какие бывают, из чего состоят, параллельная работа
Трансформатор нужен для преобразования электрической энергии одного напряжения к электрической энергии другого напряжения. Используется для повышения или понижения напряжения. Нет разницы в понижении или повышении, так как трансформатор является обратимой электрической машиной (возможно преобразование электроэнергии как в большую, так и меньшую сторону). Однако производители выпускают их для определенных целей – или повышающим или понижающим трансом.
На электрической станции турбогенератором вырабатывается электроэнергия с генераторным напряжением, например 15кВ, далее она трансформируется повышающими трансформаторами (описываемые элементы обозначены на схеме) до напряжения линии электропередач (например, 35кВ, 110кВ, 220кВ, 330кВ, 750кВ). Далее по ЛЭП электроэнергия передается к потребителям и снижается через понижающие трансформаторы до величины 10, 6, 0,4кВ.
Зачем передачу электроэнергии делают на высокие напряжения? Это необходимо для снижения потерь электроэнергии, что достигается увеличением напряжения.
По назначению:
- самыми распространенными являются силовые трансформаторы различных величин полной мощности, предназначенные для передачи и распространения электроэнергии
- существуют силовые трансформаторы специального назначения – сварочные, печные
- трансформаторы тока и напряжения (измерительные и релейные) тоже относятся к трансформаторам
- испытательные трансформаторы – для подачи высокого напряжения для проверки прочности изоляции
- а также радиотрансформаторы, импульсные трансформаторы, пик-трансформаторы
Трансформаторы подразделяются на разные виды в зависимости от числа обмоток на двухобмоточные и многообмоточные (одна первичная и одна или несколько вторичных обмоток).
В зависимости от числа фаз – однофазные, трехфазные, многофазные.
По способу охлаждения – масляные, сухие.
Принцип действия трансформатора
Принцип работы трансформатора основан на явлении электромагнитной индукции. Возьмем для примера двухобмоточный однофазный трансформатор. К первичной обмотке подключается источник переменного тока. Этот ток протекает по обмотке и создает переменный магнитный поток Ф, который пронизывает обмотки трансформатора и изменяясь наводит в них ЭДС. Так как обмотки имеют различное число витков, то и величина ЭДС будет в них различная.
В повышающих трансах вторичное напряжение будет больше первичного, а в понижающих – наоборот. К вторичной обмотке подключается нагрузка и возникает вторичный ток, созданный индуцируемой магнитным потоком ЭДС. Таким образом, в трансформаторе происходит передача электроэнергии из первичной обмотки с напряжением U1 и током I1 во вторичную обмотку с током I2 и напряжением U2 посредством магнитного потока.
Устройство трехфазного силового трансформатора
Основными частями трансформатора являются магнитопровод и обмотка. Магнитопровод собирается из листов электротехнической стали толщиной 0,3-0,5мм. Изоляция листов представляет собой покрытие лаковой пленкой листа стали с обеих сторон. Магнитопровод разделяется на стержни и ярмо. Стержень это вертикальная часть магнитопровода, на которую насаживается обмотка. Ярмо – это горизонтальная часть, которая замыкает магнитный поток.
Трехфазные трансформаторы чаще всего выполняются с тремя стержнями (стержневой тип), на которых располагаются три обмотки. Соединение стержней и ярма бывает двух видов – стыковое и шихтованное. Стыковое соединение – ярмо и стержни крепятся соединительными деталями, при этом удобно снимать обмотки. При шихтованном соединении – ярмо и стержни собираются листами стали внахлест, в этом случае уменьшается магнитное сопротивление магнитопровода за счет уменьшения воздушного зазора. Также механическая прочность шихтованного соединения выше, чем у стыкового соединения.
Обмотки трансформатора выполняют из медного проводника круглого или квадратного сечения. Изоляцией выступает кабельная бумага или хлопчатобумажная пряжа.
Магнитопровод с баком заземляют, для безопасности на случай обрыва обмотки.
В масляных трансформаторах магнитопровод с обмоткой опускают в бак, залитый трансформаторным маслом. Масло отбирает тепло от обмоток. Характеристики масла выше, чем у воздуха, следовательно, габариты масляного трансформатора и сухого трансформатора одной мощности более выигрышны у масляного трансформатора.
При изменении климатических условий уровень масла может меняться. Происходит это не в баке трансформатора, а в специальном расширителе, который представляет собой сосуд на крышке бака, сообщающимся с ним.
При ненормальных режимах, таких как короткие замыкания, может изменяться давление масла, из-за выделения газов в масле. Для сброса этого давления на трансформаторах используют выхлопную трубу. На верхней части трубы находится стеклянная пластина. При повышении давления пластина разлетается, и давление выходит из трансформатора.
На мощных трансформаторах предусмотрено газовое реле. При повышении давления из-за выброса газов (например, при коротких замыканиях внутри трансформатора) происходит срабатывание реле и идет сигнал на отключение выключателя. После чего трансформатор отключается от сети.
Соединение обмоток с сетью происходит через ввода трансформатора. Они бывают различной конструкции: с главной изоляцией фарфоровой покрышки, конденсаторные проходные изоляторы, с бумажно-масляной, полимерной, элегазовой, маслобарьерной изоляцией.
В трансформаторах встречается возможность изменять число витков обмоток (группы соединения обмоток). Для этих целей используются ПБВ (переключатель числа витков без возбуждения) и РПН (регулирование числа витков под нагрузкой).
Включение трансформаторов на параллельную работу
Стоит отличать данный режим (1 на рисунке ниже — трансформаторы подключены к общим шинам как со стороны ВН, так и со стороны НН) от другого, когда подключение к общим шинам есть только с высокой стороны (2 на рисунке, совместная работа), то есть к секции 10кВ подключены два транса, а с низкой стороны каждый из них питает свою секцию 0,4кВ.
Если отключается один из Т (1 на рис. ), то на втором происходит перегрузка, но все механизмы остаются в работе. Если же отключается один из трансов (2 на рис.) — то нагрузка либо отключается, либо переходит на резервный источник питания по АВР.
Ну и естественно расчет схем замещения для данных случаев будет разным:
- 1 — складываем // сопротивления двигателей, затем складываем // иксы трансформаторов, а затем последовательно первое со вторым
- 2 — суммируем ветви (двигатель плюс трансформатор), затем полученные иксы складываем параллельно
Далее буду рассматривать только схему под цифрой 1 на рисунке. Для чего же может применятся параллельная работа трансформаторов:
- повышается надежность, так как при выходе из строя одного из трансов, потребитель не лишается энергии.
- резервная мощность параллельно включенных трансформаторов будет больше, чем у одного большого
- при сезонных снижениях нагрузки (зимой больше нагрузки, летом меньше) возможно отключение одного из нескольких.
При этом будет обеспечен более экономичный режим работы, так как уменьшаться потери холостого хода
Все плюсы улетучиваются, если установлено два транса по причине нехватки мощности одного из-за роста нагрузки например.
Условия параллельной работы:
- Равенство номинальных напряжений первичных и вторичных обмоток. Следовательно и одинаковое число витков первичных и вторичных обмоток для всех параллельно работающих трансформаторов. Так же перед включением необходимо проверять положения ПБВ и РПН. Если всё подобрано правильно то не должны возникать уравнительные токи. Они возникают из-за неравенства коэффициентов трансформации и текут даже в режиме холостого хода. Воспользовавшись схемой аналогичной схеме замещения ТТ, можно вывести формулу уравнительного тока:
- Равенство напряжений короткого замыкания. Напряжение короткого замыкания — такое напряжение, которое необходимо подать в одну из обмоток при замкнутой второй, чтобы в обеих тек номинальный ток. Данное условие необходимо выполнять потому, что отношение uk пропорционально распределению нагрузок и токов.
