать или уменьшать линейное напряжение. Они помогают регулировать напряжение к большим линиям электропередач. Трехфазный автотрансформатор показан на фиг.36. Этот трансформатор находится в корпусе, заполненном трансформаторным маслом, который действует как охлаждающая жидкость и предотвращает образование влаги в обмотках.

У автотрансформатора есть один недостаток. Поскольку нагрузка подключена с одной стороны линии электропередачи, между входящими мощность и нагрузка. Это может вызвать проблемы с некоторыми типами оборудования. и это необходимо учитывать при проектировании энергосистемы.

ПОЛЯРНОСТИ ТРАНСФОРМАТОРА

Чтобы понять полярность трансформатора, напряжение, создаваемое на обмотке. необходимо учитывать в какой-то момент времени.В цепи переменного тока 60 Гц напряжение меняет полярность 60 раз в секунду. При обсуждении трансформатора полярности, необходимо учитывать взаимосвязь между разными обмотки в один и тот же момент времени. Следовательно, предполагается, что этот момент времени — когда создается пиковое положительное напряжение поперек обмотки.


РИС. 36 Трехфазный автотрансформатор.


РИС. 37 точек полярности трансформатора.


РИС.38 Знаков полярности для нескольких вторичных обмоток.


РИС. 39 Соединение вторичной и первичной обмоток образует автотрансформатор.


РИС. 40 Перерисовка соединения.

МАРКИРОВКА ПОЛЯРНОСТИ ПО СХЕМЕ

Когда трансформатор показан на принципиальной схеме, это обычная практика. чтобы указать полярность обмоток трансформатора, поставив точку рядом с один конец каждой обмотки, как показано на фиг. 37.

Эти точки означают, что в этот момент полярность одинакова. для каждой обмотки.Например, предположим, что напряжение, приложенное к первичной обмотка имеет максимальное положительное значение на клемме, обозначенной значком точка. Напряжение на точечном выводе вторичной обмотки будет на пике. положительное значение одновременно.

Этот же тип обозначения полярности используется для трансформаторов, имеющих более одной первичной или вторичной обмотки. Пример трансформатора с мультисекундной вторичной обмоткой показано на фиг. 38.


РИС. 41 Размещение точек полярности для обозначения аддитивной полярности.


РИС. 43 Стрелки указывают расположение точек полярности.


РИС. 42 точки полярности указывают на вычитающую полярность.


РИС. 44 Значения стрелок складываются, чтобы указать аддитивную полярность (усиление связь).

ДОБАВИТЕЛЬНАЯ И СУБТРАКТИВНАЯ ПОЛЯРНОСТИ

Полярность обмоток трансформатора определяется подключением их в качестве автотрансформатора и тестирования на аддитивную или вычитающую полярность, часто называют повышающим или понижающим соединением.

Это делается путем подключения одного вывода вторичной обмотки к одному выводу первичной обмотки и измерения напряжения на обеих обмотках (фиг. 39). В Трансформатор, показанный в примере, имеет номинальное первичное напряжение 120 В. и номинальное вторичное напряжение 24 В. Эта же схема была перерисована на фиг. 40, чтобы более четко показать связь. Обратите внимание, что вторичный обмотка была подключена последовательно с первичной обмоткой.

Трансформатор теперь содержит только одну обмотку и, следовательно, является автотрансформатором.При подаче 120 В на первичную обмотку вольтметр подключен на вторичной обмотке будет указывать либо сумму двух напряжений, либо разница между двумя напряжениями. Если этот вольтметр показывает 144 V (120) 24 = 144) обмотки подключаются аддитивно (повышают), а полярность точки могут быть размещены, как показано на фиг. 41. Отметим в этой связи, что вторичное напряжение добавляется к первичному напряжению.

Если вольтметр, подключенный к вторичной обмотке, показывает напряжение на 96 В (120 _ 24 = 96) обмотки подключены вычитающим (понижающим), и точки полярности размещены, как показано на фиг.42.

