Напряжение трансформатор: Трансформаторы напряжения: устройство, принцип действия, виды

Содержание

Трансформатор,понижение, повышение переменного напряжения. Режимы работы, передача электроэнергии. Тесты онлайн, курсы по физике, подготовка к ЦТ

Тестирование онлайн

Трансформатор

Устройство, служащее для преобразования (повышения или понижения) переменного напряжения.

Простейший трансформатор состоит из сердечника замкнутой формы, на который намотаны две обмотки: первичная и вторичная. Первичная обмотка подсоединяется к источнику переменного тока, а вторичная к потребителям электроэнергии.

В основе работы трансформатора лежит явление электромагнитной индукции. Магнитный поток, создаваемый переменным током в первичной обмотке, благодаря наличию сердечника практически без потерь пронизывает витки вторичной обмотки, возбуждая в ней ЭДС индукции. Так как магнитный поток должен изменяться, трансформатор может работать только на переменном токе.

Напряжение на вторичной обмотке зависит от числа витков в первичной и вторичной обмотках трансформатора:

При k>1 трансформатор будет понижающим, при k

Режимы работы трансформатора. Режим холостого хода

трансформатора называется режим с разомкнутой вторичной обмоткой. Рабочим режимом (ходом) трансформатора называется режим, при котором в цепь его вторичной обмотки включена нагрузка с отличным от нуля сопротивлением. Режимом короткого замыкания называется режим, при котором вторичная обмотка трансформатора замкнута без нагрузки. Данный режим опасен для трансформатора, поскольку в этом случае ток во вторичной обмотке максимален и происходит электрическая и тепловая перегрузка системы.

Передача и использование электрической энергии

Трансформаторы широко используются для передачи электроэнергии на большие расстояния. Электрическая энергия, которая вырабатывается генераторами на электростанциях, передается к потребителям на большие расстояния. Линии, по которым электрическая энергия передается от электростанций к потребителям, называют линии электропередачи (ЛЭП).

При передачи электроэнергии неизбежны ее потери, связанные с нагреванием проводов. Чтобы уменьшить потери энергии, необходимо уменьшить силу тока в линии передачи. При данной мощности уменьшение силы тока возможно лишь при увеличения напряжения (

P=UI). Для этого между генератором и линией электропередачи включают повышающий трансформатор. А затем, между ЛЭП и потребителем электроэнергии — понижающий трансформатор.

Трансформатор | Устройство, виды, принцип работы

Слово “трансформатор” образуется от английского слова “transform”  – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения


Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

а с другой катушки два красных провода

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

I/P: 220М50Hz (RED-RED)

– это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

 

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется

гальванически развязаны.

Формула трансформатора

Главная формула трансформатора выглядит так.

где

U2  – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

N1 – количество витков первичной обмотки

N2 – количество витков вторичной обмотки

k – коэффициент трансформации

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

На схемах трехфазные трансформаторы обозначаются вот так:

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k)

будет больше 1.

Повышающий трансформатор

Это трансформатор, который  повышает напряжение. Допустим,  на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов

больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

Итак, имеем простой однофазный понижающий трансформатор.

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить трансформатор

Как проверить на короткое замыкание обмоток


Хотя обмотки  прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток


При  обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

Таким же образом проверяем и вторичную обмотку.

Отсюда делаем вывод, что наш трансформатор жив и здоров.

Похожие статьи по теме “трансформатор”

Лабораторный автотрансформатор (ЛАТР)

Программа для расчета трансформатора

Как получить постоянное напряжение из переменного

Конструкции трансформаторов, основные виды

Трансформатор — статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.

Среди многообразных трансформаторных устройств чаще всего встречаются трансформаторы:

  • силовые;
  • измерительные;
  • специальные.

Силовые трансформаторы

Термином «силовой» определяют назначение, связанное с преобразованием высоких мощностей. Вызвано это тем, что большинство бытовых и производственных потребителей электрических сетей нуждаются в питании напряжением 380/220 вольт. Однако доставка его на большие расстояния связана с огромными потерями энергии, которые снижаются за счет использования высоковольтных линий.

Воздушные ЛЭП высокого напряжения соединяют в единую сеть подстанции с силовыми трансформаторами соответствующего класса.

А по другим линиям напряжение 6 или 10 кВ подводится к силовым трансформаторам, обеспечивающих питанием 380/220 вольт жилые комплексы и производственные предприятия.

Измерительные трансформаторы

В этом классе работают два вида устройств, обеспечивающих в целях измерения параметров сети преобразования:

1. тока;

2. напряжения.

Измерительные трансформаторы создаются с высоким классом точности. Во время эксплуатации их метрологические характеристики периодически подвергают поверке на правильность измерения как величин, так и углов отклонения векторов тока и напряжения.

Трансформаторы тока

Трансформатор тока – трансформатор, первичная обмотка которого подключена к источнику тока, а вторичная обмотка замыкается на измерительные или защитные приборы, имеющие малые внутренние сопротивления.

Измерительный трансформатор тока – трансформатор, предназначенный для преобразования тока до значения, удобного для измерения. Первичная обмотка трансформатора тока включается последовательно в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы.

Главная особенность их устройства заключается в том, что они постоянно эксплуатируются в описанном ранее (в статье про то, как устроен и работает трансформатор) режиме короткого замыкания. У них вторичная обмотка полностью закорочена на маленькое сопротивление, а остальная конструкция приспособлена для такой работы.

Чтобы исключить аварийный режим входная мощность ограничивается специальным устройством первичной обмотки: в ней создается всего один виток, который не может создать при протекании по нему тока большого падения напряжения на обмотке и, соответственно, передать в магнитопровод высокую мощность.

Этот виток врезается непосредственно в силовую цепь, обеспечивая его последовательное подключение. У отдельных конструкций просто создается сквозное отверстие в сердечнике, через которое пропускают провод с первичным током.

Нагрузку вторичных цепей трансформатора тока, находящегося под напряжением, нельзя разрывать. Все провода и соединительные клеммы по этой причине изготавливаются с повышенной механической прочностью. В противном случае на разорванных концах сразу возникает высоковольтное напряжение, способное повредить вторичные цепи.

Благодаря работе трансформаторов тока создается возможность обеспечения постоянного контроля и анализа нагрузок, протекающих в электрической системе. Особенно это актуально на высоковольтном оборудовании.

Номинальные значения вторичных токов измерительных трансформаторов энергетики принимают в 5 ампер для оборудования до 110 кВ включительно и 1 А — выше.

Широкое применение трансформаторы тока нашли в измерительных приборах. За счет использования конструкции раздвижного магнитопровода удается быстро выполнять различные замеры без разрыва электрической цепи, что необходимо делать при использовании обычных амперметров.

Токовые клещи с раздвижным магнитопроводом трансформатора тока позволяют обхватить любой проводник с напряжением и замерить величину и угол вектора тока.

Трансформаторы напряжения

Отличительная особенность этих конструкций заключается в том, что они работают в режиме, близком к состоянию холостого хода, когда величина их выходной нагрузки невысокая. Они подключается к той системе напряжений, величина которой будет измеряться.

Измерительные трансформаторы напряжения обеспечивают гальваническую развязку оборудования первичных и вторичных цепей, работают в каждой фазе высоковольтного оборудования.

Из них создают целые комплексы систем измерения, позволяющие фильтровать и выделять различные составляющие векторов напряжения, учет которых необходим для точной работы защит, блокировок, систем сигнализации.

За счет работы трансформаторов тока и напряжения снимают вектора вторичных величин, пропорциональные первичным в реальном масштабе времени. Это позволяет не только создавать цепи измерения и защит по току и напряжению, но и за счет математических преобразований векторов анализировать состояние мощностей и сопротивлений в действующей электрической системе.

Специальные виды трансформаторов

К этой группе относят:

  • разделительные;
  • согласующие;
  • высокочастотные;
  • сварочные и другого типа трансформаторные устройства, созданные для выполнения специальных электрических задач.

Разделительные трансформаторы

Размещение двух обмоток совершенно одинаковой конструкции на общем магнитопроводе позволяет из 220 вольт 50 герц на входе получать такое же напряжение на выходе.

Напрашивается вопрос: зачем делать такое преобразование? Ответ прост: в целях обеспечения электрической безопасности.

При пробое изоляционного слоя провода первичной схемы на корпусе прибора появляется опасный потенциал, который по случайно сформированной цепи через землю способен поразить человека, нанести ему электротравму.

Гальваническое разделение схемы позволяет оптимально использовать питание электрооборудования и в то же время исключает получение травм при пробоях изоляции вторичной схемы на корпус.

Поэтому разделительные трансформаторы широко используются там, где проведение работ с электроинструментом требует принятия дополнительных мер безопасности. Также они широко используются в медицинском оборудовании, допускающем непосредственный контакт с телом человека.

Высокочастотные трансформаторы

Отличаются от обычных материалом магнитопровода, который способен, в отличие от обычного трансформаторного железа, хорошо, без искажений передавать высокочастотные сигналы.

Принцип их работы демонстрируют фотография простой самодельной конструкции на ферритах.

Согласующие трансформаторы

Основное назначение — согласование сопротивлений разных частей в электронных схемах. Согласующие трансформаторы нашли широкое применение в антенных устройствах и конструкциях усилителей на электронных лампах звуковых частот.

Сварочные трансформаторы

Первичная обмотка создается с большим число витков, позволяющих нормально обрабатывать электрическую энергию с входным напряжением 220 или 380 вольт. Во вторичной обмотке число витков значительно меньше, а ток протекающий по ним высокий. Он может достигать тысяч ампер.

Поэтому толщина провода этой цепи выбирается повышенного поперечного сечения. Для управления сварочным током существует много различных способов.

Сварочные трансформаторы массово работают в промышленных установках и пользуются популярностью у любителей изготавливать различные самоделки своими руками.

Рассмотренные виды трансформаторов являются наиболее распространёнными. В электрических схемах работают и другие подобные устройства, выполняющие специальные задачи технологических процессов.

Ранее ЭлектроВести писали, что на хмельницкой свалке добытый биогаз перерабатывают на электроэнергию.

По материалам: electrik.info.

Как работает трансформатор преобразование тока

Преобразование переменного тока

Переменный ток выгодно отличается от постоянного тока тем, что он хорошо поддается трансформированию, т. е. преобразованию тока относительно высокого напряжения в ток более низкого напряжения, или наоборот. Трансформаторы позволяют передавать переменный ток по проводам на большие расстояния с малыми потерями энергии. Для этого переменное напряжение, вырабатываемое на электростанциях генераторами, с помощью трансформаторов повышают до напряжения в несколько сотен тысяч вольт и «посылают» по линиям электропередачи (ЛЭП) в различных направлениях. С повышением напряжения уменьшается сила тока в ЛЭП при одной и той же передаваемой мощности, что и приводит к снижению потерь и позволяет применять провода меньшего сечения. В городах и селах на расстоянии сотен и тысяч километров от электростанций это напряжение понижают трансформаторами до более низкого, которым и питают лампочки освещения, электродвигатели и другие электрические приборы.

Трансформаторы широко применяют и в радиотехнике.