- Принадлежность к одной группе присоединения
- Отношение максимальной мощности к минимальной параллельно работающих трансформаторов должно быть не более 3 к 1. Если отношение мощности будет больше трех, то перегрузка меньшего из Тр может быть больше допустимой и целесообразнее будет вообще его отключить.
- По ГОСТ 11677-85 ни одна из обмоток не должна быть перегружена током больше допустимого для данной обмотки
- Если имеется РПН, то окончание переключения ответвлений должно происходить практически одновременно у всей группы. Трансформаторы с РПН мощностью ниже 1000кВА не предназначены для параллельной работы
- Число параллельно работающих трансформаторов выбирается исходя из условия наименьших суммарных потерь холостого хода и нагрузочных потерь всех машин.
uk1, uk2 — напряжения короткого замыкания в процентах;
Избавиться от уравнительного тока можно либо переключив устройства регулировки в нужное положение, либо, устроив ремонт, добиться одного числа намотанных витков.
Первичные и вторичные обмотки соединяются параллельно. При отключении одного, на втором Т возникает перегрузка, которая должна быть учтена при отстройке уставки МТЗ.
На // подключенных т мощностью 4 МВА и выше должна устанавливаться ДЗТ. Она производит быстрое и селективное срабатывание, отключая только поврежденное оборудование. В случае с МТЗ, при аварии со стороны НН могут отключиться оба трансформатора за счет равенства выдержек времени.
Для более глубокого погружения в данный вопрос рекомендую прочитать книгу Г.В. Алексенко — Параллельная работа трансформаторов и автотрансформаторов (Трансформаторы, вып. 17) — 1967 года.
Сохраните в закладки или поделитесь с друзьями
Самое популярное
принцип действия и его устройство
Трансформаторами в электрике называют специальные электроустановки, которые передают переменный электрический ток из одной своей катушки к другой, которая не связана с первой электрическим способом. Сфера их применения крайне широка, поэтому следует разобраться, что это за прибор и каков принцип действия устройства однофазного трансформатора.
Что такое однофазный трансформатор
Электрическая установка, которая содержит две и более катушки, связанные индуктивно, называется трансформатором. Этот прибор способен преобразовывать электроток одной напряженности в переменный ток другой напряженности. На данный момент особой популярностью пользуются трехфазные и однофазные электротрансформаторы.
Схема простейшего однофазного трансформатораОбычный однофазный прибор представляет собой замкнутый сердечник из ферромагнитного вещества, который обматывают первичной и вторичной катушками. Для снижения токов вихревого типа сердечник делают из тонких (пол-миллиметра) слоев специальной стали.
Обратите внимание! На схемах трансформаторов обычно применяют плюсовые направления всех значений, которые характеризуют процессы работы. Исходит это из того, что первичная катушка — это приемник энергии, а вторичная — источник.
Как работает однофазный трансформатор
Работа этого прибора заключается в следовании законам электромагнетизма. Во время подключения первой обмотки к питанию по ней начинает идти переменный ток, создающий в ферромагнитном сердечнике магнитные токи переменного знака. Когда этот поток замыкается в сердечнике, то он сцепляет первичную и вторичную катушки и производит в них электродвижущую силу, которая пропорциональна количеству витков катушки.
Важно! Когда по первичной катушке проходит ток, он создает с ее помощью магнитное поле, пронизывающее не только эту обмотку, но и вторичную.
Принцип работы и рассеивание магнитных волнВ чем его достоинства и недостатки
Любое электротехническое приспособление обладает рядом преимуществ и недостатков. Однофазные электрические трансформаторы этому не исключение. Достоинств у них больше, чем минусов. Основными из них являются:
- обладают одним из самых больших коэффициентов полезного действия (КПД), который составляет 98 %;
- отлично охлаждаются и обладают повышенной стойкостью к перегрузкам и кратковременным скачкам напряжения;
- экологическая безопасность сухого вида.
Масла в них нет, а значит, что окружающей среде ничего не может навредить даже после утилизации;
- отсутствие нужды соблюдения особых противопожарных мер в местах установки трансформаторов;
- сравнительно небольшие размеры, позволяющие устанавливать аппараты в небольшие отсеки.
применение, принцип действия, каких типов бывает
Одним из ключевых моментов в развитии электроники стало изобретение трансформатора. Трудно назвать какое-либо электротехническое устройство, в работе которого он бы не использовался. Благодаря этому простому изобретению человечество научилось управлять электроэнергией путём преобразования её параметров. Поэтому одной из главных задач в области электроники является усовершенствование радиоприбора для повышения надёжности схем электропитания.
История изобретения
Появившийся в XIX веке прибор, названный впоследствии трансформатором, является радиоэлектронным устройством, предназначенным для преобразования одних значений напряжения в другие.
В 1831 году английский физик Майкл Фарадей, проводя ряд экспериментов, открыл явление электромагнитной индукции, которое послужило основой для создания трансформатора. Принцип явления основан на возникновении тока при изменении магнитного поля. Изучая электромагнетизм, учёный выявил, что электродвижущая сила (ЭДС) зависит от скорости изменения магнитного поля, ограниченного проводящим контуром. Таким образом, была открыта возможность превращать магнетизм в электричество.
Первый прототип трансформатора был создан в 1848 году немецким инженером Генрихом Румкорфом. Это устройство было названо катушкой индуктивности и позволяло преобразовывать низкое напряжение постоянной величины в высокое. Конструктивно оно состояло из железного сердечника, вокруг которого были намотаны две обмотки.
Датой же рождения преобразовательного прибора считается 30 ноября 1876 года. Именно тогда русским инженером Яблочковым был получен патент на изобретение устройства. Сконструированный им трансформатор представлял собой сердечник с намотанной на него катушкой. Первый же в классическом понимании радиоприбор был создан в Англии братьями Гопкинсонами, а через год в Венгрии учёные Отто Блати, Карой Циперновский и Микша Дери усовершенствовали его путём использования замкнутого магнитопровода.
Существенную роль в развитии устройства сыграло применение Свинберном масленого охлаждения, повысившего надёжность и стабильность электротрансформатора. Развитие изобретения позволило изучать переменный ток, в результате чего была создана трёхфазная система, запатентованная Теслой в 1889 году.
Первоначально сердечник изготавливался в виде формы Н, пока англичанин Стэнли не предложил использовать форму Ш. Благодаря этому появилась возможность отдельно наматывать катушки, а после надевать их на сердечник. Первые образцы трансформаторов характеризовались значительными потерями мощности. Введение примесей кремния в сердечник позволило улучшить характеристики. Дальнейшее развитие технологии изготовления электрических трансформаторов сводилось к усовершенствованию материала сердечника.
Устройство и его суть
В узлах электропитания радиоэлектронных устройств для преобразования тока используются различные виды трансформаторов. В принципе их действия лежит явление электромагнитной индукции, характеризующееся преобразованием переменного тока одной разности потенциалов в другую. При этом скважность и период сигнала остаются неизменными.
Конструктивно классический трансформатор состоит из трёх частей:
- первичной обмотки;
- вторичной катушки;
- сердечника.
Обмотка, к которой подводится электрический сигнал, называется первичной, а с которой снимается — вторичной. Изготавливаются они из алюминиевой или медной проволоки. Сердечник же делается из электротехнической стали или феррита.
При работе устройства возникают вихревые токи, приводящие к нагреву магнитопровода. Это, в свою очередь, влияет на передачу энергии, приводя к её потерям. Чтобы при нагревании не происходило расплавление изоляционного слоя катушек и сплавление с пластинами, используется дополнительная изоляция как сердечника, так и обмоток.
