Пять обязательных испытаний для оценки исправности ТТ
Введение
Трансформатор тока – это устройство, которое пропорционально преобразует переменный первичный ток в пониженный вторичный ток для использования его реле, счетчиками электроэнергии, контрольным оборудованием и другими приборами. ТТ широко применяются в электроэнергетической отрасли и играют важную роль в мониторинге и защите электроэнергетических систем. Неисправность ТТ может вызвать значительные повреждения основного электрооборудования, что может сказаться на бесперебойности питания ответственных потребителей электроэнергии. Для обеспечения надежной работы систем проводится периодическая проверка трансформаторов тока, основной целью которой являются проверка работоспособности и оценка их технического состояния.
Поскольку ТТ представляют собой разные по типу исполнения и размерам устройства – от небольших приборов внутри терминалов до громоздких конструкций, устанавливаемых на железобетонных опорах на территориях ОРУ (рис.1), – для их проверки требуется испытательное оборудование с широким диапазоном выходных и измеряемых параметров.
а) б)
Рис. 1. Трансформаторы тока: а) 660 В 150/5А; б) 500 кВ 1500/5А
В основном выделяют такие причины неисправностей ТТ, как повреждение изоляции, повреждение магнитопровода, дефекты в обмотках. Периодическая проверка позволяет выявить неисправности на ранней стадии и предотвратить серьезные последствия, вызванные повреждениями трансформаторов тока. Визуальный осмотр позволяет оценить чистоту поверхностей, наличие сколов на изоляции, состояние клемм подключения, а также выявить наличие внешних дефектов. Для полноценного анализа необходимо проведение электрических проверок, которые описаны в нормативной документации [1-9] и будут рассмотрены далее.
1. Измерение сопротивления изоляции
Измерение сопротивления изоляции производится на закороченной обмотке относительно корпуса. Другая обмотка должна быть закорочена и заземлена. Показания сопротивления записываются через 1 минуту после начала измерений. Резкое падение значений сопротивления изоляции во время измерения указывает на ухудшение качества изоляции, и для диагностики проблемы требуются дальнейшие исследования.
Для трансформаторов тока напряжением более 600 В измерения производятся с применением мегаомметра на 2500 В, а для ТТ меньшего класса напряжения – обычно выполняются при 1000 В.
На рис. 2 приведена схема испытаний с применением устройства РЕТОМ-6000. Благодаря встроенному мегаомметру прибор позволяет измерять сопротивление изоляции ТТ в пределах от 100 кОм до 2 ГОм. При этом измерения максимально автоматизированы – пользователь задает уровень испытательного напряжения, а на экране отображаются ток утечки и длительность измерения.
Рис. 2. Измерение сопротивления изоляции первичных цепей ТТ
У каскадных ТТ сопротивление изоляции измеряется для трансформатора тока в целом. При неудовлетворительных результатах сопротивление изоляции дополнительно измеряется на каждой ступени. Граничные значения сопротивлений изоляции приведены в соответствующей нормативной документации [1].
2. Измерение коэффициента трансформации
Коэффициент трансформации ТТ представляет собой отношение первичного входного тока ко вторичному выходному току. Измеренное значение данного коэффициента сравнивается с паспортными данными с целью выявления короткозамкнутых витков обмотки. В случае отсутствия проверочного оборудования с необходимым диапазоном выдачи переменного тока для измерения может быть использован источник напряжения, который подключается к вторичной обмотке, а замеры выходного напряжения производятся на первичной обмотке. Для обеспечения точности при таком подходе необходимо учитывать потери, поэтому формула для расчета коэффициента трансформации ТТ будет выглядеть следующим образом (1):
(1)
где UТЕСТ – напряжение, прикладываемое ко вторичной обмотке ТТ,
IТЕСТ – ток, протекающий по вторичной обмотке во время проведения измерения,
RОБМ – сопротивление вторичной обмотки,
UПЕРВ – напряжение на первичной обмотке ТТ.
Рис. 3. Схема измерения коэффициента трансформации ТТ
Для данного типа испытаний применяются комплексы РЕТОМ-21 или РЕТОМ-25, которые позволяют выдавать ток от сотен миллиампер до 3,5 кА (при совместном использовании блока РЕТ-3000), что обеспечивает измерение коэффициента трансформации практически всей номенклатуры ТТ. Пример схемы измерения с помощью устройства РЕТОМ-21 приведен на рис. 3. Проверка выполняется путем подачи тока на первичную обмотку и измерения его выходного значения на вторичной обмотке. Одновременно с данным измерением может быть произведена проверка фазовой погрешности и полярности (описано далее), что позволяет ускорить тестирование ТТ.
3. Проверка полярности ТТ
Под полярностью ТТ понимается определенный порядок расположения выводов его вторичной обмотки, обеспечивающий условия для передачи токового сигнала в нужной фазе.
Существует несколько способов проверки полярности ТТ с помощью оборудования НПП «Динамика»:
- применение комплексов РЕТОМ-21/25, которые обеспечивают тестирование любых ТТ.
Схема подключения соответствует схеме измерения коэффициента трансформации (рис. 3), однако необходимо настроить прибор для отображения на экране значения разности фаз между измерителем первичного и вторичного тока. При нулевой разнице фазы считается, что катушки включены правильно, в противном случае (разница фаз – 180 градусов), контакты второй обмотки необходимо поменять местами.
- применение вольтамперфазометра РЕТОМЕТР-М2 (рис. 4), в котором предусмотрен специальный режим для определения прямого или обратного подключения обмоток ТТ мощностью до 10 ВА. Прибор автоматически определяет полярность выводов, а также сигнализирует о наличии внешнего напряжения или обрыве обмотки ТТ.
- применение блока РЕТ-ПТ, позволяющего определять полярность ТТ мощностью до 10 ВА, а также целостность цепей (рис. 5). Блок удобен в эксплуатации благодаря компактности, автономности и простоте использования – проверка производится буквально одним нажатием кнопки.
Рис. 4. Проверка полярности ТТ с помощью ВАФ РЕТОМЕТР-М2
Рис. 5. Проверка полярности ТТ с помощью блока РЕТ-ПТ
Выбор устройства для проверки полярности ТТ определяется целью испытания, местом его проведения и имеющимся в арсенале пользователя проверочным оборудованием. При комплексной проверке ТТ целесообразно применение устройства РЕТОМ-21/25, а при экспресс-проверках – более компактных приборов РЕТОМЕТР-М2 или РЕТ-ПТ.
4. Проверка характеристики намагничивания ТТ
Характеристика намагничивания (или вольт-амперная характеристика) трансформатора тока представляет собой зависимость напряжения на выводах вторичной обмотки от тока, протекающего по ней, и является одной из наиболее важных характеристик ТТ. При проведении данного испытания выводы первичной обмотки остаются разомкнутыми, а на выводы вторичной обмотки подаётся регулируемое напряжение от независимого источника.
Для снятия ВАХ может применяться комплекс РЕТОМ-25 – для проверки ТТ с напряжением насыщения 250 В, или РЕТОМ-21 – для ТТ с напряжением насыщения 500 В.
На рис. 6 приведена схема измерения характеристики намагничивания ТТ с помощью РЕТОМ-21, а также блока РЕТ-ВАХ-2000, который увеличивает выдаваемое прибором напряжение до допустимых нормативной документацией 1800 В.
Рис. 6. Схема измерения характеристики намагничивания ТТ с помощью РЕТОМ-21 и РЕТ-ВАХ-2000
Процедура измерения характеристики намагничивания описана во многих нормативных документах, среди которых ПУЭ-7 (п. 1.5.17), СТО 34.01-23.1-001-2017, ГОСТ-7746-2001 (п. 9.8), РД 153-34.0-35.301-2002 (п. 3.7), МЭК 60044, МЭК 61869-2, IEEE C57/13 [1-9]. Знакомство с этими документами позволяет сделать вывод о том, что разные стандарты регламентируют разные типы измерения для снятия ВАХ (табл.1), а также разный выходной результат: несколько точек ВАХ, график целиком или рассчитанная точка перегиба. Принятой нормой является отклонение результатов на величину не более 10%. Поэтому важным аспектом данного испытания является наличие в испытательном устройстве измерителей тока и напряжения с поддержкой различных стандартов.
Таблица 1. Типы измерений для снятия вольт-амперной характеристики ТТ | |
Стандарт | Тип измерения напряжения/тока |
ГОСТ 7746-2001 | Среднее/RMS |
РД 153-34.0-35.301-2002 | Среднее/RMS |
МЭК 60044-1 | RMS/RMS |
МЭК 60044-6 | RMS (ЭДС)/Амплитудное |
МЭК 61869-2 | Средневыпрямленное/RMS |
IEEE C57/13 | RMS (ЭДС)/RMS |
Полностью автоматизировать процесс снятия ВАХ позволяет программа «Трансформатор тока», входящая в состав ПО комплексов РЕТОМ-21/25. При работе с данной программой пользователю достаточно выбрать схему подключения согласно необходимому максимальному уровню тока и напряжения ВАХ, задать шаг и запустить проверку. Программа в автоматическом режиме строит кривую намагничивания, повышая выходное напряжение и фиксируя значения тока и напряжения на каждом шаге. По завершении построения программа автоматически плавно снижает напряжение и тем самым размагничивает ТТ (рис. 7). В результате формируется протокол испытаний, отображающий график кривой намагничивания, табличные значения напряжений и токов, а также контрольные точки ВАХ, заданные пользователем.
Рис. 7. Характеристика намагничивания трансформатора тока 3000/5
5. Измерение сопротивления обмоток ТТ
Измерение сопротивления обмотки постоянному току является важным испытанием для определения ее целостности и наличия обрывов/замкнутых витков, поэтому данную проверку рекомендуется проводить с определенной периодичностью.
Сопротивление обмотки трансформатора тока определяется отношением падения напряжения на обмотке (измеренного милливольтметром постоянного тока) к протекающему через обмотку постоянному току (2). Схема представлена на рис. 7.
(2)
Несмотря на то, что индуктивная составляющая сопротивления ТТ значительно ниже, чем в силовых трансформаторах, измерение требуется проводить с применением источников стабилизированного постоянного тока при насыщении магнитопровода трансформатора (рис.8). Пульсации тестового тока или недостаточное намагничивание магнитопровода могут значительно увеличить погрешность измеренного сопротивления. После измерения сопротивления обмотки ТТ следует размагнитить во избежание бросков тока намагничивания при включении его в работу.
а) б)
Рис. 8. а) Схема проведения измерения сопротивления обмотки;
б) диаграмма изменения тока и напряжения во время измерения
Измерение сопротивления обмотки ТТ можно проводить с использованием микроомметра РЕТ-МОМ.2 (рис. 9, а) или комплексов РЕТОМ-21/25 совместно со сглаживающим фильтром РЕТ-СФ (рис. 9, б).
а) б)
Рис. 9. Схемы измерения сопротивления обмотки ТТ: а) с применением РЕТ-МОМ.2;б) с применением РЕТОМ-21 совместно с РЕТ-СФ
Поскольку сопротивление проводников зависит от температуры, сравнение результатов измерений с заводскими (паспортными) возможно только при приведении измеренного сопротивления к необходимой температуре. Пересчет сопротивления производится по формуле (3).