Схематическое устройство простейшего трансформатора показано на рис. 1. Он состоит из двух катушек из изолированного провода, называемых обмотками, насаженных на магнитопровод, собранный из пластин специальной, так называемой трансформаторной стали. Обмотки трансформатора изображают на схемах так же, как катушки индуктивности, а магнитопровод — линией между ними.

Рис. 1.Трансформатор с магнитопроводом из стали:
а — устройство в упрощенном виде; б — схематическое изображение

Действие трансформатора основано на явлении электромагнитной индукции. Переменный ток, текущий по одной из обмоток трансформатора, создает вокруг нее и в магнитопроводе переменное магнитное поле. Это поле пересекает витки другой обмотки трансформатора, индуцируя в ней переменное напряжение той же частоты. Если к этой обмотке подключить какую-либо нагрузку, например лампу накаливания, то в получившейся замкнутой цепи потечет переменный ток — лампа станет гореть.

Обмотку, к которой подводится переменное напряжение, предназначаемое для трансформирования, называют первичной, а обмотку, в которой индуцируется переменное напряжение — вторичной.

Напряжение, которое получается на концах вторичной обмотки, зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке приблизительно равно напряжению, подведенному к первичной обмотке. Если вторичная обмотка трансформатора содержит меньшее число витков, чем первичная, то и напряжение ее меньше, чем напряжение, подводимое к первичной обмотке. И наоборот, если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подводимого к первичной обмотке. В первом случае трансформатор будет понижать, во втором повышать переменное напряжение.

Напряжение, индуцируемое во вторичной обмотке, можно довольно точно подсчитать по отношению чисел витков обмоток трансформатора: во сколько раз она имеет большее (или меньшее) число витков по сравнению с числом витков первичной обмотки, во столько же раз напряжение на ней будет больше (или меньше) по сравнению с напряжением, подводимым к первичной обмотке. Так, например, если одна обмотка трансформатора имеет 1000 витков, а вторая 2000 витков, то, включив первую обмотку в сеть переменного тока с напряжением 220 В, мы получим во второй обмотке напряжение 440 В — это повышающий трансформатор. Если же напряжение 220 В подвести к обмотке, имеющей 2000 витков, то в обмотке, содержащей 1000 витков, мы получим напряжение 110 В — это понижающий трансформатор. Обмотка, имеющая 2000 витков, в первом случае будет вторичной, а во втором случае — первичной.

Но, пользуясь трансформатором, не стоит забывать о том, что мощность тока (Р = U·I), которую можно получить в цепи вторичной обмотки, никогда не превышает мощности тока первичной обмотки. Это значит, что получить от вторичной обмотки одну и ту же мощность можно, повышая напряжение и уменьшая ток, либо потребляя от нее пониженное напряжение при увеличенном токе. Следовательно, повышая напряжение мы проигрываем в значении тока, а выигрывая в значении тока, обязательно проигрываем в напряжении.

Для питания радиоаппаратуры от сети переменного тока часто используют трансформаторы с несколькими вторичными обмотками с различным числом витков. С помощью таких трансформаторов, называемых сетевыми, или трансформаторами питания, получают несколько напряжений, питающих разные цепи.

Наибольшая мощность тока, которая может быть трансформирована, зависит от размера магнитопровода трансформатора и диаметра провода, из которого выполнены обмотки. Чем больше объем магнитопровода, тем большая мощность тока может быть трансформирована. Практически же в трансформаторе всегда бесполезно теряется часть мощности. Поэтому мощность в цепи вторичной обмотки (или сумма мощностей, получаемых от всех вторичных обмоток) всегда несколько меньше мощности, потребляемой первичной обмоткой.

Если, однако, в первичной обмотке трансформатора течет пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение, частота которого равна частоте пульсаций тока в первичной обмотке. Это свойство трансформатора используется для индуктивной связи между разными цепями, разделения пульсирующего тока на его составляющие и ряда других целей, о которых разговор будет впереди.

Все трансформаторы со стальными магнитопроводами и магнитопроводами из железоникелевых сплавов (пермаллоя) называют низкочастотными трансформаторами, так как они пригодны только для преобразования переменного напряжения низкочастотного диапазона. На схемах низкочастотные трансформаторы обозначают буквой Т, а их обмотки римскими цифрами.

Принцип действия высокочастотных трансформаторов, предназначаемых для трансформации колебаний высокой частоты, также основан на электромагнитной индукции. Они могут быть как с сердечниками, так и без сердечников. Их обмотки (катушки) располагают на одном или разных каркасах, но обязательно близко одну к другой (рис. 2).

Рис. 2.Высокочастотные трансформаторы без сердечников (слева катушки трансформатора с общим каркасом; справа — катушки трансформатора на отдельных каркасах; в центре обозначение на схемах)

При появлении тока высокой частоты в одной из катушек вокруг нее возникает быстропеременное магнитное поле, которое индуцирует во второй катушке напряжение такой же частоты. Как и в низкочастотных трансформаторах, напряжение во вторичной катушке зависит от соотношения чисел витков в катушках.

Для усиления связи между катушками в высокочастотных трансформаторах используют сердечники в виде стержней или колец (рис. 3), представляющие собой спрессованную массу из неметаллических материалов. Их называют магнитодиэлектрическими или высокочастотными сердечниками.

Рис 3.Высокочастотные трансформаторы с магнитодиэлектрическими сердечниками (слева — со стержневым, справа с кольцевым (тороидальным) сердечником)

Магнитодиэлектрический сердечник высокочастотного трансформатора независимо от его конструкции и формы обозначают на схемах так же, как магнитопровод низкочастотного трансформатора, — прямой линией между катушками, а обмотки, как и катушки индуктивности, — латинскими буквами L.


СЗТТ :: Измерительные трансформаторы напряжения

Накладное предохранительное устройство НПУ-6(10)

Схемы защит трансформаторов напряжения от феррорезонанса

Заземляемые трансформаторы напряжения ЗНОЛ.02

! НОВИНКА !

Класс напряжения, кВ: 27
Номинальное напряжение вторичной обмотки, В: 100
Номинальная мощность, ВА, в классе точности: от 20 до 40

Заземляемые трансформаторы напряжения ЗНОЛ.03

! НОВИНКА !

Класс напряжения, кВ: 6 или 10
Количество вторичных обмоток: 2
Напряжение вторичных обмоток, В: 100/√3; 100/3

 

Заземляемые трансформаторы напряжения 3НОЛ.06

Класс напряжения, кВ: 3-35 кВ
Количество дополнительных обмоток: 2 или 3
Напряжение вторичных обмоток, В: 100/3; 100; 110/3; 110; 100/√3
Нагрузка в классе точности 0,5, ВА: 30-75

Заземляемые трансформаторы напряжения ЗНОЛП со встроенным предохранительным устройством

Класс напряжения, кВ: 3, 6 или 10
Количество дополнительных обмоток: 2 или 3
Напряжение вторичных обмоток, В: 100/3; 100; 110/3; 110; 100/√3

Заземляемый трансформатор напряжения ЗНОЛПМ со встроенным предохранительным устройством

Класс напряжения, кВ: 6 или 10
Количество вторичных обмоток: 2
Напряжение вторичных обмоток, В: 100/3 или 100 или 100/√3

Заземляемые трансформаторы напряжения ЗНОЛ.01ПМИ со встроенными предохранительными устройствами

Класс напряжения, кВ: 10
Количество вторичных обмоток: 2
Напряжение вторичных обмоток, В: 100/√3; 100/3

Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛ.04П

Класс напряжения, кВ: 6 или 10
Напряжение основной вторичной обмотки, В: 100
Номинальная мощность, ВА, в классе точности: от 60 до 225

 

Трехфазная группа трансформаторов напряжения 3хЗНОЛ.06 и 3хЗНОЛП

Класс напряжения, кВ: 6 или 10
Напряжение основной вторичной обмотки, В: 100
Напряжение дополнительной вторичной обмотки, В: от 90 до 110
Номинальная мощность, ВА, в классе точности: от 90 до 900

Трехфазная группа трансформаторов напряжения 3хЗНОЛПМ

Класс напряжения, кВ: 6 или 10
Напряжение основной вторичной обмотки, В: 100
Напряжение дополнительной вторичной обмотки, В: от 90 до 110
Номинальная мощность, ВА, в классе точности: от 30 до 270

Заземляемые трансформаторы напряжения ЗНОЛ наружной установки

Класс напряжения, кВ: 3, 6 или 10
Напряжение основной вторичной обмотки, В: 100/√3; 110/√3
Напряжение дополнительной вторичной обмотки, В: 100/3; 100; 110/3; 110; 100/√3
Номинальная мощность, ВА, в классе точности: от 15 до 300

Заземляемые трансформаторы напряжения ЗНОЛ.01П(И)-20

 

Класс напряжения, кВ: 20
Количество вторичных обмоток: 3
Напряжение вторичных обмоток, В: 100/√3; 100/3

Заземляемые трансформаторы напряжения ЗНОЛ.06-27(35) (ЗНОЛЭ-35)

Класс напряжения, кВ: 27 или 35
Напряжение основной вторичной обмотки, В: 100/√3; 100
Напряжение дополнительной вторичной обмотки, В: 100/3; 127
Номинальная мощность, ВА, в классе точности: от 10 до 120

Заземляемый трансформатор напряжения ЗНОЛ-35 III

Класс напряжения, кВ: 27 или 35
Напряжение основной вторичной обмотки, В: 100/√3; 100
Напряжение дополнительной вторичной обмотки, В: 100/3; 127
Номинальная мощность, ВА, в классе точности: от 10 до 120

Заземляемый трансформатор напряжения ЗНОЛ.01ПМИ-35

Класс напряжения, кВ: 35
Напряжение основной вторичной обмотки, В: 100/√3
Напряжение второй основной вторичной обмотки, В: 100/√3
(для четырех обмоточного трансформатора)
Напряжение дополнительной вторичной обмотки, В: 100/3
Номинальная мощность, ВА: от 10 до 600

Незаземляемые трансформаторы напряжения НОЛ

Класс напряжения, кВ: 3, 6 или 10
Напряжение основной вторичной обмотки, В: 100; 110
Номинальная мощность, ВА, в классе точности: от 15 до 300

Незаземляемые трансформаторы напряжения НОЛ.08

Класс напряжения, кВ: 3, 6 или 10
Напряжение основной вторичной обмотки, В: 100; 110
Номинальная мощность, ВА, в классе точности: от 15 до 300

Незаземляемые трансформаторы напряжения НОЛ.08-6(10)М

Класс напряжения, кВ: 6 или 10
Напряжение основной вторичной обмотки, В: 100
Номинальная мощность, ВА, в классе точности: от 20 до 200

Незаземляемые трансформаторы напряжения НОЛ.08.3-6(10)М

Класс напряжения, кВ: 6 или 10
Напряжение основной вторичной обмотки, В: 100
Номинальная мощность, ВА, в классе точности: 20

 

Трехфазная группа трансформаторов напряжения НОЛ.08-6(10)М

! НОВИНКА !

Класс напряжения, кВ: 6 или 10
Напряжение основной вторичной обмотки, В: 100
Номинальная мощность, ВА, в классе точности: от 60 до 600

Незаземляемые трансформаторы напряжения НОЛП со встроенным предохранительным устройством

Класс напряжения, кВ: 6 или 10
Напряжение основной вторичной обмотки, В: 100; 110
Номинальная мощность, ВА, в классе точности: от 30 до 300

Незаземляемые трансформаторы напряжения НОЛП-6(10)М

! НОВИНКА !