Отдельно выделяют автотрансформаторы. Это преобразователи, состоящие из одной или нескольких катушек, соединённых электрически между собой, в результате чего действующее магнитное поле на них является общим. Сердечник для них выполняется из мягкого ферромагнетика.
Слово «трансформатор» произошло от латинского transformate, что в дословном переводе на русский язык обозначает «превращение», «преобразование». Принцип действия трансформатора основан на двух базовых положениях:
- Переменный электрический ток образует изменяющийся магнитный поток во времени.
- Проходя через катушку магнитное поле, наводит в ней ЭДС.
Силовой трансформатор: принцип работы устройства
- Тесты
- Новости
- Калькуляторы
- Вопрос-ответ
MENUMENU
- Главная
- Электропроводка
- Электропроводка
- Выключатели света
- Молниезащита
- Монтаж электропроводки
- Провода и кабеля
- Розетки
- УЗО и автоматы
-
Новое раздела
- Параметры постоянного электрического тока
- Правила освобождения от электрического тока
- Cила тока при параллельном соединении
- Как подключить бра с выключателем шнурком?
- Как повесить люстру на потолок из бетона?
- Электропроводка
- Бытовая техника
- Бытовая техника
- Подключение техники
- Советы по выбору
- Ремонт техники
- Аккумуляторы
-
Новое раздела
- Детекторный приемник: схема работы
- Какой кабель использовать для освещения?
- Как выбрать топливо для дизельного генератора
- Кондиционеры от фирмы SmartWay
- Монтаж и установка GSM сигнализации
- Бытовая техника
- Освещение
- Освещение
- Светодиодное освещение
- Трансформаторы
- Источники света
- Уличное освещение
- Светодиодные ленты
-
Новое раздела
- Как подключить бра с выключателем шнурком?
- Сколько люменов нужно для освещения комнаты?
- Что такое консольный светильник?
- Как повесить люстру на потолок из бетона?
- Уличные светильники на солнечных батареях: как выбрать, где купить?
- Освещение
- Отопление
- Отопление
- Монтаж отопления
- Теплый пол
- Обогреватели
-
Новое раздела
- Топ масляных обогревателей
- Лучшие производители электрокаминов
- Как выбрать электрический камин
- Внутрипольные конвекторы – худшее решение для дома
- Керамические обогреватели: обман производителя, плюсы и минусы
- Отопление
- Полезные советы
- Полезные советы
- Экономия электроэнергии
- Стабилизаторы
- Хитрости электрика
- Самоделки
- Зеленая электрика
-
Новое раздела
- Правила освобождения от электрического тока
- Сколько люменов нужно для освещения комнаты?
- Светильник из пластиковых бутылок, а будет ли красиво?!
- Уличные светильники на солнечных батареях: как выбрать, где купить?
- Как сделать проводку для точечных светильников?
- Полезные советы
- Электромонтаж
- Электромонтаж
- Заземление
- Инструменты электрика
- Электрические счетчики
- Схемы
- КИПиА
- Электрические щиты
-
Новое раздела
- Правила освобождения от электрического тока
- Единица мощности электрического тока
- Сила тока в резисторе
- Как крепятся трековые светильники и споты?
- Как определить фазу и ноль на люстре?
- Электромонтаж
§63.
Назначение и принцип действия трансформатора
Назначение трансформатора.
Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты.
Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.
В местах потребления электроэнергии высокое напряжение, подаваемое от высоковольтных линий электропередачи, снова понижается трансформаторами до сравнительно небольших значений (127, 220, 380 и 660 В), при которых работают электрические потребители, установленные на фабриках, заводах, в депо и жилых домах. На э. п. с. переменного тока трансформаторы применяют для уменьшения напряжения, подаваемого из контактной сети к тяговым двигателям и вспомогательным цепям.
Кроме трансформаторов, применяемых в системах передачи и распределения электроэнергии, промышленностью выпускаются трансформаторы: тяговые (для э. п. с), для выпрямительных установок, лабораторные с регулированием напряжения, для питания радиоаппаратуры и др. Все эти трансформаторы называют силовыми.
Трансформаторы используют также для включения электроизмерительных приборов в цепи высокого напряжения (их называют измерительными), для электросварки и других целей. Трансформаторы бывают однофазные и трехфазные, двух- и многообмоточные.
Принцип действия трансформатора.
Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3.
Рис. 212. Схема включения однофазного трансформатора
Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной, подключают потребители (непосредственно или через выпрямитель).
При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.
Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения. Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока.
Следовательно, в каждом витке первичной и вторичной обмоток индуцируется одинаковая э. д.с. В результате этого отношение действующих значений э. д. с. Е1 и E2, индуцированных в первичной и вторичной обмотках трансформатора, будет равно отношению чисел витков N1 и N2 этих обмоток, т. е.
E1/E2 = N1/ N2.
Отношение э. д. с. Евн обмотки высшего напряжения к э. д. с. Eнн обмотки низшего напряжения (или отношение чисел их витков) называется коэффициентом трансформации,
n = Евн / Eнн = Kвн / Kнн.
Коэффициент трансформации всегда больше единицы. Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2—5 % номинальных значений напряжений U1 и U2), то можно считать, что отношение напряжения U1 первичной обмотки к напряжению U2 вторичной обмотки приблизительно равно отношению чисел их витков, т. е.
U1/U2 ≈ N1/ N2
Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.
В понижающих трансформаторах, наоборот, число витков вторичной обмотки меньше, чем в первичной.
Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.
При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемый током холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке.
Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i2, отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i1, поступающие из сети в первичную обмотку.
Ввиду того что потери мощности в трансформаторе обычно малы, можно приближенно принять, что мощности в первичной и вторичной обмотках одинаковы. В этом случае можно считать, что токи в обмотках трансформатора приблизительно обратно пропорциональны напряжениям: I1/I2 ≠ U2/U1 или что токи в обмотках трансформатора обратно пропорциональны числам витков первичной и вторичной обмоток: I1/I2 ≠ N2/N1.
Это означает, что в повышающем трансформаторе ток во вторичной обмотке меньше, чем в первичной (во столько раз, во сколько напряжение U2 больше напряжения U1), а в понижающем ток во вторичной обмотке больше, чем в первичной.
Поэтому в трансформаторах обмотки высшего напряжения выполняются из более тонких проводов, чем обмотки низшего напряжения.
1.Назначение, области применения, принцип действия трансформатора
Трансформатором называют статическое электромагнитное устройство, имеющее две или большее число индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.
Трансформаторы широко используют для следующих целей.
Для передачи и распределения электрической энергии.
Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6—24 кВ.
Для питания различных цепей радио- и телевизионной аппаратуры; устройств связи, автоматики в телемеханики, электробытовых приборов; для разделения электрических цепей различных элементов этих устройств; для согласования напряжений
Для включения электроизмерительных приборов и некоторых аппаратов, например реле, в электрические цепи высокого напряжения или в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопасности. Трансформаторы, применяемые для этой цели, называют измерительными. Они имеют сравнительно небольшую мощность, определяемую мощностью, потребляемой электроизмерительными приборами, реле и др.
Принцип действия трансформатора
Электромагнитная
схема однофазного двухобмоточного
трансформатора состоит из двух обмоток
(рис. 2.1), размещенных на замкнутом
магнитопроводе, который выполнен из
ферромагнитного материала. Применение
ферромагнитного магнитопровода позволяет
усилить электромагнитную связь между
обмотками, т. е. уменьшить магнитное
сопротивление контура, по которому
проходит магнитный поток машины.