(3)
где R1 – сопротивление, измеренное при температуре t1,
R2 – сопротивление, приводимое к температуре t2;
К – коэффициент, равный 245 для обмоток из алюминия и 235 – для обмоток из меди.
Микроомметр РЕТ-МОМ.2 специально разработан для измерения активного сопротивления цепей с большой индуктивностью (обмоток трансформаторов, генераторов, двигателей) и позволяет проводить испытания в автоматическом режиме с приведением сопротивления к необходимой температуре.
При отсутствии специализированного оборудования для тестирования обмоток рекомендуется воспользоваться комплексами РЕТОМ-21/25 с дополнительным сглаживающим фильтром РЕТ-СФ, позволяющим полностью исключить пульсации, которые могут негативно сказаться на точности измерения сопротивления индуктивных цепей.
Заключение
Не существует единого универсального метода проверки трансформаторов тока. Каждый из приведенных способов предоставляет лишь часть информации о техническом состоянии ТТ. Поэтому необходимо применение комплексного подхода к их тестированию с использованием методов и средств испытаний, отвечающих всем современным требованиям. В статье приведены основные этапы проверок трансформаторов тока с использованием оборудования серии РЕТОМ, которое обеспечивает комплексные испытания трансформаторов тока с получением достоверных результатов измерений и, таким образом, позволяет оценить их общее техническое состояние. Актуальная информация о техническом состоянии ТТ позволит при необходимости организовать мероприятия по устранению выявленных недостатков для обеспечения надежной работы систем релейной защиты и автоматики, а также поддержания бесперебойности электроснабжения потребителей.
- ПУЭ 7. Правила устройства электроустановок. Издание 7.
- Правила технической эксплуатации электроустановок потребителей.
- СТО 34.01-23.1-001-2017. «Объем и нормы испытаний. Электрооборудования.
- ГОСТ-7746-2001 «Трансформаторы тока. Общие технические условия».
- ГОСТ IEC 60044-1-2013 Трансформаторы измерительные. Часть 1.
- ГОСТ Р МЭК 61869-2-2015 Трансформаторы измерительные. Часть 2.
- РД 34.45-51.300-97 «Объем и нормы испытаний электрооборудования».
- РД 153-34.0-35.301-2002 «Инструкция по проверке трансформаторов тока, используемых в схемах релейной защиты и измерения».
- С57.13-2016 — IEEE Standard Requirements for Instrument Transformers.
Плеханов А.В.
НПП «Динамика»
г. Чебоксары
Июль 2021
Трансформатор тока, их применение и правильное подключение Статьи
« НазадТрансформатор тока, их применение и правильное подключение 18.
Трансформаторы – электротехнические устройства, широко применяемые как в производственной, так и в бытовой сфере. При этом различают категории трансформаторов напряжения и трансформаторов тока.
Установка трансформатора тока осуществляется с целью преобразования значений переменного тока с высоких на первичной обмотке до малых на вторичной, что обеспечивает удобство и безопасность эксплуатации. Их используют при подключении приборов учета расхода электроэнергии (электросчетчиков) и других электроизмерительных приборов, а также устройств, обеспечивающих релейную защиту различных систем электроэнергетики.
Устройство и правильное подключениеВажнейшими конструкционными элементами трансформатора являются первичная и вторичная обмотки, а также магнитопровод, заключенные в единый корпус. При этом первичная обмотка выполняется обычно в один виток (обмотка более точных устройств имеет два витка), или представляет собой проходящую сквозь специальное окно силовую шину (трансформатор шинного исполнения).
Первичная обмотка подключается к источнику тока, вторичная – непосредственно к измерительным приборам и другим потребителям, характеризуемым малым значениям внутреннего сопротивления.
С целью предотвратить неверное подключение и, как следствие, последующую неисправность трансформатора тока либо подключаемых устройств, выводы трансформаторов маркируются буквенными и цифровыми обозначениями, как это показано на нижеприведенной схеме. Начало и конец первичной обмотки обозначают как Л1 и Л2 (линия), а начало и конец вторичной обмотки — как И1 и И2 (измерение). Обмотку напряжения необходимо подключать к проводам «фаза» и «ноль». С этой целью между выводами Л1 и И1 устанавливают специальную перемычку, а нулевой провод подсоединяют к третьему зажиму.
Трансформатора тока (общая схема)
В высоковольтных трансформаторах тока напряжением 6-10 кВ и более устанавливается несколько групп вторичных обмоток, к одной из которых подключают устройство защиты, а к прочим, более точным, – приборы учета или измерения.
Вторичные обмотки трансформаторов тока при установке в три фазы соединяют по методу «Звезды» (рис.1), при двухфазной установке – по схеме «Неполной звезды» (рис.2).
Чаще всего используются трансформаторы с номинальными значениями первичного тока от 50 до 2000 А. Показатель вторичного тока в большинстве случаев составляет 5А.
Меры профилактики
Правильное подключение трансформатора тока – залог нормальной работы оборудования.
Электромонтаж цепей тока и напряжения должен производиться сообразно Правилам Устройства Электроустановок. Согласно нормативным документам, сечение медного провода в токовых цепях должно быть не менее 2,5 кв. мм, в цепях напряжения — не менее 1,5 кв.мм.
Вторичные цепи трансформаторов тока должны в обязательном порядке быть заземлены. Это обеспечивает как сохранность самих приборов, так и безопасность людей.
Особенности эксплуатации
Каждый из трансформаторов тока должен обязательно подвергаться периодическим поверкам госповерителя и иметь на корпусе пломбу с соответствующим клеймом, а также отметку в техническом паспорте. Необходимо помнить об этом при установке нового трансформатора, следя за тем, чтобы на момент монтажа дата последующей госповерки не была просрочена. Поверка должна производиться регулярно, с интервалом в четыре-пять лет, в зависимости от марки трансформатора и его типа.
Принадлежность трансформатора к определенному классу предопределяет применение методики и установочного инструментария. Вместе с тем первичная установка или замена трансформатора тока регламентированы обязательными условиями работ, которые предусматривают соблюдение той или иной схемы подключения. Такие схемы могут различаться в зависимости от требований организации, на которую производителем и поставщиком возложены вопросы компетенции в сфере генерации и доставки электроэнергии потребителям. В частности, ряд определенных различий имеют схемы подключения от Ленэнерго и Сбытовой компании.
Ленэнерго
Петербургская сбытовая компания
Самый простой и одновременно наиболее надежный вариант установки трансформатора в бытовых условиях — вызов электрика на дом. Это позволит, не нарушая нормативные требования, квалифицированно и в точном соответствии со всеми предписаниями выполнить весь комплекс монтажных и электротехнических работ.
Компания ЭлектроТехников предлагает Вам любые электромонтажные работы начиная с установки осветительных систем и заканчивая работами по автоматизации технических процессов:
Услуги электрика ( вызов электрика на дом )
Замена эл. счетчика
Ремонт проводки ( замена проводки )
Монтаж освещения
Установка эл. щита ( установка распределительного щита )
Установка розеток ( перенос розеток )
Проводка в квартирах ( проводка в коттеджах )
Слаботочные системы
Монтаж теплого пола
Проектирование электроснабжения
Лабораторные испытания электроустановок
Электролаборатория
Договор электроснабжения «под ключ»
Обслуживание
и другие услуги наш телефон: 333-43-16
|
Руководства по эксплуатации Сертификаты Особенности применения трансформаторов тока с классом точности S Требования к оформлению заказов трансформаторов предназначенных на экспорт Скачать опросные листы на трансформаторы тока Скачать каталог на трансформаторы (pdf; 32 Мб) Скачать каталог на трансформаторы ТВ (pdf; 4 Мб) Скачать каталог «Трансформаторы для железных дорог» (pdf; 4,8 Мб) Межповерочный интервал — 16 лет. Образец заполнения заявки на продукцию завода
|
Трансформаторы тока модульные проходного типа под кабель
Модульные устройства снижения токовых величин проходного типа под кабель
Общие функции трансформаторов тока заключаются в снижении токовых величин общей сети до приемлемых значений. Это дает возможность безопасного подключения измерительных приборов контроля и устройств учета потребления электроэнергии.
Также, для этих приборов существует общий принцип рабочей схемы. Подключенные последовательно в электрическую цепь, они пропускают номинальный ток системы через первичную обмотку с подачей на вторичную. На выходе вторичной обмотки токовая силовая величина составляет 1 – 5 Амперов.
Функции первичной обмотки может выполнять шина, что значительно упрощает устройство трансформатора тока и повышает безопасность его эксплуатации. Компания ABB предлагает унифицированный вариант шинного трансформатора, в котором шиной является проходной кабель подачи электроэнергии.
Такой вариант позволяет максимально уменьшить объем прибора и перевести его в категорию модульных устройств. Трансформаторы тока модульные проходного типа устанавливаются в электрических шкафах на общем кабельном входе. Здесь же располагаются зависимые от него приборы.
Если вас интересуют приборы модульного типа, вы можете оформить заказ на продукцию европейского концерна АВВ, в нашем интернет магазине.
Модульные трансформаторы тока проходного типа под кабель, от компании АВВ, зарекомендовали себя как надежные, соответствующие заявленным характеристикам приборы. Более чем вековой опыт работы компании в области производства основного и вспомогательного оборудования для электрических систем, выражается высоким профессионализмом и максимально реализованным научно-техническим потенциалом.
Трансформаторы тока АВВ, проходного типа с модульным устройством имеют внушительный модельный ряд, рассчитанный на широкий диапазон токовых величин от 40 до 600 Ампер. Специалисты европейского концерна уделили много внимания созданию безопасной корпусной основы прибора. Полностью закрытый корпус исключает возможность случайного прикосновения к токопроводящим частям. Материал, из которого он изготовлен, является негорючим полимером, обладающим повышенной прочностью. На поверхность корпуса нанесены преобразующие характеристики трансформатора и схема подключения в сеть.
Более подробную информацию о проходных кабельных трансформаторах АВВ, о заказе и способах расчетов, вы можете получить, связавшись с сотрудниками нашего магазина, по одному из контактных телефонов.
Дать определение трансформатора тока. Назначение и принцип действия трансформатора тока
Существует два основных вида тока – постоянный и переменный. Обычная электрическая батарейка, например, дает постоянный ток напряжением 1,5 вольта , а в электросети действует переменный электрический ток с напряжением 220 В. Трансформаторы используются исключительно для преобразования переменного электрического тока. Постоянный ток трансформации не поддается.
Как осуществляется трансформация тока
В простейшем варианте трансформатор состоит из металлического сердечника – например, из Ш-образных пластин, и двух обмоток, первичной и вторичной. Обмотки электрически между собой не связаны, передача электрической энергии осуществляется за счет электромагнитной индукции.
Зачем вообще нужен трансформатор? Он позволяет в необходимых пределах изменять напряжение и силу тока. Например, у вас есть электрическая лампочка на 2,5 В. Ее нельзя напрямую подключить к электросети 220 В, она тут же сгорит. Чтобы она нормально работала, необходимо понизить напряжение с 220 В до 2,5 В – то есть снизить его почти в 100 раз.
