Сварочный трансформатор из чего состоит: Устройство сварочного трансформатора

Содержание

Устройство сварочного трансформатора

Сварочные трансформаторы используются для электродуговой сварки переменным током. Сварочными устройствами постоянного тока называются преобразователями, выпрямителями


или инверторами. Маркировка трансформаторов для ручной сварки плавящимся электродом выглядит следующим образом, ТДМ-316, что означает:
  • Т — трансформатор сварочный;
  • Д — дуговая электросварка;
  • М — механизм регулирования тока сварки;
  • 31 — максимальное значение сварочного тока 310 А;
  • 6 — номер модели трансформатора.
Устройство сварочного трансформатора включает магнитопровод в виде набранного из пластин стального сердечника, и двух изолированных обмоток. Первичная обмотка подключается к силовой сети (220 или 380В), а вторичная одним концом к держателю сварочного электрода, а другим к свариваемой детали. Вторичная обмотка состоит из двух частей на разных катушках.
Одна из них подвижная и выполняет функцию дросселирующего устройства управления сварочным током. Перемещение дроссельной обмотки вдоль магнитопровода осуществляется винтом управления. Величина воздушного зазора между первичной и подвижной частью вторичной обмотки определяет значение сварочного тока. Изменение тока совпадает с изменением воздушного зазора. Т.е. с увеличением зазора ток увеличивается (во многих статьях можно встретить ошибочные данные по направлению изменения тока и зазора). Обычно сварочные трансформаторы имеют диапазоны регулирования от 60 до 400А. Напряжение холостого хода трансформатора составляет 60-65В. При зажигании дуги напряжение падает до рабочего значения 35-40В. Сварочные трансформаторы имеют защиту от короткого замыкания. Внешняя вольтамперная характеристика для дуговой сварки является падающей.

На фото 1 устройство сварочного трансформатора серии ТДМ представлено схематическим изображением:

  • Поз. 1 – первичная обмотка трансформатора из изолированного провода.
  • Поз. 2 – вторичная обмотка не изолирована, с воздушными каналами для лучшего режима охлаждения.
  • Поз. 3 – подвижная составляющая магнитопровода.
  • Поз. 4 – система подвеса трансформатора в корпусе агрегата.
  • Поз. 5 – система управления воздушным зазором.
  • Поз.6 – ходовой винт управления воздушным зазором.
  • Поз. 7 – рукоятка привода управляющего винта.
Промышленные сварочные агрегаты представляют собой многопостовые устройства. Для возможности перемещения нижняя рама выполняется в виде шасси с одной или двумя парами колес. Сам трансформатор в корпусе крепиться на аммартизирующей подвеске. Сварочные трансформаторы для сварки постоянным током дооборудуются выпрямляющими (диодными) приставками или инвертором постоянного тока.

Сварочные трансформаторы: устройство и принцип работы

Сварочные трансформаторы представляют собой оборудование для преобразования переменного тока для оптимального уровня сварки. Для обеспечения равномерной работы аппарат снижает входное напряжение до 60-75 Вольт.

Оборудование применяется в быту и промышленности, способно работать в тяжелых условиях.

Устройство и принцип работы электрооборудования, какие виды бывают, конструктивные особенности рассмотрим ниже.

В чем состоит принцип устройства?

Из чего состоит трансформатор для сварки и как он устроен? Однофазное устройство имеет простую структуру, состоящую из:

  • магнитного привода;
  • начальной и вторичной обмоток;
  • металлического корпуса;
  • рукоятки;
  • системы охлаждения;
  • зажима для проводов;
  • крышки корпуса;
  • ходовой гайки;
  • вертикального винта с ленточной резьбой.

Коэффициент преобразования определяет количество витков в обмотках. Проходящий переменный ток через сердечник из ферримагнитного сплава с замкнутым контуром, создает внутренне напряжение в каждом витке обмотки, оптимизируя выходное напряжение.

Начальная обмотка соединена с центральной сетью, вторичная – с массой и держателем электродов, который и осуществляет сварку. Контур теряет сопротивление, а связь электромагнитов повышается. Баланс переменного тока осуществляется с помощью регулятора.

Конструктивная особенность каждого вида сварочного трансформатора зависит от параметров:

  • формы и типа сердечника, обмоток;
  • типа и мощности преобразования тока;
  • характеристик охлаждения обмоток;
  • параметров изоляции;
  • места установки оборудования;
  • необходимых требований к массе и сопротивляемости обмоток.

Некоторые модели сварочных трансформаторов оснащены определенными узлами. Дополнительные элементы: конденсаторы, дополнительные обмотки, вентиляция, стабилизаторы, совершенствуют работу аппаратов.

Смотрите познавательно-обучающее видео про устройство сварочного трансформатора:

Как работает сварочный трансформатор?

Основная задача устройства – преобразовать высокое входящее напряжение в низкое, оптимальное для работы. Это свойство дает возможность увеличить силу тока в обмотке, и как следствие происходит плавление металла.

Трансформаторная сварка производится поэтапно:

  • ток попадает на первичную обмотку высоковольтного напряжения, затем возникает магнитное поле переменного характера;
  • магнитный поток попадает в сердечник, который передает его на вторую обмотку, минимизируя индукционные потери;
  • магнитная индукция создает электродвижущую силу, вращая электроны металла, возникает постоянный электрический ток;
  • из-за большего количество витков во вторичной намотке, напряжение падает, а сила тока повышается;
  • во время замыкания металла с электродом создается равномерная электрическая дуга, которая переносит частички металла на свариваемые детали.

Во время работы сварочный агрегат находится под постоянной нагрузкой. Но его преимущество заключается в возможности работы в режиме холостого хода.

В процессе сваривания деталей под напряжением происходит замыкание между заготовкой и электродом, образуется сварочный шов.

Металлические изделия соединяются, благодаря электричеству.

После образования шва цепь размыкается. Оборудование переходит в режим ожидания (холостой ход).

Электродвижущие силы замыкаются в воздушных зазорах между витками. Именно они создают напряжение холостого хода. Такая работа аппарата считается безопасной. Показатели холостого хода достигают 48-70 Вольт. Они не должны превышать допустимые нормы.

В таких случаях применяют ограничители, которые автоматически срабатывают по окончанию процесса сварки. Для безопасной работы оборудование должно быть оснащено заземлением.

Важно! Проводить работы с электрооборудованием нужно в защищенном от влаги месте. Попадание воды на технику может вывести ее из строя.

На этом видео показан принцип работы трансформатора:

По какому принципу рассчитать сварочный трансформатор?

Сварочные аппараты бывают разной мощности. Их выбор будет зависеть от того, для какого вида сварки они используются. Основной расчет производится, исходя из количества витков в намотке и диапазона выдаваемого тока.

По назначению электроприборы делятся на:

  • бытовые трансформаторы – для сварки металлических изделий, толщиной не более 6мм, применяются для бытовых нужд в доме, гараже;
  • профессиональные аппараты – применяются в промышленных сферах, обеспечивая бесперебойную работу нескольких точек;
  • полупрофессиональные приборы – сваривают изделия до 8 мм толщиной, используются как в быту, так и в промышленности.

Отличия трансформаторов от инверторов

Отличие в процессе сварки трансформатором заключается в нестабильности электрической дуги. Сварочный шов изменяется в параметрах при малейшем колебании тока.

Инвертор имеет сложную конструкцию, состоящую из несколько узлов, управляемых блоком. Это дает возможность обеспечивать плавную регулировку тока.

Трансформаторы имеют более простую конструкцию в отличие от инверторов. Поэтому их стоимость значительно ниже, чем у современных инверторов.

Простота конструкции сводит к минимуму возможность поломки. Если оборудование вышло из строя, ремонт не потребует больших затрат.

Правила выбора оборудования

Сварочные трансформаторы выбирают в зависимости от назначения и места эксплуатации.

  1. Напряжение сети. От требуемого напряжения зависит тип аппарата. Перед покупкой оборудования, нужно выяснить какое напряжение будет в месте работы 220 В или 380 В. Несоответствие этих параметров приведет к поломке техники.
  2. Напряжение холостого хода. Появление сварной дуги зависит от напряжения холостого хода. Чем выше его показатель, тем легче создать стабильность горения дуги.
  3. Количество рабочих мест. Если для работы потребуются несколько сварщиков, то бытовые модели для таких целей не подходят.
  4. Мощность. При выборе оборудования обращают внимание на два показателя мощности – входную и выходную. Между этими показателями должен быть минимальный порог.
  5. Продолжительность работы. От этого показателя зависит степень производительности аппарата. Чем выше показатель времени работы электрооборудования, тем выше производительность.
  6. Размеры и масса, мобильность. Габариты сварочного оборудования влияют на показатель производительности. Оснащение аппарата колесами делает его удобным в эксплуатации. Можно выбрать компактный или, наоборот, громоздкий вариант техники. Это будет зависеть от его предназначения.

Важно! Выбирая модель, нужно обратить внимание на защитные функции от перегрева. Это обезопасит сварщика от серьезных последствий во время работы.

Полезное видео, особенности выбора сварочных инверторов и трансформаторов:

Заключение

Что такое сварочный трансформатор и как с ним работать, рассмотрели в данной статье. Соблюдая рекомендации по эксплуатации оборудования для сварки можно избежать существенных проблем.

Правильно выбранный вариант техники обеспечит надежной и долговечной работой в процессе эксплуатации. А результат работы будет виден в качественном сварном шве.

Сварочный трансформатор в аппарате для дуговой сварки: применение, характеристики и обслуживание

Известный многим трансформатор для дуговой сварки по своей сути является преобразователем сетевого напряжения. Он увеличивает переменный ток до величины, обеспечивающей условия получения дугового разряда.

Достичь этого удаётся за счёт понижения питающего напряжения до некоторого значения, что по правилу трансформации позволяет во столько же раз увеличить ток в нагрузочной цепочке. В основе действия трансформатора положен закон электромагнитной индукции.

Принцип работы преобразователя

Для лучшего понимания принципа действия устройства желательно детально ознакомиться с особенностями его конструкции, а также с тем, какие типы сварочных трансформаторов чаще всего применяются на практике. Не будет лишним и внимательное изучение возможности самостоятельного изготовления таких агрегатов.

Назначение сварочного трансформатора состоит в понижении сетевого напряжения до 50-60 Вольт, что позволяет получать значительный по величине ток во вторичной обмотке (прядка тысячи ампер).

Реализации этого принципа способствуют конструктивные особенности трансформаторного устройства. Оно состоит из мощного сердечника с размещёнными на нём двумя рабочими обмотками (катушками).

Имеющиеся на сердечнике катушки электрически изолированы одна от другой, но пронизываются общими силовыми линиями магнитного поля (то есть, связаны за счёт электромагнитного эффекта).

При включении трансформатора в сеть в первичной обмотке появляется небольшой по величине ток, формирующий электромагнитное поле, распространяющее своё действие и на вторичную катушку.