Первичную обмотку 1 подключают к источнику
переменного тока — электрической сети
с напряжением u1. Ко
вторичной обмотке 2 присоединяют
сопротивление нагрузки ZH.
Обмотку более высокого напряжения называют обмоткой высшего напряжения (ВН), а низкого напряжения — обмоткой низшего напряжения (НН). Начала и концы обмотки ВН обозначают буквами А и X; обмотки НН — буквами а и х.
При
подключении к сети в первичной обмотке
возникает переменный ток i1 , который
создает переменный магнитный поток Ф,
замыкающийся по магнитопроводу. Поток
Ф индуцирует в обеих обмотках переменные
ЭДС — е1 и е2, пропорциональные,
согласно закону Максвелла, числам витков
w1 и w2 соответствующей
обмотки и скорости изменения потока dФ/dt.
Рис. 2.1. Электромагнитная система однофазного трансформатора : 1,2 — первичная и вторичная обмотки; 3 — магнитопровод |
Таким образом, мгновенные значения ЭДС, индуцированные в каждой обмотке,
е1 = — w1 dФ/dt; е2= -w2dФ/dt.
Следовательно, отношение мгновенных и действующих ЭДС в обмотках определяется выражением
-
E1/E2= e1/e2= w1/w2.
(2.1)
Если пренебречь падениями напряжения в обмотках трансформатора, которые обычно не превышают 3 — 5% от номинальных значений напряжений U1 и U2, и считать E1≈U l и Е2≈U2, то получим
-
U1/U2≈w1/w2.
(2.2)
Следовательно,
подбирая соответствующим образом числа
витков обмоток, при заданном напряжении
U1 можно
получить желаемое напряжение U2. Если
необходимо повысить вторичное напряжение,
то число витков w2 берут
больше числа w1;
такой трансформатор называют повышающим. Если
требуется уменьшить напряжение U2, то
число витков w2 берут
меньшим w1;
такой трансформатор называют понижающим,
Отношение ЭДС ЕВН обмотки высшего напряжения к ЭДС ЕНН обмотки низшего напряжения (или отношение их чисел витков) называют коэффициентом трансформации
-
k= ЕВН/ЕНН = wВН/wНН
(2.3)
Коэффициент k всегда
больше единицы.
В системах передачи и распределения энергии в ряде случаев применяют трехобмоточные трансформаторы, а в устройствах радиоэлектроники и автоматики — многообмоточные трансформаторы. В таких трансформаторах на магнитопроводе размещают три или большее число изолированных друг от друга обмоток, что дает возможность при питании одной из обмоток получать два или большее число различных напряжений (U2, U3, U4 и т.д.) для электроснабжения двух или большего числа групп потребителей. В трехобмоточных силовых трансформаторах различают обмотки высшего, низшего и среднего (СН) напряжений.
В трансформаторе преобразуются только напряжения и токи. Мощность же остается приблизительно постоянной (она несколько уменьшается из-за внутренних потерь энергии в трансформаторе). Следовательно,
-
I1/I2≈ U2/U1≈ w2/w1.
(2.4)
При увеличении вторичного напряжения трансформатора в k раз по сравнению с первичным, ток i2 во вторичной обмотке соответственно уменьшается в k раз.
Трансформатор
может работать только в цепях переменного
тока. Если
первичную обмотку трансформатора
подключить к источнику постоянного
тока, то в его магнито-проводе образуется
магнитный поток, постоянный во времени
по величине и направлению. Поэтому в
первичной и вторичной обмотках в
установившемся режиме не индуцируются
ЭДС, а следовательно, не передается
электрическая энергия из первичной
цепи во вторичную. Такой режим опасен
для трансформатора, так как из-за
отсутствия ЭДС E1 первичной
обмотке ток I1 =U1R1 весьма
большой.
Важным свойством трансформатора, используемым в устройствах автоматики и радиоэлектроники, является способность его преобразовывать нагрузочное сопротивление. Если к источнику переменного тока подключить сопротивление R через трансформатор с коэффициентом трансформации к, то для цепи источника
-
R’ = P1/I12≈ P2/I12≈ I22R/I12≈ k2R
(2.5)
где Р1—
мощность, потребляемая трансформатором
от источника переменного тока,
Вт;
Р2 =
I22R≈ P1 —
мощность, потребляемая сопротивлением R от
трансформатора.
Таким образом, трансформатор изменяет значение сопротивления R в k2 раз. Это свойство широко используют при разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источников электрической энергии.
Принцип работы трансформатора — коэффициент поворота и трансформации
Основным принципом работы трансформатора является Закон электромагнитного поля Фарадея Индукция или взаимная индукция между двумя катушками. Ниже поясняется работа трансформатора. Трансформатор состоит из двух отдельных обмоток, размещенных на сердечнике из многослойной кремнистой стали.
Обмотка, к которой подключен источник переменного тока, называется первичной обмоткой, а нагрузка — вторичной обмоткой, как показано на рисунке ниже.Он работает только с переменным током , потому что переменный поток требуется для взаимной индукции между двумя обмотками.
В комплекте:
Когда питание переменного тока подается на первичную обмотку с напряжением V 1 , в сердечнике трансформатора устанавливается переменный поток ϕ, который соединяется с вторичной обмоткой, и в результате этого возникает ЭДС. в нем называется взаимно индуцированная ЭДС . Направление этой наведенной ЭДС противоположно приложенному напряжению V 1 , это из-за закона Ленца, показанного на рисунке ниже:
Физически между двумя обмотками нет электрического соединения, но они связаны магнитным полем.Следовательно, электрическая мощность передается из первичной цепи во вторичную через взаимную индуктивность.
Наведенная ЭДС в первичной и вторичной обмотках зависит от скорости изменения магнитной индукции, которая составляет (N dϕ / dt).
dϕ / dt — это изменение магнитного потока, одинаковое для первичной и вторичной обмоток. Наведенная ЭДС E 1 в первичной обмотке пропорциональна количеству витков N 1 первичных обмоток (E 1 ∞ N 1 ). Подобным образом наведенная ЭДС во вторичной обмотке пропорциональна количеству витков на вторичной стороне. (E 2 ∞ N 2 ).
Трансформатор питания постоянного тока
Как уже говорилось выше, трансформатор работает от источника переменного тока и не может работать без источника постоянного тока. Если номинальное напряжение постоянного тока приложено к первичной обмотке, в сердечнике трансформатора установится магнитный поток постоянной величины, и, следовательно, не будет самоиндуцированной генерации ЭДС, поскольку для связи магнитного потока со вторичной обмоткой должна быть должен быть переменный, а не постоянный поток.
По закону Ома
Сопротивление первичной обмотки очень низкое, а первичный ток высокий. Таким образом, этот ток намного превышает номинальный ток первичной обмотки при полной нагрузке. Следовательно, в результате количество выделяемого тепла будет больше, и, следовательно, потери на вихревые токи (I 2 R) будут больше.
Из-за этого произойдет сгорание изоляции первичных обмоток и повреждение трансформатора.
Передаточное число
Определяется как отношение витков первичной обмотки к вторичной.
Если N 2 > N 1 , трансформатор называется Повышающий трансформатор
Если N 2
Коэффициент трансформации
Коэффициент трансформации определяется как отношение вторичного напряжения к первичному. Обозначается К.
As (E 2 ∞ N 2 и E 1 ∞ N 1 )
Это все о работе трансформатора.
Понимание того, как работают трансформаторы
Как работают трансформаторы
Там
Есть много размеров, форм и конфигураций трансформаторов от крошечных до гигантских, подобных тем
используется в передаче энергии. Некоторые поставляются с заглушенными проводами, другие — с винтами или
лопаточные клеммы, некоторые из которых предназначены для монтажа в печатные платы, другие для привинчивания или прикручивания
вниз.