Класс напряжения, кВ: 6 или 10
Напряжение основной вторичной обмотки, В: 100
Номинальная мощность, ВА, в классе точности: от 20 до 200

 

Незаземляемые трансформаторы напряжения НОЛ-10М IV

! НОВИНКА !

Класс напряжения, кВ: 6 или 10
Напряжение основной вторичной обмотки, В: 100
Номинальная мощность, ВА, в классе точности: от 20 до 200

Незаземляемые трансформаторы напряжения НОЛ.11-6.О5

Класс напряжения, кВ: 6
Напряжение основной вторичной обмотки, В: 100; 127; 220
Напряжение дополнительной вторичной обмотки, В: 100/3; 100; 110/3; 110; 100/√3
Номинальная мощность, ВА, в классе точности: от 30 до 250

Незаземляемые трансформаторы напряжения НОЛ.12

Класс напряжения, кВ: 0.66, 6 или 10
Напряжение основной вторичной обмотки, В: 100; 127
Номинальная мощность, ВА, в классе точности: 30
Предназначен для использования на речных и морских судах

Незаземляемый трансформатор напряжения НОЛ-20, НОЛ-35

Класс напряжения, кВ: 20 или 35
Напряжение основной вторичной обмотки, В: 100
Номинальная мощность, ВА, в классе точности: от 10 до 600

Незаземляемые трансформаторы напряжения НОЛ-20(35) III наружной установки

Класс напряжения, кВ: 35
Напряжение основной вторичной обмотки, В: 100
Номинальная мощность, ВА, в классе точности: от 50 до 600

Трансформаторы напряжения НТМИА-6(10)

Класс напряжения, кВ: 6 или 10
Напряжение основной вторичной обмотки, В: 100
Напряжение дополнительной вторичной обмотки, В: от 97 до 103
Номинальная мощность, ВА, в классе точности: от 75 до 600

Устройство защиты от феррорезонанса СЗТн

Трансформаторы тока и напряжения

Перед тем, как рассказать об измерительных трансформаторах – немного теории. Трансформатор – элемент электрической цепи, преобразующий величину переменного напряжения. Трансформаторы могут быть:

  • понижающими, выдающие на выходе меньшее напряжение, чем на входе;
  • повышающими, выполняющие противоположное преобразование;
  • разделительные, не изменяющие величину напряжения, применяющиеся для гальванической развязки между участками электрической сети.

Повышающие и понижающие трансформаторы обратимы: если подать номинальное выходное напряжение трансформатора на его вторичную обмотку, на первичной мы получим номинальное входное напряжение.

С токами в обмотках происходит обратная картина. Первичная обмотка рассчитывается на ток, соответствующий номинальной мощности трансформатора. Под мощность выбирается и сечение магнитопровода, и диаметр обмоточного провода первичной обмотки.

Ток вторичной обмотки понижающего трансформатора может быть больше тока в первичной во столько раз, во сколько меньше ее напряжение. Это отношение называется коэффициентом трансформации. Поэтому сечение обмоточного провода вторичной обмотки у понижающего трансформатора больше. У понижающего – все наоборот. У разделительного – все одинаково.

Зачем нужны измерительные трансформаторы напряжения

В электроустановках до 1000 В измерение напряжения производят, подключая вольтметры непосредственно к шинам или другим контролируемым участкам сети. Но в сетях 6 кВ и выше это невозможно, потому что:

  • при измерении высокого напряжения требуется понизить его величину до размера, воспринимаемого рамкой стрелочного прибора или электронным преобразователем цифрового. Резистивные делители не выполнят задачу с требуемой точностью, а применение понижающего трансформатора сделает прибор громоздким;
  • изоляция проводников для подключения прибора должна выдерживать номинальное напряжение электроустановки. Кроме того, должны соблюдаться междуфазные расстояния, требуемые ПУЭ. Выполнить это невозможно.
Трансформатор напряжения НОЛ

Поэтому для измерений величину напряжения понижают, и для этого нужен трансформатор напряжения

Трансформаторы напряжения и их конструкция

На какое бы напряжение не была рассчитана первичная обмотка трансформатора напряжения, напряжение на вторичной его обмотке стандартно – 100 В. Это сделано для унификации: счетчику электроэнергии без разницы, в какой электроустановке работать – 6 кВ, 10 кВ или более. Если он предназначен для эксплуатации с трансформаторами напряжения, в его технических характеристиках в графе «номинальное напряжение» указано: «3х100 В». Цифра «3» означает, что для измерений к нему подключаются три фазы.

Конструктивно трансформаторы напряжения выполняются:

  • элемент преобразования одной фазы напряжения в своем корпусе, при трехфазном напряжении устанавливаются три таких трансформатора;
  • один корпус содержит трансформатор для преобразования всех трех фаз.
Трехфазный трансформатор напряжения НАМИ

Первичные обмотки трехфазных трансформаторов соединяются в звезду.

Вторичных обмоток у трансформаторов напряжения несколько:

  • обмотка для приборов учета, имеющая класс точности 0,5s;
  • обмотка для измерительных приборов – класс точности 0,5;
  • обмотка для устройств релейной защиты – класс 10Р;
  • обмотка для разомкнутого треугольника – класс 10Р.

Класс точности имеет значение при учете и измерениях. Но есть еще один нюанс: измерительная обмотка трансформатора работает в заявленном классе точности, если не превышена допустимая нагрузка на нее. Поэтому, вместе с классом, на бирке трансформатора указывается допустимая мощность, превышать которую нельзя.

Трансформатор напряжения НОМ-10

Еще один фактор, изменяющий класс точности – сопротивление соединительных проводников. Если прибор учета или амперметр находится вдали от трансформатора напряжения и подключен контрольным кабелем с жилами недостаточного сечения, то значение напряжения на нем будет меньше, чем на трансформаторе.

Выводы вторичной обмотки трансформатора напряжения, используемого для коммерческого учета, закрывают крышкой и пломбируют.

Первичные обмотки трансформаторов напряжения защищают предохранителями. Для защиты вторичных обмоток раньше тоже применяли предохранители, но теперь их заменили автоматические выключатели.

Три однофазных трансформатора ЗНОЛ, собранные вместе

А теперь – вспомним теорию в начале статьи. Основная опасность при работе на трансформаторах напряжения состоит в явлении обратной трансформации. Если по каким-то причинам на вторичную обмотку попадет напряжение 100 В, то первичная окажется под номинальным напряжением электроустановки. Работающие в ячейке люди окажутся под напряжением. Поэтому при выводе в ремонт трансформатора напряжения принимают меры. Исключающие обратную трансформацию.

Зачем нужны трансформаторы тока

Одна из причин, из-за которых в электроустановках выше 1000 В устанавливают трансформаторы тока – та же, что и для трансформаторов напряжения. Невозможно обеспечить изоляцию цепей для подключения приборов.

Но есть дополнительные факторы, вынуждающие использовать их и в электроустановках выше 1000 В:

  • максимальный ток, на который рассчитаны электросчетчики прямого включения – 100 А. Токи выше 100 А требуется понизить.
  • включение амперметров последовательно с нагрузкой снижает надежность электроснабжения;
  • вольтметр подключается к шинам через предохранители или автоматический выключатель, выводы амперметра защитить невозможно. Ток короткого замыкания в амперметре равен току КЗ на шинах. Ошибки в эксплуатации приводят к тяжелым последствиям, а неисправности прибора выводят его из строя навсегда. Поэтому и требуется выполнить гальваническую развязку амперметра с сетью.
  • Заменить амперметр прямого подключения можно, только отключив нагрузку.

Принцип действия и конструкция трансформаторов тока

Трансформатор тока тоже имеет первичную и вторичную обмотку. Но особенность его в том, что первичная обмотка имеет один или несколько витков, а в большинстве изделий представляет собой шину, проходящую через корпус трансформатора. Вариант – трансформаторы, не имеющие собственной первичной обмотки. Они надеваются на шину с измеряемым током или через них пропускается провод, жила кабеля.

Варианты конструктивного исполнения трансформаторов тока до 1000 В

Вторичная обмотка у трансформатора тока на напряжение до 1000 В одна, но у высоковольтных их – минимум две, но бывает и больше. Работает он аналогично повышающему трансформатору, поэтому – все, что сказано в начале статьи о соотношении токов в них для него справедливо.

Номинальный ток вторичной обмотки трансформатора тока всегда равен 5 А, на какой бы ток не была рассчитана первичная. Классы точности обмоток для подключения аппаратуры различаются так же, как и у трансформаторов напряжения.

Но вот подключить к трансформатору тока, используемому для учета электроэнергии, ничего больше не получится. По правилам, кроме счетчика, там не должно быть ничего. И если для аппаратов выше 1000 В это требование легко выполнить (один трансформатор имеет несколько обмоток), то для электроустановок до 1000 В при необходимости устанавливают по два трансформатора на одну фазу: один – для учета, другой – для всего остального (амперметры, ваттметры, устройства защиты, компенсация реактивной мощности). Выводы вторичной обмотки для коммерческого учета у всех трансформаторов закрываются крышкой и пломбируются.

Установка трансформаторов тока в ячейке выше 1000 В

Трансформатор тока должен работать в замкнутой на нагрузку или накоротко вторичной обмоткой. Иначе на ней наводится ЭДС далеко не безопасной величины как для людей, так и для электрооборудования. При обрыве во вторичных цепях можно получить смертельный удар током, даже проведя рукой рядом с клеммами амперметра или счетчика. А электронные схемы на входе приборов выйдут из строя под действием высокого напряжения.

Поэтому для замены амперметров и электросчетчиков в токовых цепях устанавливают специальные клеммы, на которых перед демонтажем прибора обмотку трансформатора закорачивают. Для приборов учета рядом устанавливают клеммы для отключения цепей напряжения. Это функции совмещены в специальном устройстве, называющимся «колодка клеммная измерительная». Для коммерческих цепей учета эти коробки пломбируются, для чего винт, крепящий ее крышку, имеет прорезь в головке (как у винтов крепления крышки корпуса электросчетчика).

Видео про трансформаторы тока

Почему нельзя размыкать вторичную обмотку трансформатора тока и зачем ее обязательно заземлять? Попутно вы узнаете о технических характеристиках и конструкции трансформаторов тока, особенностях их применения.

Оцените качество статьи:

Основные определения и термины, применяемые в трансформаторах

Трансформатор — это статическое электромагнитное устройство, имеющее две или большее число индукционно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока, в том числе для преобразования электрической энергии переменного тока одного напряжения в электрическую энергию другого напряжения.