Согласно закону сохранения энергии при преобразовании сетевого напряжения мощность тока в катушке с меньшим количеством витков остаётся той же.

По причине того, что во вторичной обмотке сварочного трансформатора действует меньшее по амплитуде переменное напряжение – на выходе удаётся получить больший по величине нагрузочный ток. Следует напомнить, что мощность равна току, умноженному на напряжение.

Способ управления током в нагрузке

Известные виды сварочных трансформаторов классифицируются по мощности преобразовательного устройства, фазности его подключения и способу управления величиной переменного тока в нагрузке. Мощность и фазность относятся к типовым характеристикам электрооборудования и не нуждаются в специальных пояснениях.

Гораздо больший интерес представляет последний показатель, имеющий принципиальное значение для понимания сути происходящих в трансформаторе процессов. Особенностью конструкции трансформатора для сварочного аппарата является возможность изменять величину тока во вторичной цепи, меняя при этом условия проведения сварки.

Различные варианты исполнения вторичных цепей сварочного трансформатора предусматривают возможность регулировки тока в нагрузке следующими способами:

  • изменением импеданса (индуктивного сопротивления) нагрузочной цепи;
  • переключением цепей вторичной обмотки с изменением задействованного числа витков;
  • за счёт использования принципа фазного регулирования, реализуемого с помощью мощных тиристорных переключателей.

Гораздо реже используется подвижная конструкция вторичной обмотки, благодаря которой удаётся управлять величиной магнитного потока.

Вследствие разнообразия вариантов преобразовательных изделий, при выборе в первую очередь ориентируются на тип регулятора тока сварочного трансформатора.

Так, оснащённые тиристорным блоком преобразователи хоть и считаются более совершенными в сравнении с электромеханическими моделями, однако из-за сложности конструкции они могут чаще выходить из строя.

Промышленные образцы

Промышленные образцы трансформаторного оборудования представлены на отечественном рынке изделиями под заводским обозначением ТД и ТДМ. Популярностью отечественного покупателя пользуются модели марки ТДМ с величинами сварочного тока 315, 400 и 500 Ампер соответственно.

Данные по потребляемой мощности для этих образцов сварочного оборудования, рассчитанных на работу от сетей 220 и 380 Вольт, колеблются в пределах от 30 до 160 киловатт Ампер.

Особого внимания заслуживает и такой показатель эффективности работы трансформаторного устройства как его внешняя характеристика, представляющая собой зависимость действующего на выходе напряжения от нагрузочного тока.

Её крутизной определяется качество и стабильность образующейся при сварке дуги, а также её взаимосвязанность с действующими токовыми показателями.

Специалисты по сварке рекомендуют при покупке готового оборудования отдавать предпочтение агрегатам с резко падающей выходной (внешней) характеристикой.

При этом для обеспечения оптимальных условий текущего процесса желательно, чтобы характеристика приобретаемого аппарата имела общие точки с аналогичной зависимостью для сварочной дуги.

Серия промышленных аппаратов ТД относится к исключительно однофазной и многопостовой разновидности агрегатов трансформаторного типа. В большинстве конструкций этого класса предусматривается подвижная вторичная обмотка со специальным регулятором тока.

Современные образцы однофазного оборудования, помимо этого оснащаются специальным электролитическим элементом, предназначенным для компенсации индуктивных потерь в проводах (так называемым «конденсатором мощности»).

Как обслуживать

Трансформатор является самым простым и доступным вариантом преобразовательного оборудования, техническое обслуживание которого в домашних условиях занимает минимум сил и времени.

При работе надо следить, чтобы сварочный ток не превышал предельного значения, а обмотки не перегревались. Обслуживание также заключается в смазке механизма регулировки (это можно делать раз в месяц).

Следует проверять надежность контактов, целостность изоляции, подключение заземления сварочного трансформатора, не допускать его загрязнения. Можно продувать устройство струей сухого воздуха, сметающего пыль.

Если сварочный трансформатор стоит на открытой площадке, то надо защитить его от влаги. Вообще излишняя влажность и механические повреждения могут вывести его из строя. Но это относится к большинству электрического оборудования.

При выполнении основных правил эксплуатации, трансформатор прослужит много лет. С его помощью можно будет выполнить большую часть бытовых работ с достаточно высоким качеством получаемых сварочных соединений.

Характеристика сварочного трансформатора | Строительный портал

Занимаясь поисками подходящего сварочного трансформатора, многие отказываются от заводских моделей в пользу самодельных. Причины такого решения могут быть самые разнообразные, начиная от неприемлемых цен и заканчивая желанием сделать сварочный трансформатор самостоятельно. По сути особых сложностей в том, как сделать сварочный трансформатор, нет, к тому же, самодельный сварочный трансформатор может по праву считаться предметом гордости любого хозяина. Но при его создании невозможно обойтись без знаний об устройстве и схеме трансформатора, его характеристиках и расчетах по ним.

  1. Рабочие характеристики сварочного трансформатора
  2. Схема сварочного трансформатора
  3. Расчет сварочного трансформатора

 

Рабочие характеристики сварочного трансформатора

 

Любой электроинструмент обладает определенными рабочими характеристиками и сварочный трансформатор не исключение. Но кроме привычных, таких как мощность, количество фаз и требуемое для работы напряжение в сети, сварочный трансформатор имеет целый набор уникальных характеристик, каждая из которых позволит безошибочно подобрать в магазине аппарат под определенный вид работ. Для тех же, кто собирается изготовить сварочный трансформатор своими руками, знание этих характеристик потребуется для выполнения расчетов.

Но прежде чем перейти к детальному описанию каждой характеристики, необходимо разобраться, что собой представляет базовый принцип работы сварочного трансформатора. Он довольно прост и заключается в преобразовании входящего напряжения, а именно его понижении. Понижающая вольтамперная характеристика сварочного трансформатора имеет следующую зависимость – при понижении напряжения (Вольт) возрастает сила тока сварки (Ампер), что и позволяет плавить и сваривать металл. На основе этого принципа и построена вся работа сварочного трансформатора, а также связанные с ней другие рабочие характеристики.

Напряжение сети и количество фаз

С этой характеристикой все довольно просто. Она указывает на требуемое для работы сварочного трансформатора напряжение. Это может быть 220 В или 380 В. На практике напряжение в сети может немного колебаться в пределах +/- 10 В, что может сказаться на стабильной работе трансформатора. При расчетах для сварочного трансформатора напряжение в сети является основополагающей характеристикой для расчетов. К тому же, от напряжения в сети зависит количество фаз. Для 220 В – это две фазы, для 380 В – три. В расчетах это не учитывается, но для подключения сварочного аппарата и его работы это важный момент. Также есть отдельная категория трансформаторов, которые могут работать как от 220 В, так и от 380 В.

Номинальный сварочный ток трансформатора

Это основная рабочая характеристика любого сварочного трансформатора. От величины силы сварочного тока зависит возможность резки и сварки металла. Во всех сварочных трансформаторах это значение указывается максимальным, так как именно столько способен выдать трансформатор на пределе возможностей. Конечно, номинальный сварочный ток можно регулировать для возможности работы электродами различного диаметра, и для этого в трансформаторах предусмотрен специальный регулятор. Необходимо отметить, что для бытовых сварочных трансформаторов, созданных своими руками, сварочный ток не превышает 160 – 200 А. Это связано в первую очередь с весом самого трансформатора. Ведь чем больше сила сварочного тока, тем больше требуется витков медного провода, а это лишние неподъемные килограммы. В дополнение на сварочный трансформатор цена зависит от металла для проводов обмоток, и чем больше провода было потрачено, тем дороже обойдется сам аппарат.

Диаметр электрода

В работе со сварочным трансформатором для сварки металла используются наплавляемые электроды различного диаметра. При этом возможность использовать электрод определенного диаметра зависит от двух факторов. Первый – номинальный сварочный ток трансформатора. Второй – толщина металла. В приведенной ниже таблице указаны диаметры электродов в зависимости от толщины металла и сварочного тока самого трансформатора.

Как видно из этой таблицы, использование 2 мм электрода будет просто бессмысленным при силе тока в 200 А. Или наоборот, 4 мм электрод бесполезен при силе тока в 100 А. Но довольно часто приходится выполнять сварку металла различной толщины одним и тем же аппаратом и для этого сварочные трансформаторы оборудуются регуляторами силы тока.

Пределы регулирования сварочного тока

Для сварки металла различной толщины используются электроды различного диаметра. Но если сила сварочного тока будет слишком большой, то металл при сварке прогорит, а если слишком маленькой, то не удастся его расплавить. Потому в сварочных трансформаторах для этих целей встраивается специальный регулятор, позволяющий понижать номинальный сварочный ток до определенного значения. Обычно в самодельных сварочных трансформаторах создается несколько ступеней регулировки, начиная от 50 А и заканчивая 200 А.

Номинальное рабочее напряжение

Как уже отмечалось, сварочный трансформатор преобразует входящее напряжение до более низкого значения, составляющего 30 – 60 В. Это и есть номинальное рабочее напряжение, которое необходимо для поддержания стабильного горения дуги. Также от этого параметра зависит возможность сварки металла определенной толщины. Так для сварки тонколистового металла требуется низкое напряжение, а для более толстого – высокое. При расчетах этот показатель весьма важен.

Номинальный режим работы

Одной из ключевых рабочих характеристик сварочного трансформатора является его номинальный режим работы. Он указывает на период беспрерывной работы. Этот показатель для заводских сварочных трансформаторов обычно составляет около 40%, а вот для самодельных он может быть не выше 20 – 30%. Это значит, что из 10 минут работы можно беспрерывно варить 3 минуты, а 7 давать отдохнуть.          

Мощность потребления и выходная

Как и любой другой электроинструмент, сварочный трансформатор потребляет электроэнергию. При расчетах и создании трансформатора показатель потребляемой мощности играет важную роль. Что касается выходной мощности, то её также следует учитывать, так как коэффициент полезного действия сварочного трансформатора напрямую зависит от разницы между этими двумя показателями. И чем меньше эта разница, тем лучше.

Напряжение холостого хода

Одной из важных рабочих характеристик является напряжение холостого хода сварочного трансформатора. Эта характеристика отвечает за легкость появления сварочной дуги, и чем выше будет напряжение, тем легче появится дуга. Но есть один важный момент. Для обеспечения безопасности человека, работающего с аппаратом, напряжение ограничивается 80 В.

 

Схема сварочного трансформатора

 

Как уже отмечалось, принцип работы сварочного трансформатора заключается в понижении напряжения и повышении силы тока. В большинстве случаев устройство сварочного трансформатора довольно простое. Он состоит из металлического сердечника, двух обмоток – первичной и вторичной. На представленном ниже фото изображено устройство сварочного трансформатора.

С развитием электротехники принципиальная схема сварочного трансформатора совершенствовалась, и сегодня производятся сварочные аппараты, в схеме которых используются дроссели, диодный мост и регуляторы силы тока. На представленной схеме видно, как диодный мост интегрирован в сварочный трансформатор (фото ниже).