Трансформаторы состоят из многослойного железного сердечника.
с одной или несколькими обмотками провода. Их называют трансформаторами, потому что они трансформируют
напряжение и ток с одного уровня на другой. Переменный ток, протекающий через
одна катушка проволоки, первичная, индуцирует напряжение в одной или нескольких других катушках проволоки,
вторичные катушки. Это изменение напряжения переменного тока, которое вызывает напряжение в
другие катушки через изменяющееся магнитное поле.Напряжение постоянного тока, например, от батареи или постоянного тока
блок питания не будет работать в трансформаторе. Только переменный ток заставляет трансформатор работать.
Магнитное поле течет через железный сердечник. Чем быстрее изменяется напряжение, тем
выше частота.
Чем ниже частота, тем больше железа требуется в ядро для эффективной передачи мощности. В США частота сети 60 Герц при номинальном напряжении 110 вольт.Другие страны используют 50 Гц, 220 вольт. Трансформаторы, рассчитанные на 50 Гц, должны быть немного тяжелее, чем трансформаторы, рассчитанные на 60 Гц, потому что у них должно быть больше железа в ядре. Напряжение в сети может немного отличаться и обычно работает от 110 до 120 вольт или от 220 до 240 вольт в зависимости от страны или мощности соединения. В дом в США поступает 220 вольт, но он разделен на две части. 110 В путем заземления центрального ответвителя (см. Раздел конфигурации ниже)
Отношение входного напряжения к выходному напряжению равно
к отношению витков провода вокруг сердечника на стороне входа к стороне выхода. А
катушка с проволокой на входе называется первичной, а на выходной стороне —
вторичный. Может быть несколько первичных и вторичных катушек. Коэффициент текущей ликвидности
противоположно соотношению напряжений. Когда выходное напряжение ниже входного
Напряжение, выходной ток будет выше входного. Если есть 10
раз больше количества витков провода на первичной обмотке, чем на вторичной, и вы включаете 120 вольт
первичный, вы получите 12 вольт на вторичном.Если вытащить 2 ампера из
вторичный, вы будете использовать только 0,2 ампера или 200 миллиампер, идущих на первичный.
Трансформаторы могут быть построены так, чтобы у них было одинаковое количество
обмоток на первичной и вторичной обмотках или разное количество обмоток на каждой. Если они
одинаковы, входное и выходное напряжение одинаковы, а трансформатор просто используется для
изоляция, поэтому нет прямого электрического соединения (они подключаются только через
общее магнитное поле). Если на первичной стороне больше обмоток, чем на
вторичная сторона, то это понижающий трансформатор. Если на корпусе больше обмоток
Вторая сторона, то это повышающий трансформатор.
Трансформатор можно использовать в обратном направлении и работают нормально. Например, если у вас есть повышающий трансформатор для преобразования 120 вольт до 240 вольт, так же можно использовать его для понижающего трансформатора, поставив 240 вольт во вторичную сторону, и вы получите 120 вольт на первичной стороне.Фактически, вторичное становится первичным и наоборот.
Номинальная мощность трансформатора
Напряжение измеряется в вольтах, ток измеряется в
амперы, а единицей измерения мощности являются ватты. Ватты равны вольтам, умноженным на
усилители. В трансформаторе небольшая потеря мощности из-за комбинации
сопротивление и реактивность. Реактивное сопротивление аналогично сопротивлению, за исключением того, что это
сопротивление переменному току или, более технически, сопротивление изменению при изменении
текущий из-за изменения созданного поля.Это тепло ограничивает количество
ток или мощность, с которыми может справиться трансформатор. Чем больше ток, тем больше тепла
произведено. Когда провода становятся слишком горячими, изоляция разрушается и замыкается.
соседние провода, что вызывает больше тепла, что в конечном итоге приводит к плавлению проводов и разрушению
трансформатор.
Базовый трансформатор не имеет дополнительных компонентов, поэтому
ничего, что могло бы защитить его от перегрузки. Если вы подключили два выходных провода
непосредственно вместе, это приведет к короткому замыканию и вызовет слишком большой ток в
течет как в первичной, так и в вторичной обмотке, и вы сожжете трансформатор. в
таким же образом, если вы используете трансформатор для питания резака для пенопласта с горячей проволокой, и вы используете
провод со слишком низким сопротивлением для резака для пенопласта, вы сожжете трансформатор, если
у вас нет его защищенного предохранителем или автоматическим выключателем надлежащего номинала. Ты должен убедиться
что сопротивление провода, другими словами, калибр или диаметр и длина соответствуют
ограничьте величину тока до номинала трансформатора.
Чем выше ток, тем больше должны быть провода.
которые несут этот ток.Чем больше провода, тем меньше сопротивление и
меньше тепла. Мощность, которая преобразуется в тепло и теряется, может быть рассчитана как P = I 2 R.
Это означает, что если вы удвоите ток, мощность, теряемая на тепло, возрастет в четыре раза.
Если трансформатор понижающий, то на выходе будет больше тока.
и поэтому провод во вторичной обмотке будет тяжелее первичной. В
обратное верно для повышающего трансформатора.
Трансформатор может иметь номинал в амперах, вольт-амперах (ВА) или Ватты (Вт). Для небольших трансформаторов ВА и Ватты одинаковы для всех практических целей. В больших промышленных трансформаторах задействованы факторы мощности, и они могут будь другим. Если трансформатор рассчитан в амперах, обычно указывается X ампер при X вольт. и рассчитан на выходе или вторичной стороне. Трансформатор на 120 В с выходным напряжением 24 В, рассчитанный на 2 ампера означает, что вы можете безопасно вытащить только 2 ампера из вторичной обмотки.Вы можете Найдите номинальную мощность трансформатора, умножив номинальный ток на выходную мощность напряжение так 2 X 24 = 48 Вт.
Если трансформатор рассчитан на ВА или ватты, вы можете
рассчитать максимально допустимый выходной ток, разделив ВА или ватт на выходную мощность.
вольтаж. Таким образом, если трансформатор рассчитан на 48 ВА с выходным напряжением 24 В, допустимое значение
выходной ток 48/24 = 2 ампера.
Конфигурации трансформатора
А Трансформатор на 120 вольт с двумя входами и двумя выходами очень прост.Вы подключаетесь два провода на первичной стороне, на стороне 120 В, к розетке и выходному напряжению находится на двух проводах, идущих от вторичной стороны.
Когда трансформатор показан в электронной схеме, это показано в виде диаграммы, как показано здесь. Параллельные линии представляют ламинированный железный сердечник, изогнутые линии представляют первичную и вторичную обмотки, круги представляют собой окончания, клеммы или короткие провода.
Центральный метчик
Обычная конфигурация — это центральный ответвитель или трансформатор тока. В
вторичная сторона имеет три вывода. Средний провод на выходной стороне присоединен к
вторичная обмотка, обычно посередине. Если коэффициент намотки 5: 1, то при
Вход 120 В, вы получаете выход 24 В на двух внешних проводах, но если вы подключите
внешний провод и центральный провод, вы получите 12 вольт, потому что вы используете только половину
вторичная обмотка, обеспечивающая соотношение 10: 1.Если трансформатор номинальный
при 2 амперах вы все равно можете использовать только 2 ампера, независимо от того, используете ли вы 12 вольт или 24 вольт.
Часто центральный отвод заземляется, поэтому у вас есть два источника 12 В, которые можно использовать для
после прохождения через преобразователь (выпрямитель и фильтр) сделать + и — 12В постоянного тока.