РАСПОЛОЖЕНИЕ ТОЧЕК СТРЕЛКАМИ

Чтобы помочь в понимании аддитивной и вычитающей полярности, стрелки может использоваться для указания направления больше или меньше значений. На фиг. 43, стрелки были добавлены, чтобы указать направление, в котором точка должна быть размещена.

В этом примере трансформатор подключен аддитивно или повышающе, и обе стрелки указывают в одном направлении. Обратите внимание, что стрелка указывает в точку.На фиг. 44 видно, что значения двух стрелок добавляют к производят 144 В.

На ФИГ. 45, стрелки были добавлены к вычитающей или понижающей связи. В этом случае стрелки указывают в противоположных направлениях, а напряжение один пытается отменить напряжение другого. В результате меньшее значение удаляется, а большее значение уменьшается, как показано на ИНЖИР. 46. ​​


РИС. 47 На холостом ходу первичный ток отстает от напряжения на 90 °.


РИС. 46 Стрелки указывают на вычитающую полярность.


РИС. 45 Значения стрелок вычитаются (соединение понижения).


РИС. 48 Вторичное напряжение отстает от первичного тока на 90 °.

ОТНОШЕНИЯ НАПРЯЖЕНИЯ И ТОКА В ТРАНСФОРМАТОРЕ

Когда первичная обмотка трансформатора подключена к источнику питания, но нет нагрузка подключена к вторичной обмотке, ток ограничен индуктивным сопротивлением первичной.В настоящее время трансформатор представляет собой индуктор, и ток возбуждения отстает от приложенного напряжения на 90 ° (ФИГ. 47). Первичный ток вызывает напряжение во вторичной обмотке.

Это индуцированное напряжение пропорционально скорости изменения тока. Вторичное напряжение будет максимальным в периоды, когда первичное ток меняется больше всего (0 °, 180 ° и 360 °), и он будет равен нулю когда первичный ток не меняется (90 ° и 270 °).Сюжет о первичный ток и вторичное напряжение показывает, что вторичное напряжение отстает от первичного тока на 90 ° (РИС. 48). Поскольку вторичное напряжение отстает от первичного тока на 90 °, а приложенное напряжение опережает первичный ток на 90 °, вторичное напряжение на 180 ° не совпадает по фазе с приложенным напряжение и синфазно с наведенным напряжением в первичной обмотке.

ДОБАВЛЕНИЕ НАГРУЗКИ К ВТОРИЧНОМУ

Когда нагрузка подключена к вторичной обмотке, ток начинает течь.Потому что трансформатор является индуктивным устройством, вторичный ток отстает от вторичное напряжение на 90 °. Поскольку вторичное напряжение отстает от первичного ток на 90 °, вторичный ток на 180 ° не совпадает по фазе с первичным ток (РИС. 49).

Ток вторичной обмотки вызывает противодействующее напряжение во вторичной обмотке. обмотки, которые противостоят противодавленческому напряжению, наведенному в первичной обмотке.

Противодавление вторичного напряжения ослабляет первичное и позволяет больше первичного тока, чтобы течь.По мере увеличения вторичного тока первичный ток увеличивается пропорционально.

Поскольку вторичный ток вызывает уменьшение производимого противодавления в первичной обмотке ток первичной обмотки меньше ограничивается индуктивным реактивное сопротивление и многое другое за счет сопротивления обмоток при добавлении нагрузки к вторичный. Ваттметр, подключенный к первичной обмотке, покажет, что истинная мощность увеличивается по мере добавления нагрузки к вторичной обмотке.

===

ПРИЛОЖЕННОЕ НАПРЯЖЕНИЕ ВТОРИЧНЫЙ ТОК ПЕРВИЧНЫЙ ТОК ВТОРИЧНОЕ НАПРЯЖЕНИЕ


РИС.49 Соотношение напряжения и тока первичной и вторичной обмоток обмотки.

===


РИС. 50 Проверка трансформатора омметром.

===

ИСПЫТАНИЕ ТРАНСФОРМАТОРА

Для определения состояния трансформатора можно провести несколько тестов. Простой тест на заземление, замыкание или обрыв можно выполнить с помощью омметра. (РИС. 50). Омметр A подключается к одному проводу первичной обмотки и к одному свинец вторичного.