Одним из самых популярных самодельных сварочных трансформаторов является трансформатор с тороидальным сердечником, в силу его малого веса и прекрасных рабочих характеристик. Схема такого трансформатора представлена ниже.

Сегодня существует множество различных схем сварочных трансформаторов, начиная от классических и заканчивая схемами инверторов и выпрямителей. Но для создания сварочного трансформатора своими руками лучше выбирать более простую и надежную схему, не требующую использования дорогой электроники. Как, например, сварочный тороидальный трансформатор или трансформатор с дросселем и диодным мостом. В любом случае для создания сварочного трансформатора, кроме схемы, придется выполнить определенные расчеты, чтобы получить требуемые рабочие характеристики.

 

Расчет сварочного трансформатора

 

При создании сварочного трансформатора под конкретные цели приходится определять его рабочие характеристики заранее. Кроме этого, расчет сварочного трансформатора выполняется для определения количества витков первичной и вторичной обмоток, площади сечения сердечника и его окна, мощности трансформатора, напряжения дуги и прочего.

Для выполнения расчетов потребуются следующие исходные данные:

  • входящее напряжение первичной обмотки (В) U1;
  • номинальное напряжение вторичной обмотки (В) U2;
  • номинальная сила тока вторичной обмотки (А) I;
  • площадь сердечника (см2) Sс;
  • площадь окна (см2)So;
  • плотность тока в обмотке (A/мм2).

Рассмотрим на примере расчета для тороидального трансформатора со следующими параметрами: входящее напряжение U1=220 В, номинальное напряжение вторичной обмотки U2=70 В, номинальная сила тока вторичной обмотки 200 А, площадь сердечника Sс=45 см2, площадь окна So=80 см2, плотность тока в обмотке составляет 3 A/мм2.

Вначале рассчитываем мощность тороидального трансформатора по формуле:

P габаритн = 1,9*Sc*So. В результате получим 6840 Вт или упрощенно 6,8 кВт.

Важно! Данная формула применима только для тороидальных трансформаторов. Для трансформаторов с сердечником типа ПЛ, ШЛ используется коэффициент 1,7. Для трансформаторов с сердечником типа П, Ш – 1,5.

Следующим шагом будет расчет количества витков для первичной и вторичной обмоток. Чтобы это сделать, вначале придется вычислить необходимое количество витков на 1 В. Для этого используем следующую формулу: K = 35/S. В результате получим 0,77 витка на 1 В потребляемого напряжения.

Важно! Как и в первой формуле, коэффициент 35 применим только для тороидальных трансформаторов. Для трансформаторов с сердечником типа ПЛ, ШЛ используется коэффициент 40. Для трансформаторов с сердечником типа П, Ш – 50.

Далее рассчитываем максимальный ток первичной обмотки по формуле: Imax = P/U. В результате получим ток для первичной обмотки 6480/220=31 А. Для вторичной обмотки силу тока берем за константу в 200 А, так как возможно придется варить электродами с диаметром от 2 до 3 мм металл различной толщины. Конечно, на практике 200 А – это предельная сила тока, но запас в пару десятков ампер позволит аппарату работать более надежно.

Теперь на основании полученных данных рассчитываем количество витков для первичной и вторичной обмоток в трансформаторе со ступенчатым регулированием в первичной обмотке. Расчет для вторичной обмотки выполняем по следующей формуле  W2 =U2*K, в результате получим 54 витка. Далее переходим к расчету ступеней первичной обмотки. Для этого используем формулу W1ст = (220*W2)/Uст.

Где:

Uст – необходимое выходное напряжение вторичной обмотки.

W2 – количество витков вторичной обмотки.

W1ст – количество витков первичной обмотки определенной ступени.

Но прежде чем приступить к расчету витков ступеней первичной обмотки, необходимо определить напряжение для каждого. Сделать это можно по формуле U=P/I, где:

P – мощность (Вт).

U – напряжение (В).

I – ток (А).

Например, нам требуется сделать четыре ступени со следующими показателями номинальной силы тока на вторичной обмотке: 160 А, 130 А, 100 А и 90 А. Такой разброс понадобится для использования электродов различного диаметра и сварки металла различной толщины. В результате получим Uст = 40,5 В для первой ступени, 50 В для второй ступени, 65 В для третьей ступени и 72 В для четвертой. Подставив полученные данные в формулу W1ст = (220*W2)/Uст, рассчитываем количество витков для каждой ступени. W1ст1 = 293 витка, W1ст2 = 238 витков, W1ст3 = 182 витка, W1ст4 = 165 витков. В процессе намотки провода на каждом из этих витков делается отвод для регулятора.

Осталось рассчитать сечение провода для первичной и вторичной обмоток. Для этого используем показатель плотности тока в проводе, который равен 3 A/мм2. Формула довольно проста – необходимо максимальный ток каждой из обмоток разделить на плотность тока в проводке. В результате получим для первичной обмотки сечение провода Sперв = 10 мм2. Для вторичной обмотки сечение провода Sвтор = 66 мм2.

Создавая сварочный трансформатор своими руками, необходимо выполнить все вышеперечисленные расчеты. Это поможет правильно подобрать все необходимые детали и затем собрать из них аппарат. Для новичка выполнение расчетов может показаться весьма запутанным занятием, но если вникнуть в суть выполняемых действий, все окажется не таким уж и сложным.

Сварочный трансформатор — 105 фото разновидностей трансформаторных аппаратов

В наше время сварочное дело перестало быть уделом избранных. Сейчас сварочное оборудование можно встретить не только на производстве, но и в дачных домовладениях. Самыми популярными считаются трансформаторные аппараты переменного тока.

Краткое содержимое статьи:

Конструкционное решение трансформаторного оборудования

Устройство сварочного трансформатора достаточно простое – это пара обмоток, намотанных на сердечник. Одна из них первичная, а вторая – вторичная.

Принцип работы аппарата трансформаторного типа состоит в понижении входящего напряжения. Сила тока при этом может составлять порядка 700А, что позволяет осуществлять сварку металлических конструкций. Такой принцип действия характерен для всех разновидностей трансформаторного оборудования.


Хотя сегодня, при использовании современных разработок и технологий удалось добиться создания более идеальных и эргономичных вариаций трансформаторов.

Разновидности трансформаторных аппаратов

Все сварочные трансформаторы принято делить на три вида, у каждого из которых свои сильные и слабые стороны. Выбирая аппарат для сварки трансформаторного типа, нужно знать, чем одна разновидность отличается от другой.

Как показывают фото сварочных трансформаторов, они могут быть:

  • С минимальным и нормальным магнитным рассеиванием.
  • С повышенным магнитным рассеиванием.
  • Тиристорными.

Технические характеристики

Независимо от типа для каждого трансформатора характерен набор конкретных характеристик, определяющих эффективность и качество его работы, а также удобство эксплуатации. Выбирая агрегат, нужно знать, что означает каждая характеристика сварочного трансформатора.

Маркировка. Это первое, на что надо обратить внимание. Маркировка – это зашифрованная запись базовых параметров. Первая буква обозначает источник питания, вторая указывает на тип сварочных работ, а третья – на метод. Четвёртая и пятая – это тип внешней характеристики и число постов.


Значение номинальной силы электрического тока – это 1 или 2 цифры, округлённые до десятых или сотых. Два или одно последних цифровых обозначения – это регистрационный номер.

Далее буквами обозначается допустимые температурные условия. Цифра в конце указывает на уместное расположение. I- значит допустима работа устройства на улице, II – под навесом, III – в неотапливаемой комнате, IV – в помещении с отоплением.

Диапазон регулировки тока. Это одна из главных характеристик любого трансформаторного устройства. Первое, что она обозначает – это то, что регулирование тока возможно, а второе – это наибольшую возможную величину силы тока. Все вместе указывает на возможность применять электроды разных размеров.

Диаметр электрода. Зависит от силы тока оборудования.

Напряжение в электросети. Данная характеристика показывает, какое напряжение обязано быть в сети, чтобы трансформатор нормально работал.

Номинальный ток сварки и рабочее напряжение. Эти параметры очень важны. Номинальный ток – это наибольший показатель тока, который может выдать агрегат. А номинальное напряжение – напряжение, требуемое для того, чтобы сварочная дуга была в устойчивом состоянии.

Продолжительность включения. Это время, которое аппарат трансформаторного типа может находиться в режиме сварки. Данный показатель не оказывает особого влияния на выбор сварочного оборудования.


Потребляемая мощность. Обозначает количество энергии, требуемой для 1 часа работы агрегата. Предпочтительнее остановить выбор на устройстве с минимальным параметром мощности потребления.

КПД. Чем больше данное значение, тем лучше.

Напряжение холостого хода. Оно отвечает за сварочную дугу. Чем оно выше, тем проще создаётся дуга.

Число рабочих мест. Это число человек, которые могут одновременно заниматься сваркой от данного устройства.

Система охлаждения.

Вес и габариты сварочного аппарата.

Начинающему малоопытному сварщику достаточно непросто выбрать подходящую модель сварочного трансформатора, ведь типов аппаратов для сварки довольно много. Поэтому, чтобы сделать правильный выбор, важно знать значение каждой технической характеристики. Если у вас возникли трудности, то лучше обратиться за советом к профессионалу.

Фото сварочного трансформатора

Необязательно покупать сварочник, можно собрать конструкцию сварочного трансформатора своими руками. Для этого применяют один из следующих способов:

  1. Используют старый ЛАТР (автотрансформатор). Самое важное в ЛАТРе – это его мощный сердечник тороидальной формы. Таких магнитопроводов берут два экземпляра и наматывают на каждом кольце по обмотке. Одна будет выполнять роль первички, другая – вторички. Наиболее подходящая модель автотрансформатора для такой переработки – ЛАТР 1М, оригинальная обмотка которого может выдерживать ток до 10 ампер.
  2. Применяют магнитопровод от старого электродвижка. То, что можно взять от двигателя для изготовления сварочника, – это его статор. Его нужно только освободить от старой обмотки путем ее удаления из пазов и вынуть из корпуса, разбив или разрезав последний. Пластины сердечника после этого следует скрепить шпильками и намотать поверх него новую обмотку. Лучше для таких операций подходят те магнитопроводы движков, которые имеют большой диаметр и маленькую толщину.
  3. Переделывают в сварочный трансформаторы от старых цветных телевизоров типа ТС-310 или ТС-270. Эти сетевые преобразователи удобны тем, что имеют крупные размеры, легко разбирающийся сердечник U-образной формы.

Всем, кто знает, какой сварочный трансформатор лучше выбрать среди моделей, представленных на рынке, или имеет опыт изготовления такого устройства, поделитесь навыками в комментариях!