Эту задачу и позволяет решить трансформатор. Его первичная обмотка имеет достаточно большое количество витков – например, 1000. Благодаря этому она легко выдерживает напряжение 220 В, включение обмотки в сеть не вызывает короткого замыкания. Поверх первичной обмотки наматывается вторичная, но число ее витков значительно меньше. Если в нашем примере 1000 витков рассчитаны на 220 В, то на 1 виток тогда приходится 0,22 В. Нам нужно 2,5 В. Нетрудно подсчитать, что для нормальной работы лампочки напряжением 2,5 В необходимо намотать вторичную обмотку из 11-12 витков.
Области применения трансформаторов электрического тока
Чтобы передавать электроэнергию на большие расстояния, используются высоковольтные линии электропередач. Передается именно переменный ток, так как при передаче постоянного потери электроэнергии оказываются слишком велики. Потери уменьшаются и с увеличением напряжения, поэтому на магистральных направлениях используется напряжение в сотни тысяч вольт.
Чтобы получить высокое напряжение для передачи на расстояние, а затем вновь преобразовать его в нужное потребителям, и используются трансформаторы. Как правило, это мощные масляные трансформаторы, рассчитанные на высокое напряжение.
Небольшие трансформаторы используются и в радиоэлектронной аппаратуре и бытовой технике, они позволяют понижать напряжение 220 В до более низкого, необходимого для питания электронных компонентов. Иногда трансформаторы используют для гальванической развязки – в этом случае количество витков в первичной и вторичной обмотке одинаково. С вторичной обмотки снимают то же напряжение, которое действует на первичной обмотке, но это уже другая цепь, не имеющая прямой электрической связи с первичной обмоткой.
На сегодняшний день во многих случаях не представляется возможным заменить трансформаторы переменного тока какими-то другими устройствами. Поэтому можно не сомневаться в том, что они будут использоваться еще очень долгое время.
Трансформатор тока
с масляным охлаждением
и фарфоровой покрышкой
Для измерения большого переменного тока, его предварительно уменьшают до удобного значения (обычно до 5А) при помощи трансформаторов тока.
Трансформатором тока, называется такой трансформатор, в котором при нормальных условиях работы выходной сигнал выходной сигнал является током, практически пропорциональным первичному току и при правильном включении сдвинутым относительно него по фазе на угол, близкий к нулю.
Описание трансформаторов тока, марок: ЗНОЛ , НЛЛ , НОЛ , НОЛП , ОМ , Т-0,66 , ТЗЛ , ТЗЛМ , ТЗРЛ , ТЛ , ТЛК , ТЛШ , ТНШ , ТНШЛ , ТОЛ , ТОП , ТПК , ТПЛ , ТПОЛ , ТШЛ .
Схема включения трансформатора тока
Принципиальная схема трансформатора тока.
На схеме:
1 — первичная обмотка трансформатора тока;
2 — вторичная обмотка трансформатора тока;
3 — общий магнитопровод;
4 — токопровод высокого напряжения;
I 1 — ток линии;
Ф 1 — переменный магнитный поток, создаваемый током I 1 ;
I 2 — ток протекающий во вторичной обмотке под действием Ф 1 ;
Ф 2 — переменный магнитный поток, создаваемый током I 2 ;
Первичную обмотку трансформатора тока, имеющую малое число витков, включают последовательно в линию, в которой измеряют или контролируют ток. В цепь вторичной обмотки трансформатора тока включают прибор с малым сопротивлением. Таким прибором может быть амперметр, токовая катушка ваттметра, счетчика, какого либо иного измерительного прибора или реле. Приборы во вторичную цепь включают так, чтобы положительное направление тока в приборе совпадало по направлению с положительным направлением тока в контролируемой цепи.
В трансформаторе тока высокого напряжения первичная обмотка изолирована от вторичной на полное рабочее напряжение. Один конец вторичной обмотки обычно заземляется. Поэтому она имеет потенциал, близкий к потенциалу земли.
В цепь вторичной обмотки трансформатора тока можно включать несколько приборов, соединив их последовательно, чтобы через них проходил один и тот же ток. Однако включать в цепь вторичной обмотки трансформатора тока большое число измерительных приборов нежелательно, так как это увеличивает сопротивление нагрузки трансформаторов и снижает точность измерений.
Устройство трансформатора тока
Трансформатор тока имеет сердечник, первичную и вторичную обмотки. Как правило, их изготавливают с таким коэффициентом трансформации, чтобы на вторичной стороне сила тока была стандартной. (1;5 и 10А)
Первичная обмотка трансформатора тока включается в сеть последовательно, поэтому для уменьшения потерь энергии и напряжения сечение проводов первичной обмотки выбирают большим, а число витков – один или несколько. Число витков вторичной обмотки всегда больше числа витков первичной. Сечение обмоточных проводов вторичной обмотки сравнительно небольшое.
Трансформаторы тока по конструктивным признакам разделяют на звеньевые(или восьмерочные), в которых первичная обмотка имеет форму кольца, продетого через сердечник; шинные(или стержневые) – первичной обмоткой служит стержень(или шина), петлевые – первичная обмотка имеет форму вытянутой петли; катушечные – первичная обмотка изготовлена в форме катушки.
Первичные обмотки трансформаторов тока могут быть одно или многовитковыми. При одновитковой обмотке витком служит провод, стержень или шина, проходящая через окно магнитной системы; таким образом создается контур, замкнутый через цепь нагрузки. Примерами такого устройства могут служить встроенные трансформаторы тока, применяемые в силовых трансформаторах и масляных выключателях.
Вторичные обмотки трансформаторов тока охватывают магнитную систему и образуют контур через цепи вторичной нагрузки (приборы электрических измерений и релейной зашиты, сигнализации и т. д.). Вторичные обмотки часто изготовляют с ответвлениями; начала, концы и ответвления обмотки подключены к зажимам клеммного щитка. Первичные обмотки имеют зажимы для включения витков параллельно или последовательно. Такое устройство обмоток позволяет использовать трансформатор тока на разные номинальные вторичные токи.
Назначение трансформатора тока
Трансформаторы тока в зависимости от назначения разделяются на трансформаторы тока для измерений и трансформаторы тока для защиты. Зачастую трансформаторы тока совмещают в себе обе функции и могут использоваться как для измерения, так и для защиты.
Трансформаторы тока для измерений предназначаются для передачи информации измерительным приборам. Они устанавливаются в цепях высокого напряжения или в цепях с большим током, то есть в цепях в которых невозможно прямое включение измерительных приборов. Трансформатор тока для измерения обеспечивает:
- Преобразование переменного тока любого значения в переменный ток, приемлемый для непосредственного измерения с помощью стандартных измерительных приборов;
- Изолирование измерительных приборов, к которым имеет доступ обслуживающий персонал, от цепи высокого напряжения.
Трансформаторы тока для защиты предназначаются для передачи измерительной информации в устройства защиты и управления. Трансформатор тока для защиты обеспечивает:
- Преобразование переменного тока любого значения в переменный ток, приемлемый для питания устройств защиты;
- Изолирование реле, к которым имеет доступ обслуживающий персонал, от цепи высокого напряжения.
Трансформатор тока в установке высокого напряжения, необходим даже в тех случаях, когда уменьшения тока для измерительных приборов или реле не требуется.
Иногда нужно узнать – какой ток течет в электрической цепи. Если ток небольшой, для этого можно использовать простой резистор. Если-же ток достигает неприличных величин (к примеру, как в трансформаторах Тесла), приходится искать другие методы измерения. Один из таких методов – использование трансформатора тока.
Что это такое?
Трансформатор тока, для краткости будем называть его ТТ, используется повсеместно. К примеру, в электросчетчиках и на подстанциях. Мы-же будем рассматривать то, как его можно использовать для измерения тока в импульсных источниках питания – сварочных аппаратах, трансформаторах Тесла итп. Стоит сразу обратить внимание, что с помощью ТТ можно измерять только переменный ток, но никак не постоянный!
Итак, ТТ позволяет нам измерять очень большой ток. Чем-же ТТ отличается от обычного трансформатора? А вот ничем! Название придумали из-за области применения и характерной конструкции – катушка на тороидальном сердечнике, через которую пропущен провод.
ТТ преобразует проходящий через него ток в пропорциональное напряжение. К примеру, если через трансформатор проходит 100А, то он выдает 1В, а если проходит 200А, то на выходе мы получим 2В.
Основные соотношения
Проделав нехитрые математические выкладки, можно убедиться, что для токов в обмотках ТТ с очень большим коэффициентом трансформации по напряжению и с короткозамкнутой вторичной обмоткой действует такой закон для тока в обмотках:
Для того, чтобы преобразовать ток в напряжение, используют обычный резистор. Типичная схема включения ТТ:
Напряжение, падающее на резисторе R, согласно закону Ома, равно E=IR. Таким образом, зависимость выходного напряжения ТТ от тока определяется простым выражением:
К примеру, рассмотрим трансформатор Тесла, где через ТТ течет ток в 500А. Если у нас 1 виток в первичной обмотке (да, просто пропущенный через кольцо провод считается за один виток), а во вторичной обмотке — 1000 витков, то ток во вторичной обмотке окажется равным 0.5А. Если мы возьмем сопротивление R1 = 2ом, то при полном токе на нем будет падать 1вольт.
Просто? Еще-бы!
Применения
Раз мы уже знаем, что такое токовый трансформатор, давайте подумаем куда его можно всунуть. Кроме того, что можно измерять большие токи, можно еще строить автогенераторы с обратной связью по току. Практически все DRSSTC являются именно такими. Можно также организовывать защиту от превышения тока, без такой защиты большинство импульсных блоков питания являются ”живыми мертвецами”.
Запаздывание по фазе
Для автогенераторного применения важна еще одна характеристика ТТ – задержка сигнала.
Запаздывание сигнала может произойти из-за таких факторов
Индукция рассеяния ТТ вместе с выходным резистором образует ФНЧ.
Межвитковая емкость в ТТ может стать причиной сдвига фазы.
Для анализа обоих этих ситуация, я набросал простую модель в SWCad’е.
Результаты симуляции при к. связи = 1
К. связи = 0.5
Результаты симуляции очень похожи на одиночный трансформатор. Никакого запаздывания нет. Только амплитуда становится немного менее предсказуемая – она определяется произведением коэффициентов связи в обоих трансформаторах.
Вывод – в подавляющем большинстве случаев можно применять несколько ТТ, включенных последовательно.
Прямоугольный выходной сигнал
Часто необходимо получить прямоугольный выходной сигнал из синусоиды, выдаваемой ТТ. Конечно, это можно сделать с помощью компаратора, однако быстродействующие компараторы дороги и требуют особых навыков от разработчика. Проще собрать следующую, уже почти ставшую стандартом, схему:
Для чего такие сложности? Стабилитроны – очень медленные устройства. Для повышения быстродействия ограничителя, к ним добавлены диоды Шоттки. Когда напряжение меняет полярность – диоды Шоттки быстро закрываются и не дают стабилитронам испортить сигнал. Такой ограничитель выдает сигнал +-5 вольт. Замечу, что сигнал нужно обязательно ограничивать симметрично, иначе произойдет сдвиг фазы.
Диодную вилку нельзя поставить сразу после ТТ, потому, как выбросы из силовой части преобразователя попадут в чувствительные цепи управляющей электроники.