Этот тест проверяет наличие короткого замыкания между первичной и вторичной обмотками. Омметр должен показывать бесконечность. Если первичных несколько или вторичной обмотки, все изолированные обмотки должны быть проверены на короткое замыкание. Омметр B показывает проверку обмоток на массу. Один из лидеров омметр подключается к корпусу трансформатора, а другой подключен к обмотке. Все обмотки должны быть проверены на заземление, и омметр должен показывать бесконечность для каждой обмотки.Омметр C показывает проверка обмоток на непрерывность. Сопротивление провода обмотки должен отображаться омметром.

Если трансформатор находится в хорошем состоянии после омметра Затем его следует проверить на наличие короткого замыкания и заземления с помощью мегомметра. MEGGER обнаружит проблемы с пробоем изоляции, которые омметр не буду. Состояние диэлектрического масла в больших маслонаполненных трансформаторах следует проверять через определенные промежутки времени.Это включает в себя выборку масла и проведения испытаний на электрическую прочность и загрязнение.

ПАРАМЕТРЫ ТРАНСФОРМАТОРА

У большинства трансформаторов есть паспортная табличка с информацией о трансформаторе. Приведенная информация обычно определяется размером, типом и производителем. Почти на всех паспортных табличках указаны первичное напряжение, вторичное напряжение и Номинальная мощность в кВА (киловольт-ампер). Трансформаторы рассчитаны на киловольт-амперы и не киловатты, потому что истинная мощность определяется коэффициентом мощности нагрузки.Другая информация, которая может быть указана или не указана, — это частота, превышение температуры в C °, полное сопротивление, тип изоляционного масла, галлоны изоляционного материала масло, серийный номер, номер типа, номер модели, и есть ли у трансформатора однофазный или трехфазный.

ОПРЕДЕЛЕНИЕ МАКСИМАЛЬНОГО ТОКА

На паспортной табличке не указан текущий номинал обмоток. С потребляемая мощность должна быть равна выходной мощности, номинальный ток обмотки можно определить, разделив номинальную мощность в кВА на напряжение обмотки.Для Например, предположим, что трансформатор имеет номинальную мощность 0,5 кВА, первичное напряжение 480 В, а вторичное напряжение 120 В. Для определения максимального тока который может поставляться вторичной обмоткой, разделите рейтинг KVA на вторичный Напряжение.

IS = кВА ES IS = 500120 IS = 4:16 A

Таким же образом можно рассчитать первичный ток.

IP = кВА EP IP = 500 480 IP = 1:04 A

Трансформаторы с несколькими вторичными обмотками обычно имеют ток рейтинг указан вместе с номинальным напряжением.

++++++++++

ПРИМЕР 1

Предположим, что трансформатор, показанный на фиг. 51 — 2400/480 вольт 15 кВА трансформатор. Чтобы определить полное сопротивление трансформатора, сначала вычислите номинальный ток полной нагрузки вторичной обмотки.

I5 ВА E I5 15000 480 I531: 25 А

Далее увеличиваем напряжение источника, подключенного к высоковольтной обмотке. до тех пор, пока в обмотке низкого напряжения не потечет ток 31,25 ампер.Предполагать что значение напряжения составляет 138 вольт. Наконец, определите процент приложенного напряжения по сравнению с номинальным напряжением.

% Напряжение источника Z5 номинальное напряжение 3100

% Z5 138 2400 3100

% Z50: 05753100

% Z55: 75 Полное сопротивление этого трансформатора составляет 5,75%.

Импеданс трансформатора является основным фактором при определении величины напряжения. падение трансформатора будет между холостым ходом и полной нагрузкой и при определении количество тока, протекающего при коротком замыкании.Короткое замыкание ток можно рассчитать по формуле (Однофазный) ISC 5 ВА E3% Z Формула определения тока в однофазной цепи — I5 ВА. E Приведенную выше формулу для определения тока короткого замыкания можно изменить. чтобы показать, что ток короткого замыкания можно вычислить, разделив номинальный вторичный ток% Z.