Сварочный трансформатор ТДМ-505


Сварочный трансформатор типа ТДМ предназначен для ручной дуговой сварки покрытыми электродами на переменном токе малоуглеродистых и низколегированных сталей. Регулировка сварочного тока обеспечивается механическим ручным перемещением магнитного шунта. Мощные, надежные, неприхотливые сварочные аппараты с естественным охлаждением. Плавное регулирование сварочного тока. Качественная пропитка катушек электротехническим лаком, позволяющая работать при повышенной влажности.


 

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

 

Наименование параметра ТДМ-305 К ТДМ-405 ТДМ-505 ТДМ-505 А
Напряжение сети, В 220/380 380 380 380
Номинальная частота, Гц 50 50 50 50
Номинальный сварочный ток, А 300 400 500 500
Пределы регулирования свар. тока, А 60-300 70-400 80-500 70-250
250-500
Номинальное напряжение на дуге, В 34 35 36 36
Напряжение холостого хода, В 65 65 70 70
Продолжительность нагрузки
ПН в %, при цикле 5 мин
40 (при 300A)
60 (при 200A)
100 (при 140A)
40 (при 400A)
60 (при 230A)
100 (при 180A)
40 (при 500А)
60 (при 250А)
100 (при 200А)
40 (при 500А)
60 (при 250А)
100 (при 200А)
Первичный ток при ном. нагрузке, А 40 50 70 70
Номинальная мощность, Квт 12 18 25 25
Габаритные размеры, мм 480х440х500 475х475х585 475х475х585 475х475х585
Масса AL/CU, кг —/78 77/85 85/91 86/-
Способ регулирования сварочного тока Плавный, механический, с указателем величины сварочного тока
Транспортные колеса + + + +

                      

УСТРОЙСТВО СВАРОЧНОГО ТРАНСФОРМАТОРА

Трансформатор состоит из следующих основных узлов: магнитопровода, сердечника, трансформаторных обмоток   (первичной и вторичной), магнитного шунта, автоматического выключателя и кожуха.
Трансформатор однофазный с магнитопроводом стержневого типа. Обмотки трансформатора имеют по две катушки,   расположенные попарно на общих стержнях магнитопровода. Катушки первичной и вторичной обмотки неподвижны.       Катушки обмоток выполнены из изолированного алюминиевого или медного  провода. Обмотки изолированы от сердечника магнитопровода стеклопластиком и пропитаны электротехническим лаком. Сердечник трансформатора собран из листов электротехнической стали толщины 0,5 мм.
Сварочный ток регулируется вращением рукоятки, находящейся на верхней панели трансформатора. При вращении ходового винта рукояткой, перемещается магнитный шунт. Опускание магнитного шунта приводит к уменьшению величины сварочного тока и наоборот при его поднятии сила сварочного тока увеличивается. Подключение сетевых проводов к трансформатору осуществляется через сетевой кабель. Включение и выключение трансформатора производится выключателем. Для удобства перемещения трансформатор снабжен колесами  и двумя ручками, расположенными на крышке кожуха.


 

Купить сварочный трансформатор

Сварочный трансформатор — Джордж, Гленн Г.

Это изобретение относится к трансформаторам переменного тока, используемым для понижения напряжения при электросварке, и основная цель изобретения состоит в том, чтобы обеспечить улучшенную конструкцию таких трансформаторов, благодаря чему характеристики сварочного тока будут более подходящими для предполагаемой цели и Аппарат, особенно когда он используется для точечной сварки, в значительной степени автоматически приспосабливается к требованиям, а также обеспечивает простое ручное управление, когда это необходимо.

Особенностью изобретения является обеспечение трансформатора упомянутого характера, в котором есть средства для большего или меньшего шунтирования магнитного потока в виде подвижной секции сердечника, расположенной таким образом, что она всегда является частью основного пути. потока через сердечник.

Другой особенностью является использование обмотки на сердечнике шунта или рядом с ним, который включен последовательно либо с вторичной, либо с первичной обмоткой, и при этом создается противодействие некоторой неопределенной природы, которое способствует желаемым эффектам при сварке. схема.

Другие особенности и преимущества изобретения будут представлены в следующем описании и сопроводительном чертеже.

На чертеже: Фиг. 1 представляет собой схематический чертеж, показывающий элементы и схемы усовершенствованного трансформатора, расположенные таким образом, который специально адаптирован для использования при точечной сварке или контактной сварке.

На фиг. 2 схематически показаны элементы и схемы усовершенствованного трансформатора, который больше подходит для дуговой сварки, и показана катушка на шунтирующем сердечнике, последовательно соединенная с вторичными обмотками.

На рис. 3 представлена ​​схема, аналогичная схеме на рис. 2, но на которой показана катушка на шунтирующем сердечнике последовательно с первичными обмотками.

На фиг. 4 показан вид сбоку сердечника трансформатора и его секции магнитного шунта, чтобы проиллюстрировать механическую конструкцию, используемую для осуществления изобретения.

Рисунок 5 — вид с торца керна, показанного на Рисунке 4.

Перед тем, как описывать чертеж более подробно, можно сказать, что основной особенностью изобретения является обеспечение в кольцевом железном сердечнике сварочного трансформатора отдельной секции сердечника, скользящей через зазор, вырезанный в одной ветви трансформатор для более или менее шунтирования магнитного потока в зависимости от того, насколько секция шунтирующего сердечника проталкивается к противоположной ветви трансформатора, при этом секция шунтирующего сердечника плотно прилегает к зазору, а ее ламинаты граничат с основным слоистость сердечника так, чтобы всегда образовывать часть основного пути потока в сердечнике, независимо от того, вдвигается ли секция внутрь или вытягивается до упора.

В трансформаторе, предназначенном для дуговой сварки, где требуется наибольшая степень управления, подвижная секция сердечника также снабжена катушкой или обмоткой, предпочтительно окружающей ее и через которую она скользит, причем эта катушка включена последовательно либо с вторичной обмоткой, либо с первичные обмотки трансформатора, и какая катушка предпочтительно соединена в цепи с реверсивным переключателем, так что направление тока, проходящего через нее, может контролироваться для достижения наилучших результатов в некоторых случаях.

На чертеже провода переменного тока обозначены цифрами I, 2, линейный выключатель 3, многослойный сердечник 4 кольцевого типа трансформатора, первичные обмотки P, вторичные обмотки S, сварочные клеммные провода 6, 1, скользящий или шунтирующий сердечник. секция 8 плавно перемещается вперед и назад в зазоре 9, прорезанном через одну ветвь сердечника, а вспомогательная или шунтирующая обмотка сердечника обозначена 10 на фиг.2 и I на фиг.3. со вторичными обмотками и подключается через реверсивный переключатель 12.

На рисунке 1 многослойный сердечник трансформатора представляет собой двойное кольцо или тип фигуры 8, с секцией шунтирующего сердечника, скользящей только через одну петлю или кольцо 4 сердечника, а другое кольцо 4 ‘остается без управления, так как это было установлено, что дает достаточный контроль для точечной сварки. С таким трансформатором, рассчитанным на 110 В переменного тока на первичной обмотке и от 6 до 8 В на выходе во вторичной обмотке, около 20 000 ампер, напряжение упадет примерно до 1/2 В или меньше при замыкании цепи точечной сварки. При вдавливании скользящего сердечника выходная сила тока снижается с примерно 20 000 до примерно 500 или менее, без использования какого-либо реактивного сопротивления в первичной цепи.

В конструкции, показанной на рисунках 2 и 3, сердечник представляет собой пластинчатое одиночное прямоугольное кольцо с первичной и вторичной обмотками, расположенными на обоих ответвлениях сердечника, и, хотя обмотки здесь показаны соответственно последовательно, одна или обе могут быть параллельно, в зависимости от сетевого напряжения и требуемого сварочного тока, такие сварочные токи обычно составляют примерно от 60 до 68 открытого напряжения и примерно от 15 до 200 ампер., и падение до 38 или 40 вольт при рабочей дуге.

На обоих рисунках 2 и 3 вспомогательная обмотка 10 или Ii показана вокруг подвижной секции 8 сердечника и расположена рядом с основным сердечником, так что подвижная секция сердечника может скользить вперед и назад через нее, чтобы более или менее отводить поток от прохождения через вторичные обмотки. Реверсивный переключатель 12, показанный на фиг. 2, может также использоваться для катушки 11 на фиг. 3, которая включена последовательно с первичными обмотками.

Когда трансформатор, как описано выше, регулируется на максимальную силу тока в сварочной цепи путем перемещения сердечника внутрь, если это может потребоваться, ток становится в значительной степени саморегулирующимся, чтобы соответствовать различным условиям либо точечной сварки, либо дуги. сварка до такой степени, что точечная сварка железных пластин толщиной примерно от% дюйма до сварки пары проволок диаметром A «вместе в перекрестном положении не требует регулировки.

При дуговой сварке плавное регулирование величины вторичного тока между максимальным и минимальным значениями достигается регулировкой подвижного шунтирующего сердечника без изменения сварочных характеристик тока, а также лучшее зажигание дуги при заданном напряжении, и более высокая стабильность дуги, а также очень высокий электрический КПД, составляющий от примерно 80,6% до примерно 94%.

Точная причина стабилизации тока и управляющего действия трансформатора не выяснена, но она возникает из-за противодействующих сил магнитного потока и / или противоэлектродвижущей силы, особенно когда используется шунтирующая обмотка, и, как следствие, волновая характеристика Сварочный ток, наблюдаемый на осциллографе, показывает, что вершины синусоидальных кривых почти сглаживаются и расширяются, а также с почти резким и мгновенным переходом от максимума одного потенциала к максимуму противоположного потенциала.4 В некоторых сварочных работах аппарат дает лучшие результаты, когда ток проходит через шунтирующую катушку в одном направлении ее обмотки, в то время как в других случаях справедливо противоположное, и я предпочитаю предусмотреть реверсивный переключатель для этой катушки, как указано в пункте 12. на рисунке 2. Похоже, что нет большой разницы в результате, запитана ли шунтирующая катушка от первичной или вторичной цепи- ..

Хотя я предпочитаю, чтобы вспомогательная обмотка 5 10 или i была зафиксирована, а сердечник шунта скользил через него, для получения наилучших эффектов, тем не менее, его можно заставить перемещаться с помощью скользящего сердечника или размещать рядом с подвижным сердечником, не окружая его. , когда не требуются лучшие эффекты.

Фактически, секция шунтирующего сердечника изготовлена ​​из ламинированного железа, такого же, как и основной сердечник, с пластинами, проходящими в одной плоскости, так что они находятся в краевом контакте с пластинами сердечника в положении скольжения. Зазор и секция сердечника точно обработаны и отделаны, так что во всех точках будет существовать идеальный скользящий контакт, а также предусмотрены средства для упругого принуждения зазора 6 плотно закрыться относительно подвижного сердечника, чтобы гарантировать хороший магнитный контакт.