Конструкция
Заметьте, что ТТ работает как источник тока, и чем больше витков вы намотаете, тем ближе ТТ будет к идеальному источнику тока и тем точнее будут показания. Также, чем больше витков, тем меньше ток течет через резистор, а значит, уменьшается рассеиваемая на нем мощность. Именно предельная мощность на резисторе обычно является определяющим факторов для количества витков в любительских конструкциях.
Для того, чтобы сделать коэффициент трансформации побольше, первичную обмотку обычно делают всего из одного витка, а во вторичной мотают порядка тысяч.
Проблема насыщения сердечника очень редко проявляется в токовых трансформаторах. Что такое насыщение и как с ним бороться, можно прочитать в статье о .
В качестве проволоки для вторичной обмотки стоит выбирать проволоку с наибольшим возможным сечением – так уменьшается погрешность измерения.
Промышленные ТТ
Естественно, промышленность выпускает громаднейший ассортимент токовых трансформаторов. Они хорошо настроены и могут быть использованы для точных измерений. Естественно, есть проблемы с доставабельностью в неэпических количествах. К примеру, в киеве, несколько ТТ я видел в магазине “радиомаг”
К моему удивлению, материалов по ТТ очень мало. Но википедия, все-же, знает, что это такое.
Привенение ТТ в электросчетчиках. Там-же описывается немного теории.
Для измерения токов в силовых цепях переменного напряжения применяют трансформаторы тока. Они применяются как в цепях до 1000 В так и выше 1000 В. Они имеют стандартные токи вторичной цепи – 1 А или 5 А и измерительные приборы и реле выполняют на этот ток. Вторичная обмотка трансформатора обязательно заземляется, чтоб в случае пробоя изоляции измерительные устройства не оказались под напряжением первичной цепи.
Схема такого трансформатора показана ниже:
Главной особенностью таких устройств является то, что ток, протекающий в первичной цепи абсолютно независим от режимов работы вторичной цепи. Во вторичной цепи трансформатора предохранитель не ставят, так как обрыв вторичной цепи трансформатора тока – это аварийный режим работы. Почему так мы рассмотрим в следующих статьях.
Основные параметры трансформаторов тока
Номинальное напряжение
Это напряжение линейное сети, в которой должен работать трансформатор. Именно это напряжение будет определять изоляцию между обмотками, одна из которых будет находится под высоким потенциалом, а вторая заземлена.
Номинальные токи
Токи, при которых устройство может работать в длительном режиме не перегреваясь. Как правило, такие трансформаторы имеют большой запас по нагреву и могут работать нормально с перегрузкой в 20%.
Коэффициент трансформации
Отношение первичного и вторичного тока определяемый формулой:
Коэффициент трансформации действительный будет иметь отличия от номинального ввиду потерь в трансформаторе.
Токовая погрешность
В процентах имеет вид:
Где I 2 – вторичный, I 1 ‘ — первичный приведенный токи.
Угловая погрешность
В реальном трансформаторе первичная составляющая по фазе сдвинута от вторичной на угол отличный от 180 0 . Для отсчета угловой погрешности вектор вторичной составляющей поворачивают на 180 0 . Угол между вектором первичной составляющей и этим вектором носит название угловой погрешности. Если перевернутый вектор вторичной составляющей опережает первичную – то погрешность будет положительной, если отстает – отрицательной. Измеряется такой вид погрешности в минутах.
Соответственно трансформаторы тока имеют свой класс точности согласно ГОСТ – 0,2;0,5;1;3;10. Класс точности говорит о допустимой погрешности в процентах Z 2 = Z 2н.
Полная погрешность
Определяется в процентах %, и имеет формулу:
Где: I 1 – действующее первичное значение, i 1, i 2 – мгновенные значения первичных и вторичных токов, Т – период частоты напряжения переменного.
Номинальная нагрузка
Нагрузка, определяемая в Омах, при которой трансформатор будет работать в пределах своего класса точности и с cosφ 2н =0,8. Иногда могут применять понятие номинальной мощности Р:
Поскольку значение I 2н строго нормировано, то мощность трансформатора будет зависеть только от нагрузки Z 2н.
Номинальная предельная кратность
Кратность первичного тока к значению его номинальному, при котором погрешность его может достигать примерно 10%. При этом нагрузка и ее коэффициенты мощности должны быть номинальными.
Максимальная кратность вторичного тока
Отношение максимального вторичного тока, к номинальному его значению при действующей вторичной нагрузке равной номинальной. Максимальная кратность определяется насыщением магнитопровода, это когда при дальнейшем увеличении первичного тока, вторичный остается неизменным.
Человечество в значительной мере зависит от тока. Но просто так он не подчиняется, необходимы специальные аппараты. В качестве оного выступает трансформатор тока. Чем он является и каково его предназначение? Каков принцип действия трансформатора тока? И насколько он важен?
Что такое трансформатор тока?
Под ТТ понимают измерительный аппарат, который необходим, чтобы преобразовать ток. Конструктивно в трансформаторе первичная обмотка включена в цепь последовательно, тогда как вторичная имеет измерительные приборы, а также реле защиты и автоматики. ТТ является основным измерительным устройством в электроэнергетике. Обе обмотки находятся в изоляции. Вторичная во время эксплуатации обычно имеет потенциал, который близок к «земле», что достигается путём заземления одного конца.
Благодаря трансформатору можно учитывать и измерять ток высокого напряжения, используя приборы для низкого. В конце сводится всё к измерению первичного, значение которого записывают в амперах. Следует отличать измерительный трансформатор тока от силового. Так, в первом индукция является непостоянной и напрямую зависит от режима эксплуатации. Поэтому и считаются универсальными трансформаторы тока.
Назначение и принцип действия
Как всё происходит? Каков принцип действия трансформатора тока? Через силовую первичную обмотку, которая имеет определённое число витков, протекает напряжение, которое преодолевает полное сопротивление. Вокруг катушки возникает магнитный поток, который может уловить магнитопровод. Его необходимо расположить перпендикулярно относительно направления тока. Таким образом, будет теряться минимум электроэнергии во время её преобразования в электрическую. Пересекая перпендикулярно расположенные витки вторичной обмотки, магнитный поток активирует электродвижущую силу, под влиянием которой и возникает ток, преодолевающий полное сопротивление катушки и выходной нагрузки. Вместе с этим на зажимах 2-й цепи возникает падение напряжения.
Теперь немного о частных случаях:
- Принцип действия сварочного трансформатора базируется на максимальной отдаче мощности. Его конструкция должна выдерживать высокое напряжение.
- Принцип действия однофазного трансформатора базируется на магнитном потоке. Так, если замкнуть вторичную обмотку на какое-то сопротивление, то при появлении тока возникнет движущая сила. Если обратить внимание на закон Ленца, то можно сделать заключение, что магнитный поток будет уменьшаться. Но принцип действия однофазного трансформатора предусматривает подведение постоянного тока к первичной обмотке, в результате чего уменьшения магнитного потока не происходит.
Классификация
Все трансформаторы тока (как для измерений, так и для защиты) поддаются классификации по таким признакам:
- По роду установки.
- ТТ, предназначенные для работы в воздухе.
- Трансформаторы тока для функционирования в условиях закрытых помещений.
- ТТ, предназначенные для встраивания внутрь электрооборудования.
Основные параметры
Трансформаторам тока выдвигают целый ряд требований. Вся необходимая информация должна быть указана в паспорте или приложенной таблице.
Вот их краткий список:
- Номинальное напряжение может находиться в широком диапазоне.
- Номинальный первичный ток, который идёт по 1-й обмотке. Указываются значения для длительной работы аппаратуры.
- Номинальный вторичный ток, проходящий по 2-й обмотке. Его качество обозначается показателем в 1 или 5 ампер.
- Вторичная нагрузка соответствует сопротивлению во внешней 2-й цепи и выражается в омах.
Ограничения
По термической стойкости:
- I1т — рассчитан на номинальное напряжение выше 330 кВ.
- I3т — применяется в диапазоне значений в 110-220 кВ.
- I4т — используется при напряжении, которое не превышает 35 кВ.
Принцип действия трансформатора может зависеть от материала:
- При изготовлении токопроводящих частей из алюминия температура не должна превышать 200°С.
- Если детали, что проводят ток, сделаны из меди или её сплавов и соприкасаются с маслом или органической изоляцией, то ограничение составляет 250°С.
Также существуют требования к механическим нагрузкам, которые должен выдерживать трансформатор тока при скорости ветра в 40 м/с. Принцип действия устройства может немного поменяться из-за конструктивных дополнений:
- Если ТТ до 35 кВ, то это значение составляет 500 ньютонов.
- При значениях в 110-220 кВ необходима стойкость в 1000 Н.
- При превышении 330 кВ требование к механическим нагрузкам возрастает до уровня 1500 ньютонов.
Опасные факторы при работе с трансформатором тока
При работе с ТТ необходимо быть чрезвычайно осторожным, поскольку существуют значительные риски пострадать вплоть до летального исхода. Итак, следует опасаться:
- Возможности поражения высоковольтным потенциалом, что может случиться в случае повреждения изоляции. Так как магнитопровод трансформатора тока сделан из металла, то он имеет хорошую проводимость и соединяет магнитным путём отделенные обмотки ТТ (первичную и вторичную). Поэтому существует повышенная опасность, что персонал получит электротравмы, или повредится оборудование вследствие дефектов в изоляционном слое. Чтобы избежать таких ситуаций, заземляют один из вторичных выводов трансформатора.
- Возможность поражения высоковольтным потенциалом из-за разрыва вторичной цепи. Её выводы промаркированы как «И1» и «И2». Чтобы направление, по которому протекает ток, было полярным и совпадало по всем обмоткам, они всегда во время работы трансформатора подключаются на нагрузку. Это необходимо из-за того, что ток, проходящий по первичной обмотке, имеет мощность высокого потенциала, которая передаётся во вторичную цепь с незначительными потерями. При разрыве в таких случаях резко уменьшаются показатели из-за утечки во внешнюю среду. При таких происшествиях значительно ускоряется падение напряжения на данном разорванном участке. Потенциал, который сформировывается на разомкнутых контактах, при прохождении тока достигает нескольких киловольт. Такое значение является опасным для жизни. Поэтому необходимо убеждаться, что все вторичные цепи на трансформаторах тока надежно собраны. А при выходе из строя устанавливаются шунтирующие закоротки. Принцип действия трансформатора не терпит пренебрежения правилами безопасности, и получить электротравму очень легко.
- Конструкторские решения, которые были использованы в трансформаторах тока. Любой ТТ, как и все электротехнические устройства, должен решать определённые задачи, которые возникают во время эксплуатации электроустановок. Благо, промышленность предлагает значительный ассортимент. Но в некоторых случаях бывает лучше усовершенствовать имеющуюся конструкцию с точки зрения предприятия, чем изготавливать что-то новое, чем многие и пользуются, не имея достаточного опыта. Без знания, что собой представляет принцип действия трансформатора, последствия такого вмешательства могут создать ситуации, опасные для жизни.
Заключение
В рамках статьи мы обсудили назначение и принцип действия трансформатора тока. Как видите, это устройство является очень важным для нормального функционирования общества. Но вместе с этим оно является и довольно опасным, поэтому всегда стоит придерживаться осторожности и без надобности не лезть внутрь аппарата, особенно тогда, когда работают трансформаторы тока. Назначение и принцип действия таких приспособлений были нами рассмотрены настолько, насколько это позволил размер статьи. Однако все самое важное мы изучили.