ISC 5 I Оценка% Z

++++++++++

ПРИМЕР 2

Однофазный трансформатор рассчитан на 50 кВА и имеет вторичное напряжение. 240 вольт.Паспортная табличка показывает, что трансформатор имеет внутреннюю импеданс (% ИЗ) 2,5%. Какой ток короткого замыкания у этого трансформатора? I Вторичный 5 50,000 240 I Вторичный 5208: 3 ампера I Короткое замыкание 5 208: 3

% Z I Короткое замыкание 5 208: 3

0: 025 I Короткое замыкание 58,333: 3 ампера Иногда необходимо вычислить величина тока короткого замыкания при определении правильного номинала предохранителя для схемы. Предохранитель должен иметь достаточно высокий рейтинг прерывания. для устранения неисправности в случае короткого замыкания.

++++++++++

===

ИСТОЧНИК ПЕРЕМЕННОГО НАПРЯЖЕНИЯ ВОЛЬТМЕТР ВЫСОКОВОЛЬТНАЯ ОБМОТКА НИЗКОЕ НАПРЯЖЕНИЕ КОРОТКОЕ ЗАМЫКАНИЕ АММЕТРА


РИС. 51 Определение импеданса трансформатора.

===

ТРАНСФОРМАТОР ИМПЕДАНС

Импеданс трансформатора определяется физической конструкцией трансформатор. Такие факторы, как количество и тип материала сердечника, проволоки размер, используемый для создания обмоток, количество витков и степень магнитного поля. соединение между обмотками сильно влияет на импеданс трансформатора.

Импеданс выражается в процентах (% Z или% IZ) и измеряется путем подключения короткое замыкание низковольтной обмотки трансформатора и затем подключение источника переменного напряжения к высоковольтной обмотке, фиг. 51. Затем переменное напряжение увеличивают до тех пор, пока номинальный ток не течет в обмотка низкого напряжения. Импеданс трансформатора определяется путем расчета процент переменного напряжения по сравнению с номинальным напряжением обмотка высокого напряжения.

РЕЗЮМЕ

• Все значения напряжения, тока и импеданса в трансформаторе пропорциональны. к коэффициенту оборотов.

• Трансформаторы могут изменять значения напряжения, тока и импеданса, но не может изменить частоту.

• Первичная обмотка трансформатора подключена к линии электропередачи.

• Вторичная обмотка подключена к нагрузке.

• Трансформатор, напряжение вторичной обмотки которого ниже, чем напряжение первичной обмотки. понижающий трансформатор.

• Трансформатор с более высоким вторичным напряжением, чем первичное. — повышающий трансформатор.

• Изолирующий трансформатор электрически имеет первичную и вторичную обмотки. и механически отделены друг от друга.

• Когда катушка индуцирует в себе напряжение, это называется самоиндукцией.

• Когда одна катушка наводит напряжение на другую катушку, это называется взаимным индукция.

• Трансформаторы могут иметь очень высокий пусковой ток при первом подключении. к линии электропередачи из-за наличия магнитных доменов в материале сердечника.

• Индукторы создают воздушный зазор в материале сердечника, который вызывает магнитные домены для сброса в нейтральное положение.

• Автотрансформаторы имеют только одну обмотку, которая используется как первичные и вторичный.

• Автотрансформаторы имеют недостаток в том, что они не имеют изоляции линии. между первичной и вторичной обмотками.

• Изолирующие трансформаторы помогают фильтровать скачки напряжения и тока между первичная и вторичная сторона.

• На принципиальные схемы часто добавляются точки полярности для обозначения трансформатора. полярность.

• Трансформаторы можно подключать с добавлением или вычитанием полярности.

ВИКТОРИНА:

1. Что такое трансформатор?

2. Каков общий КПД трансформаторов?

3. Что такое изолирующий трансформатор?

4. Все значения трансформатора пропорциональны его.

5. Что такое автотрансформатор?

6.В чем недостаток автотрансформатора?

7. Объясните разницу между повышающим и понижающим трансформатором.

8. Трансформатор имеет первичное напряжение 240 В и вторичное напряжение. 48 В. Какое отношение витков у этого трансформатора?