На рисунках 4 и 5 показаны некоторые основные детали конструкции. Ламинированные пластины сердечника 4 изолируют обычным способом 7 и скрепляют вместе латунными или изолированными болтами или заклепками 13 в изоляционных трубках 14, и такая же конструкция применяется к скользящей части сердечника 8, за исключением того, что она защищена оболочкой. на противоположных сторонах с несколько более широкой пластиной из бакелита или другого изоляционного материала 15, которая перекрывает края зазора сердечника 9 для обеспечения надлежащего направления секции при скольжении, а внешний конец секции предпочтительно снабжен выступающим стержнем с резьбой 18, с помощью которого секция может перемещаться вперед и назад, либо путем поворота стержня в подходящей гайке 17, прикрепленной к концу секции, и при свободном проходе стержня в отверстии в секции, либо путем поворота гайки на стержень, вращающийся на неподвижной опоре, не показан. Однако для простой и недорогой конструкции секцию можно регулировать вручную, и подходящие калибровочные метки могут быть сформированы вдоль одного края, чтобы помочь в сбросе на любое конкретное значение.

Чтобы обеспечить плавное и плотное прилегание скользящей секции в зазоре, я предпочтительно делаю круглое соединение через все сегменты сердечника в точке 18, расположенное в шахматном порядке для перекрытия в последовательных слоях, а затем удерживаю как это соединение, так и соединение между зазором и подвижной секцией, закрытой пружиной, приложенной любым желаемым образом.

Удобный способ приложения натяжения пружины к соединениям состоит в том, чтобы установить пару угловых пластин 19, 20-21, 22 в противодействии на противоположных сторонах обоих соединений и на противоположных сторонах пакета пластин сердечника, и угловые пластины, удерживаемые на месте латунными болтами или заклепками 23, проходящими через изолирующие трубки или втулки 24, и каждая пара противостоящих пластин, упруго притягиваемая друг к другу пружинными болтами, такими как болты 25, головки которых опираются на слегка изогнутые пружинные пластины 26 на одной из угловых пластин, или такая пружинная пластина может быть на обоих концах болта. Эта конструкция обеспечивает плотное соединение с достаточным трением, чтобы можно было перемещать секцию шунтирующего сердечника 8 по мере необходимости, хотя может быть предусмотрена возможность слегка ослабить соединение, например, слегка ослабив болты, чтобы сдвинуть сердечник и затем затяните их. Такое приспособление может иметь несколько различных форм, например, с помощью кулачка или клина под головкой или гайкой болта, при этом концы болтов 23 эксцентричны, чтобы их можно было повернуть, или с помощью относительно быстрого или грубого поворота. навинтите болты 25 и обеспечьте небольшой рычаг, выступающий из гаек 27, как показано позицией 28, который можно повернуть на пол-оборота, чтобы ослабить болты в достаточной степени, чтобы обеспечить более легкое скольжение секции сердечника.Это положение для ослабления натяжения пружины на болтах было бы желательным только на щелевом соединении, поскольку другое положение 18 почти не влияет на способность скольжения секции сердечника. В прилагаемых мною пунктах формулы изобретения слова «кольцевой сердечник или сердечник кольцевого типа» следует понимать как включающий любой сердечник трансформатора из магнитного материала в общей форме кольца, или квадратной, или продолговатой петли, или двойной 0-петли, или рисунка. 8, в любом из сердечников обычно имеется замкнутый полный магнитный путь для магнитного потока, если бы он был свободен от затвора, дополнительно изложенного в формуле изобретения и в зазоре Swich, в котором работает мой подвижный шунтирующий сердечник, Swhile всегда заполняет и закрытие указанного пробела.

Описав таким образом мое изобретение и некоторые из его модификаций, я заявляю следующее: 1. Сварочный трансформатор, содержащий сердечник кольцевого типа с зазором в одной точке кольца, отдельную подвижную удлиненную секцию шунтирующего сердечника, перемещаемую с возможностью скольжения в указанном зазоре и может перемещаться в нем рядом с точкой на сердечнике кольцевого типа, противоположной упомянутому зазору, и из нее, причем упомянутая часть сердечника имеет длину, чтобы заполнить упомянутый зазор во всех точках рабочего движения, чтобы поддерживать замкнутый путь для магнитного потока через упомянутое кольцо. типа сердечника в любое время, а первичная и вторичная электрические обмотки на упомянутом сердечнике кольцевого типа, соответственно, расположены на противоположных сторонах плоскости движения упомянутой секции сердечника, пропорционально для обеспечения выхода сварочного тока из вторичных обмоток.

2. В конструкции сварочного трансформатора по п.1, указанный сердечник кольцевого типа образован из многослойного железа с пластинами, расположенными в плоскости кольца, и указанная секция сердечника шунта также образована из многослойного железа с пластинами, выступающими в в той же плоскости, что и у упомянутого сердечника кольцевого типа, и в скользящем контакте с ним на обеих сторонах упомянутого зазора.

3. В электрическом трансформаторе описанного характера, кольцевой сердечник, образованный соединением, промежуточным между одним плечом и зазором в плече, противоположным упомянутому соединению, секция шунтирующего сердечника, установленная с возможностью скольжения в упомянутом зазоре, для перемещения к упомянутому соединению и от него. при этом всегда заполняя указанный зазор, и означает упругое принуждение зазора к тому, чтобы он плотно охватил упомянутую секцию сердечника шунта.

4. В электрическом трансформаторе описанного характера, кольцевой сердечник, образованный соединением, промежуточным между одним плечом и зазором в плече, противоположным упомянутому соединению, секция шунтирующего сердечника, установленная с возможностью скольжения в упомянутом зазоре для перемещения к упомянутому соединению и от него. при постоянном заполнении указанного зазора и означает упругое принуждение зазора к плотному охвату указанной шунтирующей секции сердечника и означает упругое принуждение элементов сердечника на противоположных сторонах указанного соединения к тесному контакту.

5. В конструкции по п.4 средство, упруго прижимающее зазор и соединительные элементы сердечника вместе, содержит кронштейны, прикрепленные к сердечнику на противоположных сторонах соединения и зазора, и пружинное средство, подталкивающее кронштейны друг к другу.

6. В конструкции по п. 4 средство, упруго прижимающее зазор и соединительные элементы сердечника вместе, содержит кронштейны, прикрепленные к сердечнику на противоположных сторонах соединения и зазора, и пружинное средство, подталкивающее кронштейны друг к другу, и средство для снятия напряжения упомянутого пружинного средства, чтобы облегчить скольжение упомянутой секции сердечника шунта.

7. В конструкции по п.3, указанное соединение образовано ступенчатыми концами раструба, сформированными на слоях сердечника.

8. Сварочный трансформатор, содержащий первичную и вторичную электрические обмотки, пропорциональные выходу сварочного тока из вторичной обмотки, причем железный сердечник имеет множество ветвей, образующих замкнутый сердечник кольцевого типа. 5 и несущие упомянутые обмотки, одна из упомянутых ветвей образована в промежуточной точке со сквозным зазором с противостоящими стенками, отдельная секция стального шунтирующего сердечника заполняет упомянутый зазор и перемещается в нем с возможностью скольжения, причем упомянутая секция шунтирующего сердечника имеет длину для скольжения в упомянутом зазоре. перемещать внутренний конец упомянутого шунтирующего сердечника рядом с точкой на противоположной ветви упомянутого сердечника кольцевого типа и от нее, чтобы более или менее шунтировать нормальный путь потока к упомянутой противоположной ветви, упомянутые первичная и вторичная обмотки расположены на упомянутом сердечнике кольцевого типа соответственно; на противоположных сторонах плоскости движения упомянутой секции сердечника шунта, причем упомянутая секция сердечника шунта имеет размер, чтобы всегда заполнять упомянутый зазор во всех положениях использования, и средства для упругого зажима секции сердечника шунта между противостоящими стенками зазора .

9. В сварочном трансформаторе по п.1 отдельная обмотка, смежная с указанной подвижной частью сердечника, последовательно с одной из обмоток трансформатора.

10. В сварочном трансформаторе по п.1 отдельная обмотка, смежная с указанной подвижной частью сердечника, последовательно с первичными обмотками трансформатора.

11. В сварочном трансформаторе, показанном в штиле 1, отдельная обмотка, смежная с указанной подвижной частью сердечника, последовательно с вторичными обмотками трансформатора.

12. В сварочном трансформаторе по п.1 — отдельная обмотка, примыкающая к указанной подвижной секции сердечника, последовательно с одной из обмоток трансформатора и подключенная к цепи через реверсивный переключатель.

13. В конструкции сварочного трансформатора по п.1 означает взаимодействие с подвижной секцией сердечника шунта и краями указанного зазора, направляющими секцию для скольжения через зазор.

14. В конструкции сварочного трансформатора по п. 1 означает взаимодействие с подвижной секцией сердечника шунта и краями указанного зазора, направляющими секцию для скольжения через зазор, содержащую пару пластин на внешних сторонах указанного секция сердечника шунта, перекрывающая границы указанного зазора.

HERMAN J. FANGER.

Безопасность заземления и дуговой сварки

Какое отношение имеет заземление к безопасности дуговой сварки?


Заземление электрических цепей — это мера безопасности, которая задокументирована в различных нормах и стандартах. Типовая установка для дуговой сварки может состоять из нескольких электрических цепей. Применение и соблюдение надлежащих методов заземления в зоне сварки важно для обеспечения электробезопасности на рабочем месте. Сопутствующие процессы, такие как плазменная резка, также выиграют от надлежащего заземления.Обсуждаются важные вопросы заземления в типичной сварочной среде.

Заземление сварочного аппарата
Сварочные аппараты, в которых используется гибкий шнур и вилка, или те, которые постоянно подключены к системе электроснабжения, содержат заземляющий провод. Заземляющий провод соединяет металлический корпус сварочного аппарата с землей. Если бы мы могли проследить заземляющий провод обратно через систему распределения электроэнергии, мы бы обнаружили, что он подключен к земле, и обычно через металлический стержень, вбитый в землю.

Цель подключения корпуса оборудования к заземлению — обеспечить одинаковый потенциал металлического корпуса сварочного аппарата и заземления. Когда они имеют одинаковый потенциал, человек не испытает поражения электрическим током при прикосновении к двум точкам.Заземление корпуса также ограничивает напряжение на корпусе в случае выхода из строя изоляции внутри оборудования.

Допустимая токовая нагрузка заземляющего провода согласована с устройством максимального тока системы электроснабжения. Согласование допустимой токовой нагрузки позволяет заземляющему проводнику оставаться неповрежденным даже в случае электрического повреждения сварочного аппарата.

Некоторые сварочные аппараты могут иметь конструкцию с двойной изоляцией. В этом случае подключение заземляющего провода не требуется.В сварочном аппарате этого типа используется дополнительная изоляция для защиты пользователя от ударов. Наличие двойной изоляции обозначается символом «прямоугольник в прямоугольнике» на паспортной табличке.