Производители Измерительного трансформатора тока из России
Продукция крупнейших заводов по изготовлению Измерительного трансформатора тока: сравнение цены, предпочтительных стран экспорта.
- где производят Измерительный трансформатор тока
- ⚓ Доставка в порт (CIF/FOB)
- Измерительный трансформатор тока цена 06.11.2021
- 🇬🇧 Supplier’s Measuring current transformer Russia
Страны куда осуществлялись поставки из России 2018, 2019, 2020, 2021
- 🇰🇿 КАЗАХСТАН (190)
- 🇺🇦 УКРАИНА (157)
- 🇺🇿 УЗБЕКИСТАН (83)
- 🇲🇩 МОЛДОВА, РЕСПУБЛИКА (30)
- 🇮🇷 ИРАН, ИСЛАМСКАЯ РЕСПУБЛИКА (10)
- 🇲🇳 МОНГОЛИЯ (9)
- 🇹🇲 ТУРКМЕНИЯ (8)
- 🇮🇹 ИТАЛИЯ (8)
- 🇦🇿 АЗЕРБАЙДЖАН (7)
- 🇦🇲 АРМЕНИЯ (7)
- 🇨🇳 КИТАЙ (6)
- 🇱🇹 ЛИТВА (6)
- 🇩🇪 ГЕРМАНИЯ (6)
- 🇰🇬 КИРГИЗИЯ (5)
- 🇪🇪 ЭСТОНИЯ (5)
Выбрать Измерительного трансформатора тока: узнать наличие, цены и купить онлайн
Крупнейшие экспортеры из России, Казахстана, Узбекистана, Белоруссии, официальные контакты компаний. Через наш сайт, вы можете отправить запрос сразу всем представителям, если вы хотите купить
Измерительного трансформатора тока.
🔥 Внимание: на сайте находятся все крупнейшие российские производители Измерительного трансформатора тока, в основном производства находятся в России. Из-за низкой себестоимости, цены ниже, чем на мировом рынке
Поставки Измерительного трансформатора тока оптом напрямую от завода изготовителя (Россия)
Крупнейшие заводы по производству Измерительного трансформатора тока
Заводы по изготовлению или производству Измерительного трансформатора тока находятся в центральной части России. Мы подготовили для вас список заводов из России, чтобы работать напрямую и легко можно было купить Измерительный трансформатор тока оптом
Приборы и аппаратура без записывающего устройства
Изготовитель Приборы и устройства для автоматического регулирования или управления
Поставщики Приборы и аппаратура без записывающего устройства электронные
Крупнейшие производители части трансформаторов
Экспортеры трансформаторы измерительные
Компании производители преобразователи статические
Производство Трансформаторы с жидким диэлектриком мощностью не более ква
Защита трансформатора тока — условия обрыва цепи
W ЧТО ТАКОЕ ТРАНСФОРМАТОР ТОКА?
Трансформатор тока (CT) используется для измерения тока другой цепи. Трансформаторы тока используются во всем мире для контроля высоковольтных линий в национальных электрических сетях. ТТ предназначен для создания переменного тока во вторичной обмотке, пропорционального измеряемому току в первичной обмотке. При этом трансформатор тока снижает ток высокого напряжения до более низкого значения и, следовательно, обеспечивает безопасный способ контроля электрического тока, протекающего в линии передачи переменного тока.
Опасности при эксплуатации
Опасности при работе могут возникнуть, если вторичная цепь ТТ остается разомкнутой, пока первичная находится под напряжением. Обрыв цепи может произойти непреднамеренно из-за планового технического обслуживания нагрузки или повреждения выводов вторичной цепи. В этих ситуациях могут возникать переходные процессы высокого напряжения и повреждать изоляцию обмотки ТТ; возможно, что сделает его неработоспособным. Кроме того, эти переходные процессы могут вызвать высокие вихревые токи в сердечнике ТТ.Это может отрицательно сказаться на характеристиках намагничивания трансформатора тока и привести к ошибкам в точности измерения.
IEEE C57.13 рекомендует оборудовать устройства ограничения напряжения вторичными обмотками для защиты от опасного напряжения. В нем указано, что устройство ограничения напряжения должно выдерживать обрыв цепи в течение одной минуты без повреждения вторичной цепи. Устройства защиты трансформатора тока (CTPU) Metrosil предлагают такую защиту и, в отличие от других устройств ограничения напряжения, не требуют немедленной замены после выхода из нормального состояния.Они могут оставаться на месте без вмешательства пользователя.
Устройства защиты трансформатора тока
В нормальных рабочих условиях или в условиях неисправности с подключенной нагрузкой варистор подвергается действию приложенного напряжения. Он действует как пассивная нагрузка и потребляет небольшой ток, что предотвращает неточности измерения ТТ. Во время разомкнутой цепи варистор подвергается действию приложенного тока и действует как активная нагрузка. Таким образом, он ограничивает напряжение на клеммах ТТ и предотвращает любые повреждения.Термостатический выключатель управляет термоциклированием внутри Metrosil CTPU, когда ТТ находится в состоянии разомкнутой цепи. Второй термостатический выключатель может быть установлен на пластине радиатора для удаленного контроля. Варисторы Metrosil могут управлять величиной обратной ЭДС, рассеивая накопленную в катушке энергию на соответствующую нагрузку.
ЦТПУ Метросил может быть выполнен в одно- и трехполюсном исполнении для удобства установки. Все CTPU проходят заводской аудит по ISO9001-2015.CTPU Метросил защищают трансформаторы тока от повреждений в условиях холостого хода. Они не защищают системы реле или ТТ от перенапряжений, возникающих из-за высоких вторичных токов короткого замыкания. Для защиты релейных систем с высоким импедансом от перенапряжений в условиях неисправности, пожалуйста, обратитесь к нашему проспекту реле Metrosil . Для получения помощи в использовании CTPU Metrosil в сочетании с реле Metrosil для высокоомных релейных систем, пожалуйста, обращайтесь в команду Metrosil .
Шкафы CTPU
Линейка предварительно собранных шкафов CTPU Метросил обеспечивает улучшенную защиту от разрушительного воздействия разомкнутых цепей вторичной стороны.Устройства прошли типовые испытания и прошли независимую сертификацию в соответствии с IEC 61439, части 1 и 2, доступны в адаптируемых конфигурациях и гибких вариантах установки.
Почему Метросил?
Варисторы из карбида кремния Metrosil были произведены в отделении высокого напряжения Метрополитен-Виккерс в 1936 году, и серийно произведены в 1937 году. Metrosil, являвшаяся крупнейшей электростанцией в 20 -м веках, была известна своим промышленным электрооборудованием. в том числе генераторы, паровые турбины, распределительное устройство, трансформаторы, электроника и тяговое оборудование для железных дорог.Следовательно, резисторы Metrosil были включены в крупные флагманские проекты, проложившие путь к эффективному распределению электроэнергии. По сей день наши резисторы остаются на своих местах в установленных сетях электроснабжения, что вызывает доверие как у крупных OEM-производителей, так и у коммунальных предприятий. По мере развития современной энергетической инфраструктуры мы продолжаем внедрять инновации и специализироваться на подстанциях в глобальном масштабе.
Основы работы с трансформаторами тока: что нужно знать о трансформаторах тока
Опубликовано: , автор: aimdynamics
Трансформатор тока — это устройство, которое предназначено для создания переменного тока из постоянного.Устройство измеряет постоянный ток в первичной обмотке и преобразует его в пропорциональный переменный ток во вторичной обмотке. Они используются для уменьшения тока высокого напряжения до гораздо меньшего и более простого в управлении тока, который можно легко контролировать.
Типовой трансформатор тока
Несмотря на то, что существует несколько различных типов трансформаторов тока, основная конструкция во многом одинакова. Первичная обмотка имеет очень мало обмоток, а в некоторых трансформаторах используется только одна.Эта первичная обмотка может состоять из одного плоского витка, катушки с проволокой, обернутой вокруг сердечника, или одной шины, расположенной в центре трансформатора, в зависимости от типа выбранного трансформатора. Трансформаторы тока также обычно называют последовательными трансформаторами.
Вторичная обмотка трансформатора тока обычно состоит из большого количества витков, сосредоточенных вокруг сердечника из магнитного материала. Материал сердечника может варьироваться, и знание того, на какой ток будет «понижен», определит, какой трансформатор подходит для работы.
Существует три основных типа трансформаторов тока: обмотанные, тороидальные и стержневые.
Трансформаторы тока с обмоткой — Трансформаторы тока с обмоткой имеют первичную обмотку, которая последовательно соединена с проводником. Проводник — это устройство, которое измеряет фактический входной ток. Результирующий «понижающий» ток полностью зависит от имеющегося отношения витков между первичной и вторичной обмотками в выбранном трансформаторе.
Тороидальные трансформаторы тока — Тороидальные трансформаторы тока немного отличаются тем, что у них вообще нет первичной обмотки.Скорее, проводник продевается прямо в трансформатор через отверстие или окно. Это конфигурация, которая обычно встречается в трансформаторах с разъемным сердечником, потому что она позволяет им открываться и закрываться, не нарушая цепь, к которой они подключены.
Трансформаторы тока стержневого типа — Трансформатор тока стержневого типа не имеет собственной первичной обмотки. Он использует фактический кабель или шину существующей цепи в качестве первичной обмотки, что дает ему конфигурацию с одним витком.Они часто используются в цепях высокого напряжения из-за их способности быть на 100% изолированной от сред с высоким рабочим напряжением и способности выдерживать большие токи.
Как упоминалось ранее, трансформатор тока предназначен для снижения уровней тока. Они используются в схемах, несущих тысячи ампер, для создания стандартного полезного выходного сигнала 1-5 ампер. Они не только создают «полезные» токи, эти пониженные токи можно более точно контролировать и контролировать с помощью устройств, поскольку они экранированы от высоковольтных линий.Без этой изоляции показания часто искажаются из-за электрических помех. К распространенным измерительным приборам относятся ваттметры, измерители коэффициента мощности и многое другое.
Несмотря на то, что существует ряд трансформаторов тока с различными характеристиками, большинство из них имеют стандартный вторичный номинал 5 ампер. Они выражаются как 100/5, что означает, что ток на первичной обмотке в 100 раз больше, чем на выходе вторичной обмотки. Токи можно уменьшить еще больше, часто до 1 А, просто увеличив количество вторичных обмоток.Это связано с тем, что количество витков в первичной и вторичной обмотках обратно пропорционально.
Теги: Трансформатор тока
Все, что вам нужно знать о датчиках тока
Опубликовано Элоиза Моррис
Что такое датчик тока?
Датчики тока, также обычно называемые трансформаторами тока или трансформаторами тока, представляют собой устройства, которые измеряют ток, протекающий по проводу, используя магнитное поле для обнаружения тока и генерирования пропорционального выходного сигнала.Они используются как с переменным, так и с постоянным током. Датчики тока позволяют нам пассивно измерять ток, никоим образом не прерывая цепь. Они размещаются вокруг проводника, ток которого мы хотим измерить.
Трансформаторы тока необходимы во многих приложениях. Например, они часто используются в подсчетах для определения потребления энергии отдельными арендаторами. Они также могут помочь с регулированием объекта, предоставив информацию о том, сколько энергии используется и когда, чтобы снизить затраты и повысить эффективность.