Двойной выход
В
конфигурация двойного выхода аналогична центральному отводу, за исключением того, что вместо подключения
провод к центру катушки, катушка разделена на две отдельные катушки с проводами
с клеммами или проводами, выходящими с обоих концов обеих катушек, поэтому четыре провода выходят из
вторичная сторона вместо трех.
Если трансформатор представляет собой вход 110 В с двумя выходы, вы можете соединить две вторичные катушки последовательно, чтобы получить выход 24 В, или вы можете подключите их параллельно, чтобы получить 12 В. Будьте осторожны, чтобы правильно подключить концы двух вторичных обмоток как в последовательном, так и в параллельном соединении. Если вы поменяете местами соединения, вы получите 0 вольт, потому что два напряжения отменят друг друга.
Если трансформатор рассчитан на 48 ВА, то вы можете использовать
до 2 ампер для подключения 24 В, которое не отличается от центрального ответвителя или
конфигурация с одним выходом 24 В. Однако при параллельном подключении получается 12 вольт.
но удвойте доступный выходной ток, чтобы получить выходной ток 4 ампера. Вы получаете
полный выход 48 ВА, тогда как с выходом 12 В для центрального отвода вы можете получить только половину номинального
выход или 24ВА. Это преимущество резаков для пенопласта с горячей проволокой, потому что у вас более широкая
диапазон диаметров и длин проводов в зависимости от того, подключаете ли вы выходы параллельно
или сериал. Последовательные и параллельные соединения показаны ниже.
Двойной вход
В трансформатор с двумя входами часто используется, чтобы трансформатор мог использоваться в обоих страны с сетевым напряжением 120 В и сетевым напряжением 240 В.Первичный разделен на две отдельные обмотки с выводами на каждом конце обеих обмоток, так что имеется четыре провода или клеммы на первичной стороне.
Чтобы использовать его с входом 110 В, два основных
обмотки подключены параллельно, как показано на левой схеме ниже. Необходимо соблюдать осторожность
соедините правильные концы вместе. Если они поменяны местами, поля отменяют друг друга.
out, потому что поля, генерируемые каждым разделом первичного элемента, противоположны.
Обычно клеммы обозначаются цифрами или буквами, а схема представлена на
трансформатора или в прилагаемой таблице данных, показывающей, как должны быть выполнены соединения для
110В и 220В.
Если трансформатор должен быть подключен к сети 220 В, затем две катушки подключаются последовательно, и снова необходимо соблюдать осторожность, чтобы подключить правильные окончания вместе. Параллельные соединения для 110 В и последовательные соединения для 220В показано ниже.
Двойной вход и выход
И, конечно же, у вас может быть как двойной вход, так и
двойной выход, поэтому у вас есть четыре провода на входе и четыре провода на выходе, что дает еще большую гибкость
к использованию трансформатора.
Некоторые специализированные трансформаторы могут иметь несколько вторичные отводы или несколько вторичных обмоток для обеспечения разных напряжений, и они не должны быть четными числами.Трансформатор может иметь выходное напряжение 3 В, 5 В, 12 В и 24 В для пример.
Автотрансформаторы (Variac)
Автотрансформатор часто называют Variac.
что на самом деле является торговой маркой одной компании для их автотрансформатора. Оно имеет
постоянное выходное напряжение от нуля до немного выше входного значения. Работает аналогично
к потенциометру или реостату, за исключением того, что изменение напряжения связано с изменением поля
а не сопротивление.Другое отличие состоит в том, что потенциометр или реостат очень
неэффективен, потому что он преобразует ток, протекающий через него, в тепло (Вт = Ампер X
Вольт). Как и во всех трансформаторах, сопротивление низкое, поэтому количество выделяемого тепла
намного меньше и намного эффективнее при преобразовании напряжения
Автотрансформатор имеет только одну обмотку, которая обслуживает как первичная, так и вторичная обмотка.Потому что обмотка одна, между входом и выходом нет гальванической развязки, но если изоляция не требуется, то он обеспечивает альтернативу многобмоточным трансформаторам в некоторых ситуации.
Входные провода этого трансформатора подключены к одному
конец обмотки, а другой немного дальше от другого конца. Вторичная
подключил ту же точку, что и входная сторона, которая находится на конце. Другой вторичный
подключение осуществляется с помощью стеклоочистителя, который перемещается по верхней части обмотки, где изоляция была
снимается, чтобы стеклоочиститель мог контактировать с обмотками в любой точке на одной поверхности.
Стеклоочиститель соединен с ручкой в верхней части автотрансформатора, чтобы человек мог повернуть
ручку, чтобы получить желаемое напряжение. Поскольку один первичный провод подключен на пути от
конец обмотки, стеклоочиститель может пройти за эту точку и, таким образом, обеспечить более высокое напряжение
чем вход, обычно выход 110 В может доходить до 130 В на вторичной стороне.
Поскольку автотрансформатор имеет только одну обмотку,
существует только один размер провода, поэтому максимальный входной ток также является максимальным выходным
текущий. Если автотрансформатор на 110 В рассчитан на 10 ампер, то максимальная мощность
ток 10 ампер вне зависимости от напряжения. Если он указан в ваттах или ВА, то
Ампер рассчитывается путем деления Ватт или ВА на номинальное входное напряжение.
Автотрансформатор — это хорошая альтернатива ступени понижающий трансформатор, когда диапазон желаемых напряжений находится на верхнем конце или во всем диапазоне напряжение необходимо, но становится дороже, если диапазон находится на нижнем уровне, потому что вы имеют много неиспользуемых обмоток. Понижающий трансформатор более экономичен.
Для резки пены горячей проволокой автотрансформатор
дороже, чем понижающие трансформаторы в большинстве приложений.Если напряжение
требуется более 24 вольт, тогда можно рассмотреть возможность использования автотрансформатора.
Фазы и соединение нескольких обмоток
Для простоты я не упомянул фазу, но
при соединении двух и более обмоток очень важна фаза. AC
ток представляет собой синусоидальную волну, а напряжение изменяется с положительного на отрицательное и обратно в
синусоидальный ритм много раз в секунду.Как часто меняется напряжение называется
частота и раньше называлась циклами в секунду, но теперь называется Герц (сокращенно Гц).
Бытовой ток в США и некоторых других странах составляет 60 Гц, в других странах — 50 Гц.
Когда мы говорим о двух волновых формах, таких как две обмотки, соотношение между
две синусоидальные волны — это фаза. Если синусоидальные волны совпадают, они находятся в фазе, если
положительный пик одной волны совпадает с отрицательным пиком другой волны, две волны
180 сдвинуты по фазе. Фаза между одним концом катушки и другим также 180
не в фазе. Когда один конец находится на положительном пике, другой конец будет на положительном пике.
противоположный пик. Так как должна быть разница в напряжении между двумя точками для
тока, два конца обмотки должны иметь противоположное напряжение в любой момент времени.
Разность фаз между двумя обмотками зависит от направление обмоток и то, как они соединены, поэтому на электрических схемах точка на один конец обмотки указывает начало обмотки.Для простоты, В этой статье я оставил точки на схемах. Однако при соединении двух катушки вместе, очень важно правильно их соединить.
Для последовательного подключения необходимо подключить конец
одна обмотка к началу другой обмотки (обмотки для нескольких катушек всегда намотаны
в том же направлении). Если подключить начало одной обмотки к концу
другая обмотка в последовательном соединении, поля будут отменены, и вы получите ноль
вывод.Это не повредит трансформатор, но вы не получите выходного напряжения.
Когда соединяя две обмотки параллельно, необходимо соединить начало одной обмотки с пуском другой обмотки и два конца обмоток вместе. Параллельно подключение, подключив провода в обратном направлении, сожжет ваш трансформатор , если нет должным образом защищен (соответствующий номинальный ток) предохранителем или автоматическим выключателем.Be очень осторожно при соединении двух катушек вместе.