Для небольших сварочных аппаратов, в которых используется вилка на конце шнура питания, подключение заземляющего провода выполняется автоматически, когда сварочный аппарат подключается к розетке.Штырь заземления вилки замыкает розетку. Не рекомендуется использовать адаптеры, которые эффективно удаляют заземляющий контакт на вилке. Кроме того, не отрезайте и не вынимайте заземляющий штифт из вилки. Без подключения все преимущества безопасности заземляющего проводника теряются.

Тестеры цепей розеток легко проверит целостность заземляющего провода.Тестеры розеточных цепей для цепей на 120 В можно приобрести в магазинах электроснабжения или хозяйственных магазинах; эти недорогие тестовые устройства подключаются к электрической розетке. Световые индикаторы показывают наличие цепи заземления в розетке, а также другие проверки цепи. Если тестовое устройство показывает отсутствие заземления или другие проблемы с цепью, обратитесь за помощью к квалифицированному электрику. Это простой тест, который следует проводить периодически. Проконсультируйтесь с квалифицированным электриком для проверки цепей более 120 вольт.

Заготовка Заземление
Сварочная цепь состоит из всего проводящего материала, через который должен проходить сварочный ток. Сварочный ток протекает через клеммы сварочного аппарата, сварочные кабели, соединение деталей, горелку, горелку, электрододержатель и деталь. Сварочная цепь не заземлена внутри сварочного аппарата, а изолирована от земли. Как заземлить сварочную цепь?

Согласно ANSI Z49.1, «Безопасность при сварке, резке и смежных процессах», заготовка или металлический стол, на который она опирается, должны быть заземлены. Мы должны подключить заготовку или рабочий стол к подходящему заземлению, например, к металлическому каркасу здания. Заземление должно быть независимым или отдельным от соединения сварочной цепи.


Заземление заготовки имеет те же преимущества, что и заземление корпуса сварочного аппарата.Когда деталь заземлена, она имеет такой же потенциал, как и другие заземленные объекты в этой области. В случае нарушения изоляции в аппарате для дуговой сварки или другом оборудовании напряжение между заготовкой и землей будет ограничено. Обратите внимание, что возможно получение незаземленной детали, но для этого требуется разрешение квалифицированного специалиста.

Соединение детали не является зажимом заземления
«Зажим заземления» и «провод заземления» — общие термины, используемые многими сварщиками.Заготовка присоединяется к сварочному кабелю обычно с помощью подпружиненного зажима или винтового зажима. К сожалению, многие сварщики часто ошибочно называют соединение заготовки «заземляющим зажимом», а кабель массы неправильно называют «заземляющим проводом». Сварочный кабель не обеспечивает заземления к изделию. Заземление осуществляется отдельно от соединения с заготовкой.

Высокочастотное заземление
В некоторых сварочных аппаратах используются цепи запуска и стабилизации, содержащие высокочастотное напряжение.Это обычное явление для аппаратов для сварки вольфрамовым электродом в среде инертного газа (TIG). Высокочастотное напряжение может иметь частотные составляющие, которые простираются до мегагерцовой области. Напротив, сварочное напряжение может составлять всего 60 Гц.

Высокочастотные сигналы имеют тенденцию выходить за пределы зоны сварки. Эти сигналы могут создавать помехи для находящегося поблизости радио и телевидения или другого электрического оборудования. Один из способов минимизировать излучение высокочастотных сигналов — заземлить сварочную цепь.В руководстве по эксплуатации сварочного аппарата будут конкретные инструкции о том, как заземлить сварочную цепь и компоненты в окружающей среде, чтобы минимизировать радиационное воздействие.

Заземление переносных и устанавливаемых на транспортных средствах сварочных генераторов
Переносные и устанавливаемые на транспортных средствах генераторы дуговой сварки часто могут обеспечивать вспомогательное питание 120 и 240 вольт. Эти генераторы используются в удаленных местах вдали от системы распределения электроэнергии. Удобное заземление обычно недоступно для подключения.Следует ли заземлить корпус генератора?


Правила заземления зависят от конкретного использования и конструкции вспомогательного электрогенератора. Большинство приложений попадают в одну из двух категорий, кратко описанных ниже:

1. При соблюдении всех этих требований заземлять корпус генератора не требуется:

  • Генератор устанавливается на грузовик или прицеп
  • Вспомогательная энергия берется из розеток на генераторе с помощью шнура и вилки
  • Розетки имеют заземляющий штифт
  • Рама генератора прикреплена или электрически соединена с рамой грузовика или прицепа

2.Если выполняется одно из этих условий, корпус генератора необходимо заземлить:

  • Генератор подключен к внутренней электропроводке. Например, для подачи электроэнергии в дом во время отключения электроэнергии.
  • Вспомогательный источник питания жестко подключен к генератору без использования шнуров и вилок.


Приведенное выше резюме не содержит подробностей, и читателю рекомендуется ознакомиться со своими местными электротехническими нормами и ANSI / NFPA 70, «Национальными электротехническими нормами», чтобы узнать подробности.

Заземление удлинительного шнура
Удлинители следует периодически проверять на целостность заземления. Удлинители ведут тяжелую жизнь, лежа на земле; они находятся под ногами и подвержены повреждениям. Использование тестера цепи розетки подтвердит, что все соединения внутри шнура, вилки и розетки исправны.

Опасности поражения электрическим током в сварочной цепи
Использование надлежащего заземления в сварочной среде является хорошей практикой, но это не исключает возможности поражения электрическим током.Сварочный контур запитывается сварочным напряжением. Человек получит электрошок, если он станет электрическим путем в сварочной цепи. Необходимо принять меры по изоляции сварщика от сварочной цепи. Используйте сухие изоляционные перчатки и другие изоляционные средства. Также сохраняйте изоляцию на сварочных кабелях, держателях электродов, горелках и горелках для обеспечения защиты.

Аналогичным образом можно предотвратить поражение электрическим током от системы электроснабжения. Правильный уход за электрооборудованием и удлинителями изолирует сварщика от источников электрического тока.

Источники информации

  • Американское сварочное общество, ANSI Z49.1: 2005 «Безопасность при сварке, резке и смежных процессах».
  • Национальная ассоциация противопожарной защиты, NFPA 70, «Национальный электротехнический кодекс», 2005 г.
  • Американское общество сварщиков, Информационный бюллетень по безопасности и охране здоровья № 29, «Заземление переносных и устанавливаемых на автомобиле сварочных генераторов», июль 2004 г.
  • Американское сварочное общество, AWS A3.0-2001, «Стандартные термины и определения в области сварки».»

Livingston & Co. Руководство пользователя Критические факторы в процессе сварки

Критическое Факторы сварочные

Понимание процесс сварки сопротивлением требует понимания основных факторов вовлечены и как они работают вместе. В этом разделе будут рассмотрены текущие, напряжение, сопротивление и мощность, а также различные функции электроды и их влияние на контакт с поверхностью и плотность тока.

Текущий
Ток, обычно измеряемый в килоамперах (КА — один килоампер равен до 1000 ампер), является одним из наиболее важных факторов. Сварка сопротивлением не может быть произведено, если не будет достаточного сварочного тока. В соответствии с RWMA, типичное количество тока, необходимое для сварки низкоуглеродистой стали, например, составляет около 10 000 ампер (10 кА) при напряжении около 5 вольт. Поставить это в перспективе обычная домашняя или офисная розетка обеспечивает максимум 15-20 Ампер (0.015-0,020 кА) при 120 В, а силовая цепь в завод может быть способен обеспечить только 200 А (0,200 кА) при 500 Вольт сварщику. Заводские 200 ампер затем преобразуются в 10 000 ампер. Ток, необходимый для сварки с помощью сварочного трансформатора.

А трансформатор состоит из двух катушек проволоки, называемых первичной и вторичной, намотанный на железный сердечник. Питание передается от первичного к вторичному через магнитные свойства железа.Фактор, на который ток и напряжение повышается или понижается, равно соотношению между количество витков проволоки в катушках, образующих первичную и вторичную обмотки обмотки трансформатора. Рассмотрим сталь, для которой требуется 10 000 ампер. (10 кА) тока для сварки на заводе, который может обеспечить только 200 Ампер (0,200 кА). Если сварочный трансформатор имел 100 витков первичной обмотки и 2 витка на вторичной обмотке, «коэффициент поворотов» будет 100: 2, или проще говоря, 50 к 1.Тогда ток 200 А в первичной обмотке будет быть преобразованным (увеличенным) до 10 000 ампер (200 ампер x 50 витков = 10 000 ампер). Ампер) во вторичной обмотке, что даст достаточную силу тока для сварка.

Напряжение
Если ток — это количество протекающего электричества, тогда напряжение (измеренное в вольтах) — это давление или сила, вызывающая поток. Хорошая аналогия вода течет по трубе. Более высокое напряжение приведет к большему давление воды, что приведет к протеканию большего количества воды (тока) через труба.Используя приведенный выше пример трансформатора, после 200 А при 500 Вольт на первичной обмотке трансформатора, вторичная сила тока увеличивается до 10 000 ампер, но на самом деле напряжение падает до 10 Вольт. Это снижение напряжения происходит из-за того, что мощность выход из трансформатора на самом деле не увеличивается, а точнее обменялись.

Мощность
Мощность — это напряжение, умноженное на ток, и измеряется в ваттах, или КВА (КВА означает кило-вольт-амперы. Ватты и кВА будут использоваться как взаимозаменяемые. в этом тексте). Это означает, что количество протекающего тока умножается на давление, которое заставляет его течь, равно количеству генерируемой энергии. Основной закон, который следует иметь в виду, заключается в том, что мощность, поступающая в трансформатор всегда будет равняться мощности, исходящей от него. Возвращаясь к трансформатору Например, 200 А при 500 В (200 x 500 = 100 000 кВА) на первичная обмотка трансформатора с соотношением витков 50: 1 будет преобразована на 10 000 ампер при выходе 10 вольт (10 000 x 10 = 100 000 кВА).Как показывает математика, результаты такие же. Начальный и заключительный сила тока и напряжение могут отличаться, но поскольку соотношение то же самое, общее количество энергии тоже такое же.

Сопротивление
Как упоминалось ранее, сопротивление определяется как сопротивление, которое вещество предлагает поток электрического тока. Сопротивление рассчитывается путем деления напряжения на ток и измеряется в Ом.(Когда написано, Ом представлены греческой буквой Омега:.). Поскольку сопротивление к току — это то, что генерирует тепло в заготовке, это критически важно Важно, чтобы область с наибольшим сопротивлением находилась на границе раздела между двумя соединяемыми частями. Этот интерфейс также известен как прилегающие поверхности. Помните, что тепло — это то место, где сопротивление есть, а сопротивление там, где будет тепло. Если область с наибольшее сопротивление, например, там, где нижняя шина соединяется с трансформатор сварщика, а не на прилегающих поверхностях заготовки, то вот куда пойдет тепло.Точно так же, если самый большой сопротивление находится в области контакта между наконечником электрода и заготовка, тепло, выделяемое там, заставит наконечник сваривать напрямую к заготовке.