Как работают датчики тока?
Когда ток течет по проводнику, он создает пропорциональное магнитное поле вокруг проводника. Трансформаторы тока используют это магнитное поле для измерения тока. Если ТТ предназначен для измерения переменного тока, часто используется индукционная технология. Переменный ток изменяет потенциал, что заставляет магнитное поле непрерывно сжиматься и расширяться. В датчике переменного тока провод наматывается на сердечник. Магнитное поле, создаваемое током, протекающим через ваш проводник, индуцирует пропорциональный ток или напряжение в проводе, который находится внутри датчика тока.Затем датчик выдает определенное напряжение или ток, которые измеритель, подключенный к датчику, может считывать и преобразовывать в величину тока, протекающего по проводнику. Например, у вас может быть трансформатор тока, который выдает 333 мВ (333 мВ — общий выход для трансформаторов тока), когда ток через проводник составляет 400 А. После того, как вы настроите свой измеритель так, чтобы он считывал 400A, когда он получает входное напряжение 333 мВ, он сможет рассчитать, сколько ампер проходит через проводник, в зависимости от того, какой вход он получает.Датчики постоянного тока работают аналогично, но в их работе используется технология Холла.
Трансформаторы тока могут повышать, понижать или поддерживать постоянный ток. Датчики повышающего или понижающего тока часто называют трансформаторами. Датчики обычно состоят из двух катушек. Катушка, по которой проходит ток, называется первичной обмоткой, а катушка, в которой индуцируется напряжение, называется вторичной обмоткой. Для многих трансформаторов тока, которые мы продаем в Aim Dynamics, проводник, вокруг которого установлен трансформатор тока, служит первичной обмоткой, а вторичная обмотка находится внутри трансформатора.Сердечник, на который намотана вторичная обмотка, зависит от того, для работы с чем предназначен датчик.
Коэффициент трансформации трансформатора — это число витков вторичной обмотки, деленное на число витков первичной обмотки (). Это соотношение определяет, будет ли трансформатор повышать или понижать напряжение. Отношение вторичного напряжения к первичному равно отношению витков, как указано в уравнении. Таким образом, когда количество витков на вторичной обмотке больше, чем количество витков на первичной обмотке, напряжение на вторичной обмотке выше, и это повышающий трансформатор.Обратное верно для тока, где отношение вторичного к первичному току равно обратной величине отношения витков:.
Как работают датчики тока на эффекте Холла? Датчики
на эффекте Холла или датчики постоянного тока могут измерять как переменный, так и постоянный ток. Датчики на эффекте Холла состоят из сердечника, устройства на эффекте Холла и схемы формирования сигнала. Они работают на основе эффекта Холла .
Эффект Холла — это явление, обнаруженное Эдвином Холлом в 1879 году.Когда ток проходит через проводник, он создает магнитное поле. Если этот проводник расположен внутри другого магнитного поля, магнитное поле, создаваемое электроном, движущимся через проводник, будет взаимодействовать с внешним магнитным полем, заставляя электроны перемещаться к одной стороне проводника. Это создает напряжение на проводнике, которое пропорционально величине тока, проходящего через него, и может быть измерено. Более подробное описание эффекта Холла можно найти здесь.
Есть ли разница между трансформатором тока, преобразователем тока и датчиком тока?
Технически да, но эти термины часто используются как синонимы. Все эти устройства используются для измерения тока и работают на одних и тех же принципах, но между ними есть явные технические различия, о которых следует знать. Технически трансформаторы тока понижают ток, чтобы его можно было эффективно и безопасно контролировать, тогда как датчик тока — это общий термин для устройства, которое определяет и измеряет ток.Преобразователи преобразуют один вход в другой выход. Например, они могут преобразовывать сигналы переменного тока в постоянный. Однако все эти устройства работают одинаково для измерения тока и создания выходного сигнала, который может считывать измеритель мощности.
Типы ТТ:
- Датчики тока на эффекте Холла / датчики постоянного тока: Как объяснено выше, эти датчики работают с использованием эффекта Холла для измерения как переменного, так и постоянного тока.
- Катушки Роговского: Катушки Роговского — это гибкие трансформаторы тока, которые предлагают ряд преимуществ для практического использования.Во-первых, их легче установить, чем традиционные трансформаторы тока. Тонкую катушку можно легко намотать на проводник и защелкнуть. Это делает их идеальными для использования в ситуациях, когда установка может быть сложной, и вы работаете с проводами под напряжением.
- Разъемный сердечник: Датчики тока с разъемным сердечником можно открывать и прикреплять вокруг проводника, что упрощает их установку в уже существующих конфигурациях. Хотя они считаются менее точными, чем датчики тока с твердым сердечником, они достаточно точны, чтобы использоваться почти во всех практических приложениях.
- Сплошной сердечник: Преобразователи тока с одножильным сердечником представляют собой законченные петли без возможности открывания, поэтому при их установке необходимо отсоединить кабели и пропустить их через трансформатор тока. Это делает их наиболее подходящими для новых установок. Они предлагают высокую точность.
- Разомкнутый контур: Датчики на эффекте Холла доступны как в открытом, так и в замкнутом контуре. Датчики с разомкнутым контуром обеспечивают низкие вносимые потери, быстрое время отклика, компактный размер и точное и недорогое измерение.
- Замкнутый контур: Датчики замкнутого контура обеспечивают быстрый отклик, высокую линейность и низкий температурный дрейф.Токовый выход датчика с обратной связью относительно невосприимчив к электрическим помехам. Датчик с замкнутым контуром иногда называют датчиком с нулевым потоком, потому что его датчик на эффекте Холла возвращает встречный ток во вторичную катушку, намотанную на магнитный сердечник, чтобы нейтрализовать поток, создаваемый в магнитном сердечнике первичным током.
Какие компании производят датчики тока?
Существует множество производителей трансформаторов тока.Некоторые производители, которых мы предлагаем в Aim Dynamics, включают Magnelab, AccuEnergy, Socomec и J&D. Каждый производитель имеет несколько разные настройки по умолчанию и соглашения, вы можете просмотреть наш веб-сайт, чтобы найти тот, который лучше всего подходит для ваших конкретных нужд.
Какова номинальная мощность ТТ (ВА (вольт-ампер))? Номинальная мощность
ВА — это показатель мощности, которую может выдать трансформатор тока, что важно для точной регистрации силы тока. Если номинальная мощность ТТ слишком низкая, это может привести к занижению данных, поскольку сопротивление в цепи слишком велико для компенсации ТТ.У нас есть подробная статья о рейтинге VA, которую вы можете прочитать здесь, если хотите узнать больше. У нас также есть отличный калькулятор рейтинга VA, если вы хотите выяснить, какой рейтинг VA вам нужен.
Применение трансформаторов тока Датчики тока
могут использоваться в широком спектре приложений, от управления объектами до подсчетов и т. Д. Они могут помочь обнаружить неисправности в оборудовании и предотвратить повреждение оборудования. В нашем блоге можно найти больше информации о различных применениях датчиков тока (а также о многих других продуктах, которые мы продаем).Мы часто публикуем сообщения о том, как клиенты использовали датчики тока в различных проектах.
Вы ищете компьютерную томографию? Просмотрите нашу подборку здесь.
Теги: Датчики тока
Трансформатор тока — обзор
34.3.1 Трансформаторы тока
Трансформатор тока — это преобразователь тока, который подает сигнал тока, прямо пропорциональный по величине и фазе току, протекающему в первичной цепи.У него также есть еще одна очень важная функция: сигнал, который он производит, должен иметь потенциал земли по отношению к проводнику высокого напряжения. Первичная цепь трансформатора тока должна быть изолирована на том же уровне целостности, что и первичная изоляция системы. Для трансформаторов тока, используемых в системах высокого напряжения, изоляция первичной цепи составляет очень большую часть стоимости трансформатора.
Трансформатор тока — единственный преобразователь тока, широко используемый в высоковольтных сетях.Последние разработки волоконно-оптических высоковольтных преобразователей тока перспективны, но высокая стоимость и сомнительная надежность ограничивают их применение. Однако нет никаких сомнений в том, что в будущих датчиках тока будет использоваться волоконно-оптическая технология.
Трансформатор тока, как следует из названия, является трансформатором. Он почти всегда имеет форму сердечника кольцевого типа, вокруг которого намотана вторичная обмотка.
Первичная обмотка обычно состоит из прямого стержня, проходящего через центр сердечника, который образует один виток первичной обмотки.Для малых первичных токов, обычно ниже 100 А, могут использоваться многооборотные первичные обмотки, состоящие из двух или более витков, чтобы получить на выходе достаточное количество ампер-витков для работы подключенного вторичного оборудования. Для использования при распределительном напряжении сердечник и вторичная обмотка вместе с выводами вторичной обмотки обычно размещаются над изолятором проходного изолятора прямого высоковольтного проводника, который образует сегрегацию между высоковольтным проводом и землей. Заземленный экран обычно предусмотрен на внешней поверхности ввода, и трансформаторы тока размещаются над этим заземляющим экраном, чтобы гарантировать ограничение активности частичных разрядов высокого напряжения в воздушном зазоре между вводом и обмоткой трансформатора тока.Вторичные обмотки трансформатора тока обычно подключаются к электромагнитным реле. Как правило, они требуют высокого рабочего входа, что требует применения трансформаторов тока с высокой выходной мощностью (обычно 15 В-А). Более современная защита имеет твердотельную форму и требует гораздо более низкого рабочего сигнала, что позволяет снизить конструкцию трансформатора тока и снизить затраты. Вторичные обмотки трансформаторов тока обычно имеют номинал 1 или 5 А, хотя иногда используются другие номиналы.
Там, где требуются длинные вторичные соединения между трансформатором и реле, вторичная обмотка 1 А является преимуществом для снижения нагрузки на свинец.Холоднокатаное кремнистое железо обычно используется в качестве материала сердечника для защитных трансформаторов тока, но там, где требуется высокая точность измерения, используется легированная сталь очень высокого качества, которую обычно называют «Mumetal».
Для использования при более высоких напряжениях передачи необходимо встроить интегральную изоляцию в трансформатор тока между проводниками высокого напряжения и вторичными обмотками. Эта изоляция почти всегда выполняется в виде пропитанной маслом бумаги, хотя иногда используется газ SF 6 .Стоимость обеспечения герметичной газовой оболочки SF 6 обычно делает изолированные трансформаторы тока SF 6 неэкономичными.
Существуют две основные формы конструкции трансформаторов тока с масляной пропиткой и бумажной изоляцией для напряжения передачи: форма с действующим резервуаром и форма с мертвым резервуаром.
В корпусе под напряжением сердечник и обмотка размещаются на том же уровне, что и первичный проводник, проходящий через центр сборки. Ясно, что сердечник и обмотки должны иметь потенциал земли.Обычно они заключены в металлический корпус, имеющий длинную вертикальную металлическую трубку, через которую выводы вторичной обмотки проходят на базовый уровень. Этот корпус и вертикальная металлическая труба затем имеют очень много слоев бумаги, обернутых вокруг них, чтобы сформировать основную первичную изоляцию. Слои из алюминиевой фольги, регулирующие напряжение, наматываются между слоями бумаги для обеспечения равномерного распределения напряжения от потенциала земли на нижнем конце сборки до линейного потенциала на верхнем конце.