9. Трансформатор имеет мощность 750 ВА. Первичное напряжение 120 В. Что такое первичный ток?

10. Трансформатор имеет коэффициент трансформации 1: 6. Первичный ток 18 А.Что такое вторичный ток?

11. Что означают точки рядом с выводами трансформатора? изобразить на схеме? 12. Трансформатор имеет номинальное напряжение первичной обмотки. 240 В и номинальное вторичное напряжение 80 В. Если обмотки были подключены после вычитания, какое напряжение появится на всем соединении?

12 должны были быть подключены аддитивно, какое напряжение появилось бы на всю обмотку?

13. Если речь идет об обмотках трансформатора

14.Первичные выводы трансформатора обозначены цифрами 1 и 2. Вторичные выводы провода обозначены 3 и 4. Если точки полярности размещены рядом с выводами 1 и 4, какой вторичный провод будет подключен к клемме 2 для подключения добавка?

ПРОБЛЕМЫ ПРАКТИКИ


См. РИС. 52, чтобы ответить на следующие вопросы. Найдите все недостающее ценности.

1.

EP 120 ES 24 IP IS NP 300 NS Соотношение Z = 3 Ом 2.

EP 240 ES 320 IP IS NP NS 280 Коэффициент Z = 500 Ом 3.

EP ES 160 IP IS NP NS 80 Соотношение 1: 2,5 Z = 12 Ом 4.

EP 48 ES 240 IP IS NP 220 NS Коэффициент Z = 360 Ом 5.

EP ES IP 16.5 IS 3.25 NP NS 450 Коэффициент Z = 56 Ом 6.

EP 480 ES IP IS NP 275 NS 525 Коэффициент Z = 1,2 кОм.

См. РИС. 53, чтобы ответить на следующие вопросы. Найдите все недостающее ценности.

7.

EP 208 ES1 320 ES2 120 ES3 24 IP IS1 IS2 IS3 NP 800 NS1 NS2 NS3 Соотношение 1: Соотношение 2: Соотношение 3:

R1 12 кОм, R2 6 O R3 8 O 8.

EP 277 ES1 480 ES2 208 ES3 120 IP IS1 IS2 IS3 NP 350 NS1 NS2 NS3 Соотношение 1: Соотношение 2: Соотношение 3:

R1 200 O R2 60 O R3 24 O


РИС. 52 Практические проблемы изолирующего трансформатора.


РИС. 53 Однофазный трансформатор с несколькими вторичными обмотками.

ПРАКТИЧЕСКИЕ ПРИМЕНЕНИЯ

1. Вы работаете на промышленном предприятии. Необходимо установить однофазный трансформатор. На заводской табличке трансформатора указана следующая информация:

Первичное напряжение — 13 800 Вторичное напряжение — 240 Полное сопротивление — 5% кВА — 150 Вторичный предохранитель рассчитан на перегрузку 800 А и номинал прерывания. 10000 А.Достаточен ли рейтинг прерывания для этой установки?

2. Вы работаете на промышленном предприятии.

Электропитание мостового крана составляет 480 В переменного тока. Электрический тормоз на подъемнике работает от 240 В. Тормоз рассчитан на ток 3,5 А. установите трансформатор, чтобы снизить напряжение с 480 В до 240 В. Номинальная мощность в кВА трансформатор должен быть как минимум на 115% больше ожидаемой нагрузки. Части В номере есть трансформаторы следующих размеров: 0.025 кВА, 0,05 кВА, 0,1 кВА, 0,5 кВА, 1 кВА, 1,25 кВА, 1,5 кВА и 2 кВА. Какие из доступных трансформаторы следует использовать для этой установки?