Международный журнал научных и технологических исследований

ДОБРО ПОЖАЛОВАТЬ В IJSTR (ISSN 2277-8616) —

Международный журнал научных и технологических исследований — это международный журнал с открытым доступом из различных областей науки, техники и технологий, в котором особое внимание уделяется новым исследованиям, разработкам и их приложениям.

Приветствуются статьи, содержащие оригинальные исследования или расширенные версии уже опубликованных статей конференций / журналов. Статьи для публикации отбираются на основе экспертной оценки, чтобы гарантировать оригинальность, актуальность и удобочитаемость.

IJSTR обеспечивает широкую политику индексирования, чтобы опубликованные статьи были хорошо заметны для научного сообщества.

IJSTR является частью экологически чистого сообщества и предпочитает режим электронной публикации, поскольку он является «ЗЕЛЕНЫМ журналом» в Интернете.

Мы приглашаем вас представить высококачественные статьи для обзора и возможной публикации во всех областях техники, науки и технологий.Все авторы должны согласовать содержание рукописи и ее представление для публикации в этом журнале до того, как она будет отправлена ​​нам. Рукописи должны подаваться онлайн


IJSTR приветствует ученых, заинтересованных в работе в качестве добровольных рецензентов. Рецензенты должны проявить интерес, отправив нам свои полные биографические данные. Рецензенты определяют качественные материалы. Поскольку ожидается, что они будут экспертами в своих областях, они должны прокомментировать значимость рецензируемой рукописи и то, способствует ли исследование развитию знаний и развитию теории и практики в этой области. Заинтересованным рецензентам предлагается отправить свое резюме и краткое изложение конкретных знаний и интересов по адресу [email protected]

.

IJSTR публикует статьи, посвященные исследованиям, разработкам и применению в областях инженерии, науки и технологий.Все рукописи проходят предварительное рецензирование редакционной комиссией. Вклады должны быть оригинальными, ранее или одновременно не публиковаться где-либо еще, и перед публикацией они должны быть подвергнуты критическому анализу. Статьи, которые должны быть написаны на английском языке, должны иметь правильную грамматику и правильную терминологию.


IJSTR — это международный рецензируемый электронный онлайн-журнал, который выходит ежемесячно. Цель и сфера деятельности журнала — предоставить академическую среду и важную справочную информацию для продвижения и распространения результатов исследований, которые поддерживают высокоуровневое обучение, преподавание и исследования в области инженерии, науки и технологий.Поощряются оригинальные теоретические работы и прикладные исследования, которые способствуют лучшему пониманию инженерных, научных и технологических проблем.

Система контактной сварки и противовесы

3680 Сварочная станция постоянного тока с инверторной технологией

Утверждено

Сварочная станция 3680 — это система контактной сварки, управляемая автоматическим микропроцессором, разработанная TECNA специально для автомастерских.

Цифровой дисплей с сенсорным экраном блока управления сваркой позволяет оператору устанавливать и контролировать все параметры сварки в соответствии с используемыми инструментами и характеристиками (материал, толщина, количество слоев) свариваемых листов.

Сварочный трансформатор

Встроенный сварочный трансформатор полностью разработан и изготовлен TECNA .

Трансформатор, рычаги и электроды охлаждаются водой через теплообменник, чтобы дополнительно оптимизировать производительность оборудования и увеличить рабочий цикл.

Опорный рычаг включает балансир TECNA , обеспечивающий комфорт и безопасность.

Новая зажимная система

Новая двухтактная система состоит из запатентованного механизма, который имеет несколько важных обновлений по сравнению с традиционным шестигранным ключом или фиксированной внешней системой открывания рычага с рычагом:

  • он интегрирован в конструкцию пистолета, что практически исключает риск возможных случайных открытий, которые могут повредить пистолет, и возможность потери ключа, не прикрепленного к системе;
  • гарантирует более точный и плавный зажим;
  • он содержит изолированную ручку, которая защищает от риска короткого замыкания.

Если вам нужна дополнительная информация о 3680 или если вы хотите заказать онлайн-демонстрацию, отправьте запрос по электронной почте [email protected]

Сильноточные сварочные диоды для сложных промышленных приложений

Особые требования к контактной сварке, даже несмотря на то, что она не является высококлассным приложением для силовой электроники, привели к постоянному развитию семейства устройств для конкретных приложений.В этой статье мы более подробно рассмотрим само приложение, требования, которым силовые полупроводники должны соответствовать при испытаниях на циклическую нагрузку, а также компоненты, которые были разработаны для удовлетворения этих требований. Наконец, обсуждаются тенденции выпуска новых продуктов в ближайшем будущем.

Сварка сопротивлением

Контактная сварка — это метод, используемый в основном для соединения листов металла. Он включает в себя выделение тепла за счет пропускания тока через контактное сопротивление между металлическими поверхностями.Небольшие лужи расплавленного металла образуются в зоне сварного шва, когда пропускается большой ток.

После охлаждения участка образуется прочный стык. На Рисунке 1 показаны основные действительные и паразитные сопротивления вторичного контура сварочного трансформатора. Это демонстрирует важность отличных прямых характеристик диода. Сварочный диод должен иметь низкое сопротивление в цепи, чтобы быть успешным с точки зрения эффективности и срока службы. Любые дополнительные потери приводят к более высокому напряжению диодов в приложении.

Рисунок 1: Сопротивление сварочной цепи. Цвета представляют различные части и их соответствующие сопротивления

По сравнению с другими методами сварки, контактная сварка очень эффективна, так как вызывает небольшое загрязнение и ограниченную деформацию заготовки. Он отличается высокой производительностью, легко поддается автоматизации и не требует присадочных материалов. Поэтому он широко используется в автомобильной промышленности, так как большинство автомобилей имеют несколько тысяч точечных сварных швов, выполненных промышленными роботами.

Принцип сварочного контура

Электрическая схема системы контактной сварки состоит из 4 частей, как показано на рисунке 2:

  • Преобразователь частоты, который генерирует однофазное квазипрямоугольное напряжение и ток требуемой частоты из трехфазной синусоидальной волны. Обычно сварочные агрегаты собираются вместе с инвертором IGBT. Выход инвертора подключен к первичной обмотке трансформатора. Форма волны представляет собой прямоугольную последовательность импульсов ШИМ с типичной частотой 1 кГц и амплитудой 560 В.
  • Трансформатор с вторичным напряжением в диапазоне 6-20 В, с 10 В является наиболее распространенным. Вторичный ток часто находится в диапазоне 10-20 кА, но может быть даже выше при сварке алюминия.
  • Диодный выпрямитель для преобразования квазипрямоугольного тока в постоянный ток. Это сделано, поскольку качество сварки намного лучше при использовании постоянного тока вместо переменного тока. Для уменьшения количества диодов, требуемых для выпрямления, рекомендуется выбрать соединение типа M2. Когда требуются более высокие токи, возможности увеличиваются за счет параллельного включения двух или более диодов.
  • Сварочный пистолет с водоохлаждаемыми электродами, между которыми прижимаются соединяемые металлические листы.

Рисунок 2: Типовая сварочная цепь

Требуемые характеристики диодов для сварочных работ

Для каждой модели автомобиля разработана индивидуальная сварочная система. В автомобильной промышленности трансформатор, выпрямитель и сварочный пистолет часто размещают на руке робота. Таким образом, большое значение имеют размер и вес.Поскольку увеличение частоты уменьшает размер трансформатора при одинаковой мощности, существует тенденция к увеличению частоты с 1 кГц, используемой сегодня, до примерно 10 кГц или, возможно, даже 20 кГц.

Для определенных материалов также требуются особые последовательность и требования к сварке. Каждый материал имеет так называемый температурный диапазон пластичности, в котором он может легко деформироваться, плавиться и соединяться под действием приложенной силы. Стальные материалы и сплавы характеризуются широким диапазоном пластических температур, поэтому их легко сваривать плавлением.

С другой стороны, чистые металлы, такие как медь и алюминий, которые обладают высокой проводимостью (термически и электрически), имеют узкий диапазон пластических температур.Они требуют более точного времени, короткого времени сварки и более высоких уровней тока (см. Рисунок 3). Поэтому были разработаны новые сварочные системы с частотой 10 кГц. Все представленные аспекты применения отражены в характеристиках сварочных диодов АББ.

Рисунок 3: Параметры сварного шва, особые требования к материалам

Возможность переключения нагрузки

Успех применения в оборудовании для контактной сварки во многом зависит от правильного выбора сварочного диода и его правильной работы. Каждый цикл сварки представляет собой цикл нагрузки для диодов, а ожидаемый срок службы обычно составляет 10 миллионов циклов или даже больше. Это означает, что возможность переключения нагрузки диода имеет решающее значение для выбора компонента, и эта способность определяется колебаниями температуры, которым диод подвергается во время цикла.

Рис. 4: Диоды подвергаются нагрузке из-за регулируемого короткого замыкания во время сварной точки.

Чтобы поддерживать минимальные колебания температуры во время сварочного цикла, диоды должны быть спроектированы с учетом минимальных возможных потерь и теплового сопротивления.Во время одной точки сварки на диод воздействуют быстрые импульсы тока (диапазон 1 кГц), достигающие от 10 до 50 кА и продолжающиеся сотни миллисекунд.

Температура перехода

Температура перехода в это время быстро повышается, обычно до Tjmax (180 ° C). Таким образом, работа сварочного диода представляет собой комбинацию импульсного тока, быстрой коммутации и частотной нагрузки. Срок службы диода также сильно зависит от конструкции диода, используемых материалов и качества его изготовления.

Диоды

ABB сочетают в себе все функции, необходимые для таких экстремальных нагрузок, и устанавливают новые рекорды при включении и выключении питания для всех силовых полупроводниковых устройств в целом.

Рисунок 5: Сварочные диоды от ABB

Стандартные WD (до 2 кГц) I FAVM (А) Упаковка * (мм)
5SDD 71X0400 7110 61/44
5SDD 71B0400 7110 63/44
5SDD 0120C0400 11350 75/57
5SDD 92Z0401 9250 53/47
5SDD 0105Z0401 10502 56/50
5SDD 0135Z0401 13500 64/57

Высокочастотные WD (до 10 кГц) I FAVM (А) Упаковка * (мм)
5SDF 63X0400 6266 61/44
5SDF 63B0400 6266 63/44
5SDF 0102C0400 10159 75/57
5SDF 90Z0401 9041 53/47
5SDF 0103Z0401 10266 56/50
5SDF 0131Z0401 13058 64/57

VRRM = 400 В

* Примечание: максимальный диаметр / диаметр полюсного наконечника

Таблица 1: Ассортимент сварочных диодов АББ

Сварочные диоды ABB

Компания ABB разработала обширный ассортимент сварочных диодов, который показан ниже на Рисунке 5 и в Таблице 1. Мы предлагаем стандартные сварочные диоды в герметичном корпусе или даже более тонкие версии, называемые безкорпусными диодами. В этой конфигурации кремниевый чип сварочного диода склеен в один прочный тонкий сэндвич вместе с двусторонними молибденовыми дисками и верхним медным электродом. Преимущество этого тонкого корпуса заключается в еще более низком термическом сопротивлении. Дополнительным преимуществом является малый размер и малый вес диодов, что приветствуется для оборудования, установленного на манипуляторе робота.