Рис.   1.   Схема   работы   однофазного трансформатора при холостом ходе

Работа трансформатора основана на явлении электромагнитной индукции, заключающемся в том, что при изменении во времени магнитного поля, пронизывающего проводящий контур, в последнем наводится (индуцируется) электродвижущая сила (эдс).
Если к концам одной из обмоток однофазного трансформатора (рис. 1), в данном случае АХ обмотки 1У подведено переменное напряжение U1, то по ней протекает ток /х холостого хода, его также называют намагничивающим, он создает магнитное поле, изменяющееся с той же частотой, что и напряжение. При этом вследствие высокой магнитной проницаемости стали большая часть магнитного поля, которая называется основным магнитным нолем ф трансформатора, замыкается через контур магнитной системы, другая часть магнитного поля, называемого полем рассеяния Фр  замыкается через воздух, она не связана магнитно с обмоткой 2 и поэтому в трансформировании напряжения (энергии) не участвует. Согласно закону электромагнитной индукции изменяющееся основное магнитное поле Ф, пронизывающее обе обмотки, наводит в них эдс E1 и Е2. Напряжение U2l измеренное вольтметром и подведенное напряжение Uu практически можно считать равными эдс Е2 и Е1 соответственно. Если к концам ах обмотки подсоединить какую-либо электрическую нагрузку, то в ее цепи возникает ток, который одновременно вызовет увеличение тока в обмотке 1.
Таким образом, в рассматриваемом электромагнитном устройстве— трансформаторе происходит трансформация электрической энергии, подведенной к обмотке /, в электромагнитную и далее в электрическую, используемую в цепи нагрузки, подключенной в обмотке 2.
Трансформатор, в магнитной системе 3 которого создается однофазное магнитное поле, называется однофазным, если же создается трехфазное поле, то — трехфазным.
Обмотка, к которой подводится энергия (напряжение) преобразуемого переменного тока, называются первичной;  обмотка трансформатора, от которой отводится энергия преобразованного переменного тока, называется вторичной.
Под обмоткой трансформатора подразумевают совокупность витков, образующих электрическую цепь, в которой суммируются электродвижущие силы, наведенные в витках, с целью получения заданного напряжения.
Обмотка трансформатора, к которой подводится электроэнергия преобразуемого или от которой отводится энергия преобразованного переменного тока, называется основной. Силовой трансформатор имеет не менее двух основных обмоток.
Основная обмотка трансформатора, имеющая наибольшее номинальное напряжение, называется обмоткой высшего напряжения (ВН), наименьшее — обмоткой низшего напряжения (НН), а промежуточное между ними — обмоткой среднего напряжения (СН).
Трансформатор с двумя гальванически не связанными обмотками (ВН и НН) называется двухобмоточным, с тремя (ВН, СН и НН) — трехобмоточным. Одна из этих обмоток является первичной, две другие — вторичными. Если у трансформатора первичной является обмотка НН, его называют повышающим, если ВН — понижающим.

Значения вторичной эдс Е2 и соответственно напряжения U2 зависят от числа витков вторичной обмотки. Увеличение числа витков вторичной обмотки приводит к увеличению вторичных эдс и напряжения и наоборот.

Другим расчетным показателем трансформатора является коэффициент трансформации ky равный отношению напряжения на зажимах обмотки высшего напряжения к напряжению на зажимах обмотки низшего напряжения в режиме холостого хода (ненагруженного) трансформатора.
Двухобмоточный трансформатор имеет один коэффициент трансформации, равный отношению высшего напряжения к низшему, трехобмоточный трансформатор — три коэффициента трансформации, равные отношению высшего напряжения к низшему, высшего напряжения к среднему и среднего к низшему.
Для двух обмоток силового трансформатора, расположенных на одном стержне магнитной системы, коэффициент трансформации принимается равным отношению чисел их витков. Поэтому если, например, первичная обмотка с числом витков W\ является обмоткой высшего напряжения, а вторичная с числом витков w2— низшего напряжения, то k=U\fU2=Wi/w2y откуда U\ = kU2, W\ = kw2.
Таким образом, зная коэффициент трансформации и напряжение вторичной обмотки трансформатора, легко определить напряжение первичной обмотки и наоборот. Это относится также к значениям токов и к числам витков.
Для улучшения электрической изоляции токопроводящих частей и условий охлаждения трансформатора обмотки вместе с магнитной системой погружают в бак с трансформаторным маслом. Такие трансформаторы называют маслонаполненным и или масляными.
Некоторые трансформаторы специального назначения вместо масла наполняют негорючей синтетической жидкостью — совтолом. Трансформаторы, у которых основной изолирующей средой служит воздух, газ или твердый диэлектрик, а охлаждающей средой — атмосферный воздух, называют сухими.
Каждый трансформатор характеризуется номинальными данными, основные указывают в прикрепляемой к нему табличке. К ним относятся: мощность, напряжение, ток, частота и др.

Номинальная мощность трансформатора — это мощность, на которую он рассчитан.
Номинальная мощность 5 трансформаторов выражается полной электрической мощностью в киловольт-амперах (кВ-А) или мегавольтамперах (MB-А).

Номинальное первичное напряжение — это напряжение, на которое рассчитана первичная обмотка трансформатора; номинальное вторичное напряжение— напряжение на зажимах вторичной обмотки, получающееся при холостом ходе трансформатора и номинальном напряжении на зажимах первичной обмотки. Номинальные токи определяются соответствующими номинальными значениями мощности и напряжения.
Высшее номинальное напряжение трансформатора — это наибольшее из номинальных напряжений обмоток трансформатора.

Низшее номинальное напряжение — наименьшее из номинальных напряжений обмоток трансформатора.

Среднее номинальное напряжение — номинальное напряжение, являющееся промежуточным между высшим и низшим номинальным напряжением обмоток трансформатора.
Режим, при котором одна из обмоток трансформатора замкнута накоротко, а вторая находится под напряжением, называется коротким замыканием (к. з.). Если короткое замыкание происходит в процессе эксплуатации трансформатора при номинальных напряжениях, в обмотках возникают токи короткого замыкания, в 5—20 раз (и более) превышающие номинальные. При этом резко повышается температура обмоток и в них возникают большие механические усилия. Такое замыкание является аварийным и для предотвращения повреждения трансформатора применяется специальная защита, которая должна отключить его в течение долей секунды.
Если в порядке опыта замкнуть накоротко одну из обмоток трансформатора (рис. 2), в данном случае обмотку НН с числом витков W29 а к другой с числом витков w\ подвести пониженное напряжение и постепенно его повышать, то при определенном значении напряжения С/кз, называемом напряжением короткого замыкания, в обмотках будут проходить токи, соответственно равные номинальным значениям первичной и вторичной обмоток.

Равенство напряжений короткого замыкания параллельно включенных трансформаторов — одно из условий их нормальной работы. Напряжение икз указывают в табличке каждого трансформатора. Оно определено стандартами и зависит от типа и мощности трансформатора: для силовых трансформаторов малой и средней мощности оно составляет 5—7%, для мощных трансформаторов — 6—17% и более.

Рис. 2. Схема и поля рассеяния однофазного трансформатора в режиме короткого замыкания: а — условного, б — реального

При опыте короткого замыкания в магнитной системе создается незначительное магнитное поле Фк, обусловленное малым намагничивающим током вследствие небольшого подведенного напряжения ик.3. Проходящие по первичной и вторичной обмоткам номинальные токи создают встречнонаправленные мдс, соответственно им поля рассеяния и Фp1 и Фр2, вынуждены замыкаться через воздух и металлические детали трансформатора (см. рис. 2, а). Поля рассеяния в реальном трансформаторе, в котором первичная и вторичная обмотки размещены на одном стержне магнитной системы, изображены на рис. 2 б.
Результирующее поле рассеяния Фр создает в обмотках индуктивное сопротивление, которое при аварийном коротком замыкании ограничивает ток в обмотках, предохраняя их от чрезмерного нагрева и разрушения. Чем больше иш, тем меньше опасность разрушения обмоток при аварийных коротких замыканиях. Однако напряжение короткого замыкания иш при расчете трансформатора ограничивают до определенного значения, в противном случае, поля рассеяния, создавая значительное индуктивное сопротивление, вызовут недопустимо большое реактивное падение напряжения в обмотках, в результате чего снизятся вторичное напряжение и соответственно мощность, получаемая потребителем. Напряжение короткого замыкания определяется для каждой пары обмоток: в двухобмоточном трансформаторе — для обмоток ВН — НН; в трехобмоточном трансформаторе — для обмоток ВН—НН; ВН — СН и СН — НН.

Потери трансформатора —  это активная мощность, расходуемая в магнитной системе, обмотках и других частях трансформатора при различных режимах работы.

Потери холостого хода Рхх — это потребляемая трансформатором активная мощность в режиме холостого хода при номинальном напряжении и номинальной частоте первичной обмотки.
При холостом ходе трансформатор не передает электрическую энергию, так как вторичная обмотка разомкнута. Потребляемая им активная мощность тратится на нагревание стали магнитной системы от перемагничивания и вихревыми токами, а также частично первичной обмотки. Эти суммарные потери называют потерями холостого хода трансформатора. Ввиду малого тока холостого хода потери в активном сопротивлении обмотки при этом незначительны (0,3—0,5% номинальной мощности трансформатора), поэтому ими пренебрегают и считают, что мощность расходуется только на потери в стали магнитной системы. Абсолютное значение потерь холостого хода трансформатора незначительно. Однако их стремятся максимально снизить, так как суммарные годовые потери холостого хода трансформатора сравнительно велики.

Потери короткого замыкания Рш — это потребляемая трансформатором активная мощность при опыте к. з., обусловленная потерями в активном сопротивлении первичной и вторичной обмоток и токоведущих частях трансформатора при прохождении номинального тока и добавочными потерями, вызванными полями рассеяния.

Напряжение Uкз, подводимое к трансформатору при опыте короткого замыкания, в зависимости от его конструкции и назначения в 5—20 раз меньше номинального, поэтому магнитное поле в магнитной системе незначительное, соответственно незначительны и потери в активной стали на перемагничивание. Ими пренебрегают, считая, что потребляемая мощность при коротком замыкании расходуется только на потери в активном сопротивлении обмоток и на добавочные потери, вызванные полями рассеяния. Поля рассеяния наводят в обмотках и других токоведущих частях трансформатора (отводы, вводы и др.) вихревые токи, а в стальных конструкциях (стенки бака, ярмовые балки, детали прессовки и др.) кроме вихревых токов создают гистерезисные потери (потери от перемагничивания). Добавочные потери от полей рассеяния вызывают перегревы отдельных частей трансформатора и снижают его коэффициент полезного действия (кпд). Поэтому при расчетах и конструировании трансформаторов поля рассеяния стараются уменьшить до оптимального значения, для этого первичную и вторичную обмотки размещают концентрически она одном стержне магнитной системы, максимально возможно уменьшая канал между ними (рис. 3). Чем ближе обмотки друг к другу, тем меньше поле рассеяния, а следовательно, добавочные потери от вихревых токов и перемагничивания.

 


Рис. 3. Размещение обмоток ВН и НН на стержне магнитной системы

При опыте короткого замыкания токи и потери мощности такие же, как и при полной нагрузке трансформатора, поэтому их часто называют нагрузочными потерями. Потери холостого хода и короткого замыкания нормируются стандартом.
Суммарные потери трансформатора при номинальной нагрузке составляют потери холостого хода и короткого замыкания. Зная эти потери и мощность, выдаваемую трансформатором в сеть, можно определить его кпд в процентах. Трансформаторы имеют сравнительно высокий кпд (98,5—99,3%).