Transformer Formula

Трансформатор — это электрическое устройство, которое позволяет увеличивать или уменьшать напряжение в электрической цепи переменного тока, сохраняя при этом мощность. Мощность, которая поступает в оборудование, в случае идеального трансформатора равна мощности, получаемой на выходе. Реальные машины имеют небольшой процент потерь.Это устройство, которое преобразует переменную электрическую энергию определенного уровня напряжения в переменную энергию другого уровня напряжения на основе явления электромагнитной индукции. Он состоит из двух катушек из проводящего материала, намотанных на замкнутое ядро ​​из ферромагнитного материала, но электрически изолированных друг от друга. Единственная связь между катушками — это общий магнитный поток, установленный в сердечнике. Катушки называются первичными и вторичными в соответствии с входом или выходом рассматриваемой системы соответственно.

Значение мощности для электрической цепи — это значение напряжения, равное значению силы тока. Как и в случае с трансформатором, значение мощности первичной обмотки такое же, как и мощность вторичной обмотки:

входное напряжение первичной катушки * входной ток первичной катушки = выходное напряжение вторичной катушки * выходной ток вторичной катушки.

Уравнение записано

Мы также можем рассчитать выходное напряжение трансформатора, если мы знаем входное напряжение и количество витков (катушек) на первичной и вторичной катушках, используя приведенное ниже уравнение;

входное напряжение на первичной обмотке / выходное напряжение на вторичной обмотке = количество витков провода на первичной обмотке / количество витков провода на вторичной обмотке

Уравнение записано

имеем:

В p = входное напряжение на первичной катушке.

В с = входное напряжение на вторичной катушке.

I p = входной ток первичной обмотки.

I с = входной ток вторичной обмотки.

n p = количество витков провода на первичной обмотке.

n s = количество витков провода на вторичной катушке.

Trasnformer Вопросы:

1) У нас есть трансформатор с током в первичной катушке 10 А и входным напряжением в первичной катушке 120 В, если напряжение на выходе вторичной катушки 50 В, рассчитайте ток на выходе вторичная обмотка.

Ответ: Поскольку мы хотим определить выходной ток во вторичной катушке, мы используем первое уравнение

, →,

= 2,4 * 10 А = 24 А.

I с = 24 А.

2) Имеем трансформатор с выходным током на вторичной катушке 30 А и входным током на первичной катушке 2000 витков 6 А, определяем количество витков на вторичной катушке.

Ответ: Мы будем использовать два уравнения: первое уравнение для определения выходного напряжения на вторичной катушке и второе уравнение для определения количества витков на вторичной катушке.

, →,

, →,

Замещающий,

n s = 400

Что такое трансформатор? Как измерить потери и параметры схемы замещения.

В своей простейшей форме трансформатор состоит из двух намотанных катушек проволоки, индуктивно связанных друг с другом. Когда в одной из катушек протекает переменный (AC) ток заданной частоты, в другой катушке индуцируется переменное напряжение той же частоты.Величина этого напряжения зависит от степени связи и магнитных потоков в двух катушках. Катушка, подключенная к источнику переменного напряжения, обычно называется первичной катушкой, а напряжение на этой катушке является первичным напряжением. Напряжение, индуцированное во вторичной катушке, может быть больше или меньше первичного напряжения, в зависимости от соотношения первичного и вторичного витков. Трансформатор называется повышающим или понижающим трансформатором соответственно.

Если и напряжение, и D.На первичную обмотку подается напряжение C. Только переменная часть подается на нагрузку. Это происходит из-за того, что напряжение e во вторичной обмотке индуцируется в обмотке магнитным потоком ф в соответствии с законом.

Этот закон можно сформулировать следующим образом: индуцированное в катушке напряжение пропорционально количеству витков и скорости изменения магнитного потока в катушке во времени. Эта скорость изменения потока может быть большой или маленькой. Для данного напряжения, если скорость изменения магнитного потока мала, необходимо использовать много витков.И наоборот, если используется небольшое количество витков, необходима большая скорость изменения магнитного потока.

Паспортная табличка (коэффициент напряжения):

Соотношение напряжений трансформатора указано как V1 (номинальное) / V2 (номинальное). Это означает, что когда напряжение V1 (номинальное) приложено к первичной обмотке, напряжение вторичной обмотки при полной нагрузке и заданном коэффициенте мощности составляет V2 (номинальное). Отношение V1 (номинальное) / V2 (номинальное) не совсем равно NI / N2 из-за падений напряжения в первичной и вторичной обмотках.Этими каплями пренебрегают, поскольку они малы, и это предполагается для всех практических целей.