Дополнительная литература
Это был всего лишь обзор для
непрофессионал. Хотя физически трансформатор представляет собой довольно простое устройство, состоящее из нескольких частей,
как это работает на самом деле довольно сложно. Я рекомендую отличное качество Рода Эллиота.
статей, если вы хотите их лучше понять:
Трансформаторы — Основы (Раздел 1), (Раздел 2), (Раздел 3)
У него также есть много других статей по электронике. включая блоки питания.
Принцип работы трансформатора
Трансформатор основан на очень простом факте об электричестве: электромагнитная индукция .
Когда электрический ток течет по проводу, он создает вокруг себя магнитное поле или магнитный поток . Магнитное поле можно рассматривать как среду, посредством которой силы передаются между намагниченными материалами. В повседневной жизни магнитные поля чаще всего встречаются как невидимая сила, создаваемая постоянными магнитами, которые притягивают ферромагнитные материалы, такие как железо, кобальт или никель, и притягивают или отталкивают другие магниты. Сила этого поля прямо пропорциональна величине тока. Таким образом, магнитное поле, созданное таким образом, можно очень просто включать и выключать, менять местами и изменять его силу. Магнитное поле можно визуализировать в виде линий магнитного потока , которые образуют замкнутые пути. На рисунке ниже представлено магнитное поле (силовые линии), создаваемое вокруг провода, по которому проходит ток.
А вот и об электричестве есть еще один интересный факт. Когда магнитное поле колеблется вокруг куска провода, оно генерирует в проводе электрический ток .Мы можем создать флуктуирующее магнитное поле, пропустив в проводе ток, который также колеблется.
Далее мы попытаемся объединить два вышеупомянутых явления. Итак, если мы поместим вторую катушку провода рядом с первой и направим колеблющийся электрический ток в первую катушку, мы создадим электрический ток во втором проводе. Это называется электромагнитной индукцией , потому что переменный ток в первой катушке вызывает (или «индуцирует») ток во второй катушке . Все трансформаторы работают по этому принципу. Если по первому проводу идет синусоидальный переменный ток определенной частоты, то индуцированный ток будет синусоидальным переменным током той же частоты во втором проводе.
Чем ближе два провода друг к другу, тем больше будет наведенный ток для данного тока в первом проводе.
Если провода скручены в катушки и размещены вдоль общей оси (как на рисунке выше), индуцированный ток будет больше, чем если бы провода были прямыми и параллельными.
Первая катушка, которая принимает электрическую энергию от источника, называется первичной обмоткой , а вторая катушка, которая дает желаемое выходное напряжение, известна как вторичная обмотка .
Мы можем заставить электрическую энергию более эффективно проходить от одной катушки к другой, обернув их вокруг стержня из мягкого железа (иногда его называют сердечником ).
Если вторая катушка имеет то же количество витков, что и первая катушка, электрический ток во второй катушке будет практически такого же размера, как и в первой катушке. Но (и вот умная часть), если у нас больше или меньше витков во второй катушке, мы можем сделать вторичный ток и напряжение больше или меньше, чем первичный ток и напряжение.
Важно отметить, что этот трюк работает, только если электрический ток каким-то образом колеблется. Другими словами, вы должны использовать тип постоянно меняющего направления электричества, называемый переменным током (AC) , с трансформатором. Трансформаторы не работают с постоянным током (DC) , где постоянный ток постоянно течет в одном и том же направлении.
Всего:
Напряжение вторичной обмотки ÷ Напряжение первичной обмотки = Число витков вторичной обмотки ÷ Число витков первичной обмотки
Вторичный ток ÷ Первичный ток = Количество витков в первичной обмотке ÷ Количество витков во вторичной обмотке
Мощность электрического тока равна току, умноженному на напряжение (ватты = вольт x ампер — один из способов запомнить это), поэтому вы можете видеть, что мощность во вторичной катушке теоретически такая же, как мощность в первичной катушке. .(На самом деле между первичной и вторичной обмотками происходит некоторая потеря мощности из-за того, что часть «магнитного потока» выходит из сердечника, часть энергии теряется из-за нагрева сердечника и т. Д.)
Трансформаторы понижающие
Если первая катушка имеет больше витков, чем вторая катушка, вторичное напряжение на меньше, чем на первичное напряжение. Это называется понижающим трансформатором. В понижающем трансформаторе ток преобразуется в обратную сторону — увеличивается в размере.
Трансформаторы повышающие
Поменяв ситуацию, мы можем сделать повышающий трансформатор, который поднимает низкое напряжение в высокое. На этот раз на вторичной катушке больше витков, чем на первичной. В повышающем трансформаторе мы используем больше витков во вторичной обмотке, чем в первичной, чтобы получить большее вторичное напряжение и меньший вторичный ток.
Защита трансформатора и цепей
Электрооборудование и цепи на подстанции должны быть защищены, чтобы ограничить повреждения из-за аномальных токов и перенапряжений.
Все оборудование, установленное в системе электроснабжения, имеет стандартные характеристики кратковременного выдерживаемого тока и кратковременного напряжения промышленной частоты. Роль защит — гарантировать, что эти пределы устойчивости никогда не могут быть превышены, поэтому устранение неисправностей происходит как можно быстрее.
В дополнение к этому первому требованию система защиты должна быть избирательной. Селективность означает, что любая неисправность должна устраняться устройством прерывания тока (автоматический выключатель или предохранители), ближайшим к неисправности, даже если неисправность обнаруживается другими средствами защиты, связанными с другими устройствами прерывания.
В качестве примера короткого замыкания, происходящего на вторичной обмотке силового трансформатора, сработать должен только автоматический выключатель, установленный на вторичной обмотке. Автоматический выключатель, установленный на первичной стороне, должен оставаться замкнутым. Для трансформатора, защищенного предохранителями среднего напряжения, предохранители не должны перегорать.
Обычно это два основных устройства, способных отключать токи короткого замыкания, автоматические выключатели и предохранители:
- Автоматические выключатели должны быть связаны с реле защиты, выполняющим три основные функции:
- Измерение токов
- Обнаружение неисправностей
- Выдача команды отключения на выключатель
- Предохранители перегорают при определенных условиях неисправности.
Защита трансформатора
Напряжения, создаваемые поставкой
Два типа перенапряжения могут вызвать перегрузку и даже выход из строя трансформатора:
- Перенапряжения молнии из-за удара молнии, падающего на воздушную линию или вблизи нее, питающую установку, где установлен трансформатор
- Коммутационные напряжения, возникающие, например, при размыкании автоматического выключателя или выключателя нагрузки.
В зависимости от области применения может потребоваться защита от этих двух типов скачков напряжения, которая часто обеспечивается с помощью разрядников для перенапряжения Z n O, предпочтительно подключенных к высоковольтному вводу трансформатора.
Напряжения от нагрузки
Перегрузка трансформатора всегда происходит из-за увеличения полной потребляемой мощности (кВА) установки. Это увеличение спроса может быть следствием постепенного увеличения нагрузки или расширения самой установки. Следствием любой перегрузки является повышение температуры масла и обмоток трансформатора с сокращением срока его службы.
Защита трансформатора от перегрузок осуществляется специальной защитой, обычно называемой тепловым реле перегрузки.Этот тип защиты имитирует температуру обмоток трансформатора. Моделирование основано на измерении силы тока и тепловой постоянной времени трансформатора. Некоторые реле могут учитывать влияние гармоник тока из-за нелинейных нагрузок, таких как выпрямители, компьютеры, приводы с регулируемой скоростью и т. Д. Этот тип реле также может оценивать время, оставшееся до срабатывания отключения. порядок и время задержки перед повторным включением трансформатора.