Изолированный трансформатор тока в сборе затем помещается в изолятор, имеющий металлический верхний узел, через который проходит первичный проводник. Этот проводник электрически соединен с верхним узлом с одной стороны и изолирован с другой для предотвращения короткозамкнутого витка трансформатора тока.
Перед установкой верхней крышки весь трансформатор в сборе помещается под вакуум на несколько дней, чтобы обеспечить полное удаление влаги из бумаги.Затем узел заполняется под вакуумом высококачественным изоляционным маслом для предотвращения образования пузырьков воздуха. После заполнения трансформатора доверху он герметизируется. Для расширения и сжатия масла в его герметичном отсеке предусмотрена некоторая форма расширительного узла. Это может быть сильфон или герметичная азотная подушка. Трансформатор тока может также включать в себя индикатор уровня масла, позволяющий контролировать утечку масла, и систему обнаружения газа, позволяющую контролировать образование газообразных продуктов в результате частичного пробоя диэлектрика.
В версии с мертвым баком сердечник и обмотки трансформатора тока размещаются внизу, заземление, конец сборки, а изоляция между первичной и вторичной обмотками в этом случае размещается вокруг проводника первичной обмотки высокого напряжения, а не узла сердечника и обмотки. . Центральная часть изолированного высоковольтного первичного проводника, на котором размещаются сердечник и обмотки, должна иметь потенциал земли. Изоляция первичного проводника высокого напряжения должна иметь градацию по обе стороны от сердечника и обмоток. Между слоями бумаги вставлены обертки из алюминиевой фольги, чтобы обеспечить необходимую градацию от потенциала земли в центральной части до линейного потенциала на обоих концах.Чтобы можно было разместить узел первичного проводника высокого напряжения в вертикальном изоляторе, узел изгибается «шпилькой». Изолированная бумага фактически наматывается на проводник, уже сформированный в эту форму шпильки. Затем ножки этого изолированного узла открываются, чтобы можно было надеть сердечник и обмотки.
Готовая сборка проходит вакуумную обработку и заполняется маслом аналогично тому, как это описано для трансформатора тока с токоведущим резервуаром.
Очень широко используются конструкции как с живыми, так и с мертвыми цистернами.Обе конструкции показаны на Рисунок 34.26 .
Рисунок 34.26. Поперечное сечение (а) трансформаторов тока с действующим резервуаром и (b) трансформаторов тока с мертвым резервуаром
Типы трансформаторов тока и их применение: Talema Group
В нашей предыдущей статье мы рассмотрели основные принципы конструкции и работы трансформаторов тока (ТТ). Теперь мы обсудим несколько распространенных типов ТТ и их применения.
Стандартный измерительный CT
Стандартные измерительные трансформаторы тока используются вместе с амперметрами для измерения больших токов, которые понижаются до стандартного выходного коэффициента 5 А или 1 А.Номинальная мощность трансформатора тока в ВА соответствует номинальной мощности измерительного прибора или амперметра в ВА.
A 200/5 A Трансформатор тока серии FSD используется вместе с подвижным железным амперметром со шкалой от нуля до 200 A. Амперметр откалиброван таким образом, чтобы полное отклонение (FSD) происходило, когда на выходе трансформатора тока 5 А.
Нагрузка R амперметра должна быть по возможности низкой, чтобы обеспечить возможность замыкания, близкого к короткому, чтобы гарантировать отсутствие препятствий для вторичного тока.Нагрузка R, используемая вместе с вольтметром, также должна быть как можно более низкой, чтобы поддерживать низкое вторичное напряжение ТТ для повышения точности.
ТТ с нагрузкой на амперметр ТТ, подключенный к нагрузке R измеряется вольтметромТипичные номинальные значения стандартных измерительных трансформаторов тока в ВА составляют 2,5, 5 и 10 ВА. Для измерительных трансформаторов тока важно обеспечить насыщение на уровне, обеспечивающем безопасность измерительного прибора при токе выше номинального или в условиях неисправности.
Если отсоединить амперметр от цепи, вторичная обмотка фактически размыкается, и трансформатор действует как повышающий трансформатор. Частично это связано с очень большим увеличением намагничивающего потока в сердечнике трансформатора тока, поскольку во вторичной обмотке отсутствует противодействующий ток, предотвращающий это.
Это может привести к тому, что во вторичной обмотке будет индуцировано очень высокое напряжение, равное отношению V p × (N s / N p ), возникающему во вторичной обмотке.
По этой причине трансформатор тока нельзя оставлять разомкнутым. Если необходимо снять амперметр (или нагрузку), сначала следует замкнуть клеммы вторичной обмотки, чтобы исключить риск поражения электрическим током.
Передаточное число
Коэффициент трансформации трансформатора тока можно изменить, используя несколько витков. В приведенном ниже примере показано, как ТТ 300/5 А можно использовать в качестве ТТ 100/5 А, используя три первичных контура для уменьшения отношения витков с 60: 1 до 20: 1.Это позволяет использовать трансформатор тока с более высоким номиналом для измерения более низких токов.
Пределы погрешности отношения для измерительных трансформаторов тока классов 3 и 5 показаны ниже.
Ошибка соотношения составляет 3% и 5% соответственно, без требования ± фазовый сдвиг.
Применения для измерительных трансформаторов тока классов 3 и 5 включают:
- Защита от перегрузки
- Мониторинг тока Трехфазные генераторы
- Устройства управления
- Панели управления
- Управление и контроль распределительного устройства
- Распределение
Хотя желательно иметь нулевой сдвиг фаз между первичным и вторичным током, для измерения 5 А ТТ это не так важно, поскольку амперметры показывают только величину тока.
Измерительный CT
Измерительный трансформатор тока предназначен для непрерывного измерения тока и точной работы в пределах номинального диапазона тока. Пределы погрешности по току и сдвига фаз определяются классом точности. Классы точности: 0,1, 0,2, 0,5 и 1.
В ваттметрах, счетчиках энергии и измерителях коэффициента мощности сдвиг фазы вызывает ошибки. Однако внедрение электронных счетчиков мощности и энергии позволило откалибровать погрешность фазы тока.
Когда ток превышает номинальное значение, измерительный трансформатор тока насыщается, тем самым ограничивая уровень тока в приборе. Материалы сердечника для этого типа CT обычно имеют низкий уровень насыщения, например нанокристаллический.
Nuvotem серии AP и AQ — это прецизионные трансформаторы тока с типичной точностью 0,1–0,2%, что делает их пригодными для приложений, требующих высокой точности и минимального сдвига фаз.
Защита CT
Трансформатор тока защиты разработан для работы в диапазоне сверхтоков.Это позволяет защитным реле точно измерять токи короткого замыкания даже в условиях очень высокого тока. Вторичный ток используется для срабатывания защитного реле, которое может изолировать часть силовой цепи, в которой возникла неисправность.
Материал сердечника для этого типа ТТ имеет высокий уровень насыщения и обычно изготавливается из кремнистой стали.
Напряжение в точке колена
За пределами точки K нам нужно увеличить ток в большей степени, чтобы иметь некоторое увеличение напряжения.Это потому, что кривая за точкой K становится нелинейной. Напряжение в точке K (V k ) называется напряжением точки перегиба .
Напряжение точки перегиба трансформатора тока определяется как напряжение, при котором увеличение напряжения вторичной обмотки ТТ на 10% приводит к увеличению вторичного тока на 50%. Это также означает, что увеличение тока на 50% приведет к увеличению напряжения всего на 10%.
Напряжение в точке перегиба важно для трансформаторов тока класса защиты, т.е.е. где ТТ используется в целях защиты.
Нагрузка на защитные ТТ довольно высока по сравнению с ТТ измерительного класса, что означает, что падение напряжения на нагрузке будет высоким. Следовательно, напряжение точки перегиба ТТ с классом защиты должно быть больше, чем падение напряжения на нагрузке, чтобы сердечник ТТ оставался в его линейной зоне.
Защитные трансформаторы тока обычно определяются в терминах совокупной погрешности при предельном коэффициенте точности, то есть насколько точным будет оставаться трансформатор тока, когда протекающий первичный ток во много раз превышает нормальный при аварийной ситуации.
Стандартные классы защиты трансформаторов тока — 5P 10 и 10P 10, где P — обозначение защиты. Число перед P указывает на общий процент ошибок. Число после буквы указывает коэффициент первичного тока, до которого будет достигнута совокупная погрешность, т. Е. В 10 раз больше номинального первичного тока в 5P 10 и 10P 10.
Защитные устройства обычно определяют классификацию ТТ защиты, предназначенного для работы с данным защитным устройством.
Talema производит широкий спектр стандартных и специально разработанных тороидальных трансформаторов тока 50/60 Гц. Каждая серия разработана с особыми характеристиками в компактных корпусах, подходящих для большинства приложений. Доступны варианты как с монтажом на печатной плате, так и с подвесным выводом, а также возможность использования IDC или двусторонних разъемов.
-
Хью Бойл — старший инженер-конструктор Nuvotem Talema, работает в компании с 1986 года.До прихода в Nuvotem Хью работал инженером в компаниях British Telecom и Telecom Eireann, а также изучал телекоммуникационную инженерию City and Guilds в инженерном колледже Стоу в Глазго, Шотландия.
Просмотреть все сообщения
Определение, принцип работы, типы, выбор
Трансформатор тока — одна из важнейших частей электроэнергетических систем.Трансформаторы тока необходимы для всех типов устройств защиты и управления. По этой причине все профессионалы должны знать его основы. Прочитав эту статью, вы получите базовые знания о трансформаторе тока.
Что такое трансформатор тока?
Трансформатор тока — это особый тип электрического оборудования, которое понижает высокие первичные токи до низких вторичных токов. Первичная обмотка соединена с измеряемым током, а вторичная обмотка — с измерительными приборами.
Первичная обмотка трансформатора тока состоит из нескольких витков и соединена последовательно с линией, по которой проходит ток. Вторичная обмотка имеет большее количество витков и связана с приборами.
Трансформатор тока используется для измерения и защиты. Используя трансформатор тока, мы можем легко измерять большие токи. Рекомендуется применять трансформаторы тока на токи 40 А и выше.
Трансформаторы тока выполняют две основные функции:
- Ограничение и минимизация тока для приборов учета и защиты.
- Изоляция силовых цепей от цепи измерения и / или защиты.
Применения трансформатора тока
Трансформатор тока можно использовать в следующих приложениях.
Трансформатор тока состоит из первичной обмотки, вторичной обмотки, магнитопровода и изолированного корпуса.Сердечник из высококачественной кремнистой стали отжигается, покрывается лаком, а затем изолируется крышками из поликарбоната. Вторичная обмотка намотана тороидально на высокоточных полуавтоматах. Для кольцевого трансформатора тока с ленточной обмоткой обмотки с покрытием PEW затем покрываются слоновой бумагой, покрываются лаком и с двойным отводом с помощью лент PVS. В трансформаторе тока залитого типа обмотки заключены в компактный и термостойкий разъемный колпачок.
Как работает трансформатор тока?