Диодная многослойная структура

Многослойная диодная структура подтверждена многочисленными испытаниями на переключение мощности, проведенными испытательной лабораторией ABB R&D, а также всемирным сотрудничеством с основными игроками в области контактной сварки.Успешные испытания диодов достигли значительно более 10 млн циклов без выхода из строя диодов или ухудшения параметров сварки.

Для удовлетворения требований к более высоким частотам была разработана новая группа высокочастотных сварочных диодов с высокой токовой нагрузкой в ​​сочетании с превосходными характеристиками обратного восстановления. Эти новые функции позволят работать с высокой эффективностью на частотах около 10 кГц.

Сварочный диод представляет собой компонент, подверженный наибольшим нагрузкам.Надежность диодов и срок их службы являются ключевыми факторами успеха приложения. Сварочные диоды АББ считаются мировым эталоном.

Об авторе

Ладислав Радван — изобретатель, который также работает в ABB s.r.o. Полупроводники, в которой ABB является технологическим лидером, стимулирующим цифровую трансформацию отраслей. Имея более чем 130-летнюю историю инноваций, ABB имеет четыре ведущих мировых бизнеса, ориентированных на клиентов: электрификация, промышленная автоматизация, движение, робототехника и дискретная автоматизация, поддерживаемые цифровой платформой ABB Ability ™.В 2020 году подразделение Power Grids компании ABB будет передано Hitachi. Компания ABB работает в более чем 100 странах и насчитывает около 147 000 сотрудников.

Эта статья изначально была опубликована в журнале Bodo’s Power Systems.

Как работает аппарат для электродуговой сварки?

В этой статье рассказывается о том, как работать с аппаратом для электродуговой сварки. Включает:

1. Определение дуговой сварки

2. Производство дуговой сварки

3.Электрический ток для сварки

4. Значение полярности

5. Оборудование

6. Подготовка кромки стыка

Определение дуговой сварки:

Дуговая сварка — это процесс сварки плавлением, при котором тепло, необходимое для плавления металла, получается от электрической дуги между основным металлом и электродом.

Электрическая дуга возникает, когда два проводника соприкасаются друг с другом и затем разделяются небольшим зазором от 2 до 4 мм, так что ток продолжает течь через воздух.Температура, создаваемая электрической дугой, составляет от 4000 ° C до 6000 ° C.

Дуговая сварка электродом с покрытием

Используется металлический электрод для подачи присадочного металла. Электрод может быть покрыт флюсом или без покрытия. В случае неизолированного электрода поставляется дополнительный флюсовый материал. Для дуговой сварки используются как постоянный ток (DC), так и переменный ток (AC).

Переменный ток для дуги получается от понижающего трансформатора. Трансформатор получает ток от сети от 220 до 440 вольт и понижается до необходимого напряжения i.е., от 80 до 100 вольт. Постоянный ток для дуги обычно получают от генератора, приводимого в действие электродвигателем, патрульным или дизельным двигателем.

Напряжение холостого хода (для зажигания дуги) при сварке на постоянном токе составляет от 60 до 80 вольт, а напряжение в замкнутой цепи (для поддержания дуги) составляет от 15 до 25 вольт.

Порядок электродуговой сварки:

В первую очередь свариваемые металлические детали тщательно очищаются от пыли, грязи, жира, масла и т. Д. Затем обрабатываемую деталь следует надежно закрепить в подходящих приспособлениях.Вставьте подходящий электрод в электрододержатель под углом от 60 до 80 ° к заготовке.

Выберите правильный ток и полярность. Пятна отмечаются дугой в местах проведения сварки. Сварка выполняется путем соприкосновения электрода с изделием и последующего разделения электрода на необходимое расстояние для образования дуги.

Когда возникает дуга, возникающее при этом сильное тепло расплавляет изделие ниже дуги и образует ванну расплавленного металла. В изделии образуется небольшое углубление, и расплавленный металл осаждается по краю этого углубления.Это называется дуговой кратор. После остывания стыка шлак легко счищается. По окончании сварки следует быстро вынуть электрододержатель, чтобы разрядить дугу и отключить подачу тока.

Установка для дуговой сварки

Электрический ток для сварки:

И DC (постоянный ток), и AC (переменный ток) используются для создания дуги при электродуговой сварке. У обоих есть свои преимущества и приложения.

Дом D.Сварочный аппарат C. получает питание от двигателя переменного тока, дизельного / бензинового генератора или от твердотельного выпрямителя.

Вместимость машины постоянного тока:

Текущий:

До 600 ампер.

Напряжение холостого хода:

От 50 до 90 вольт (для образования дуги).

Напряжение замкнутой цепи:

от 18 до 25 вольт (для поддержания дуги).

Сварочный аппарат переменного тока имеет понижающий трансформатор, который получает ток от основного источника переменного тока.Этот трансформатор понижает напряжение с 220 В до 440 В до нормального напряжения холостого хода от 80 до 100 вольт. Доступен диапазон тока до 400 ампер с шагом 50 ампер.

Вместимость сварочного аппарата переменного тока:

Текущий диапазон:

До 400 ампер с шагом 50 ампер.

Входное напряжение:

220–440 В

Фактическое требуемое напряжение:

80 — 100 вольт.

Частота:

50/60 Гц.

Значение полярности:

Когда Д.Для сварки используется ток C. Возможны два типа полярности:

(i) Прямая или положительная полярность.

(ii) Обратная или отрицательная полярность.

Когда работа делается положительной, а электрод — отрицательной, тогда полярность называется прямой или положительной полярностью, как показано на рис. 7.16 (a).

При прямой полярности около 67% тепла распределяется на рабочем месте (положительный полюс) и 33% на электроде (отрицательный полюс). Прямая полярность используется там, где при работе требуется больше тепла.Эта полярность используется для черных металлов, таких как низкоуглеродистая сталь, с более высокой скоростью и надежной сваркой.

(a) Прямая полярность.

(б) Обратная полярность

Полярность для дуговой сварки на постоянном токе

С другой стороны, когда работа выполняется отрицательной, а электрод — положительным, тогда полярность известна как обратная или отрицательная полярность, как показано на рис. 7.16 (b).

При обратной полярности около 67% тепла выделяется на электроде (положительный полюс) и 33% — на рабочем (отрицательный полюс).

Обратная полярность используется там, где при работе требуется меньше тепла, как в случае сварки тонких листов. Цветные металлы, такие как алюминий, латунь и никель, свариваются с обратной полярностью.

Оборудование, необходимое для дуговой сварки:

Различное оборудование, необходимое для электродуговой сварки:

1. Сварочный аппарат:

Используемый сварочный аппарат может быть сварочным аппаратом переменного или постоянного тока. Сварочный аппарат переменного тока имеет понижающий трансформатор для понижения входного напряжения с 220-440 В до 80-100 В.Сварочный аппарат постоянного тока состоит из электродвигателя-генератора переменного тока, дизельного / бензинового двигателя-генератора или сварочного агрегата трансформатор-выпрямитель.

Аппарат

переменного тока обычно работает от источника питания с частотой 50 или 60 Гц. КПД сварочного трансформатора переменного тока варьируется от 80% до 85%. Энергия, потребляемая на кг. наплавленного металла составляет от 3 до 4 кВтч для сварки на переменном токе и от 6 до 10 кВтч для сварки на постоянном токе. Сварочный аппарат переменного тока обычно работает с низким коэффициентом мощности от 0,3 до 0,4, в то время как двигатель при сварке на постоянном токе имеет коэффициент мощности 0.От 6 до 0,7. В следующей таблице 7.9 показаны напряжение и ток, используемые для сварочного аппарата.

Напряжение и ток для сварочного аппарата

2. Держатели электродов:

Электрододержатель предназначен для удержания электрода под желаемым углом. Они доступны в различных размерах в зависимости от номинального тока от 50 до 500 ампер.

3. Кабели или выводы:

Назначение кабелей или проводов — отводить ток от машины к месту работы.Они гибкие и изготовлены из меди или алюминия. Кабели состоят из 900–2000 очень тонких проволок, скрученных вместе, чтобы обеспечить гибкость и большую прочность.

Провода изолированы резиновым покрытием, армированным волокном и, кроме того, толстым резиновым покрытием.

4. Кабельные разъемы и наконечники:

Кабельные соединители предназначены для соединения между выключателями машины и держателем сварочного электрода. Используются соединители механического типа; как они могут он собирается и снимается очень легко.Разъемы разработаны в соответствии с допустимой токовой нагрузкой используемых кабелей.

5. Отбойный молоток:

Отбойный молоток предназначен для удаления шлака после затвердевания металла шва. Он имеет форму долота и заострен с одного конца.

6. Проволочная щетка, колесо с силовым проводом:

Функция проволочной щетки заключается в удалении частиц шлака после измельчения отбойным молотком. Иногда, если возможно, вместо ручной проволочной щетки используется колесо с силовой проволокой.

7.Защитная одежда:

Используемая защитная одежда предназначена для защиты рук и одежды сварщика от тепла, искр, ультрафиолетовых и инфракрасных лучей. Используемая защитная одежда — кожаный фартук, кепка, кожаные перчатки для рук, кожаные рукава и т. Д. Сварщик должен носить кожаные туфли с высокими щиколотками.

9. Экран или лицевой щиток:

Экран и маска для лица предназначены для защиты глаз и лица сварщика от вредного ультрафиолетового и инфракрасного излучения, образующегося во время сварки. Экранирование может быть достигнуто с помощью головного или ручного шлема.

Подготовка кромки стыка:

Эффективность и качество сварного соединения также зависит от правильной подготовки кромок свариваемых листов. Перед сваркой необходимо удалить с поверхности всю окалину, ржавчину, жир, краску и т. Д.

Очистку поверхности следует проводить механически с помощью металлической щетки или проволочной мельницы, а затем химически с помощью четыреххлористого углерода.Необходимо придать правильную форму краям пластины, чтобы обеспечить надлежащий стык.

Форма кромок может быть простой, V-образной, U-образной, измененной и т.д. Выбор различных форм кромок зависит от вида и толщины свариваемого металла. Несколько различных типов канавок для кромок работы:

(i) Квадратный стык:

Применяется при толщине пластины от 3 до 5 мм. Обе свариваемые кромки должны находиться на расстоянии 2-3 мм друг от друга, как показано на рис.

Добавить комментарий

Ваш адрес email не будет опубликован.