Трансформаторы напряжения

— купите здесь безопасные и эффективные преобразователи мощности

Трансформаторы напряжения

ACUPWR — это самые безопасные и надежные преобразователи мощности, доступные во всем мире. Наши продукты обеспечивают совместимость с различными мировыми стандартами напряжения.

С трансформатором напряжения ACUPWR вы можете использовать свой 120-вольтовый блендер в стране, где напряжение составляет 240 вольт, или усилитель домашнего кинотеатра на 220 вольт в Японии, где 100 вольт является стандартным. ACUPWR обеспечивает безопасную энергию, куда бы вас ни забросила жизнь!

Чем отличается ACUPWR?

  • Нет правила «удвоить мощность»! Известно, что трансформаторы иностранного производства взрываются до достижения предельной мощности, поэтому вам необходимо купить модель, которая может выдерживать удвоенную мощность.Трансформаторы напряжения ACUPWR будут обрабатывать мощность, указанную на устройстве. У вас есть 750-ваттный прибор? Покупайте электрический трансформатор ACUPWR на 750 ватт с уверенностью!
  • Высокое качество! Наши международные преобразователи мощности собираются вручную в США с использованием компонентов премиум-класса и проходят стендовые испытания перед отправкой.
  • Без предохранителей! Наша схема тепловой защиты защищает от перегрузки, автоматически отключая трансформатор, если он обнаруживает перегрев.
  • Выходит за рамки! Продукты ACUPWR Tru-Watts ™ работают на 20% сверх заявленной мощности и предназначены для выдерживания колебаний напряжения и мощности, вызванных скачками напряжения, скачками, скачками, молниями и другими аномалиями.
  • Пожизненная гарантия! Трансформаторы ACUPWR настолько хороши, что мы даем им пожизненную гарантию. Мы даже предлагаем компенсацию ущерба в размере 10 000 долларов на большинство моделей!
  • Пожизненное обслуживание клиентов! Наши технические специалисты доступны в обычные рабочие часы, чтобы ответить на ваши вопросы и решить ваши проблемы.
  • Надежность! ACUPWR доверяют НАСА, посольства, армия США, Организация Объединенных Наций, неправительственные организации, правительственные учреждения, корпорации, компании по производству фильмов и телепрограмм и другие организации.

▷ Двойные трансформаторы напряжения

Как и было обещано, 8-я статья Насира из его серии «Назад к основам» о трансформаторах! В этой 8-й статье рассматриваются сдвоенные трансформаторы напряжения и исследуются 2 типа выходных напряжений. Если вы хотите, чтобы ваши работы, свидетельства, личное мнение, обзоры или учебные пособия были опубликованы в блоге, просто отправьте нам письмо.

Определение двойного трансформатора напряжения

Двойной трансформатор напряжения можно определить как трансформатор, который может обеспечивать два типа напряжений i.е. если две отдельные обмотки соединены последовательно, они будут обеспечивать сумму напряжений, подаваемых на две катушки, а если две обмотки соединены параллельно, то сетевое напряжение будет уменьшено.

Эти напряжения можно переключать в трансформаторе в соответствии с типом требуемого выхода, просто используя переключатель двойного напряжения.

Строительно-монтажные работы

Предположим, у нас есть сдвоенный трансформатор напряжения, у которого две обмотки, соединенные последовательно на входной клемме, и две другие обмотки, также подключенные последовательно на выходной клемме, вместо вторичных обмоток.Тогда, если каждая из двух первичных обмоток рассчитана на 120 В каждая, общее напряжение на входной клемме будет равно 120 В + 120 В = 240 Вольт.

Аналогично на выходной клемме, если обе вторичные катушки рассчитаны на 12 вольт каждая, то общее напряжение на вторичной клемме также будет равно 24 вольт. Это видно из рисунка ниже:


Точно так же, теперь, если первичная и вторичная катушки соединены параллельно и каждая из двух первичных обмоток по-прежнему рассчитана на 120 вольт каждая, то общее напряжение на входной клемме теперь будет равно 120 вольт и 12 вольт на входе. выходной терминал, если это две параллельные обмотки, рассчитанные на 12 вольт каждая.Таким образом, мы можем переключаться между двумя типами напряжений, просто переключая соединения обмоток, что также легко можно сделать с помощью переключателя.

Это показано на рисунке ниже:



Использование двойного трансформатора напряжения

Это повторное подключение также экономит время и деньги, так как для большинства силовых приложений требуется несколько уровней напряжения для разных машин, то в этом случае использование разных типов трансформаторов не является решением.Наличие трансформатора с возможностью переподключения обмоток значительно снижает стоимость, а переключатель также экономит время.

Более того, этот тип трансформатора может использоваться как в американских, так и в европейских странах, где бытовые приборы и вся другая электроника работают на разных уровнях напряжения, поставляемых в этих странах, тогда этот трансформатор очень полезен и может использоваться в в обеих странах возникают какие-либо неудобства, связанные с изменением подключения или покупкой нового, поскольку все подключения уже выполнены внутри устройства и предлагают большое удобство, особенно для промышленных лидеров, которым приходится использовать портативные устройства по всему миру.

Обозначение двойного трансформатора напряжения

Двойные трансформаторы напряжения довольно легко распознать, поскольку их номинальное напряжение и мощность указаны на них иначе, чем на обычных трансформаторах. Например, если простой трансформатор подает 24 В при 2 А, тогда это будет записано как 24 В при 2 А. Но поскольку двойной трансформатор напряжения может дать нам 12 В, а также 24 В, тогда он будет упоминаться как 12 В. — 24 В, из чего легко понять, что этот трансформатор может подавать два типа напряжения, хотя мы не видели его внутренних соединений.

Таким образом, их действительно легко идентифицировать, использовать и они становятся довольно универсальными, особенно в современной отрасли.

В следующем посте мы обсудим другой тип трансформатора под названием Автотрансформатор. Мы подробно обсудим его дизайн, работу и приложения.

Насир.

Трансформаторы низкого напряжения для ландшафтного освещения

Трансформаторы низкого напряжения для ландшафтного освещения | VOLT® Освещение

Магазин не будет работать корректно в случае, если куки отключены.

Похоже, в вашем браузере отключен JavaScript. Чтобы максимально использовать возможности нашего сайта, обязательно включите Javascript в своем браузере.

Разработанные для легкой установки, стабильной производительности и долговечности, трансформаторы VOLT ® являются лучшими на рынке и идеальным выбором для любой низковольтной системы наружного освещения. Все трансформаторы VOLT® имеют пожизненную гарантию и внесены в список ETL в соответствии со стандартами UL.Каждый из них оснащен тороидальными сердечниками, стойкими к атмосферным воздействиям шкафами из нержавеющей стали, розетками для таймера и фотоэлементов, а также вторичными магнитными выключателями для каждой общей цепи мощностью 300 Вт.

Статья по теме: Как установить трансформатор низкого напряжения

О трансформаторах для ландшафтного освещения

Низковольтный трансформатор лежит в основе любой системы ландшафтного освещения. Он преобразует ток 120 В в ток низкого напряжения (12-15 В переменного тока).Эффективность этого преобразования определяет, насколько хорошо трансформатор контролирует выходное напряжение и сколько энергии потребляется в процессе. Трансформаторы VOLT® — это самые эффективные многоотводные низковольтные трансформаторы в отрасли, обеспечивающие высокую производительность и экономию энергии. Благодаря высококачественным тороидальным сердечникам, а также прочной проводке и внутренним компонентам эти трансформаторы обеспечивают очень стабильный источник тока с очень низким энергопотреблением.

Магнитные трансформаторы используют две катушки для снижения напряжения со 120 до 12 вольт.Первичная катушка передает линейное напряжение (от 108 В до 132 В). Поток электричества через первичную катушку индуцирует магнитное поле, которое создает ток во вторичной катушке. Поскольку вторичная катушка имеет 1/10 числа обмоток, она создает ток с 1/10 напряжения. Есть два типа трансформаторов магнитного ландшафтного освещения. Они различаются в зависимости от типа ядра:

  • Ламинированные / штабелированные сердечники (также известные как тип EI). Ламинированные или уложенные друг на друга обмотки состоят из листов, обернутых медной проволокой, которые затем складываются или складываются вместе, образуя сердечник.Это более распространенный и менее затратный метод изготовления сердечника. Они менее эффективны, нагреваются и шумнее, чем тороидальные сердечники.
  • Сердечники тороидальные. Это одно сплошное устройство в форме пончика, обмотки которого намотаны вокруг пончика внутри и снаружи отверстия для пончика. Тороидальные сердечники более эффективны, вызывают меньше шума и работают холоднее, но их производство дороже. Системы освещения с относительно высокими нагрузками — например, 10 или более светильников — больше всего выигрывают от тороидальных сердечников.Тороидальные сердечники VOLT® более энергоэффективны, тише и холоднее, чем ламинированные сердечники EI. Это особенно важно для трансформаторов большей мощности.

Электронные трансформаторы преобразуют 120-вольтовый ток в 12-вольт, сначала увеличивая частоту тока с 60 Гц до 20 000 Гц. Повышенная частота позволяет использовать миниатюрный сердечник, что делает трансформатор очень маленьким, легким и недорогим. Самыми большими недостатками являются (1) их высокочастотный ток может быть несовместим со схемами светодиодов, (2) эти токи также страдают от значительных потерь напряжения по сравнению с магнитными типами, (3) 12-вольтный электронный трансформатор должен быть расположен примерно в пределах 10 футов приспособления и (4) электронных трансформатора подвержены перегреву и преждевременному выходу из строя.

Это зависит от общей мощности ваших фонарей и максимальной мощности вашего трансформатора. Мы рекомендуем не превышать 80% мощности трансформатора.

С нашими трансформаторами профессионального уровня монтажники наружного освещения могут компенсировать падение напряжения, используя клеммы с более высоким напряжением, чтобы все светильники получали соответствующее напряжение. Используйте один из этих трансформаторов VOLT®, чтобы ваша низковольтная система ландшафтного освещения работала с оптимальной эффективностью в течение всего срока службы.

  • Светодиодные трансформаторы VOLT® Slim Line имеют либо один отвод напряжения 15 В (100 Вт), либо отвод 12 В и 15 В (150 Вт и 300 Вт)
  • Трансформаторы серии VOLT® оснащены отводами напряжения 12, 13, 14 и 15 В.
  • Трансформаторы серии VOLT® PRO имеют отводы напряжения от 12 В до 22 В.
  • Трансформаторы серии VOLT® Clamp-Connect ™ специально разработаны для светодиодных систем и оснащены исключительными клеммными колодками зажимного типа для быстрого и безопасного подключения.Эти трансформаторы имеют ответвления на 12 В и 15 В, потому что светодиодные системы работают в широком диапазоне допустимых напряжений.
  1. VOLT® Clamp-Connect 150 Вт (12 В / 15 В) Многоканальный трансформатор низкого напряжения

    Эксклюзивная инновация VOLT®! 150 Вт с зажимом-соединением Трансформаторы для светодиодного ландшафтного освещения 12v / 15v — простые в использовании соединители зажимного типа.

    Просто откройте зажимы, чтобы вставить провода, затем закройте их. для создания прочных соединений — никаких инструментов не требуется.Сэкономьте время и деньги с этими трансформаторами — вам и вашей команде понравится их!