Трансформатор тока работает для преобразования или изменения величины переменного тока (50… 400 Гц) в системе, обычно с более высокого значения тока на более низкое значение тока.Преобразование или величина изменения зависит от количества витков как первичного, так и вторичного проводников. ТТ состоит из трех основных компонентов: первичной обмотки, сердечника и вторичной обмотки.
Взаимосвязь или соотношение между количеством витков в первичной и вторичной обмотках отвечает за снижение или «понижение» тока в системе до значения, которое можно использовать для устройства контроля тока, такого как реле перегрузки. или продукт для контроля мощности.Следующая формула показывает, как соотношение обмоток может снизить ток:
Как рассчитывается коэффициент трансформации трансформатора тока?
Коэффициент CT — это отношение первичного входного тока к вторичному выходному току при полной нагрузке. Например, трансформатор тока с соотношением 300: 5 рассчитан на 300 ампер первичной обмотки при полной нагрузке и будет производить вторичный ток 5 ампер, когда через первичную обмотку протекает 300 ампер.
Если первичный ток изменится, вторичный ток на выходе изменится пропорционально.Например, если через первичную обмотку номиналом 300 А протекает 150 А, выходной вторичный ток будет 2,5 А (150: 300 = 2,5: 5)
Типы трансформаторов тока
Существует несколько различных типов трансформаторов тока, каждый из которых обеспечивает понижение и измерение тока, но способ выполнения этого может быть разным. Ниже объясняются характеристики трех основных типов трансформаторов тока.
Трансформатор тока с обмоткой
Трансформатор тока с намоткой имеет первичную обмотку с более чем одним полным витком, намотанным на сердечник.Первичная и вторичная обмотки трансформатора тока намотки изолированы друг от друга и состоят из одного или нескольких витков, окружающих сердечник. Сконструированы как трансформаторы с несколькими передаточными числами за счет использования отводов на вторичной обмотке. Обмотка обеспечивает отличные характеристики в широком рабочем диапазоне.
Трансформатор тока тороидальный
Тороидальный трансформатор тока не содержит первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в цепи, проходит через окно или отверстие в тороидальном трансформаторе.Некоторые трансформаторы тока имеют «разъемный сердечник», что позволяет их открывать, устанавливать и закрывать без отключения цепи, к которой они подключены.
Трансформатор тока стержневой
В трансформаторе тока стержневого типа в качестве первичной обмотки используется фактический кабель или шина главной цепи, что эквивалентно одному витку. Доступны типы стержней с более высоким уровнем изоляции и обычно крепятся болтами к текущему устройству ухода.
Подключение трансформатора тока
Одно передаточное число CT
Multi ratio CT
Выбор трансформатора тока
Для правильного выбора трансформатора тока необходимо уточнить следующие моменты:
- Приложение.(для измерения или защиты)
- Особенности формулировки среды. (внутри или снаружи, рабочая температура, влажность воздуха и т. д.)
- Рабочее напряжение и частота.
- Диапазон первичного тока. (максимальный и минимальный измеряемый ток)
- Размер кабеля или шины.
- Данные о перегрузке.
- Ток короткого замыкания.
- Спецификация измерительного устройства, связанного с током.
- Трансформатор.(точность, номинальный ток, потребление и т. д.)
- Диаметр и длина кабеля. Кабель используется для подключения трансформатора тока и соответствующего измерительного устройства.
Мы рекомендуем выбирать коэффициент, сразу превышающий максимальный измеряемый ток (In). Пример: In = 1103 А; соотношение выбрано = 1250/5.
- Для небольших оценок: от 40/5 до 75/5 и для приложений с цифровыми устройствами мы рекомендуем выбрать более высокий рейтинг, например 100/5.Это связано с тем, что малые номиналы менее точны, и измерение 40 А, например, будет более точным с ТТ 100/5, чем с ТТ 40/5.
- Конкретный случай пускателя двигателя: для измерения тока пускателя двигателя необходимо выбрать трансформатор тока с первичным током Ip = Id / 2 (Id = пусковой ток двигателя)
Точность трансформатора тока
Точность трансформатора тока определяется его сертифицированным классом точности, который указан на паспортной табличке.Например, класс точности ТТ 0,3 означает, что ТТ сертифицирован производителем как имеющий точность в пределах 0,3 процента от значения номинального коэффициента для первичного тока, составляющего 100 процентов от номинального коэффициента.
Трансформатор тока с номинальным коэффициентом 200/5 и классом точности 0,3 будет работать в пределах 0,45% от номинального значения коэффициента при первичном токе 100 ампер. Чтобы быть более точным, для первичного тока 100A сертифицировано производить вторичный ток между 2.489 ампер и 2,511 ампер.
Коэффициент трансформации трансформатора тока
Коэффициент передачи трансформатора тока указан с предположением, что первичный проводник проходит через окно один раз, но можно изменить коэффициент, пропустив первичный проводник через отверстие дополнительные раз. Введение двух петель уменьшает соотношение 300: 5 в два раза, что дает соотношение 150: 5, а три петли обеспечивают уменьшение в три раза, или 100: 5
Полярность трансформатора тока
Полярность трансформатора тока определяется направлением намотки катушек вокруг сердечника ТТ (по часовой стрелке или против часовой стрелки) и тем, как выводы, если они есть, выводятся из корпуса трансформатора.
Все трансформаторы тока имеют вычитающую полярность и имеют следующие обозначения для правильной установки:
(h2) первичный ток, линейное направление; (h3) первичный ток, направление нагрузки; и (X1) вторичный ток.
При установке и подключении трансформаторов тока к реле измерения мощности и защитных реле важно соблюдать полярность.
Причины отказа трансформатора тока
Наиболее частые отказы трансформатора тока:
- Механическая деформация, заземление плавающего сердечника, магнитострикция.
- Короткое замыкание, обрыв.
- Частичный пробой емкостных слоев.
- Короткие замыкания одиночных витков.
- Частичный разряд, влага в твердой изоляции, старение, загрязнение изоляционных жидкостей.
- Отопление.
Различия между трансформатором тока и трансформатором напряжения
|
Трансформатор тока |
Трансформатор потенциала |
Определение |
Преобразование тока из высокого значения |
Преобразование напряжения с высокого значения |
Первичная обмотка |
Он несет текущий |
Он передает напряжение |
Подключение |
Последовательное соединение |
Подключено параллельно |
Первичный контур |
Имеет малое количество витков |
Имеет большое количество витков |
Вторичный контур |
Не может быть обрыва цепи. |
Может быть обрыв. |
Коэффициент трансформации |
Высокая |
Низкая |
Бремя |
Не зависит от вторичной нагрузки |
Зависит от вторичной нагрузки |
Импеданс |
Низкий |
Высокая |
Ядро |
Изготовлен из кремнистой стали |
Изготовлен из высококачественной стали |
Продолжить чтение
Узнать | OpenEnergyMonitor
ДатчикиCT — Введение
На рисунке ниже показан пример с разделенным ядром YHDC CT:
Трансформатор тока YHDC SCT-013-000 (см. Отчет об испытаниях)Вот пример разъемного сердечника Magnelab CT:
В дополнение к типу с разъемным сердечником доступны трансформаторы тока с твердым сердечником (также известные как с кольцевым сердечником ).Вот пример твердотельного накопителя Magnelab CT:
Основы
Трансформаторы тока (CT) — это датчики, измеряющие переменный ток (AC). Они особенно полезны для измерения потребления или выработки электроэнергии в здании.
Тип с разъемным сердечником, такой как трансформатор тока на рисунке выше, можно подсоединить к нулевому проводу или под напряжением, входящему в здание, без необходимости проведения каких-либо электрических работ с высоким напряжением.
Как и любой другой трансформатор, трансформатор тока имеет первичную обмотку, магнитный сердечник и вторичную обмотку.
В случае контроля всего здания первичной обмоткой является нейтральный провод или под напряжением (НЕ оба!), Входящий в здание и проходящий через отверстие в трансформаторе тока. Вторичная обмотка состоит из множества витков тонкого провода, заключенного в корпус трансформатора.
Переменный ток, протекающий в первичной обмотке, создает магнитное поле в сердечнике, которое индуцирует ток во вторичной цепи обмотки [1].
Ток во вторичной обмотке пропорционален току, протекающему в первичной обмотке:
I вторичный = CT Передаточное число × I первичное CT Передаточное число = Обороты первичный / Обороты вторичный
Количество витков вторичной обмотки в ТТ, изображенном выше, равно 2000, поэтому ток во вторичной обмотке составляет одну 2000-ю от тока в первичной обмотке.
Обычно это соотношение записывается в единицах тока в амперах e.грамм. 100: 5 (для счетчика на 5 А с масштабированием от 0 до 100 А). Соотношение для ТТ выше обычно записывается как 100: 0,05.
Нагрузочное сопротивление
ТТ «Токовый выход» должен использоваться с нагрузочным резистором. Нагрузочный резистор замыкает или замыкает вторичную цепь ТТ. Значение нагрузки выбирается таким образом, чтобы напряжение было пропорционально вторичному току. Значение нагрузки должно быть достаточно низким, чтобы предотвратить насыщение сердечника ТТ.
Изоляция
Вторичная цепь гальванически изолирована [2] от первичной цепи.(т.е. не имеет металлического контакта)
Безопасность
Как правило, трансформатор тока никогда не должен размыкать после того, как он присоединен к проводнику с током. ТТ потенциально опасен при разомкнутой цепи.
Если цепь разомкнута при протекании тока в первичной обмотке, вторичная обмотка трансформатора будет пытаться продолжать подавать ток до бесконечного импеданса. Это создаст высокое и потенциально опасное напряжение на вторичной обмотке [1]
Некоторые ТТ имеют встроенную защиту.Некоторые из них имеют защитные стабилитроны, как в случае с SCT-013-000, рекомендованным для использования в этом проекте. Если трансформатор тока относится к типу «выход напряжения», он имеет встроенный нагрузочный резистор. Таким образом, он не может быть разомкнут.
Установка CT
Первичная обмотка ТТ — это провод, по которому проходит ток, который вы хотите измерить. Если вы закрепите свой трансформатор тока вокруг двух- или трехжильного кабеля, у которого есть провода, по которым проходит одинаковый ток, но в противоположных направлениях, магнитные поля, создаваемые проводами, будут нейтрализовать друг друга, и ваш трансформатор тока не будет иметь выхода.[3] и [4]
ТТ с разъемным сердечником, особенно с ферритовым сердечником (например, производимые YHDC), не следует «зажимать» на кабеле с помощью какого-либо уплотнительного материала из-за хрупкости феррита. core означает, что его можно легко сломать, разрушив таким образом CT. Вы должны зажимать трансформатор тока к кабелю или шине только в том случае, если корпус специально разработан для этого. Точно так же трансформатор тока с кольцевым сердечником никогда не должен устанавливаться на кабель , который слишком велик для свободного прохождения через центр.Положение и ориентация кабеля в апертуре ТТ не влияет на выходной сигнал , а не .
Ссылки и дополнительная литература
Отчет об испытаниях: Yhdc SCT-013-000 Трансформатор тока
Elkor Technologies Inc — Знакомство с трансформаторами тока
[1] Статья в Википедии о трансформаторах тока
[2] Статья в Википедии о гальванической развязке
[3] Теория установки и калибровки трансформатора тока и адаптера переменного тока
[4] Установка трансформатора тока
.