Кроме того, маслонаполненные трансформаторы оснащены термостатами, контролирующими температуру масла.
В сухих трансформаторах используются тепловые датчики, встроенные в самую горячую часть изоляции обмоток.
Каждое из этих устройств (тепловое реле, термостат, тепловые датчики) обычно обеспечивает два уровня обнаружения:
- Низкий уровень, используемый для подачи сигнала тревоги для информирования обслуживающего персонала,
- Высокий уровень обесточивания трансформатора.
Внутренние неисправности маслонаполненных трансформаторов
В масляных трансформаторах внутренние неисправности можно классифицировать следующим образом:
- Неисправности, приводящие к образованию газов, в основном:
- Микродуги, возникающие из-за первых повреждений изоляции обмоток
- Медленная деградация изоляционных материалов
- Между витками короткое замыкание
- Неисправности, создающие внутреннее избыточное давление с одновременным высоким уровнем сверхтоков в линии:
- Короткое замыкание фазы на землю
- Междуфазное короткое замыкание.
Эти неисправности могут быть следствием внешнего удара молнии или переключения напряжения.
В зависимости от типа трансформатора существуют два типа устройств, способных обнаруживать внутренние неисправности масляного трансформатора.
- Buchholz , предназначенный для трансформаторов, оснащенных расширителем дыхания (см. , рис. B16a).
- Бухгольц устанавливается на трубе, соединяющей бак трансформатора с расширителем (см. Рис. B16b). Он улавливает медленные выбросы газов и обнаруживает обратный поток масла из-за внутреннего избыточного давления
Рис. B16 — Дыхательный трансформатор с защитой Buchholz
-
[a] Принцип действия
-
[b] Трансформатор с расширителем
- DGPT (обнаружение газа, давления и температуры, см. рис. B18) для встроенных заполненных трансформаторов (см. рис. В17). Этот тип трансформатора выпускается до 10 МВА. DGPT как бухгольц обнаруживает выбросы газов и внутреннее избыточное давление. Кроме того, он контролирует температуру масла.
Рис. B17 — Трансформатор со встроенным заполнением
Рис. B18 — Реле защиты DGPT (обнаружение газа, давления и температуры) для встроенных заполненных трансформаторов
-
[a] Реле защиты трансформатора (DGPT)
-
[b] Контакты ДГПТ (крышка снята)
Что касается контроля газа и температуры, Бухгольц и DGPT обеспечивают два уровня обнаружения:
- Низкий уровень, используемый для подачи сигнала тревоги для информирования обслуживающего персонала,
- Высокий уровень для отключения коммутационного устройства, установленного на первичной стороне трансформатора (автоматический выключатель или выключатель нагрузки, связанный с предохранителями).
Кроме того, как Buchholz, так и DGPT подходят для обнаружения утечек масла.
Перегрузки и внутренние неисправности в сухих трансформаторах
(см. , фиг. B19 и , фиг. B20)
Сухие трансформаторы защищены от перегрева из-за возможных перегрузок на выходе с помощью специального реле, контролирующего термодатчики, встроенные в обмотки трансформатора (см. , рис. B20).
Внутренние повреждения, в основном межвитковые замыкания и короткие замыкания фазы на землю, возникающие внутри трансформаторов сухого типа, устраняются либо автоматическим выключателем, либо предохранителями, установленными на первичной стороне трансформатора.Срабатывание автоматических выключателей при использовании упорядочивается по защитам от перегрузки по току между фазой и землей.
Межвитковые неисправности требуют особого внимания:
- Обычно они создают умеренные линейные сверхтоки. Например, при коротком замыкании 5% обмотки ВН линейный ток трансформатора не превышает 2 In, при коротком замыкании, затрагивающем 10% обмотки, линейный ток ограничивается примерно 3 In.
- Предохранители не подходят для должного отключения таких токов
- Сухие трансформаторы не оборудованы дополнительными устройствами защиты, такими как DGPT, предназначенными для обнаружения внутренних неисправностей.
- Следовательно, внутренние неисправности, вызывающие низкий уровень перегрузки по току в линии, не могут быть безопасно устранены предохранителями. Предпочтительна защита с помощью реле максимального тока с соответствующими характеристиками и настройками (например, серия реле Schneider Electric VIP).
Рис. B19 — Сухой трансформатор
Рис. B20 — Тепловое реле для защиты сухого трансформатора (Ziehl)
Селективность между защитными устройствами до и после трансформатора
Обычной практикой является обеспечение селективности между автоматическим выключателем среднего напряжения или предохранителями, установленными на первичной стороне трансформатора, и автоматическим выключателем низкого напряжения.
Характеристики защиты, заказывающей отключение или автоматический выключатель среднего напряжения, или рабочие характеристики предохранителей, когда они используются, должны быть такими, как в случае неисправности на выходе, автоматический выключатель низкого напряжения срабатывает только. Автоматический выключатель среднего напряжения должен оставаться включенным, иначе предохранитель не должен перегореть.
Кривые срабатывания предохранителей среднего напряжения, защиты среднего напряжения и автоматических выключателей низкого напряжения представлены графиками, показывающими зависимость времени срабатывания от тока.
Кривые в основном имеют обратнозависимый тип.Автоматические выключатели низкого напряжения имеют резкий разрыв, который определяет предел мгновенного действия.
Типичные кривые показаны на Рис. B21.
Селективность между автоматическим выключателем низкого напряжения и предохранителями среднего напряжения
(см. рис. B21 и рис. B22)
- Все части кривой предохранителя среднего напряжения должны быть выше и правее кривой выключателя низкого напряжения.
- Чтобы предохранители оставались неповрежденными (т.е. неповрежденными), должны быть выполнены два следующих условия:
- Все части минимальной кривой преддугового предохранителя должны быть смещены вправо от кривой LV CB с коэффициентом 1.35 или больше.
Пример: где в момент времени T кривая CB проходит через точку, соответствующую 100 A, кривая предохранителя в то же время T должна проходить через точку, соответствующую 135 A или более, и так далее. - Все части кривой предохранителя должны быть выше кривой выключателя на коэффициент 2 или более
Пример: где на уровне тока I кривая выключения проходит через точку, соответствующую 1,5 секундам, кривая предохранителя на том же уровне тока Я должен пройти через точку, соответствующую 3 секундам или более и т. Д.
- Все части минимальной кривой преддугового предохранителя должны быть смещены вправо от кривой LV CB с коэффициентом 1.35 или больше.
Коэффициенты 1,35 и 2 основаны на максимальных производственных допусках, данных для предохранителей среднего напряжения и автоматических выключателей низкого напряжения.
Чтобы сравнить две кривые, токи среднего напряжения должны быть преобразованы в эквивалентные токи низкого напряжения или наоборот.
Рис. B21 — Селективность между срабатыванием предохранителя среднего напряжения и срабатыванием выключателя низкого напряжения для защиты трансформатора
Рис. B22 — Конфигурация предохранителя среднего напряжения и автоматического выключателя низкого напряжения
Селективность между выключателем низкого напряжения и выключателем среднего напряжения
- Все части кривой минимального выключателя среднего напряжения должны быть смещены вправо от кривой выключателя низкого напряжения с коэффициентом 1.35 или больше:
- Пример: где в момент времени T кривая LV CB проходит через точку, соответствующую 100 A, кривая MV CB в то же время T должна проходить через точку, соответствующую 135 A или более, и так далее.
- Все части кривой MV CB должны быть выше кривой LV CB. Разница во времени между двумя кривыми должна быть не менее 0,3 с для любого значения тока.