    Срок службы Гарантия

    Узнать больше
  2. VOLT® Clamp-Connect 300 Вт (12 В / 15 В) Многоканальный трансформатор низкого напряжения

    Эксклюзивная инновация VOLT®! Зажимное соединение 300 Вт Трансформаторы для светодиодного ландшафтного освещения 12v / 15v — простые в использовании соединители зажимного типа.

    Просто откройте зажимы, чтобы вставить провода, затем закройте их. для создания прочных соединений — никаких инструментов не требуется.Сэкономьте время и деньги с этими трансформаторами — вам и вашей команде понравится их!

    Пожизненная гарантия

    Узнать больше
  3. VOLT® Clamp-Connect Многоканальный трансформатор низкого напряжения 600 Вт (12В / 15В)

    Эксклюзивная инновация VOLT®! 600 Вт Clamp-Connect Трансформаторы для светодиодного ландшафтного освещения 12v / 15v — простые в использовании соединители зажимного типа.

    Просто откройте зажимы, чтобы вставить провода, затем закройте их. для создания прочных соединений — никаких инструментов не требуется.Сэкономьте время и деньги с этими трансформаторами — вам и вашей команде понравится их!

    Пожизненная гарантия

    Узнать больше
  4. Светодиодный трансформатор Slim Line 100 Вт VOLT®

    Эксклюзивные инновации VOLT®! Новаторский светодиодный трансформатор мощностью 100 Вт для сверхлегкая установка и управление.

    Этот новый низкопрофильный дизайн с прозрачное окно включает в себя простые в использовании зажимы.

    Пожизненная гарантия

    Патент заявлен

    Узнать больше
  5. Светодиодный трансформатор Slim Line 150 Вт VOLT®

    Эксклюзивная инновация VOLT®! Новаторский светодиодный трансформатор мощностью 150 Вт для сверхлегкая установка и управление.

    Эта новая низкопрофильная конструкция с прозрачным окном включает простые в использовании зажимные соединения.

    Пожизненная гарантия

    Патент заявлен

    Узнать больше
  6. Светодиодный трансформатор Slim Line 300 Вт VOLT®

    Эксклюзивная инновация VOLT®! Новаторский светодиодный трансформатор мощностью 300 Вт для сверхлегкая установка и управление.

    Эта новая низкопрофильная конструкция с прозрачным окном включает простые в использовании зажимные соединения.

    Пожизненная гарантия

    Патент заявлен

    Узнать больше
  7. VOLT® 150 Вт (12-15 В) Многоканальный трансформатор низкого напряжения

    Идеальный трансформатор для малых и средних предприятий проекты!

    Мощность 150 Вт с четырьмя отводами напряжения: 12 В, 13 В, 14 В и 15 В. Идеально подходит как для галогенных, так и для светодиодных источников света. Нержавеющая сталь шкаф с распашной запирающейся дверцей. Розетки таймера и фотоэлементов.Магнитный тороидальный сердечник.

    Пожизненная гарантия

    Узнать больше
  8. VOLT® 600 Вт (2 x 300 Вт), двухконтурный трансформатор

    , 600 Вт (2 x 300 Вт), двухконтурный Трансформатор для светодиодного ландшафтного освещения с зажимом 12V / 15V — с простыми в использовании разъемами зажимного типа.

    Двойная схема этого трансформатор позволяет использовать две светодиодные системы ландшафтного освещения мощностью 300 Вт питается от одного трансформатора.Клеммы с зажимом позволяют простые в использовании, прочные соединения — никаких инструментов не требуется.

    Пожизненная гарантия

    Узнать больше
  9. Многоканальный трансформатор VOLT® Pro мощностью 900 Вт, 12–22 В

    Профессиональный трансформатор мощностью 900 Вт для больших систем — подходит для очень длинных (или сильно нагруженных) проводов!

    Мощность 900Вт с девятью ответвлениями напряжения: 12В-22В. Идеально подходит для обоих галогенные и светодиодные источники света.Шкаф из нержавеющей стали с откидным запираемая дверь. Розетки таймера и фотоэлементов. Магнитный тороидальный основной.

    Пожизненная гарантия

    Узнать больше
  10. Многоканальный трансформатор VOLT® Pro 1200 Вт, 12-22 В

    Профессиональный трансформатор мощностью 1200 Вт для очень крупных проектов — подходит для очень длинного (или сильно нагруженного) провода бежит!

    Мощность 1200Вт с семью отводами напряжения: 12В-22В. Идеально подходит для обоих галогенные и светодиодные источники света.Шкаф из нержавеющей стали с откидным запираемая дверь. Розетки таймера и фотоэлементов. Магнитный тороидальный основной.

    Пожизненная гарантия

    Узнать больше
Конденсаторный трансформатор напряжения

(CVT или CCVT)

Конденсаторный трансформатор напряжения (CVT) или конденсаторный трансформатор напряжения (CCVT) — это коммутационное устройство, используемое для преобразования напряжения высокого класса передачи в легко измеряемые значения, которые используются для измерения, защиты , и управление высоковольтными системами.

Дополнительно, CVT / CCVT, используемый в качестве разделительных конденсаторов для передачи высокочастотных сигналов несущей линии электропередачи в линию передачи.

Конденсаторный трансформатор напряжения (CVT) используется для линейных вольтметров, синхроскопов, защитных реле, счетчика тарифов и т. Д. Трансформатор напряжения VT — это трансформатор, используемый в энергосистемах для понижения сигналов сверхвысокого напряжения и обеспечения низкого напряжения. сигнал, для измерения или срабатывания реле защиты.

Характеристики конденсаторного трансформатора напряжения (CVT) или трансформатора напряжения с конденсаторной связью (CCVT) ниже, чем у электромагнитного трансформатора напряжения.Его производительность зависит от частоты питания, коммутационных переходных процессов, величины подключенной нагрузки и т. Д.

Конденсаторный трансформатор напряжения более экономичен, чем электромагнитный трансформатор напряжения, когда номинальное напряжение в системе превышает 66 кВ.

Оборудование несущего тока может быть подключено через конденсатор конденсаторных трансформаторов напряжения. Таким образом, нет необходимости в отдельных конденсаторах связи.

Конденсаторные трансформаторы напряжения также служат в качестве разделительных конденсаторов для передачи высокочастотных несущих сигналов линии электропередачи с линией передачи.

CVT в сочетании с волновыми ловушками используются для фильтрации высокочастотных сигналов связи от промышленной частоты. Это формирует сеть связи оператора связи по всей сети передачи.

Конденсатор типа VT применяется на напряжение 66 кВ и выше. При таких напряжениях стоимость электромагнитного типа ТН обычно оказывается завышенной.

Работа конденсаторного трансформатора напряжения (CVT / CCVT)

Конденсаторы, соединенные последовательно, действуют как делители напряжения, при условии, что ток, принимаемый нагрузкой, незначителен по сравнению с током, проходящим через последовательно соединенные конденсаторы.

Представление схемы трансформатора напряжения CVT или CCVTC в разрезе и однолинейная схема

Однако ток нагрузки становится относительно большим, и возникает ошибка соотношения, а также фазовая ошибка. Компенсация осуществляется «тюнингом».

Реактор, подключенный последовательно к нагрузке, настраивается на такое значение, чтобы на частоте питания он резонировал с суммой двух конденсаторов. Это устраняет ошибку.

Конструкция ТН конденсаторного типа зависит от формы конденсаторного делителя напряжения.Обычно высоковольтные конденсаторы заключены в фарфоровый корпус. В большой металлической коробке в основании находится промежуточный трансформатор катушки настройки.

На электрической подстанции конденсаторный трансформатор напряжения в сочетании с волновой ловушкой размещается на передающем и приемном концах подстанции. На приемном конце они находятся сразу после грозозащитного разрядника и перед линейным изолятором.

Принципиальная схема конденсаторного трансформатора напряжения

Конструкция конденсаторного трансформатора напряжения (CCVT)

Конденсаторный трансформатор напряжения состоит из двух первичных сборок,

  1. секций конденсатора высокого напряжения и
  2. основной коробки, в которой находятся электромагнитные компоненты.

Общая схема CCVT приведена ниже:

Общая конструкция CVT CCVT Внутренняя конструкция CVT

Конденсаторный трансформатор напряжения изолирует измерительные приборы, счетчик, реле, защиты и т. Д. От силовой цепи высокого напряжения и обеспечивает масштабирование копия напряжения в линии ВН. Конденсаторы связи используются только для связи высокочастотных сигналов связи, и они эквивалентны емкостной части CVT.

Соединенные конденсаторные элементы серии

, помещенные в фарфоровые кожухи, каждый из которых герметично (герметично) запечатан, называются секциями конденсатора.Диэлектрик конденсаторных элементов состоит из высококачественной полипропиленовой пленки / бумаги и пропитан синтетической жидкостью с высокой степенью переработки.

Каждая секция конденсатора имеет нижнюю часть из нержавеющей стали, которая позволяет синтетической жидкости расширяться и сжиматься при изменении рабочей температуры окружающей среды, сохраняя при этом герметичность. Именно на эти секции конденсатора падает большая часть высокого напряжения.

Типовая принципиальная схема CVT

Ниже приведены основные области применения CVT в сетях высокого напряжения (выше 36 кВ).Напряжение ответвления (приблизительно 5-12 кВ в зависимости от типа) снимается с нижней секции конденсатора и подается на электромагнитную цепь в литом алюминиевом корпусе основания.

Конструкция конденсаторного трансформатора напряжения

Базовая коробка содержит промежуточный трансформатор, который будет обеспечивать конечное выходное напряжение через вторичные обмотки с несколькими ответвлениями, реактор последовательной компенсации и схему управления феррорезонансом. Базовая коробка заполнена высушенным минеральным маслом, защищающим компоненты от воздействия окружающей среды.

Феррорезонанс просто и эффективно контролируется за счет использования спроектированной магнитной схемы с низкой плотностью потока и регулируемой демпфирующей цепи с насыщающимся реактором, подключенной поперек вторичной обмотки. Схема подавления феррорезонанса не влияет отрицательно на переходную характеристику.

Конструкция конденсаторного трансформатора напряжения

Конденсаторный трансформатор напряжения состоит из серии конденсаторов, последовательно соединенных на верхней части резервуара. Электромагнитный блок находится внутри резервуара.

Электромагнитный блок состоит из

Эти конденсаторы образуют делитель напряжения (2, 3) между клеммой высокого напряжения (1) и клеммой высокой частоты (4).

Конденсаторы, пропитанные высококачественным диэлектрическим маслом, помещены в один или несколько изоляторов. Каждый из них образует герметично закрытый независимый блок с очень стабильной во времени емкостью.

Высокочастотный зажим (4) для сигнала ПЛК выходит с одной стороны через кусок смолы, который отделяет емкостной блок от индуктивного трансформатора напряжения.

Индуктивный трансформатор напряжения среднего напряжения погружен в минеральное масло и помещен в герметичный металлический резервуар.

Вторичные клеммы расположены внутри коробки (7), позволяющей выполнять соединения, и имеют место с элементами защиты, такими как предохранители или автоматические выключатели.