Мощность трансформатора указывается в единицах ВА / кВА / МВА, в зависимости от его размера.
кВА (номинальное) = V (номинальное) x I (полная нагрузка) / 1000

Потери трансформатора:

Трансформатор не имеет движущихся частей, поэтому его КПД намного выше, чем у вращающихся машин. Различные потери в трансформаторе перечислены ниже:

Core-Loss : Это гистерезисные и вихретоковые потери, возникающие из-за изменений магнитного потока в сердечнике.Подчеркивается, что потери в сердечнике постоянны для трансформатора, работающего при постоянном напряжении и частоте, как и все трансформаторы промышленной частоты.

Потери в меди (I2R-loss) : Эти потери возникают в сопротивлениях обмоток, когда через трансформатор проходит ток нагрузки; изменяется как квадрат нагрузки, выраженный как отношение полной нагрузки.
Потери нагрузки (паразитные): в основном они возникают из-за полей утечки, вызывающих вихревые токи в стенках и проводниках трансформатора.

Диэлектрические потери : Источником этих потерь являются изоляционные материалы; особенно в твердой изоляции.

Основными потерями, безусловно, являются первые два: Pi, постоянные потери в сердечнике (в железе), и PCu, переменные потери в меди. В следующих разделах легко будет увидеть, что потери в трансформаторе и параметры его эквивалентной схемы могут быть легко определены двумя простыми тестами без фактической нагрузки.

ТЕСТИРОВАНИЕ ТРАНСФОРМАТОРА :

Две основные трудности, которые не оправдывают испытания больших трансформаторов прямым испытанием нагрузки:
(i) Большое количество энергии должно быть потрачено впустую при таком испытании.
(ii) Большой трансформатор не может обеспечить достаточно большую нагрузку для прямой нагрузки.

Таким образом, рабочие характеристики трансформатора должны быть рассчитаны на основе информации о параметрах его эквивалентной схемы, которые, в свою очередь, определяются путем проведения простых испытаний с очень низким энергопотреблением, называемых испытаниями без нагрузки.

В этих тестах потребляемая мощность — это просто то, что необходимо для компенсации понесенных потерь. Два испытания без нагрузки — это испытание на обрыв цепи (OC) и испытание на короткое замыкание (SC).В обоих этих испытаниях измеряются напряжение, ток и мощность, по которым можно определить сопротивление и реактивное сопротивление входного импеданса. Таким образом, можно определить только четыре параметра, которые соответствуют примерной эквивалентной схеме на рис. 1.

Тест обрыва цепи :

Целью данного испытания является определение параметра параллельной ветви эквивалентной электрической цепи трансформатора.

  • Подключите сторону низкого напряжения тестируемого устройства (UUT, трансформатор) к источнику номинального переменного напряжения
  • Держать высоковольтную сторону разомкнутой
  • Подключите анализатор мощности или измеритель мощности между источником переменного тока и проверяемым оборудованием. 2)

Таким образом, тест OC дает потери в сердечнике и параметр шунтирующей ветви эквивалентной схемы.

Тест короткого замыкания :

Последовательные параметры трансформатора, а также его потери в меди могут быть оценены с помощью теста на короткое замыкание.

В зависимости от напряжения трансформатора и источника питания, доступного в вашей лаборатории, вы можете закоротить низкую или высокую сторону трансформатора для этого теста.

Сопротивление трансформатора и реактивное сопротивление утечки очень малы; входное напряжение для циркуляции номинального тока нагрузки при коротком замыкании составляет всего 5-8% от номинального напряжения (в большинстве трансформаторов).

Из-за низкого входного напряжения ток возбуждения (Io) составляет всего около 0,1-0,5% от тока полной нагрузки. (Io при номинальном напряжении составляет 2-6% от тока полной нагрузки). Таким образом, шунтирующую ветвь эквивалентной схемы можно не учитывать, как показано ниже.

Добавить комментарий

Ваш адрес email не будет опубликован.