Применения CVT

Некоторые из важных приложений CVT:

  • Измерение напряжения : Они точно преобразуют напряжение передачи до полезных уровней для коммерческого учета, защиты и контроля.
  • Изоляция : Они гарантируют изоляцию между высоковольтной сетью и цепями низкого напряжения, обеспечивая условия безопасности для операторов диспетчерской.
  • ВЧ-трансмиссии : Их можно использовать для соединения несущей линии электропередачи (ПЛК).
  • Переходное восстанавливающееся напряжение : При установке в непосредственной близости от выключателей высокого / сверхвысокого напряжения собственная высокая емкость CVT улучшает характеристики короткого замыкания C / B / TRV.

Примеры применения

Некоторые примеры применения CVT (конденсаторно-связанный трансформатор напряжения):

  1. Измерение доходов.
  2. Защита линий и подстанций высокого напряжения.
  3. Передача высокочастотных сигналов.

Что такое трансформатор постоянного напряжения

Превосходная защита от скачков напряжения и электрического шума:

Самая лучшая защита мощности обеспечивается трансформатором особого типа, известным как трансформатор постоянного напряжения ( Вариатор). Обеспечивая непревзойденную надежность и характеристики кондиционирования, пики и электрические шумы нейтрализуются с затуханием до 75 дБ.

Кроме того, входная (или первичная) и выходная (или вторичная) обмотки трансформатора физически разделены. Это разделение, известное как гальваническая развязка, гарантирует отсутствие прямого соединения между источником питания и нагрузкой.

А Таким образом, вариатор обеспечивает непроницаемый барьер для скачков и высокочастотных электрических шумов. Этот барьер также работает в обратном режиме, чтобы «шумная» нагрузка не загрязняла саму сеть.

Как это работает?

более детально »

Несмотря на простую концепцию, Вариатор очень сложно объяснить, поэтому некоторые эксперты по электронике называют его волшебством.Фактически цель состоит в том, чтобы поддерживать насыщение железного сердечника вторичной обмотки, что поддерживает постоянное напряжение на выходной обмотке.

Первичная обмотка должна быть ненасыщенной, чтобы предотвратить недопустимо высокие потери.

Этот эффект достигается двумя способами.

Во-первых, две магнитные цепи разделены, но связаны между собой, что позволяет передавать энергию от первичного к вторичному.

Во-вторых, вторичная цепь имеет преднамеренно введенную индуктивность и подключена к резонирующему конденсатору.Этот LC-контур настроен так, чтобы резонировать на желаемой частоте трансформатора.

В результате вторичная часть трансформатора работает в режиме насыщения, а выходное напряжение остается постоянным.

Превосходная защита от провисания, перенапряжения и сбоев:

Падения и скачки напряжения в сети автоматически корректируются Вариатор.

При столкновении с экстремальным скачком напряжения, таким как локальный удар молнии, стабилизатор питания будет обеспечивать низкое сопротивление сети для защиты как себя, так и любых подключенных нагрузок.

Автоматическая генерация синусоидальной волны:

, использующий технологию феррорезонансного трансформатора, означает, что каждый стабилизатор мощности всегда будет генерировать чистую стабильную синусоидальную волну даже при питании от загрязненной сети или источника прямоугольной формы.

A = ВХОД

B = ВЫХОД

НЕТ движущихся частей, НЕТ электроники ТОЛЬКО магнитное волшебство

Драйвер Perfect Switched Mode Power Supply (SMPS):

Технология феррорезонансного трансформатора обеспечивает подъем плеча формы волны — CVT — самый удобный способ управлять импульсным блоком питания.Уменьшаются скачки напряжения на входе, продлевая срок службы и время проводимости. В дополнение Вариатор CVT обеспечивает гармоническую буферизацию и улучшенную защиту емкостного конденсатора от неизбежных микроперерывов питания, которые возникают при защитном переключении сети.

Трансформаторы постоянного напряжения не заботятся об окружающей среде

В отличие от некоторых чувствительных электронных стабилизаторов a Вариатор работает в очень большой диапазон условий. Стандартные агрегаты могут работать при постоянной температуре 40 ° C, при этом 50 ° C не проблема в течение коротких периодов времени, поочередно специальная конструкция может выдерживать температуру 70 ° C.Бесступенчатые трансмиссии будут работать при температуре минус 40 ° C, хотя тепло, выделяемое при их работе, означает, что трансформатор скоро станет теплым на ощупь.

Защита от перегрузки

Вариатор CVT разработан для обеспечения перегрузки в 150%, при перегрузке около 200% форма выходного сигнала сжимается почти до 0 В, БЕЗ ВРЕДА ДЛЯ CVT, прямое короткое замыкание в течение длительного времени не является проблемой для CVT, как только короткое замыкание будет удалено, он продолжит подавать полезную мощность.

Изображение удержания осциллографа

Нечто напрасное: пока присутствует не менее 30% от нормального напряжения питания, правильно выбранный CVT может обеспечить достаточную мощность для вашей критической нагрузки.

сквозное изображение

Подавление синфазного шума

Подавление шума в последовательном режиме

Постановление

Выход в пределах 5% для нулевой и полной нагрузки

Превосходное регулирование выходной мощности при низких нагрузках или высоких входных напряжениях

Выходная мощность остается в пределах 5% от нуля до полной нагрузки, если требуется более жесткое регулирование, можно найти компромисс.При нагрузке 50% регулировка составляет около 3%. Между нулевой и легкой нагрузкой (3%) наблюдается наибольшее падение мощности, поэтому постоянная легкая нагрузка еще больше улучшает регулирование. Событие полной или нулевой нагрузки может вызвать кратковременное изменение на 8%, но Вариатор оседает за пару циклов.

Стабилизация

Выходной сигнал остается в пределах 3% при размахе входного сигнала 15% при половинной нагрузке. Выходной сигнал 3% может быть достигнут при размахе входного сигнала приблизительно 30%

Выход в пределах 3% для номинального входа +/- 15% Еще более широкие колебания входного сигнала при нагрузках ниже номинальных

Регламент вне спецификации

Комбинированная стабильность и регулировка составляет 8%, опять же, улучшения могут быть достигнуты за счет уменьшения нагрузки.Выход в пределах 8% для нулевой и полной нагрузки и номинального входа +/- 20%

Коэффициент мощности

Все блоки имеют коэффициент мощности источника питания, который зависит от выходной нагрузки.

CVT будет управлять широким диапазоном нагрузок с коэффициентом мощности (+/- 0,75)

Будут обнаружены небольшие изменения выходного напряжения по сравнению с настройкой с резистивной нагрузкой.

Выход изменяется с частотой входа

Изменение частоты на 1% дает 1.5% изменение выходного напряжения

Фазовый сдвиг

Имеется небольшой сдвиг фазы по Вариатор с изменением нагрузки

Выходной синусоидальный сигнал с любого входа, включая прямоугольный.

Вот реальные формы сигналов осциллографа, показывающие чудо регенерации синусоидальной волны, выполняемое вариатором. Это приложение показывает прямоугольную волну на входе с большим содержанием гармоник (THD около 30%) и несколькими пиками и другими проблемами.Форма выходного сигнала — идеальная синусоида. Поскольку резонансный контур вариатора регенерирует форму волны, все входные сигналы могут поглощаться и выводиться как идеальная синусоида.

Ввод

Выход

Крупный план осциллограммы

Крупный план осциллограммы

Трансформатор постоянного напряжения (CVT) как это работает?

Введение

Стабилизация переменного тока может быть достигнута с помощью простого магнитного устройства, не имеющего движущихся частей.

Это процесс получения постоянного переменного напряжения из переменного напряжения переменного тока с использованием насыщаемых реакторов. Последний может быть включен в специальный трансформатор магнитного насыщения, создаваемый в части магнитопровода.

Расположение обмоток и конструкция одного такого трансформатора постоянного напряжения показаны на схеме:

Сердечник представляет собой трехлепестковую оболочку с магнитным трактом утечки, разделяющим пространство обмотки.В пространстве верхней обмотки находится первичная и компенсирующая обмотки, а в пространстве нижней обмотки находится вторичная обмотка, к которой подключен конденсатор. Увеличивающееся напряжение, приложенное к первичной обмотке, вызывает увеличение магнитного потока в основной магнитной цепи, а вторичное напряжение увеличивается пропорционально этому напряжению. Увеличение магнитного потока приводит к увеличению реактивного сопротивления утечки вторичной обмотки, и это приближается к значению, которое резонирует с конденсатором, подключенным к ней.Когда достигается состояние резонанса, вторичный ток быстро растет, насыщая нижние части магнитной цепи. Поток, создаваемый первичной обмоткой, отклоняется через магнитный шунт, и дальнейшее увеличение первичного напряжения вызывает небольшое изменение вторичной ЭДС. Он увеличивается очень медленно, и это компенсируется ЭДС, индуцированной в компенсирующей обмотке на верхней части сердечника, которая соединена последовательно против вторичной обмотки.

Таким образом, как только вторичная обмотка приводится в резонанс, выходное напряжение вторичной и компенсационной обмоток остается постоянным, и именно в этих условиях используется трансформатор.

Преимущество этой формы стабилизации заключается в том, что она может применяться к источникам питания нагревателя в дополнение к любым источникам HT, полученным на его основе. Однако из-за несинусоидальной формы сигнала показания, снятые с помощью обычных счетчиков выпрямительного типа, могут быть ошибочными.

Компенсирующая обмотка создает небольшое напряжение, которое используется для «понижения» выходного напряжения.

Для получения синусоидальной формы сигнала добавляется дополнительная обмотка, соединенная через магнитный зазор.Эта дополнительная «нейтрализующая» обмотка может быть устроена так, чтобы обеспечивать подходящее количество 3-й и 5-й гармоник, которые при суммировании с выходной «прямоугольной» волной, приведенной выше, приводят к синусоиде.

Также показана эквивалентная схема первого члена:

Трансформатор постоянного напряжения (CVT) обеспечивает молниезащиту

Введение

При ударе молнии рассеивается огромное количество энергии. Если удар каким-либо образом будет прямым или близким к прямому, то большинство пораженных веществ будет испаряться локально.В электрических распределительных системах есть специальные изолирующие устройства для ограничения воздействия ударов молнии на воздушные провода. Однако воздушные линии могут улавливать серьезные переходные процессы, которые приведут к выходу из строя чувствительной электроники, если «шип» полностью попадет в оборудование.

Молния

Типичный удар молнии дает форму волны с передним фронтом около 1,2 мкСм, а после 50 мкСм напряжение упадет до половины своего пикового значения. Доступно специальное испытательное оборудование, которое генерирует форму волны 8/20 мкСм, которая представляет эффект молнии, если напряжение составляет 6 кВ и импеданс источника менее 2 Ом.Еще один популярный тест основан на форме 10/350, которая используется в телекоммуникационных приложениях.

Обычно не принято во внимание, что офисная и домашняя распределительная электропроводка обычно «вспыхивает» при напряжении около 6 кВ, что ограничивает ожидаемое напряжение от местных ударов молнии.

Типичный «удар» может иметь ток около 200 000 ампер, который при приложении к заземленному проводнику вызовет огромное повышение местного потенциала земли. Этот эффект может привести к переносу довольно большого количества энергии по местной заземляющей проводке.Этой проблеме нужно уделить особое внимание. Видеть Проводка ИКТ и соображения.

Пуленепробиваемая

Аванс Бесступенчатые трансмиссии, специально разработанные для защиты компьютеров, обеспечивают один из наиболее эффективных барьеров от поражения молнией. В CVT имеет магнитную цепь, сопротивление которой при подаче высокого напряжения становится очень низким.

Если устройство правильно установлено с предохранителем или автоматическим выключателем, то CVT сработает предохранитель / прерыватель до того, как повреждающая энергия попадет на защищаемое электронное оборудование.

Это означает, что компьютер или другое оборудование может быть случайно выключено, но оно будет защищено от образовавшейся в результате удара молнии энергии. Такие всплески энергии относительно обычны.

Единственное, что требуется от пользователя, — это заменить предохранитель или сбросить автоматический выключатель и продолжить использование оборудования.

Если удар имеет достаточную мощность, чтобы повредить входящую распределительную проводку из-за прямого удара, может произойти что угодно.

Трансформаторы потенциала | Трансформаторы напряжения (ПН)

Трансформаторы напряжения (PT) или трансформаторы напряжения — это измерительные трансформаторы, используемые для измерения напряжения. Они подключаются параллельно к линии и работают по тому же принципу, что и силовые трансформаторы. Их нельзя использовать для подачи первичной мощности на нагрузки. Они имеют точное соотношение напряжений и фазовое соотношение между первичной и вторичной обмотками. Чтобы лучше понять принцип работы электротрансформаторов, прочтите: Трансформатор — Принцип работы, конструкция и типы.

Определение трансформаторов напряжения или трансформаторов напряжения

Трансформатор потенциала (PT) — это статическое устройство, используемое для понижения высокого напряжения до измеримого уровня, чтобы облегчить измерение и управляемость. Низкое напряжение легко измерить и может использоваться для срабатывания реле защиты.

Изображение предоставлено: Wordtwist

Электроэнергия передается и распределяется при различных высоких напряжениях. Эти напряжения необходимо снизить до номинального напряжения измерительных устройств для измерения напряжения.Кроме того, измерительные устройства нельзя напрямую подключать к цепям высокого напряжения для измерения. Кроме того, это улучшает совместимость стандартных измерительных приборов.

Принцип работы трансформаторов напряжения

Принцип действия трансформатора напряжения такой же, как и у обычного трансформатора. It работает по принципу взаимной индуктивности и закон Фарадея электромагнитной индукции . Прохождение переменного тока через проводник создает переменное магнитное поле.Когда другой проводник контактирует с этим магнитным полем, в нем индуцируется напряжение. Согласно закону Фарадея величина индуцированного напряжения зависит от скорости изменения магнитного потока, соединяющего вторую катушку, и количества витков.

ε = -N dΦ / dt

В случае трансформаторов, поскольку скорость изменения магнитного потока между катушками почти одинакова, индуцированное напряжение зависит от количества витков катушек.

Строительство ПТ

Изображение предоставлено: Alstom Grid Waynesboro

На изображении выше показана конструкция трансформатора напряжения.Можно отметить, что конструкция трансформатора напряжения немного отличается от силового трансформатора. Имеет сердечник или магнитопровод (сердечник) оболочечного типа. Катушки намотаны на одну ветку сердечника. Первичная и вторичная обмотки изолированы друг от друга. В некоторых трансформаторах среднего и высокого напряжения также присутствуют третичные обмотки. Первичная обмотка состоит из большого количества витков, тогда как вторичная обмотка состоит только из меньшего числа витков.

Типы трансформаторов напряжения

Существует три типа трансформаторов напряжения: с электромагнитной индукцией, с емкостной связью и с оптическим типом.Конструктивные особенности трансформаторов напряжения с электромагнитной индукцией рассмотрены выше.

Трансформатор напряжения с емкостной связью (CCVT)

Трансформатор напряжения с емкостной связью представляет собой комбинацию емкостного делителя напряжения и электромагнитного типа PT. Это экономичная альтернатива электромагнитному ПТ. Он состоит из трех частей: емкостного делителя потенциала, настраивающего реактора и изолирующего трансформатора, как показано на рисунке ниже.

Схема конденсаторного делителя потенциала состоит из двух конденсаторов C 1 и C 2 , соединенных между линией высокого напряжения и землей.C 1 представляет собой последовательное соединение нескольких небольших конденсаторов. Большая часть напряжения падает на C 1 . Настроечный дроссель используется для настройки схемы на сетевую частоту. В дополнение к этому настраиваемый реактор улучшает передачу энергии. Изолирующий трансформатор изолирует измерительный прибор от резонансного контура.

Изображение предоставлено: Решения GE Grid

Оптический трансформатор напряжения

Оптический преобразователь напряжения работает по принципу эффекта Керра, благодаря которому свет, отраженный от намагниченной поверхности, может изменять поляризацию и интенсивность отражения.Этот отраженный свет измеряется оптически и преобразуется в аналоговый сигнал, пропорциональный приложенному напряжению. Этот аналоговый сигнал можно измерить с помощью подходящего инструмента. Поскольку здесь нет магнитопровода и обмоток, эти трансформаторы значительно меньше CCVT и обычных PT. Оптические трансформаторы напряжения используются редко из-за их сложности и высокой начальной стоимости.

Подключение трансформатора потенциала

Трансформаторы потенциала поставляются с двумя вводами или с одним вводом.Типы с одним вводом предназначены только для соединений между фазой и землей, а типы с двумя вводами могут быть подключены между фазой и землей. При подключении необходимо учитывать полярность обмотки. Измерительные устройства могут быть подключены к вторичной обмотке трансформатора напряжения. Типовая схема подключения трансформатора напряжения представлена ​​ниже:

Источник: https://control.com/textbook/electric-power-measurement-and-control/electrical-sensors/

Технические характеристики

Бремя

Внешний импеданс вторичной цепи в омах при заданном коэффициенте мощности.Обычно упоминается в VA. Это максимальная нагрузка, которая может быть подключена к вторичной обмотке ТН, не вызывая более высокой ошибки.

Класс точности

Класс точности определяет, насколько точным может быть трансформатор напряжения, когда нагрузка ниже его номинального значения. Класс точности, согласно IEC, составляет 0,2, 0,5 или 1,0 в зависимости от приложения, когда номинальная нагрузка, примерно в 1,3–1,5 раза превышающая подключенную нагрузку, дает максимальную точность.

Распределительный трансформатор среднего напряжения

| Качество электроэнергии и преобразование | Электрооборудование и электроника | Продукция

Автор: Acme Electric

ID в каталоге: WB015K01

Трансформатор среднего напряжения — однофазный, 2400 — 120/240 В, 15 кВА

Автор: Acme Electric

ID в каталоге: WB015K02

Трансформатор среднего напряжения — однофазный, 2400 — 240/480 В, 15 кВА

Автор: Acme Electric

ID в каталоге: WB015K03

Трансформатор среднего напряжения — однофазный, 2400 — 600 В, 15 кВА

Автор: Acme Electric

ID в каталоге: WB015K04

Трансформатор среднего напряжения — однофазный, 4160 — 120/240 В, 15 кВА

Автор: Acme Electric

ID в каталоге: WB015K05

Трансформатор среднего напряжения — однофазный, 4160 — 240/480 В, 15 кВА

Автор: Acme Electric

ID в каталоге: WB015K06

Трансформатор среднего напряжения — однофазный, 4160 — 600 В, 15 кВА

Автор: Acme Electric

ID в каталоге: WB015K07

Трансформатор среднего напряжения — однофазный, 4800 — 120/240 В, 15 кВА

Автор: Acme Electric

ID в каталоге: WB015K08

Трансформатор среднего напряжения — однофазный, 4800 — 240/480 В, 15 кВА

Автор: Acme Electric

ID в каталоге: WB015K09

Трансформатор среднего напряжения — однофазный, 4800 — 600 В, 15 кВА

Автор: Acme Electric

ID в каталоге: WC025K01

Трансформатор среднего напряжения — однофазный, 2400 — 120/240 В, 25 кВА

Автор: Acme Electric

ID в каталоге: WC025K02

Трансформатор среднего напряжения — однофазный, 2400 — 600 В, 25 кВА

Автор: Acme Electric

ID в каталоге: WC025K03

Трансформатор среднего напряжения — однофазный, 2400 — 600 В, 25 кВА

Автор: Acme Electric

ID в каталоге: WC025K04

Трансформатор среднего напряжения — однофазный, 4160 — 120/240 В, 25 кВА

Автор: Acme Electric

ID в каталоге: WC025K05

Трансформатор среднего напряжения — однофазный, 4160 — 240/480 В, 25 кВА

Автор: Acme Electric

ID в каталоге: WC025K06

Трансформатор среднего напряжения — однофазный, 4160 — 600 В, 25 кВА

Автор: Acme Electric

ID в каталоге: WC025K07

Трансформатор среднего напряжения — однофазный, 4800 — 120/240 В, 25 кВА

Автор: Acme Electric

ID в каталоге: WC025K08

Трансформатор среднего напряжения — однофазный, 4800 — 240/480 В, 25 кВА

Автор: Acme Electric

ID в каталоге: WC025K09

Трансформатор среднего напряжения — однофазный, 4800 — 600 В, 25 кВА

Автор: Acme Electric

ID в каталоге: WC037K01

Трансформатор среднего напряжения — однофазный, 2400 — 120/240 В, 37.5кВА

Автор: Acme Electric

ID в каталоге: WC037K02

Трансформатор среднего напряжения — однофазный, 2400 — 600 В, 37.5кВА

Автор: Acme Electric

ID в каталоге: WC037K03

Трансформатор среднего напряжения — однофазный, 2400 — 600 В, 37.5кВА

Автор: Acme Electric

ID в каталоге: WC037K04

Трансформатор среднего напряжения — однофазный, 4160 — 120 / 240В, 37.5кВА

Автор: Acme Electric

ID в каталоге: WC037K05

Трансформатор среднего напряжения — однофазный, 4160 — 240/480 В, 37.5кВА

Автор: Acme Electric

ID в каталоге: WC037K06

Трансформатор среднего напряжения — однофазный, 4160 — 600 В, 37.5кВА

Автор: Acme Electric

ID в каталоге: WC037K07

Трансформатор среднего напряжения — однофазный, 4800 — 120/240 В, 37.5кВА

Автор: Acme Electric

ID в каталоге: WC037K08

Трансформатор среднего напряжения — однофазный, 4800 — 240/480 В, 37.5кВА

Автор: Acme Electric

ID в каталоге: WC037K09

Трансформатор среднего напряжения — однофазный, 4800 — 600 В, 37.5кВА

Автор: Acme Electric

ID в каталоге: WC050K01

Трансформатор среднего напряжения — однофазный, 2400 — 120/240 В, 50 кВА

Автор: Acme Electric

ID в каталоге: WC050K02

Трансформатор среднего напряжения — однофазный, 2400 — 600 В, 50 кВА

Автор: Acme Electric

ID в каталоге: WC050K03

Трансформатор среднего напряжения — однофазный, 2400 — 600 В, 50 кВА

.

Добавить комментарий

Ваш адрес email не будет опубликован.